xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 293d5b43)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/jiffies.h>
15 #include <linux/vmalloc.h>
16 #include <linux/shrinker.h>
17 #include <linux/module.h>
18 #include <linux/rbtree.h>
19 #include <linux/stacktrace.h>
20 
21 #define DM_MSG_PREFIX "bufio"
22 
23 /*
24  * Memory management policy:
25  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
26  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
27  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
28  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
29  *	dirty buffers.
30  */
31 #define DM_BUFIO_MIN_BUFFERS		8
32 
33 #define DM_BUFIO_MEMORY_PERCENT		2
34 #define DM_BUFIO_VMALLOC_PERCENT	25
35 #define DM_BUFIO_WRITEBACK_PERCENT	75
36 
37 /*
38  * Check buffer ages in this interval (seconds)
39  */
40 #define DM_BUFIO_WORK_TIMER_SECS	30
41 
42 /*
43  * Free buffers when they are older than this (seconds)
44  */
45 #define DM_BUFIO_DEFAULT_AGE_SECS	300
46 
47 /*
48  * The nr of bytes of cached data to keep around.
49  */
50 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
51 
52 /*
53  * The number of bvec entries that are embedded directly in the buffer.
54  * If the chunk size is larger, dm-io is used to do the io.
55  */
56 #define DM_BUFIO_INLINE_VECS		16
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	unsigned minimum_buffers;
108 
109 	struct rb_root buffer_tree;
110 	wait_queue_head_t free_buffer_wait;
111 
112 	int async_write_error;
113 
114 	struct list_head client_list;
115 	struct shrinker shrinker;
116 };
117 
118 /*
119  * Buffer state bits.
120  */
121 #define B_READING	0
122 #define B_WRITING	1
123 #define B_DIRTY		2
124 
125 /*
126  * Describes how the block was allocated:
127  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
128  * See the comment at alloc_buffer_data.
129  */
130 enum data_mode {
131 	DATA_MODE_SLAB = 0,
132 	DATA_MODE_GET_FREE_PAGES = 1,
133 	DATA_MODE_VMALLOC = 2,
134 	DATA_MODE_LIMIT = 3
135 };
136 
137 struct dm_buffer {
138 	struct rb_node node;
139 	struct list_head lru_list;
140 	sector_t block;
141 	void *data;
142 	enum data_mode data_mode;
143 	unsigned char list_mode;		/* LIST_* */
144 	unsigned hold_count;
145 	int read_error;
146 	int write_error;
147 	unsigned long state;
148 	unsigned long last_accessed;
149 	struct dm_bufio_client *c;
150 	struct list_head write_list;
151 	struct bio bio;
152 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
154 #define MAX_STACK 10
155 	struct stack_trace stack_trace;
156 	unsigned long stack_entries[MAX_STACK];
157 #endif
158 };
159 
160 /*----------------------------------------------------------------*/
161 
162 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
163 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
164 
165 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
166 {
167 	unsigned ret = c->blocks_per_page_bits - 1;
168 
169 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
170 
171 	return ret;
172 }
173 
174 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
175 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
176 
177 #define dm_bufio_in_request()	(!!current->bio_list)
178 
179 static void dm_bufio_lock(struct dm_bufio_client *c)
180 {
181 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
182 }
183 
184 static int dm_bufio_trylock(struct dm_bufio_client *c)
185 {
186 	return mutex_trylock(&c->lock);
187 }
188 
189 static void dm_bufio_unlock(struct dm_bufio_client *c)
190 {
191 	mutex_unlock(&c->lock);
192 }
193 
194 /*
195  * FIXME Move to sched.h?
196  */
197 #ifdef CONFIG_PREEMPT_VOLUNTARY
198 #  define dm_bufio_cond_resched()		\
199 do {						\
200 	if (unlikely(need_resched()))		\
201 		_cond_resched();		\
202 } while (0)
203 #else
204 #  define dm_bufio_cond_resched()                do { } while (0)
205 #endif
206 
207 /*----------------------------------------------------------------*/
208 
209 /*
210  * Default cache size: available memory divided by the ratio.
211  */
212 static unsigned long dm_bufio_default_cache_size;
213 
214 /*
215  * Total cache size set by the user.
216  */
217 static unsigned long dm_bufio_cache_size;
218 
219 /*
220  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
221  * at any time.  If it disagrees, the user has changed cache size.
222  */
223 static unsigned long dm_bufio_cache_size_latch;
224 
225 static DEFINE_SPINLOCK(param_spinlock);
226 
227 /*
228  * Buffers are freed after this timeout
229  */
230 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
231 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
232 
233 static unsigned long dm_bufio_peak_allocated;
234 static unsigned long dm_bufio_allocated_kmem_cache;
235 static unsigned long dm_bufio_allocated_get_free_pages;
236 static unsigned long dm_bufio_allocated_vmalloc;
237 static unsigned long dm_bufio_current_allocated;
238 
239 /*----------------------------------------------------------------*/
240 
241 /*
242  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
243  */
244 static unsigned long dm_bufio_cache_size_per_client;
245 
246 /*
247  * The current number of clients.
248  */
249 static int dm_bufio_client_count;
250 
251 /*
252  * The list of all clients.
253  */
254 static LIST_HEAD(dm_bufio_all_clients);
255 
256 /*
257  * This mutex protects dm_bufio_cache_size_latch,
258  * dm_bufio_cache_size_per_client and dm_bufio_client_count
259  */
260 static DEFINE_MUTEX(dm_bufio_clients_lock);
261 
262 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
263 static void buffer_record_stack(struct dm_buffer *b)
264 {
265 	b->stack_trace.nr_entries = 0;
266 	b->stack_trace.max_entries = MAX_STACK;
267 	b->stack_trace.entries = b->stack_entries;
268 	b->stack_trace.skip = 2;
269 	save_stack_trace(&b->stack_trace);
270 }
271 #endif
272 
273 /*----------------------------------------------------------------
274  * A red/black tree acts as an index for all the buffers.
275  *--------------------------------------------------------------*/
276 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
277 {
278 	struct rb_node *n = c->buffer_tree.rb_node;
279 	struct dm_buffer *b;
280 
281 	while (n) {
282 		b = container_of(n, struct dm_buffer, node);
283 
284 		if (b->block == block)
285 			return b;
286 
287 		n = (b->block < block) ? n->rb_left : n->rb_right;
288 	}
289 
290 	return NULL;
291 }
292 
293 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
294 {
295 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
296 	struct dm_buffer *found;
297 
298 	while (*new) {
299 		found = container_of(*new, struct dm_buffer, node);
300 
301 		if (found->block == b->block) {
302 			BUG_ON(found != b);
303 			return;
304 		}
305 
306 		parent = *new;
307 		new = (found->block < b->block) ?
308 			&((*new)->rb_left) : &((*new)->rb_right);
309 	}
310 
311 	rb_link_node(&b->node, parent, new);
312 	rb_insert_color(&b->node, &c->buffer_tree);
313 }
314 
315 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
316 {
317 	rb_erase(&b->node, &c->buffer_tree);
318 }
319 
320 /*----------------------------------------------------------------*/
321 
322 static void adjust_total_allocated(enum data_mode data_mode, long diff)
323 {
324 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
325 		&dm_bufio_allocated_kmem_cache,
326 		&dm_bufio_allocated_get_free_pages,
327 		&dm_bufio_allocated_vmalloc,
328 	};
329 
330 	spin_lock(&param_spinlock);
331 
332 	*class_ptr[data_mode] += diff;
333 
334 	dm_bufio_current_allocated += diff;
335 
336 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
337 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
338 
339 	spin_unlock(&param_spinlock);
340 }
341 
342 /*
343  * Change the number of clients and recalculate per-client limit.
344  */
345 static void __cache_size_refresh(void)
346 {
347 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
348 	BUG_ON(dm_bufio_client_count < 0);
349 
350 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
351 
352 	/*
353 	 * Use default if set to 0 and report the actual cache size used.
354 	 */
355 	if (!dm_bufio_cache_size_latch) {
356 		(void)cmpxchg(&dm_bufio_cache_size, 0,
357 			      dm_bufio_default_cache_size);
358 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
359 	}
360 
361 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
362 					 (dm_bufio_client_count ? : 1);
363 }
364 
365 /*
366  * Allocating buffer data.
367  *
368  * Small buffers are allocated with kmem_cache, to use space optimally.
369  *
370  * For large buffers, we choose between get_free_pages and vmalloc.
371  * Each has advantages and disadvantages.
372  *
373  * __get_free_pages can randomly fail if the memory is fragmented.
374  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
375  * as low as 128M) so using it for caching is not appropriate.
376  *
377  * If the allocation may fail we use __get_free_pages. Memory fragmentation
378  * won't have a fatal effect here, but it just causes flushes of some other
379  * buffers and more I/O will be performed. Don't use __get_free_pages if it
380  * always fails (i.e. order >= MAX_ORDER).
381  *
382  * If the allocation shouldn't fail we use __vmalloc. This is only for the
383  * initial reserve allocation, so there's no risk of wasting all vmalloc
384  * space.
385  */
386 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
387 			       enum data_mode *data_mode)
388 {
389 	unsigned noio_flag;
390 	void *ptr;
391 
392 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
393 		*data_mode = DATA_MODE_SLAB;
394 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
395 	}
396 
397 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
398 	    gfp_mask & __GFP_NORETRY) {
399 		*data_mode = DATA_MODE_GET_FREE_PAGES;
400 		return (void *)__get_free_pages(gfp_mask,
401 						c->pages_per_block_bits);
402 	}
403 
404 	*data_mode = DATA_MODE_VMALLOC;
405 
406 	/*
407 	 * __vmalloc allocates the data pages and auxiliary structures with
408 	 * gfp_flags that were specified, but pagetables are always allocated
409 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
410 	 *
411 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
412 	 * all allocations done by this process (including pagetables) are done
413 	 * as if GFP_NOIO was specified.
414 	 */
415 
416 	if (gfp_mask & __GFP_NORETRY)
417 		noio_flag = memalloc_noio_save();
418 
419 	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
420 
421 	if (gfp_mask & __GFP_NORETRY)
422 		memalloc_noio_restore(noio_flag);
423 
424 	return ptr;
425 }
426 
427 /*
428  * Free buffer's data.
429  */
430 static void free_buffer_data(struct dm_bufio_client *c,
431 			     void *data, enum data_mode data_mode)
432 {
433 	switch (data_mode) {
434 	case DATA_MODE_SLAB:
435 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
436 		break;
437 
438 	case DATA_MODE_GET_FREE_PAGES:
439 		free_pages((unsigned long)data, c->pages_per_block_bits);
440 		break;
441 
442 	case DATA_MODE_VMALLOC:
443 		vfree(data);
444 		break;
445 
446 	default:
447 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
448 		       data_mode);
449 		BUG();
450 	}
451 }
452 
453 /*
454  * Allocate buffer and its data.
455  */
456 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
457 {
458 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
459 				      gfp_mask);
460 
461 	if (!b)
462 		return NULL;
463 
464 	b->c = c;
465 
466 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
467 	if (!b->data) {
468 		kfree(b);
469 		return NULL;
470 	}
471 
472 	adjust_total_allocated(b->data_mode, (long)c->block_size);
473 
474 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
475 	memset(&b->stack_trace, 0, sizeof(b->stack_trace));
476 #endif
477 	return b;
478 }
479 
480 /*
481  * Free buffer and its data.
482  */
483 static void free_buffer(struct dm_buffer *b)
484 {
485 	struct dm_bufio_client *c = b->c;
486 
487 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
488 
489 	free_buffer_data(c, b->data, b->data_mode);
490 	kfree(b);
491 }
492 
493 /*
494  * Link buffer to the hash list and clean or dirty queue.
495  */
496 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
497 {
498 	struct dm_bufio_client *c = b->c;
499 
500 	c->n_buffers[dirty]++;
501 	b->block = block;
502 	b->list_mode = dirty;
503 	list_add(&b->lru_list, &c->lru[dirty]);
504 	__insert(b->c, b);
505 	b->last_accessed = jiffies;
506 }
507 
508 /*
509  * Unlink buffer from the hash list and dirty or clean queue.
510  */
511 static void __unlink_buffer(struct dm_buffer *b)
512 {
513 	struct dm_bufio_client *c = b->c;
514 
515 	BUG_ON(!c->n_buffers[b->list_mode]);
516 
517 	c->n_buffers[b->list_mode]--;
518 	__remove(b->c, b);
519 	list_del(&b->lru_list);
520 }
521 
522 /*
523  * Place the buffer to the head of dirty or clean LRU queue.
524  */
525 static void __relink_lru(struct dm_buffer *b, int dirty)
526 {
527 	struct dm_bufio_client *c = b->c;
528 
529 	BUG_ON(!c->n_buffers[b->list_mode]);
530 
531 	c->n_buffers[b->list_mode]--;
532 	c->n_buffers[dirty]++;
533 	b->list_mode = dirty;
534 	list_move(&b->lru_list, &c->lru[dirty]);
535 	b->last_accessed = jiffies;
536 }
537 
538 /*----------------------------------------------------------------
539  * Submit I/O on the buffer.
540  *
541  * Bio interface is faster but it has some problems:
542  *	the vector list is limited (increasing this limit increases
543  *	memory-consumption per buffer, so it is not viable);
544  *
545  *	the memory must be direct-mapped, not vmalloced;
546  *
547  *	the I/O driver can reject requests spuriously if it thinks that
548  *	the requests are too big for the device or if they cross a
549  *	controller-defined memory boundary.
550  *
551  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
552  * it is not vmalloced, try using the bio interface.
553  *
554  * If the buffer is big, if it is vmalloced or if the underlying device
555  * rejects the bio because it is too large, use dm-io layer to do the I/O.
556  * The dm-io layer splits the I/O into multiple requests, avoiding the above
557  * shortcomings.
558  *--------------------------------------------------------------*/
559 
560 /*
561  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
562  * that the request was handled directly with bio interface.
563  */
564 static void dmio_complete(unsigned long error, void *context)
565 {
566 	struct dm_buffer *b = context;
567 
568 	b->bio.bi_error = error ? -EIO : 0;
569 	b->bio.bi_end_io(&b->bio);
570 }
571 
572 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
573 		     bio_end_io_t *end_io)
574 {
575 	int r;
576 	struct dm_io_request io_req = {
577 		.bi_op = rw,
578 		.bi_op_flags = 0,
579 		.notify.fn = dmio_complete,
580 		.notify.context = b,
581 		.client = b->c->dm_io,
582 	};
583 	struct dm_io_region region = {
584 		.bdev = b->c->bdev,
585 		.sector = block << b->c->sectors_per_block_bits,
586 		.count = b->c->block_size >> SECTOR_SHIFT,
587 	};
588 
589 	if (b->data_mode != DATA_MODE_VMALLOC) {
590 		io_req.mem.type = DM_IO_KMEM;
591 		io_req.mem.ptr.addr = b->data;
592 	} else {
593 		io_req.mem.type = DM_IO_VMA;
594 		io_req.mem.ptr.vma = b->data;
595 	}
596 
597 	b->bio.bi_end_io = end_io;
598 
599 	r = dm_io(&io_req, 1, &region, NULL);
600 	if (r) {
601 		b->bio.bi_error = r;
602 		end_io(&b->bio);
603 	}
604 }
605 
606 static void inline_endio(struct bio *bio)
607 {
608 	bio_end_io_t *end_fn = bio->bi_private;
609 	int error = bio->bi_error;
610 
611 	/*
612 	 * Reset the bio to free any attached resources
613 	 * (e.g. bio integrity profiles).
614 	 */
615 	bio_reset(bio);
616 
617 	bio->bi_error = error;
618 	end_fn(bio);
619 }
620 
621 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
622 			   bio_end_io_t *end_io)
623 {
624 	char *ptr;
625 	int len;
626 
627 	bio_init(&b->bio);
628 	b->bio.bi_io_vec = b->bio_vec;
629 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
630 	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
631 	b->bio.bi_bdev = b->c->bdev;
632 	b->bio.bi_end_io = inline_endio;
633 	/*
634 	 * Use of .bi_private isn't a problem here because
635 	 * the dm_buffer's inline bio is local to bufio.
636 	 */
637 	b->bio.bi_private = end_io;
638 	bio_set_op_attrs(&b->bio, rw, 0);
639 
640 	/*
641 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
642 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
643 	 */
644 	ptr = b->data;
645 	len = b->c->block_size;
646 
647 	if (len >= PAGE_SIZE)
648 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
649 	else
650 		BUG_ON((unsigned long)ptr & (len - 1));
651 
652 	do {
653 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
654 				  len < PAGE_SIZE ? len : PAGE_SIZE,
655 				  offset_in_page(ptr))) {
656 			BUG_ON(b->c->block_size <= PAGE_SIZE);
657 			use_dmio(b, rw, block, end_io);
658 			return;
659 		}
660 
661 		len -= PAGE_SIZE;
662 		ptr += PAGE_SIZE;
663 	} while (len > 0);
664 
665 	submit_bio(&b->bio);
666 }
667 
668 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
669 		      bio_end_io_t *end_io)
670 {
671 	if (rw == WRITE && b->c->write_callback)
672 		b->c->write_callback(b);
673 
674 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
675 	    b->data_mode != DATA_MODE_VMALLOC)
676 		use_inline_bio(b, rw, block, end_io);
677 	else
678 		use_dmio(b, rw, block, end_io);
679 }
680 
681 /*----------------------------------------------------------------
682  * Writing dirty buffers
683  *--------------------------------------------------------------*/
684 
685 /*
686  * The endio routine for write.
687  *
688  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
689  * it.
690  */
691 static void write_endio(struct bio *bio)
692 {
693 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
694 
695 	b->write_error = bio->bi_error;
696 	if (unlikely(bio->bi_error)) {
697 		struct dm_bufio_client *c = b->c;
698 		int error = bio->bi_error;
699 		(void)cmpxchg(&c->async_write_error, 0, error);
700 	}
701 
702 	BUG_ON(!test_bit(B_WRITING, &b->state));
703 
704 	smp_mb__before_atomic();
705 	clear_bit(B_WRITING, &b->state);
706 	smp_mb__after_atomic();
707 
708 	wake_up_bit(&b->state, B_WRITING);
709 }
710 
711 /*
712  * Initiate a write on a dirty buffer, but don't wait for it.
713  *
714  * - If the buffer is not dirty, exit.
715  * - If there some previous write going on, wait for it to finish (we can't
716  *   have two writes on the same buffer simultaneously).
717  * - Submit our write and don't wait on it. We set B_WRITING indicating
718  *   that there is a write in progress.
719  */
720 static void __write_dirty_buffer(struct dm_buffer *b,
721 				 struct list_head *write_list)
722 {
723 	if (!test_bit(B_DIRTY, &b->state))
724 		return;
725 
726 	clear_bit(B_DIRTY, &b->state);
727 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
728 
729 	if (!write_list)
730 		submit_io(b, WRITE, b->block, write_endio);
731 	else
732 		list_add_tail(&b->write_list, write_list);
733 }
734 
735 static void __flush_write_list(struct list_head *write_list)
736 {
737 	struct blk_plug plug;
738 	blk_start_plug(&plug);
739 	while (!list_empty(write_list)) {
740 		struct dm_buffer *b =
741 			list_entry(write_list->next, struct dm_buffer, write_list);
742 		list_del(&b->write_list);
743 		submit_io(b, WRITE, b->block, write_endio);
744 		dm_bufio_cond_resched();
745 	}
746 	blk_finish_plug(&plug);
747 }
748 
749 /*
750  * Wait until any activity on the buffer finishes.  Possibly write the
751  * buffer if it is dirty.  When this function finishes, there is no I/O
752  * running on the buffer and the buffer is not dirty.
753  */
754 static void __make_buffer_clean(struct dm_buffer *b)
755 {
756 	BUG_ON(b->hold_count);
757 
758 	if (!b->state)	/* fast case */
759 		return;
760 
761 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
762 	__write_dirty_buffer(b, NULL);
763 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
764 }
765 
766 /*
767  * Find some buffer that is not held by anybody, clean it, unlink it and
768  * return it.
769  */
770 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
771 {
772 	struct dm_buffer *b;
773 
774 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
775 		BUG_ON(test_bit(B_WRITING, &b->state));
776 		BUG_ON(test_bit(B_DIRTY, &b->state));
777 
778 		if (!b->hold_count) {
779 			__make_buffer_clean(b);
780 			__unlink_buffer(b);
781 			return b;
782 		}
783 		dm_bufio_cond_resched();
784 	}
785 
786 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
787 		BUG_ON(test_bit(B_READING, &b->state));
788 
789 		if (!b->hold_count) {
790 			__make_buffer_clean(b);
791 			__unlink_buffer(b);
792 			return b;
793 		}
794 		dm_bufio_cond_resched();
795 	}
796 
797 	return NULL;
798 }
799 
800 /*
801  * Wait until some other threads free some buffer or release hold count on
802  * some buffer.
803  *
804  * This function is entered with c->lock held, drops it and regains it
805  * before exiting.
806  */
807 static void __wait_for_free_buffer(struct dm_bufio_client *c)
808 {
809 	DECLARE_WAITQUEUE(wait, current);
810 
811 	add_wait_queue(&c->free_buffer_wait, &wait);
812 	set_task_state(current, TASK_UNINTERRUPTIBLE);
813 	dm_bufio_unlock(c);
814 
815 	io_schedule();
816 
817 	remove_wait_queue(&c->free_buffer_wait, &wait);
818 
819 	dm_bufio_lock(c);
820 }
821 
822 enum new_flag {
823 	NF_FRESH = 0,
824 	NF_READ = 1,
825 	NF_GET = 2,
826 	NF_PREFETCH = 3
827 };
828 
829 /*
830  * Allocate a new buffer. If the allocation is not possible, wait until
831  * some other thread frees a buffer.
832  *
833  * May drop the lock and regain it.
834  */
835 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
836 {
837 	struct dm_buffer *b;
838 
839 	/*
840 	 * dm-bufio is resistant to allocation failures (it just keeps
841 	 * one buffer reserved in cases all the allocations fail).
842 	 * So set flags to not try too hard:
843 	 *	GFP_NOIO: don't recurse into the I/O layer
844 	 *	__GFP_NORETRY: don't retry and rather return failure
845 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
846 	 *	__GFP_NOWARN: don't print a warning in case of failure
847 	 *
848 	 * For debugging, if we set the cache size to 1, no new buffers will
849 	 * be allocated.
850 	 */
851 	while (1) {
852 		if (dm_bufio_cache_size_latch != 1) {
853 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
854 			if (b)
855 				return b;
856 		}
857 
858 		if (nf == NF_PREFETCH)
859 			return NULL;
860 
861 		if (!list_empty(&c->reserved_buffers)) {
862 			b = list_entry(c->reserved_buffers.next,
863 				       struct dm_buffer, lru_list);
864 			list_del(&b->lru_list);
865 			c->need_reserved_buffers++;
866 
867 			return b;
868 		}
869 
870 		b = __get_unclaimed_buffer(c);
871 		if (b)
872 			return b;
873 
874 		__wait_for_free_buffer(c);
875 	}
876 }
877 
878 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
879 {
880 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
881 
882 	if (!b)
883 		return NULL;
884 
885 	if (c->alloc_callback)
886 		c->alloc_callback(b);
887 
888 	return b;
889 }
890 
891 /*
892  * Free a buffer and wake other threads waiting for free buffers.
893  */
894 static void __free_buffer_wake(struct dm_buffer *b)
895 {
896 	struct dm_bufio_client *c = b->c;
897 
898 	if (!c->need_reserved_buffers)
899 		free_buffer(b);
900 	else {
901 		list_add(&b->lru_list, &c->reserved_buffers);
902 		c->need_reserved_buffers--;
903 	}
904 
905 	wake_up(&c->free_buffer_wait);
906 }
907 
908 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
909 					struct list_head *write_list)
910 {
911 	struct dm_buffer *b, *tmp;
912 
913 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
914 		BUG_ON(test_bit(B_READING, &b->state));
915 
916 		if (!test_bit(B_DIRTY, &b->state) &&
917 		    !test_bit(B_WRITING, &b->state)) {
918 			__relink_lru(b, LIST_CLEAN);
919 			continue;
920 		}
921 
922 		if (no_wait && test_bit(B_WRITING, &b->state))
923 			return;
924 
925 		__write_dirty_buffer(b, write_list);
926 		dm_bufio_cond_resched();
927 	}
928 }
929 
930 /*
931  * Get writeback threshold and buffer limit for a given client.
932  */
933 static void __get_memory_limit(struct dm_bufio_client *c,
934 			       unsigned long *threshold_buffers,
935 			       unsigned long *limit_buffers)
936 {
937 	unsigned long buffers;
938 
939 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
940 		mutex_lock(&dm_bufio_clients_lock);
941 		__cache_size_refresh();
942 		mutex_unlock(&dm_bufio_clients_lock);
943 	}
944 
945 	buffers = dm_bufio_cache_size_per_client >>
946 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
947 
948 	if (buffers < c->minimum_buffers)
949 		buffers = c->minimum_buffers;
950 
951 	*limit_buffers = buffers;
952 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
953 }
954 
955 /*
956  * Check if we're over watermark.
957  * If we are over threshold_buffers, start freeing buffers.
958  * If we're over "limit_buffers", block until we get under the limit.
959  */
960 static void __check_watermark(struct dm_bufio_client *c,
961 			      struct list_head *write_list)
962 {
963 	unsigned long threshold_buffers, limit_buffers;
964 
965 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
966 
967 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
968 	       limit_buffers) {
969 
970 		struct dm_buffer *b = __get_unclaimed_buffer(c);
971 
972 		if (!b)
973 			return;
974 
975 		__free_buffer_wake(b);
976 		dm_bufio_cond_resched();
977 	}
978 
979 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
980 		__write_dirty_buffers_async(c, 1, write_list);
981 }
982 
983 /*----------------------------------------------------------------
984  * Getting a buffer
985  *--------------------------------------------------------------*/
986 
987 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
988 				     enum new_flag nf, int *need_submit,
989 				     struct list_head *write_list)
990 {
991 	struct dm_buffer *b, *new_b = NULL;
992 
993 	*need_submit = 0;
994 
995 	b = __find(c, block);
996 	if (b)
997 		goto found_buffer;
998 
999 	if (nf == NF_GET)
1000 		return NULL;
1001 
1002 	new_b = __alloc_buffer_wait(c, nf);
1003 	if (!new_b)
1004 		return NULL;
1005 
1006 	/*
1007 	 * We've had a period where the mutex was unlocked, so need to
1008 	 * recheck the hash table.
1009 	 */
1010 	b = __find(c, block);
1011 	if (b) {
1012 		__free_buffer_wake(new_b);
1013 		goto found_buffer;
1014 	}
1015 
1016 	__check_watermark(c, write_list);
1017 
1018 	b = new_b;
1019 	b->hold_count = 1;
1020 	b->read_error = 0;
1021 	b->write_error = 0;
1022 	__link_buffer(b, block, LIST_CLEAN);
1023 
1024 	if (nf == NF_FRESH) {
1025 		b->state = 0;
1026 		return b;
1027 	}
1028 
1029 	b->state = 1 << B_READING;
1030 	*need_submit = 1;
1031 
1032 	return b;
1033 
1034 found_buffer:
1035 	if (nf == NF_PREFETCH)
1036 		return NULL;
1037 	/*
1038 	 * Note: it is essential that we don't wait for the buffer to be
1039 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1040 	 * dm_bufio_prefetch can be used in the driver request routine.
1041 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1042 	 * the same buffer, it would deadlock if we waited.
1043 	 */
1044 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1045 		return NULL;
1046 
1047 	b->hold_count++;
1048 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1049 		     test_bit(B_WRITING, &b->state));
1050 	return b;
1051 }
1052 
1053 /*
1054  * The endio routine for reading: set the error, clear the bit and wake up
1055  * anyone waiting on the buffer.
1056  */
1057 static void read_endio(struct bio *bio)
1058 {
1059 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1060 
1061 	b->read_error = bio->bi_error;
1062 
1063 	BUG_ON(!test_bit(B_READING, &b->state));
1064 
1065 	smp_mb__before_atomic();
1066 	clear_bit(B_READING, &b->state);
1067 	smp_mb__after_atomic();
1068 
1069 	wake_up_bit(&b->state, B_READING);
1070 }
1071 
1072 /*
1073  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1074  * functions is similar except that dm_bufio_new doesn't read the
1075  * buffer from the disk (assuming that the caller overwrites all the data
1076  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1077  */
1078 static void *new_read(struct dm_bufio_client *c, sector_t block,
1079 		      enum new_flag nf, struct dm_buffer **bp)
1080 {
1081 	int need_submit;
1082 	struct dm_buffer *b;
1083 
1084 	LIST_HEAD(write_list);
1085 
1086 	dm_bufio_lock(c);
1087 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1088 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1089 	if (b && b->hold_count == 1)
1090 		buffer_record_stack(b);
1091 #endif
1092 	dm_bufio_unlock(c);
1093 
1094 	__flush_write_list(&write_list);
1095 
1096 	if (!b)
1097 		return NULL;
1098 
1099 	if (need_submit)
1100 		submit_io(b, READ, b->block, read_endio);
1101 
1102 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1103 
1104 	if (b->read_error) {
1105 		int error = b->read_error;
1106 
1107 		dm_bufio_release(b);
1108 
1109 		return ERR_PTR(error);
1110 	}
1111 
1112 	*bp = b;
1113 
1114 	return b->data;
1115 }
1116 
1117 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1118 		   struct dm_buffer **bp)
1119 {
1120 	return new_read(c, block, NF_GET, bp);
1121 }
1122 EXPORT_SYMBOL_GPL(dm_bufio_get);
1123 
1124 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1125 		    struct dm_buffer **bp)
1126 {
1127 	BUG_ON(dm_bufio_in_request());
1128 
1129 	return new_read(c, block, NF_READ, bp);
1130 }
1131 EXPORT_SYMBOL_GPL(dm_bufio_read);
1132 
1133 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1134 		   struct dm_buffer **bp)
1135 {
1136 	BUG_ON(dm_bufio_in_request());
1137 
1138 	return new_read(c, block, NF_FRESH, bp);
1139 }
1140 EXPORT_SYMBOL_GPL(dm_bufio_new);
1141 
1142 void dm_bufio_prefetch(struct dm_bufio_client *c,
1143 		       sector_t block, unsigned n_blocks)
1144 {
1145 	struct blk_plug plug;
1146 
1147 	LIST_HEAD(write_list);
1148 
1149 	BUG_ON(dm_bufio_in_request());
1150 
1151 	blk_start_plug(&plug);
1152 	dm_bufio_lock(c);
1153 
1154 	for (; n_blocks--; block++) {
1155 		int need_submit;
1156 		struct dm_buffer *b;
1157 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1158 				&write_list);
1159 		if (unlikely(!list_empty(&write_list))) {
1160 			dm_bufio_unlock(c);
1161 			blk_finish_plug(&plug);
1162 			__flush_write_list(&write_list);
1163 			blk_start_plug(&plug);
1164 			dm_bufio_lock(c);
1165 		}
1166 		if (unlikely(b != NULL)) {
1167 			dm_bufio_unlock(c);
1168 
1169 			if (need_submit)
1170 				submit_io(b, READ, b->block, read_endio);
1171 			dm_bufio_release(b);
1172 
1173 			dm_bufio_cond_resched();
1174 
1175 			if (!n_blocks)
1176 				goto flush_plug;
1177 			dm_bufio_lock(c);
1178 		}
1179 	}
1180 
1181 	dm_bufio_unlock(c);
1182 
1183 flush_plug:
1184 	blk_finish_plug(&plug);
1185 }
1186 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1187 
1188 void dm_bufio_release(struct dm_buffer *b)
1189 {
1190 	struct dm_bufio_client *c = b->c;
1191 
1192 	dm_bufio_lock(c);
1193 
1194 	BUG_ON(!b->hold_count);
1195 
1196 	b->hold_count--;
1197 	if (!b->hold_count) {
1198 		wake_up(&c->free_buffer_wait);
1199 
1200 		/*
1201 		 * If there were errors on the buffer, and the buffer is not
1202 		 * to be written, free the buffer. There is no point in caching
1203 		 * invalid buffer.
1204 		 */
1205 		if ((b->read_error || b->write_error) &&
1206 		    !test_bit(B_READING, &b->state) &&
1207 		    !test_bit(B_WRITING, &b->state) &&
1208 		    !test_bit(B_DIRTY, &b->state)) {
1209 			__unlink_buffer(b);
1210 			__free_buffer_wake(b);
1211 		}
1212 	}
1213 
1214 	dm_bufio_unlock(c);
1215 }
1216 EXPORT_SYMBOL_GPL(dm_bufio_release);
1217 
1218 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1219 {
1220 	struct dm_bufio_client *c = b->c;
1221 
1222 	dm_bufio_lock(c);
1223 
1224 	BUG_ON(test_bit(B_READING, &b->state));
1225 
1226 	if (!test_and_set_bit(B_DIRTY, &b->state))
1227 		__relink_lru(b, LIST_DIRTY);
1228 
1229 	dm_bufio_unlock(c);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1232 
1233 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1234 {
1235 	LIST_HEAD(write_list);
1236 
1237 	BUG_ON(dm_bufio_in_request());
1238 
1239 	dm_bufio_lock(c);
1240 	__write_dirty_buffers_async(c, 0, &write_list);
1241 	dm_bufio_unlock(c);
1242 	__flush_write_list(&write_list);
1243 }
1244 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1245 
1246 /*
1247  * For performance, it is essential that the buffers are written asynchronously
1248  * and simultaneously (so that the block layer can merge the writes) and then
1249  * waited upon.
1250  *
1251  * Finally, we flush hardware disk cache.
1252  */
1253 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1254 {
1255 	int a, f;
1256 	unsigned long buffers_processed = 0;
1257 	struct dm_buffer *b, *tmp;
1258 
1259 	LIST_HEAD(write_list);
1260 
1261 	dm_bufio_lock(c);
1262 	__write_dirty_buffers_async(c, 0, &write_list);
1263 	dm_bufio_unlock(c);
1264 	__flush_write_list(&write_list);
1265 	dm_bufio_lock(c);
1266 
1267 again:
1268 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1269 		int dropped_lock = 0;
1270 
1271 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1272 			buffers_processed++;
1273 
1274 		BUG_ON(test_bit(B_READING, &b->state));
1275 
1276 		if (test_bit(B_WRITING, &b->state)) {
1277 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1278 				dropped_lock = 1;
1279 				b->hold_count++;
1280 				dm_bufio_unlock(c);
1281 				wait_on_bit_io(&b->state, B_WRITING,
1282 					       TASK_UNINTERRUPTIBLE);
1283 				dm_bufio_lock(c);
1284 				b->hold_count--;
1285 			} else
1286 				wait_on_bit_io(&b->state, B_WRITING,
1287 					       TASK_UNINTERRUPTIBLE);
1288 		}
1289 
1290 		if (!test_bit(B_DIRTY, &b->state) &&
1291 		    !test_bit(B_WRITING, &b->state))
1292 			__relink_lru(b, LIST_CLEAN);
1293 
1294 		dm_bufio_cond_resched();
1295 
1296 		/*
1297 		 * If we dropped the lock, the list is no longer consistent,
1298 		 * so we must restart the search.
1299 		 *
1300 		 * In the most common case, the buffer just processed is
1301 		 * relinked to the clean list, so we won't loop scanning the
1302 		 * same buffer again and again.
1303 		 *
1304 		 * This may livelock if there is another thread simultaneously
1305 		 * dirtying buffers, so we count the number of buffers walked
1306 		 * and if it exceeds the total number of buffers, it means that
1307 		 * someone is doing some writes simultaneously with us.  In
1308 		 * this case, stop, dropping the lock.
1309 		 */
1310 		if (dropped_lock)
1311 			goto again;
1312 	}
1313 	wake_up(&c->free_buffer_wait);
1314 	dm_bufio_unlock(c);
1315 
1316 	a = xchg(&c->async_write_error, 0);
1317 	f = dm_bufio_issue_flush(c);
1318 	if (a)
1319 		return a;
1320 
1321 	return f;
1322 }
1323 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1324 
1325 /*
1326  * Use dm-io to send and empty barrier flush the device.
1327  */
1328 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1329 {
1330 	struct dm_io_request io_req = {
1331 		.bi_op = REQ_OP_WRITE,
1332 		.bi_op_flags = WRITE_FLUSH,
1333 		.mem.type = DM_IO_KMEM,
1334 		.mem.ptr.addr = NULL,
1335 		.client = c->dm_io,
1336 	};
1337 	struct dm_io_region io_reg = {
1338 		.bdev = c->bdev,
1339 		.sector = 0,
1340 		.count = 0,
1341 	};
1342 
1343 	BUG_ON(dm_bufio_in_request());
1344 
1345 	return dm_io(&io_req, 1, &io_reg, NULL);
1346 }
1347 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1348 
1349 /*
1350  * We first delete any other buffer that may be at that new location.
1351  *
1352  * Then, we write the buffer to the original location if it was dirty.
1353  *
1354  * Then, if we are the only one who is holding the buffer, relink the buffer
1355  * in the hash queue for the new location.
1356  *
1357  * If there was someone else holding the buffer, we write it to the new
1358  * location but not relink it, because that other user needs to have the buffer
1359  * at the same place.
1360  */
1361 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1362 {
1363 	struct dm_bufio_client *c = b->c;
1364 	struct dm_buffer *new;
1365 
1366 	BUG_ON(dm_bufio_in_request());
1367 
1368 	dm_bufio_lock(c);
1369 
1370 retry:
1371 	new = __find(c, new_block);
1372 	if (new) {
1373 		if (new->hold_count) {
1374 			__wait_for_free_buffer(c);
1375 			goto retry;
1376 		}
1377 
1378 		/*
1379 		 * FIXME: Is there any point waiting for a write that's going
1380 		 * to be overwritten in a bit?
1381 		 */
1382 		__make_buffer_clean(new);
1383 		__unlink_buffer(new);
1384 		__free_buffer_wake(new);
1385 	}
1386 
1387 	BUG_ON(!b->hold_count);
1388 	BUG_ON(test_bit(B_READING, &b->state));
1389 
1390 	__write_dirty_buffer(b, NULL);
1391 	if (b->hold_count == 1) {
1392 		wait_on_bit_io(&b->state, B_WRITING,
1393 			       TASK_UNINTERRUPTIBLE);
1394 		set_bit(B_DIRTY, &b->state);
1395 		__unlink_buffer(b);
1396 		__link_buffer(b, new_block, LIST_DIRTY);
1397 	} else {
1398 		sector_t old_block;
1399 		wait_on_bit_lock_io(&b->state, B_WRITING,
1400 				    TASK_UNINTERRUPTIBLE);
1401 		/*
1402 		 * Relink buffer to "new_block" so that write_callback
1403 		 * sees "new_block" as a block number.
1404 		 * After the write, link the buffer back to old_block.
1405 		 * All this must be done in bufio lock, so that block number
1406 		 * change isn't visible to other threads.
1407 		 */
1408 		old_block = b->block;
1409 		__unlink_buffer(b);
1410 		__link_buffer(b, new_block, b->list_mode);
1411 		submit_io(b, WRITE, new_block, write_endio);
1412 		wait_on_bit_io(&b->state, B_WRITING,
1413 			       TASK_UNINTERRUPTIBLE);
1414 		__unlink_buffer(b);
1415 		__link_buffer(b, old_block, b->list_mode);
1416 	}
1417 
1418 	dm_bufio_unlock(c);
1419 	dm_bufio_release(b);
1420 }
1421 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1422 
1423 /*
1424  * Free the given buffer.
1425  *
1426  * This is just a hint, if the buffer is in use or dirty, this function
1427  * does nothing.
1428  */
1429 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1430 {
1431 	struct dm_buffer *b;
1432 
1433 	dm_bufio_lock(c);
1434 
1435 	b = __find(c, block);
1436 	if (b && likely(!b->hold_count) && likely(!b->state)) {
1437 		__unlink_buffer(b);
1438 		__free_buffer_wake(b);
1439 	}
1440 
1441 	dm_bufio_unlock(c);
1442 }
1443 EXPORT_SYMBOL(dm_bufio_forget);
1444 
1445 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1446 {
1447 	c->minimum_buffers = n;
1448 }
1449 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1450 
1451 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1452 {
1453 	return c->block_size;
1454 }
1455 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1456 
1457 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1458 {
1459 	return i_size_read(c->bdev->bd_inode) >>
1460 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1461 }
1462 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1463 
1464 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1465 {
1466 	return b->block;
1467 }
1468 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1469 
1470 void *dm_bufio_get_block_data(struct dm_buffer *b)
1471 {
1472 	return b->data;
1473 }
1474 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1475 
1476 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1477 {
1478 	return b + 1;
1479 }
1480 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1481 
1482 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1483 {
1484 	return b->c;
1485 }
1486 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1487 
1488 static void drop_buffers(struct dm_bufio_client *c)
1489 {
1490 	struct dm_buffer *b;
1491 	int i;
1492 	bool warned = false;
1493 
1494 	BUG_ON(dm_bufio_in_request());
1495 
1496 	/*
1497 	 * An optimization so that the buffers are not written one-by-one.
1498 	 */
1499 	dm_bufio_write_dirty_buffers_async(c);
1500 
1501 	dm_bufio_lock(c);
1502 
1503 	while ((b = __get_unclaimed_buffer(c)))
1504 		__free_buffer_wake(b);
1505 
1506 	for (i = 0; i < LIST_SIZE; i++)
1507 		list_for_each_entry(b, &c->lru[i], lru_list) {
1508 			WARN_ON(!warned);
1509 			warned = true;
1510 			DMERR("leaked buffer %llx, hold count %u, list %d",
1511 			      (unsigned long long)b->block, b->hold_count, i);
1512 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1513 			print_stack_trace(&b->stack_trace, 1);
1514 			b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1515 #endif
1516 		}
1517 
1518 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1519 	while ((b = __get_unclaimed_buffer(c)))
1520 		__free_buffer_wake(b);
1521 #endif
1522 
1523 	for (i = 0; i < LIST_SIZE; i++)
1524 		BUG_ON(!list_empty(&c->lru[i]));
1525 
1526 	dm_bufio_unlock(c);
1527 }
1528 
1529 /*
1530  * We may not be able to evict this buffer if IO pending or the client
1531  * is still using it.  Caller is expected to know buffer is too old.
1532  *
1533  * And if GFP_NOFS is used, we must not do any I/O because we hold
1534  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1535  * rerouted to different bufio client.
1536  */
1537 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1538 {
1539 	if (!(gfp & __GFP_FS)) {
1540 		if (test_bit(B_READING, &b->state) ||
1541 		    test_bit(B_WRITING, &b->state) ||
1542 		    test_bit(B_DIRTY, &b->state))
1543 			return false;
1544 	}
1545 
1546 	if (b->hold_count)
1547 		return false;
1548 
1549 	__make_buffer_clean(b);
1550 	__unlink_buffer(b);
1551 	__free_buffer_wake(b);
1552 
1553 	return true;
1554 }
1555 
1556 static unsigned get_retain_buffers(struct dm_bufio_client *c)
1557 {
1558         unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1559         return retain_bytes / c->block_size;
1560 }
1561 
1562 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1563 			    gfp_t gfp_mask)
1564 {
1565 	int l;
1566 	struct dm_buffer *b, *tmp;
1567 	unsigned long freed = 0;
1568 	unsigned long count = nr_to_scan;
1569 	unsigned retain_target = get_retain_buffers(c);
1570 
1571 	for (l = 0; l < LIST_SIZE; l++) {
1572 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1573 			if (__try_evict_buffer(b, gfp_mask))
1574 				freed++;
1575 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1576 				return freed;
1577 			dm_bufio_cond_resched();
1578 		}
1579 	}
1580 	return freed;
1581 }
1582 
1583 static unsigned long
1584 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1585 {
1586 	struct dm_bufio_client *c;
1587 	unsigned long freed;
1588 
1589 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1590 	if (sc->gfp_mask & __GFP_FS)
1591 		dm_bufio_lock(c);
1592 	else if (!dm_bufio_trylock(c))
1593 		return SHRINK_STOP;
1594 
1595 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1596 	dm_bufio_unlock(c);
1597 	return freed;
1598 }
1599 
1600 static unsigned long
1601 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1602 {
1603 	struct dm_bufio_client *c;
1604 	unsigned long count;
1605 
1606 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1607 	if (sc->gfp_mask & __GFP_FS)
1608 		dm_bufio_lock(c);
1609 	else if (!dm_bufio_trylock(c))
1610 		return 0;
1611 
1612 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1613 	dm_bufio_unlock(c);
1614 	return count;
1615 }
1616 
1617 /*
1618  * Create the buffering interface
1619  */
1620 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1621 					       unsigned reserved_buffers, unsigned aux_size,
1622 					       void (*alloc_callback)(struct dm_buffer *),
1623 					       void (*write_callback)(struct dm_buffer *))
1624 {
1625 	int r;
1626 	struct dm_bufio_client *c;
1627 	unsigned i;
1628 
1629 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1630 	       (block_size & (block_size - 1)));
1631 
1632 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1633 	if (!c) {
1634 		r = -ENOMEM;
1635 		goto bad_client;
1636 	}
1637 	c->buffer_tree = RB_ROOT;
1638 
1639 	c->bdev = bdev;
1640 	c->block_size = block_size;
1641 	c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1642 	c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1643 				  __ffs(block_size) - PAGE_SHIFT : 0;
1644 	c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1645 				  PAGE_SHIFT - __ffs(block_size) : 0);
1646 
1647 	c->aux_size = aux_size;
1648 	c->alloc_callback = alloc_callback;
1649 	c->write_callback = write_callback;
1650 
1651 	for (i = 0; i < LIST_SIZE; i++) {
1652 		INIT_LIST_HEAD(&c->lru[i]);
1653 		c->n_buffers[i] = 0;
1654 	}
1655 
1656 	mutex_init(&c->lock);
1657 	INIT_LIST_HEAD(&c->reserved_buffers);
1658 	c->need_reserved_buffers = reserved_buffers;
1659 
1660 	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1661 
1662 	init_waitqueue_head(&c->free_buffer_wait);
1663 	c->async_write_error = 0;
1664 
1665 	c->dm_io = dm_io_client_create();
1666 	if (IS_ERR(c->dm_io)) {
1667 		r = PTR_ERR(c->dm_io);
1668 		goto bad_dm_io;
1669 	}
1670 
1671 	mutex_lock(&dm_bufio_clients_lock);
1672 	if (c->blocks_per_page_bits) {
1673 		if (!DM_BUFIO_CACHE_NAME(c)) {
1674 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1675 			if (!DM_BUFIO_CACHE_NAME(c)) {
1676 				r = -ENOMEM;
1677 				mutex_unlock(&dm_bufio_clients_lock);
1678 				goto bad_cache;
1679 			}
1680 		}
1681 
1682 		if (!DM_BUFIO_CACHE(c)) {
1683 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1684 							      c->block_size,
1685 							      c->block_size, 0, NULL);
1686 			if (!DM_BUFIO_CACHE(c)) {
1687 				r = -ENOMEM;
1688 				mutex_unlock(&dm_bufio_clients_lock);
1689 				goto bad_cache;
1690 			}
1691 		}
1692 	}
1693 	mutex_unlock(&dm_bufio_clients_lock);
1694 
1695 	while (c->need_reserved_buffers) {
1696 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1697 
1698 		if (!b) {
1699 			r = -ENOMEM;
1700 			goto bad_buffer;
1701 		}
1702 		__free_buffer_wake(b);
1703 	}
1704 
1705 	mutex_lock(&dm_bufio_clients_lock);
1706 	dm_bufio_client_count++;
1707 	list_add(&c->client_list, &dm_bufio_all_clients);
1708 	__cache_size_refresh();
1709 	mutex_unlock(&dm_bufio_clients_lock);
1710 
1711 	c->shrinker.count_objects = dm_bufio_shrink_count;
1712 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1713 	c->shrinker.seeks = 1;
1714 	c->shrinker.batch = 0;
1715 	register_shrinker(&c->shrinker);
1716 
1717 	return c;
1718 
1719 bad_buffer:
1720 bad_cache:
1721 	while (!list_empty(&c->reserved_buffers)) {
1722 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1723 						 struct dm_buffer, lru_list);
1724 		list_del(&b->lru_list);
1725 		free_buffer(b);
1726 	}
1727 	dm_io_client_destroy(c->dm_io);
1728 bad_dm_io:
1729 	kfree(c);
1730 bad_client:
1731 	return ERR_PTR(r);
1732 }
1733 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1734 
1735 /*
1736  * Free the buffering interface.
1737  * It is required that there are no references on any buffers.
1738  */
1739 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1740 {
1741 	unsigned i;
1742 
1743 	drop_buffers(c);
1744 
1745 	unregister_shrinker(&c->shrinker);
1746 
1747 	mutex_lock(&dm_bufio_clients_lock);
1748 
1749 	list_del(&c->client_list);
1750 	dm_bufio_client_count--;
1751 	__cache_size_refresh();
1752 
1753 	mutex_unlock(&dm_bufio_clients_lock);
1754 
1755 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1756 	BUG_ON(c->need_reserved_buffers);
1757 
1758 	while (!list_empty(&c->reserved_buffers)) {
1759 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1760 						 struct dm_buffer, lru_list);
1761 		list_del(&b->lru_list);
1762 		free_buffer(b);
1763 	}
1764 
1765 	for (i = 0; i < LIST_SIZE; i++)
1766 		if (c->n_buffers[i])
1767 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1768 
1769 	for (i = 0; i < LIST_SIZE; i++)
1770 		BUG_ON(c->n_buffers[i]);
1771 
1772 	dm_io_client_destroy(c->dm_io);
1773 	kfree(c);
1774 }
1775 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1776 
1777 static unsigned get_max_age_hz(void)
1778 {
1779 	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1780 
1781 	if (max_age > UINT_MAX / HZ)
1782 		max_age = UINT_MAX / HZ;
1783 
1784 	return max_age * HZ;
1785 }
1786 
1787 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1788 {
1789 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1790 }
1791 
1792 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1793 {
1794 	struct dm_buffer *b, *tmp;
1795 	unsigned retain_target = get_retain_buffers(c);
1796 	unsigned count;
1797 
1798 	dm_bufio_lock(c);
1799 
1800 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1801 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1802 		if (count <= retain_target)
1803 			break;
1804 
1805 		if (!older_than(b, age_hz))
1806 			break;
1807 
1808 		if (__try_evict_buffer(b, 0))
1809 			count--;
1810 
1811 		dm_bufio_cond_resched();
1812 	}
1813 
1814 	dm_bufio_unlock(c);
1815 }
1816 
1817 static void cleanup_old_buffers(void)
1818 {
1819 	unsigned long max_age_hz = get_max_age_hz();
1820 	struct dm_bufio_client *c;
1821 
1822 	mutex_lock(&dm_bufio_clients_lock);
1823 
1824 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1825 		__evict_old_buffers(c, max_age_hz);
1826 
1827 	mutex_unlock(&dm_bufio_clients_lock);
1828 }
1829 
1830 static struct workqueue_struct *dm_bufio_wq;
1831 static struct delayed_work dm_bufio_work;
1832 
1833 static void work_fn(struct work_struct *w)
1834 {
1835 	cleanup_old_buffers();
1836 
1837 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1838 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1839 }
1840 
1841 /*----------------------------------------------------------------
1842  * Module setup
1843  *--------------------------------------------------------------*/
1844 
1845 /*
1846  * This is called only once for the whole dm_bufio module.
1847  * It initializes memory limit.
1848  */
1849 static int __init dm_bufio_init(void)
1850 {
1851 	__u64 mem;
1852 
1853 	dm_bufio_allocated_kmem_cache = 0;
1854 	dm_bufio_allocated_get_free_pages = 0;
1855 	dm_bufio_allocated_vmalloc = 0;
1856 	dm_bufio_current_allocated = 0;
1857 
1858 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1859 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1860 
1861 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1862 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1863 
1864 	if (mem > ULONG_MAX)
1865 		mem = ULONG_MAX;
1866 
1867 #ifdef CONFIG_MMU
1868 	/*
1869 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1870 	 * in fs/proc/internal.h
1871 	 */
1872 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1873 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1874 #endif
1875 
1876 	dm_bufio_default_cache_size = mem;
1877 
1878 	mutex_lock(&dm_bufio_clients_lock);
1879 	__cache_size_refresh();
1880 	mutex_unlock(&dm_bufio_clients_lock);
1881 
1882 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1883 	if (!dm_bufio_wq)
1884 		return -ENOMEM;
1885 
1886 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1887 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1888 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1889 
1890 	return 0;
1891 }
1892 
1893 /*
1894  * This is called once when unloading the dm_bufio module.
1895  */
1896 static void __exit dm_bufio_exit(void)
1897 {
1898 	int bug = 0;
1899 	int i;
1900 
1901 	cancel_delayed_work_sync(&dm_bufio_work);
1902 	destroy_workqueue(dm_bufio_wq);
1903 
1904 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1905 		kmem_cache_destroy(dm_bufio_caches[i]);
1906 
1907 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1908 		kfree(dm_bufio_cache_names[i]);
1909 
1910 	if (dm_bufio_client_count) {
1911 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1912 			__func__, dm_bufio_client_count);
1913 		bug = 1;
1914 	}
1915 
1916 	if (dm_bufio_current_allocated) {
1917 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1918 			__func__, dm_bufio_current_allocated);
1919 		bug = 1;
1920 	}
1921 
1922 	if (dm_bufio_allocated_get_free_pages) {
1923 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1924 		       __func__, dm_bufio_allocated_get_free_pages);
1925 		bug = 1;
1926 	}
1927 
1928 	if (dm_bufio_allocated_vmalloc) {
1929 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1930 		       __func__, dm_bufio_allocated_vmalloc);
1931 		bug = 1;
1932 	}
1933 
1934 	BUG_ON(bug);
1935 }
1936 
1937 module_init(dm_bufio_init)
1938 module_exit(dm_bufio_exit)
1939 
1940 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1941 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1942 
1943 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1944 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1945 
1946 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1947 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1948 
1949 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1950 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1951 
1952 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1953 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1954 
1955 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1956 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1957 
1958 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1959 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1960 
1961 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1962 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1963 
1964 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1965 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1966 MODULE_LICENSE("GPL");
1967