1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/dm-bufio.h> 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_PERCENT 75 37 38 /* 39 * Check buffer ages in this interval (seconds) 40 */ 41 #define DM_BUFIO_WORK_TIMER_SECS 30 42 43 /* 44 * Free buffers when they are older than this (seconds) 45 */ 46 #define DM_BUFIO_DEFAULT_AGE_SECS 300 47 48 /* 49 * The nr of bytes of cached data to keep around. 50 */ 51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 52 53 /* 54 * Align buffer writes to this boundary. 55 * Tests show that SSDs have the highest IOPS when using 4k writes. 56 */ 57 #define DM_BUFIO_WRITE_ALIGN 4096 58 59 /* 60 * dm_buffer->list_mode 61 */ 62 #define LIST_CLEAN 0 63 #define LIST_DIRTY 1 64 #define LIST_SIZE 2 65 66 /* 67 * Linking of buffers: 68 * All buffers are linked to cache_hash with their hash_list field. 69 * 70 * Clean buffers that are not being written (B_WRITING not set) 71 * are linked to lru[LIST_CLEAN] with their lru_list field. 72 * 73 * Dirty and clean buffers that are being written are linked to 74 * lru[LIST_DIRTY] with their lru_list field. When the write 75 * finishes, the buffer cannot be relinked immediately (because we 76 * are in an interrupt context and relinking requires process 77 * context), so some clean-not-writing buffers can be held on 78 * dirty_lru too. They are later added to lru in the process 79 * context. 80 */ 81 struct dm_bufio_client { 82 struct mutex lock; 83 84 struct list_head lru[LIST_SIZE]; 85 unsigned long n_buffers[LIST_SIZE]; 86 87 struct block_device *bdev; 88 unsigned block_size; 89 s8 sectors_per_block_bits; 90 void (*alloc_callback)(struct dm_buffer *); 91 void (*write_callback)(struct dm_buffer *); 92 93 struct kmem_cache *slab_buffer; 94 struct kmem_cache *slab_cache; 95 struct dm_io_client *dm_io; 96 97 struct list_head reserved_buffers; 98 unsigned need_reserved_buffers; 99 100 unsigned minimum_buffers; 101 102 struct rb_root buffer_tree; 103 wait_queue_head_t free_buffer_wait; 104 105 sector_t start; 106 107 int async_write_error; 108 109 struct list_head client_list; 110 struct shrinker shrinker; 111 }; 112 113 /* 114 * Buffer state bits. 115 */ 116 #define B_READING 0 117 #define B_WRITING 1 118 #define B_DIRTY 2 119 120 /* 121 * Describes how the block was allocated: 122 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 123 * See the comment at alloc_buffer_data. 124 */ 125 enum data_mode { 126 DATA_MODE_SLAB = 0, 127 DATA_MODE_GET_FREE_PAGES = 1, 128 DATA_MODE_VMALLOC = 2, 129 DATA_MODE_LIMIT = 3 130 }; 131 132 struct dm_buffer { 133 struct rb_node node; 134 struct list_head lru_list; 135 sector_t block; 136 void *data; 137 unsigned char data_mode; /* DATA_MODE_* */ 138 unsigned char list_mode; /* LIST_* */ 139 blk_status_t read_error; 140 blk_status_t write_error; 141 unsigned hold_count; 142 unsigned long state; 143 unsigned long last_accessed; 144 unsigned dirty_start; 145 unsigned dirty_end; 146 unsigned write_start; 147 unsigned write_end; 148 struct dm_bufio_client *c; 149 struct list_head write_list; 150 void (*end_io)(struct dm_buffer *, blk_status_t); 151 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 152 #define MAX_STACK 10 153 struct stack_trace stack_trace; 154 unsigned long stack_entries[MAX_STACK]; 155 #endif 156 }; 157 158 /*----------------------------------------------------------------*/ 159 160 #define dm_bufio_in_request() (!!current->bio_list) 161 162 static void dm_bufio_lock(struct dm_bufio_client *c) 163 { 164 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 165 } 166 167 static int dm_bufio_trylock(struct dm_bufio_client *c) 168 { 169 return mutex_trylock(&c->lock); 170 } 171 172 static void dm_bufio_unlock(struct dm_bufio_client *c) 173 { 174 mutex_unlock(&c->lock); 175 } 176 177 /*----------------------------------------------------------------*/ 178 179 /* 180 * Default cache size: available memory divided by the ratio. 181 */ 182 static unsigned long dm_bufio_default_cache_size; 183 184 /* 185 * Total cache size set by the user. 186 */ 187 static unsigned long dm_bufio_cache_size; 188 189 /* 190 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 191 * at any time. If it disagrees, the user has changed cache size. 192 */ 193 static unsigned long dm_bufio_cache_size_latch; 194 195 static DEFINE_SPINLOCK(param_spinlock); 196 197 /* 198 * Buffers are freed after this timeout 199 */ 200 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 201 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 202 203 static unsigned long dm_bufio_peak_allocated; 204 static unsigned long dm_bufio_allocated_kmem_cache; 205 static unsigned long dm_bufio_allocated_get_free_pages; 206 static unsigned long dm_bufio_allocated_vmalloc; 207 static unsigned long dm_bufio_current_allocated; 208 209 /*----------------------------------------------------------------*/ 210 211 /* 212 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 213 */ 214 static unsigned long dm_bufio_cache_size_per_client; 215 216 /* 217 * The current number of clients. 218 */ 219 static int dm_bufio_client_count; 220 221 /* 222 * The list of all clients. 223 */ 224 static LIST_HEAD(dm_bufio_all_clients); 225 226 /* 227 * This mutex protects dm_bufio_cache_size_latch, 228 * dm_bufio_cache_size_per_client and dm_bufio_client_count 229 */ 230 static DEFINE_MUTEX(dm_bufio_clients_lock); 231 232 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 233 static void buffer_record_stack(struct dm_buffer *b) 234 { 235 b->stack_trace.nr_entries = 0; 236 b->stack_trace.max_entries = MAX_STACK; 237 b->stack_trace.entries = b->stack_entries; 238 b->stack_trace.skip = 2; 239 save_stack_trace(&b->stack_trace); 240 } 241 #endif 242 243 /*---------------------------------------------------------------- 244 * A red/black tree acts as an index for all the buffers. 245 *--------------------------------------------------------------*/ 246 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 247 { 248 struct rb_node *n = c->buffer_tree.rb_node; 249 struct dm_buffer *b; 250 251 while (n) { 252 b = container_of(n, struct dm_buffer, node); 253 254 if (b->block == block) 255 return b; 256 257 n = (b->block < block) ? n->rb_left : n->rb_right; 258 } 259 260 return NULL; 261 } 262 263 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 264 { 265 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 266 struct dm_buffer *found; 267 268 while (*new) { 269 found = container_of(*new, struct dm_buffer, node); 270 271 if (found->block == b->block) { 272 BUG_ON(found != b); 273 return; 274 } 275 276 parent = *new; 277 new = (found->block < b->block) ? 278 &((*new)->rb_left) : &((*new)->rb_right); 279 } 280 281 rb_link_node(&b->node, parent, new); 282 rb_insert_color(&b->node, &c->buffer_tree); 283 } 284 285 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 286 { 287 rb_erase(&b->node, &c->buffer_tree); 288 } 289 290 /*----------------------------------------------------------------*/ 291 292 static void adjust_total_allocated(unsigned char data_mode, long diff) 293 { 294 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 295 &dm_bufio_allocated_kmem_cache, 296 &dm_bufio_allocated_get_free_pages, 297 &dm_bufio_allocated_vmalloc, 298 }; 299 300 spin_lock(¶m_spinlock); 301 302 *class_ptr[data_mode] += diff; 303 304 dm_bufio_current_allocated += diff; 305 306 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 307 dm_bufio_peak_allocated = dm_bufio_current_allocated; 308 309 spin_unlock(¶m_spinlock); 310 } 311 312 /* 313 * Change the number of clients and recalculate per-client limit. 314 */ 315 static void __cache_size_refresh(void) 316 { 317 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 318 BUG_ON(dm_bufio_client_count < 0); 319 320 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 321 322 /* 323 * Use default if set to 0 and report the actual cache size used. 324 */ 325 if (!dm_bufio_cache_size_latch) { 326 (void)cmpxchg(&dm_bufio_cache_size, 0, 327 dm_bufio_default_cache_size); 328 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 329 } 330 331 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 332 (dm_bufio_client_count ? : 1); 333 } 334 335 /* 336 * Allocating buffer data. 337 * 338 * Small buffers are allocated with kmem_cache, to use space optimally. 339 * 340 * For large buffers, we choose between get_free_pages and vmalloc. 341 * Each has advantages and disadvantages. 342 * 343 * __get_free_pages can randomly fail if the memory is fragmented. 344 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 345 * as low as 128M) so using it for caching is not appropriate. 346 * 347 * If the allocation may fail we use __get_free_pages. Memory fragmentation 348 * won't have a fatal effect here, but it just causes flushes of some other 349 * buffers and more I/O will be performed. Don't use __get_free_pages if it 350 * always fails (i.e. order >= MAX_ORDER). 351 * 352 * If the allocation shouldn't fail we use __vmalloc. This is only for the 353 * initial reserve allocation, so there's no risk of wasting all vmalloc 354 * space. 355 */ 356 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 357 unsigned char *data_mode) 358 { 359 if (unlikely(c->slab_cache != NULL)) { 360 *data_mode = DATA_MODE_SLAB; 361 return kmem_cache_alloc(c->slab_cache, gfp_mask); 362 } 363 364 if (c->block_size <= KMALLOC_MAX_SIZE && 365 gfp_mask & __GFP_NORETRY) { 366 *data_mode = DATA_MODE_GET_FREE_PAGES; 367 return (void *)__get_free_pages(gfp_mask, 368 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 369 } 370 371 *data_mode = DATA_MODE_VMALLOC; 372 373 /* 374 * __vmalloc allocates the data pages and auxiliary structures with 375 * gfp_flags that were specified, but pagetables are always allocated 376 * with GFP_KERNEL, no matter what was specified as gfp_mask. 377 * 378 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 379 * all allocations done by this process (including pagetables) are done 380 * as if GFP_NOIO was specified. 381 */ 382 if (gfp_mask & __GFP_NORETRY) { 383 unsigned noio_flag = memalloc_noio_save(); 384 void *ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 385 386 memalloc_noio_restore(noio_flag); 387 return ptr; 388 } 389 390 return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 391 } 392 393 /* 394 * Free buffer's data. 395 */ 396 static void free_buffer_data(struct dm_bufio_client *c, 397 void *data, unsigned char data_mode) 398 { 399 switch (data_mode) { 400 case DATA_MODE_SLAB: 401 kmem_cache_free(c->slab_cache, data); 402 break; 403 404 case DATA_MODE_GET_FREE_PAGES: 405 free_pages((unsigned long)data, 406 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 407 break; 408 409 case DATA_MODE_VMALLOC: 410 vfree(data); 411 break; 412 413 default: 414 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 415 data_mode); 416 BUG(); 417 } 418 } 419 420 /* 421 * Allocate buffer and its data. 422 */ 423 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 424 { 425 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 426 427 if (!b) 428 return NULL; 429 430 b->c = c; 431 432 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 433 if (!b->data) { 434 kmem_cache_free(c->slab_buffer, b); 435 return NULL; 436 } 437 438 adjust_total_allocated(b->data_mode, (long)c->block_size); 439 440 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 441 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 442 #endif 443 return b; 444 } 445 446 /* 447 * Free buffer and its data. 448 */ 449 static void free_buffer(struct dm_buffer *b) 450 { 451 struct dm_bufio_client *c = b->c; 452 453 adjust_total_allocated(b->data_mode, -(long)c->block_size); 454 455 free_buffer_data(c, b->data, b->data_mode); 456 kmem_cache_free(c->slab_buffer, b); 457 } 458 459 /* 460 * Link buffer to the hash list and clean or dirty queue. 461 */ 462 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 463 { 464 struct dm_bufio_client *c = b->c; 465 466 c->n_buffers[dirty]++; 467 b->block = block; 468 b->list_mode = dirty; 469 list_add(&b->lru_list, &c->lru[dirty]); 470 __insert(b->c, b); 471 b->last_accessed = jiffies; 472 } 473 474 /* 475 * Unlink buffer from the hash list and dirty or clean queue. 476 */ 477 static void __unlink_buffer(struct dm_buffer *b) 478 { 479 struct dm_bufio_client *c = b->c; 480 481 BUG_ON(!c->n_buffers[b->list_mode]); 482 483 c->n_buffers[b->list_mode]--; 484 __remove(b->c, b); 485 list_del(&b->lru_list); 486 } 487 488 /* 489 * Place the buffer to the head of dirty or clean LRU queue. 490 */ 491 static void __relink_lru(struct dm_buffer *b, int dirty) 492 { 493 struct dm_bufio_client *c = b->c; 494 495 BUG_ON(!c->n_buffers[b->list_mode]); 496 497 c->n_buffers[b->list_mode]--; 498 c->n_buffers[dirty]++; 499 b->list_mode = dirty; 500 list_move(&b->lru_list, &c->lru[dirty]); 501 b->last_accessed = jiffies; 502 } 503 504 /*---------------------------------------------------------------- 505 * Submit I/O on the buffer. 506 * 507 * Bio interface is faster but it has some problems: 508 * the vector list is limited (increasing this limit increases 509 * memory-consumption per buffer, so it is not viable); 510 * 511 * the memory must be direct-mapped, not vmalloced; 512 * 513 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 514 * it is not vmalloced, try using the bio interface. 515 * 516 * If the buffer is big, if it is vmalloced or if the underlying device 517 * rejects the bio because it is too large, use dm-io layer to do the I/O. 518 * The dm-io layer splits the I/O into multiple requests, avoiding the above 519 * shortcomings. 520 *--------------------------------------------------------------*/ 521 522 /* 523 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 524 * that the request was handled directly with bio interface. 525 */ 526 static void dmio_complete(unsigned long error, void *context) 527 { 528 struct dm_buffer *b = context; 529 530 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 531 } 532 533 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 534 unsigned n_sectors, unsigned offset) 535 { 536 int r; 537 struct dm_io_request io_req = { 538 .bi_op = rw, 539 .bi_op_flags = 0, 540 .notify.fn = dmio_complete, 541 .notify.context = b, 542 .client = b->c->dm_io, 543 }; 544 struct dm_io_region region = { 545 .bdev = b->c->bdev, 546 .sector = sector, 547 .count = n_sectors, 548 }; 549 550 if (b->data_mode != DATA_MODE_VMALLOC) { 551 io_req.mem.type = DM_IO_KMEM; 552 io_req.mem.ptr.addr = (char *)b->data + offset; 553 } else { 554 io_req.mem.type = DM_IO_VMA; 555 io_req.mem.ptr.vma = (char *)b->data + offset; 556 } 557 558 r = dm_io(&io_req, 1, ®ion, NULL); 559 if (unlikely(r)) 560 b->end_io(b, errno_to_blk_status(r)); 561 } 562 563 static void bio_complete(struct bio *bio) 564 { 565 struct dm_buffer *b = bio->bi_private; 566 blk_status_t status = bio->bi_status; 567 bio_put(bio); 568 b->end_io(b, status); 569 } 570 571 static void use_bio(struct dm_buffer *b, int rw, sector_t sector, 572 unsigned n_sectors, unsigned offset) 573 { 574 struct bio *bio; 575 char *ptr; 576 unsigned vec_size, len; 577 578 vec_size = b->c->block_size >> PAGE_SHIFT; 579 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT)) 580 vec_size += 2; 581 582 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size); 583 if (!bio) { 584 dmio: 585 use_dmio(b, rw, sector, n_sectors, offset); 586 return; 587 } 588 589 bio->bi_iter.bi_sector = sector; 590 bio_set_dev(bio, b->c->bdev); 591 bio_set_op_attrs(bio, rw, 0); 592 bio->bi_end_io = bio_complete; 593 bio->bi_private = b; 594 595 ptr = (char *)b->data + offset; 596 len = n_sectors << SECTOR_SHIFT; 597 598 do { 599 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 600 if (!bio_add_page(bio, virt_to_page(ptr), this_step, 601 offset_in_page(ptr))) { 602 bio_put(bio); 603 goto dmio; 604 } 605 606 len -= this_step; 607 ptr += this_step; 608 } while (len > 0); 609 610 submit_bio(bio); 611 } 612 613 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t)) 614 { 615 unsigned n_sectors; 616 sector_t sector; 617 unsigned offset, end; 618 619 b->end_io = end_io; 620 621 if (likely(b->c->sectors_per_block_bits >= 0)) 622 sector = b->block << b->c->sectors_per_block_bits; 623 else 624 sector = b->block * (b->c->block_size >> SECTOR_SHIFT); 625 sector += b->c->start; 626 627 if (rw != REQ_OP_WRITE) { 628 n_sectors = b->c->block_size >> SECTOR_SHIFT; 629 offset = 0; 630 } else { 631 if (b->c->write_callback) 632 b->c->write_callback(b); 633 offset = b->write_start; 634 end = b->write_end; 635 offset &= -DM_BUFIO_WRITE_ALIGN; 636 end += DM_BUFIO_WRITE_ALIGN - 1; 637 end &= -DM_BUFIO_WRITE_ALIGN; 638 if (unlikely(end > b->c->block_size)) 639 end = b->c->block_size; 640 641 sector += offset >> SECTOR_SHIFT; 642 n_sectors = (end - offset) >> SECTOR_SHIFT; 643 } 644 645 if (b->data_mode != DATA_MODE_VMALLOC) 646 use_bio(b, rw, sector, n_sectors, offset); 647 else 648 use_dmio(b, rw, sector, n_sectors, offset); 649 } 650 651 /*---------------------------------------------------------------- 652 * Writing dirty buffers 653 *--------------------------------------------------------------*/ 654 655 /* 656 * The endio routine for write. 657 * 658 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 659 * it. 660 */ 661 static void write_endio(struct dm_buffer *b, blk_status_t status) 662 { 663 b->write_error = status; 664 if (unlikely(status)) { 665 struct dm_bufio_client *c = b->c; 666 667 (void)cmpxchg(&c->async_write_error, 0, 668 blk_status_to_errno(status)); 669 } 670 671 BUG_ON(!test_bit(B_WRITING, &b->state)); 672 673 smp_mb__before_atomic(); 674 clear_bit(B_WRITING, &b->state); 675 smp_mb__after_atomic(); 676 677 wake_up_bit(&b->state, B_WRITING); 678 } 679 680 /* 681 * Initiate a write on a dirty buffer, but don't wait for it. 682 * 683 * - If the buffer is not dirty, exit. 684 * - If there some previous write going on, wait for it to finish (we can't 685 * have two writes on the same buffer simultaneously). 686 * - Submit our write and don't wait on it. We set B_WRITING indicating 687 * that there is a write in progress. 688 */ 689 static void __write_dirty_buffer(struct dm_buffer *b, 690 struct list_head *write_list) 691 { 692 if (!test_bit(B_DIRTY, &b->state)) 693 return; 694 695 clear_bit(B_DIRTY, &b->state); 696 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 697 698 b->write_start = b->dirty_start; 699 b->write_end = b->dirty_end; 700 701 if (!write_list) 702 submit_io(b, REQ_OP_WRITE, write_endio); 703 else 704 list_add_tail(&b->write_list, write_list); 705 } 706 707 static void __flush_write_list(struct list_head *write_list) 708 { 709 struct blk_plug plug; 710 blk_start_plug(&plug); 711 while (!list_empty(write_list)) { 712 struct dm_buffer *b = 713 list_entry(write_list->next, struct dm_buffer, write_list); 714 list_del(&b->write_list); 715 submit_io(b, REQ_OP_WRITE, write_endio); 716 cond_resched(); 717 } 718 blk_finish_plug(&plug); 719 } 720 721 /* 722 * Wait until any activity on the buffer finishes. Possibly write the 723 * buffer if it is dirty. When this function finishes, there is no I/O 724 * running on the buffer and the buffer is not dirty. 725 */ 726 static void __make_buffer_clean(struct dm_buffer *b) 727 { 728 BUG_ON(b->hold_count); 729 730 if (!b->state) /* fast case */ 731 return; 732 733 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 734 __write_dirty_buffer(b, NULL); 735 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 736 } 737 738 /* 739 * Find some buffer that is not held by anybody, clean it, unlink it and 740 * return it. 741 */ 742 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 743 { 744 struct dm_buffer *b; 745 746 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 747 BUG_ON(test_bit(B_WRITING, &b->state)); 748 BUG_ON(test_bit(B_DIRTY, &b->state)); 749 750 if (!b->hold_count) { 751 __make_buffer_clean(b); 752 __unlink_buffer(b); 753 return b; 754 } 755 cond_resched(); 756 } 757 758 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 759 BUG_ON(test_bit(B_READING, &b->state)); 760 761 if (!b->hold_count) { 762 __make_buffer_clean(b); 763 __unlink_buffer(b); 764 return b; 765 } 766 cond_resched(); 767 } 768 769 return NULL; 770 } 771 772 /* 773 * Wait until some other threads free some buffer or release hold count on 774 * some buffer. 775 * 776 * This function is entered with c->lock held, drops it and regains it 777 * before exiting. 778 */ 779 static void __wait_for_free_buffer(struct dm_bufio_client *c) 780 { 781 DECLARE_WAITQUEUE(wait, current); 782 783 add_wait_queue(&c->free_buffer_wait, &wait); 784 set_current_state(TASK_UNINTERRUPTIBLE); 785 dm_bufio_unlock(c); 786 787 io_schedule(); 788 789 remove_wait_queue(&c->free_buffer_wait, &wait); 790 791 dm_bufio_lock(c); 792 } 793 794 enum new_flag { 795 NF_FRESH = 0, 796 NF_READ = 1, 797 NF_GET = 2, 798 NF_PREFETCH = 3 799 }; 800 801 /* 802 * Allocate a new buffer. If the allocation is not possible, wait until 803 * some other thread frees a buffer. 804 * 805 * May drop the lock and regain it. 806 */ 807 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 808 { 809 struct dm_buffer *b; 810 bool tried_noio_alloc = false; 811 812 /* 813 * dm-bufio is resistant to allocation failures (it just keeps 814 * one buffer reserved in cases all the allocations fail). 815 * So set flags to not try too hard: 816 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 817 * mutex and wait ourselves. 818 * __GFP_NORETRY: don't retry and rather return failure 819 * __GFP_NOMEMALLOC: don't use emergency reserves 820 * __GFP_NOWARN: don't print a warning in case of failure 821 * 822 * For debugging, if we set the cache size to 1, no new buffers will 823 * be allocated. 824 */ 825 while (1) { 826 if (dm_bufio_cache_size_latch != 1) { 827 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 828 if (b) 829 return b; 830 } 831 832 if (nf == NF_PREFETCH) 833 return NULL; 834 835 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 836 dm_bufio_unlock(c); 837 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 838 dm_bufio_lock(c); 839 if (b) 840 return b; 841 tried_noio_alloc = true; 842 } 843 844 if (!list_empty(&c->reserved_buffers)) { 845 b = list_entry(c->reserved_buffers.next, 846 struct dm_buffer, lru_list); 847 list_del(&b->lru_list); 848 c->need_reserved_buffers++; 849 850 return b; 851 } 852 853 b = __get_unclaimed_buffer(c); 854 if (b) 855 return b; 856 857 __wait_for_free_buffer(c); 858 } 859 } 860 861 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 862 { 863 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 864 865 if (!b) 866 return NULL; 867 868 if (c->alloc_callback) 869 c->alloc_callback(b); 870 871 return b; 872 } 873 874 /* 875 * Free a buffer and wake other threads waiting for free buffers. 876 */ 877 static void __free_buffer_wake(struct dm_buffer *b) 878 { 879 struct dm_bufio_client *c = b->c; 880 881 if (!c->need_reserved_buffers) 882 free_buffer(b); 883 else { 884 list_add(&b->lru_list, &c->reserved_buffers); 885 c->need_reserved_buffers--; 886 } 887 888 wake_up(&c->free_buffer_wait); 889 } 890 891 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 892 struct list_head *write_list) 893 { 894 struct dm_buffer *b, *tmp; 895 896 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 897 BUG_ON(test_bit(B_READING, &b->state)); 898 899 if (!test_bit(B_DIRTY, &b->state) && 900 !test_bit(B_WRITING, &b->state)) { 901 __relink_lru(b, LIST_CLEAN); 902 continue; 903 } 904 905 if (no_wait && test_bit(B_WRITING, &b->state)) 906 return; 907 908 __write_dirty_buffer(b, write_list); 909 cond_resched(); 910 } 911 } 912 913 /* 914 * Get writeback threshold and buffer limit for a given client. 915 */ 916 static void __get_memory_limit(struct dm_bufio_client *c, 917 unsigned long *threshold_buffers, 918 unsigned long *limit_buffers) 919 { 920 unsigned long buffers; 921 922 if (unlikely(READ_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) { 923 if (mutex_trylock(&dm_bufio_clients_lock)) { 924 __cache_size_refresh(); 925 mutex_unlock(&dm_bufio_clients_lock); 926 } 927 } 928 929 buffers = dm_bufio_cache_size_per_client; 930 if (likely(c->sectors_per_block_bits >= 0)) 931 buffers >>= c->sectors_per_block_bits + SECTOR_SHIFT; 932 else 933 buffers /= c->block_size; 934 935 if (buffers < c->minimum_buffers) 936 buffers = c->minimum_buffers; 937 938 *limit_buffers = buffers; 939 *threshold_buffers = mult_frac(buffers, 940 DM_BUFIO_WRITEBACK_PERCENT, 100); 941 } 942 943 /* 944 * Check if we're over watermark. 945 * If we are over threshold_buffers, start freeing buffers. 946 * If we're over "limit_buffers", block until we get under the limit. 947 */ 948 static void __check_watermark(struct dm_bufio_client *c, 949 struct list_head *write_list) 950 { 951 unsigned long threshold_buffers, limit_buffers; 952 953 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 954 955 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 956 limit_buffers) { 957 958 struct dm_buffer *b = __get_unclaimed_buffer(c); 959 960 if (!b) 961 return; 962 963 __free_buffer_wake(b); 964 cond_resched(); 965 } 966 967 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 968 __write_dirty_buffers_async(c, 1, write_list); 969 } 970 971 /*---------------------------------------------------------------- 972 * Getting a buffer 973 *--------------------------------------------------------------*/ 974 975 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 976 enum new_flag nf, int *need_submit, 977 struct list_head *write_list) 978 { 979 struct dm_buffer *b, *new_b = NULL; 980 981 *need_submit = 0; 982 983 b = __find(c, block); 984 if (b) 985 goto found_buffer; 986 987 if (nf == NF_GET) 988 return NULL; 989 990 new_b = __alloc_buffer_wait(c, nf); 991 if (!new_b) 992 return NULL; 993 994 /* 995 * We've had a period where the mutex was unlocked, so need to 996 * recheck the hash table. 997 */ 998 b = __find(c, block); 999 if (b) { 1000 __free_buffer_wake(new_b); 1001 goto found_buffer; 1002 } 1003 1004 __check_watermark(c, write_list); 1005 1006 b = new_b; 1007 b->hold_count = 1; 1008 b->read_error = 0; 1009 b->write_error = 0; 1010 __link_buffer(b, block, LIST_CLEAN); 1011 1012 if (nf == NF_FRESH) { 1013 b->state = 0; 1014 return b; 1015 } 1016 1017 b->state = 1 << B_READING; 1018 *need_submit = 1; 1019 1020 return b; 1021 1022 found_buffer: 1023 if (nf == NF_PREFETCH) 1024 return NULL; 1025 /* 1026 * Note: it is essential that we don't wait for the buffer to be 1027 * read if dm_bufio_get function is used. Both dm_bufio_get and 1028 * dm_bufio_prefetch can be used in the driver request routine. 1029 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1030 * the same buffer, it would deadlock if we waited. 1031 */ 1032 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1033 return NULL; 1034 1035 b->hold_count++; 1036 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1037 test_bit(B_WRITING, &b->state)); 1038 return b; 1039 } 1040 1041 /* 1042 * The endio routine for reading: set the error, clear the bit and wake up 1043 * anyone waiting on the buffer. 1044 */ 1045 static void read_endio(struct dm_buffer *b, blk_status_t status) 1046 { 1047 b->read_error = status; 1048 1049 BUG_ON(!test_bit(B_READING, &b->state)); 1050 1051 smp_mb__before_atomic(); 1052 clear_bit(B_READING, &b->state); 1053 smp_mb__after_atomic(); 1054 1055 wake_up_bit(&b->state, B_READING); 1056 } 1057 1058 /* 1059 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1060 * functions is similar except that dm_bufio_new doesn't read the 1061 * buffer from the disk (assuming that the caller overwrites all the data 1062 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1063 */ 1064 static void *new_read(struct dm_bufio_client *c, sector_t block, 1065 enum new_flag nf, struct dm_buffer **bp) 1066 { 1067 int need_submit; 1068 struct dm_buffer *b; 1069 1070 LIST_HEAD(write_list); 1071 1072 dm_bufio_lock(c); 1073 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1074 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1075 if (b && b->hold_count == 1) 1076 buffer_record_stack(b); 1077 #endif 1078 dm_bufio_unlock(c); 1079 1080 __flush_write_list(&write_list); 1081 1082 if (!b) 1083 return NULL; 1084 1085 if (need_submit) 1086 submit_io(b, REQ_OP_READ, read_endio); 1087 1088 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1089 1090 if (b->read_error) { 1091 int error = blk_status_to_errno(b->read_error); 1092 1093 dm_bufio_release(b); 1094 1095 return ERR_PTR(error); 1096 } 1097 1098 *bp = b; 1099 1100 return b->data; 1101 } 1102 1103 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1104 struct dm_buffer **bp) 1105 { 1106 return new_read(c, block, NF_GET, bp); 1107 } 1108 EXPORT_SYMBOL_GPL(dm_bufio_get); 1109 1110 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1111 struct dm_buffer **bp) 1112 { 1113 BUG_ON(dm_bufio_in_request()); 1114 1115 return new_read(c, block, NF_READ, bp); 1116 } 1117 EXPORT_SYMBOL_GPL(dm_bufio_read); 1118 1119 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1120 struct dm_buffer **bp) 1121 { 1122 BUG_ON(dm_bufio_in_request()); 1123 1124 return new_read(c, block, NF_FRESH, bp); 1125 } 1126 EXPORT_SYMBOL_GPL(dm_bufio_new); 1127 1128 void dm_bufio_prefetch(struct dm_bufio_client *c, 1129 sector_t block, unsigned n_blocks) 1130 { 1131 struct blk_plug plug; 1132 1133 LIST_HEAD(write_list); 1134 1135 BUG_ON(dm_bufio_in_request()); 1136 1137 blk_start_plug(&plug); 1138 dm_bufio_lock(c); 1139 1140 for (; n_blocks--; block++) { 1141 int need_submit; 1142 struct dm_buffer *b; 1143 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1144 &write_list); 1145 if (unlikely(!list_empty(&write_list))) { 1146 dm_bufio_unlock(c); 1147 blk_finish_plug(&plug); 1148 __flush_write_list(&write_list); 1149 blk_start_plug(&plug); 1150 dm_bufio_lock(c); 1151 } 1152 if (unlikely(b != NULL)) { 1153 dm_bufio_unlock(c); 1154 1155 if (need_submit) 1156 submit_io(b, REQ_OP_READ, read_endio); 1157 dm_bufio_release(b); 1158 1159 cond_resched(); 1160 1161 if (!n_blocks) 1162 goto flush_plug; 1163 dm_bufio_lock(c); 1164 } 1165 } 1166 1167 dm_bufio_unlock(c); 1168 1169 flush_plug: 1170 blk_finish_plug(&plug); 1171 } 1172 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1173 1174 void dm_bufio_release(struct dm_buffer *b) 1175 { 1176 struct dm_bufio_client *c = b->c; 1177 1178 dm_bufio_lock(c); 1179 1180 BUG_ON(!b->hold_count); 1181 1182 b->hold_count--; 1183 if (!b->hold_count) { 1184 wake_up(&c->free_buffer_wait); 1185 1186 /* 1187 * If there were errors on the buffer, and the buffer is not 1188 * to be written, free the buffer. There is no point in caching 1189 * invalid buffer. 1190 */ 1191 if ((b->read_error || b->write_error) && 1192 !test_bit(B_READING, &b->state) && 1193 !test_bit(B_WRITING, &b->state) && 1194 !test_bit(B_DIRTY, &b->state)) { 1195 __unlink_buffer(b); 1196 __free_buffer_wake(b); 1197 } 1198 } 1199 1200 dm_bufio_unlock(c); 1201 } 1202 EXPORT_SYMBOL_GPL(dm_bufio_release); 1203 1204 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1205 unsigned start, unsigned end) 1206 { 1207 struct dm_bufio_client *c = b->c; 1208 1209 BUG_ON(start >= end); 1210 BUG_ON(end > b->c->block_size); 1211 1212 dm_bufio_lock(c); 1213 1214 BUG_ON(test_bit(B_READING, &b->state)); 1215 1216 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1217 b->dirty_start = start; 1218 b->dirty_end = end; 1219 __relink_lru(b, LIST_DIRTY); 1220 } else { 1221 if (start < b->dirty_start) 1222 b->dirty_start = start; 1223 if (end > b->dirty_end) 1224 b->dirty_end = end; 1225 } 1226 1227 dm_bufio_unlock(c); 1228 } 1229 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1230 1231 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1232 { 1233 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1234 } 1235 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1236 1237 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1238 { 1239 LIST_HEAD(write_list); 1240 1241 BUG_ON(dm_bufio_in_request()); 1242 1243 dm_bufio_lock(c); 1244 __write_dirty_buffers_async(c, 0, &write_list); 1245 dm_bufio_unlock(c); 1246 __flush_write_list(&write_list); 1247 } 1248 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1249 1250 /* 1251 * For performance, it is essential that the buffers are written asynchronously 1252 * and simultaneously (so that the block layer can merge the writes) and then 1253 * waited upon. 1254 * 1255 * Finally, we flush hardware disk cache. 1256 */ 1257 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1258 { 1259 int a, f; 1260 unsigned long buffers_processed = 0; 1261 struct dm_buffer *b, *tmp; 1262 1263 LIST_HEAD(write_list); 1264 1265 dm_bufio_lock(c); 1266 __write_dirty_buffers_async(c, 0, &write_list); 1267 dm_bufio_unlock(c); 1268 __flush_write_list(&write_list); 1269 dm_bufio_lock(c); 1270 1271 again: 1272 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1273 int dropped_lock = 0; 1274 1275 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1276 buffers_processed++; 1277 1278 BUG_ON(test_bit(B_READING, &b->state)); 1279 1280 if (test_bit(B_WRITING, &b->state)) { 1281 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1282 dropped_lock = 1; 1283 b->hold_count++; 1284 dm_bufio_unlock(c); 1285 wait_on_bit_io(&b->state, B_WRITING, 1286 TASK_UNINTERRUPTIBLE); 1287 dm_bufio_lock(c); 1288 b->hold_count--; 1289 } else 1290 wait_on_bit_io(&b->state, B_WRITING, 1291 TASK_UNINTERRUPTIBLE); 1292 } 1293 1294 if (!test_bit(B_DIRTY, &b->state) && 1295 !test_bit(B_WRITING, &b->state)) 1296 __relink_lru(b, LIST_CLEAN); 1297 1298 cond_resched(); 1299 1300 /* 1301 * If we dropped the lock, the list is no longer consistent, 1302 * so we must restart the search. 1303 * 1304 * In the most common case, the buffer just processed is 1305 * relinked to the clean list, so we won't loop scanning the 1306 * same buffer again and again. 1307 * 1308 * This may livelock if there is another thread simultaneously 1309 * dirtying buffers, so we count the number of buffers walked 1310 * and if it exceeds the total number of buffers, it means that 1311 * someone is doing some writes simultaneously with us. In 1312 * this case, stop, dropping the lock. 1313 */ 1314 if (dropped_lock) 1315 goto again; 1316 } 1317 wake_up(&c->free_buffer_wait); 1318 dm_bufio_unlock(c); 1319 1320 a = xchg(&c->async_write_error, 0); 1321 f = dm_bufio_issue_flush(c); 1322 if (a) 1323 return a; 1324 1325 return f; 1326 } 1327 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1328 1329 /* 1330 * Use dm-io to send and empty barrier flush the device. 1331 */ 1332 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1333 { 1334 struct dm_io_request io_req = { 1335 .bi_op = REQ_OP_WRITE, 1336 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1337 .mem.type = DM_IO_KMEM, 1338 .mem.ptr.addr = NULL, 1339 .client = c->dm_io, 1340 }; 1341 struct dm_io_region io_reg = { 1342 .bdev = c->bdev, 1343 .sector = 0, 1344 .count = 0, 1345 }; 1346 1347 BUG_ON(dm_bufio_in_request()); 1348 1349 return dm_io(&io_req, 1, &io_reg, NULL); 1350 } 1351 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1352 1353 /* 1354 * We first delete any other buffer that may be at that new location. 1355 * 1356 * Then, we write the buffer to the original location if it was dirty. 1357 * 1358 * Then, if we are the only one who is holding the buffer, relink the buffer 1359 * in the hash queue for the new location. 1360 * 1361 * If there was someone else holding the buffer, we write it to the new 1362 * location but not relink it, because that other user needs to have the buffer 1363 * at the same place. 1364 */ 1365 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1366 { 1367 struct dm_bufio_client *c = b->c; 1368 struct dm_buffer *new; 1369 1370 BUG_ON(dm_bufio_in_request()); 1371 1372 dm_bufio_lock(c); 1373 1374 retry: 1375 new = __find(c, new_block); 1376 if (new) { 1377 if (new->hold_count) { 1378 __wait_for_free_buffer(c); 1379 goto retry; 1380 } 1381 1382 /* 1383 * FIXME: Is there any point waiting for a write that's going 1384 * to be overwritten in a bit? 1385 */ 1386 __make_buffer_clean(new); 1387 __unlink_buffer(new); 1388 __free_buffer_wake(new); 1389 } 1390 1391 BUG_ON(!b->hold_count); 1392 BUG_ON(test_bit(B_READING, &b->state)); 1393 1394 __write_dirty_buffer(b, NULL); 1395 if (b->hold_count == 1) { 1396 wait_on_bit_io(&b->state, B_WRITING, 1397 TASK_UNINTERRUPTIBLE); 1398 set_bit(B_DIRTY, &b->state); 1399 b->dirty_start = 0; 1400 b->dirty_end = c->block_size; 1401 __unlink_buffer(b); 1402 __link_buffer(b, new_block, LIST_DIRTY); 1403 } else { 1404 sector_t old_block; 1405 wait_on_bit_lock_io(&b->state, B_WRITING, 1406 TASK_UNINTERRUPTIBLE); 1407 /* 1408 * Relink buffer to "new_block" so that write_callback 1409 * sees "new_block" as a block number. 1410 * After the write, link the buffer back to old_block. 1411 * All this must be done in bufio lock, so that block number 1412 * change isn't visible to other threads. 1413 */ 1414 old_block = b->block; 1415 __unlink_buffer(b); 1416 __link_buffer(b, new_block, b->list_mode); 1417 submit_io(b, REQ_OP_WRITE, write_endio); 1418 wait_on_bit_io(&b->state, B_WRITING, 1419 TASK_UNINTERRUPTIBLE); 1420 __unlink_buffer(b); 1421 __link_buffer(b, old_block, b->list_mode); 1422 } 1423 1424 dm_bufio_unlock(c); 1425 dm_bufio_release(b); 1426 } 1427 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1428 1429 /* 1430 * Free the given buffer. 1431 * 1432 * This is just a hint, if the buffer is in use or dirty, this function 1433 * does nothing. 1434 */ 1435 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1436 { 1437 struct dm_buffer *b; 1438 1439 dm_bufio_lock(c); 1440 1441 b = __find(c, block); 1442 if (b && likely(!b->hold_count) && likely(!b->state)) { 1443 __unlink_buffer(b); 1444 __free_buffer_wake(b); 1445 } 1446 1447 dm_bufio_unlock(c); 1448 } 1449 EXPORT_SYMBOL_GPL(dm_bufio_forget); 1450 1451 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1452 { 1453 c->minimum_buffers = n; 1454 } 1455 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 1456 1457 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1458 { 1459 return c->block_size; 1460 } 1461 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1462 1463 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1464 { 1465 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT; 1466 if (likely(c->sectors_per_block_bits >= 0)) 1467 s >>= c->sectors_per_block_bits; 1468 else 1469 sector_div(s, c->block_size >> SECTOR_SHIFT); 1470 return s; 1471 } 1472 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1473 1474 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1475 { 1476 return b->block; 1477 } 1478 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1479 1480 void *dm_bufio_get_block_data(struct dm_buffer *b) 1481 { 1482 return b->data; 1483 } 1484 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1485 1486 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1487 { 1488 return b + 1; 1489 } 1490 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1491 1492 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1493 { 1494 return b->c; 1495 } 1496 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1497 1498 static void drop_buffers(struct dm_bufio_client *c) 1499 { 1500 struct dm_buffer *b; 1501 int i; 1502 bool warned = false; 1503 1504 BUG_ON(dm_bufio_in_request()); 1505 1506 /* 1507 * An optimization so that the buffers are not written one-by-one. 1508 */ 1509 dm_bufio_write_dirty_buffers_async(c); 1510 1511 dm_bufio_lock(c); 1512 1513 while ((b = __get_unclaimed_buffer(c))) 1514 __free_buffer_wake(b); 1515 1516 for (i = 0; i < LIST_SIZE; i++) 1517 list_for_each_entry(b, &c->lru[i], lru_list) { 1518 WARN_ON(!warned); 1519 warned = true; 1520 DMERR("leaked buffer %llx, hold count %u, list %d", 1521 (unsigned long long)b->block, b->hold_count, i); 1522 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1523 print_stack_trace(&b->stack_trace, 1); 1524 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1525 #endif 1526 } 1527 1528 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1529 while ((b = __get_unclaimed_buffer(c))) 1530 __free_buffer_wake(b); 1531 #endif 1532 1533 for (i = 0; i < LIST_SIZE; i++) 1534 BUG_ON(!list_empty(&c->lru[i])); 1535 1536 dm_bufio_unlock(c); 1537 } 1538 1539 /* 1540 * We may not be able to evict this buffer if IO pending or the client 1541 * is still using it. Caller is expected to know buffer is too old. 1542 * 1543 * And if GFP_NOFS is used, we must not do any I/O because we hold 1544 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1545 * rerouted to different bufio client. 1546 */ 1547 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1548 { 1549 if (!(gfp & __GFP_FS)) { 1550 if (test_bit(B_READING, &b->state) || 1551 test_bit(B_WRITING, &b->state) || 1552 test_bit(B_DIRTY, &b->state)) 1553 return false; 1554 } 1555 1556 if (b->hold_count) 1557 return false; 1558 1559 __make_buffer_clean(b); 1560 __unlink_buffer(b); 1561 __free_buffer_wake(b); 1562 1563 return true; 1564 } 1565 1566 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1567 { 1568 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1569 if (likely(c->sectors_per_block_bits >= 0)) 1570 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 1571 else 1572 retain_bytes /= c->block_size; 1573 return retain_bytes; 1574 } 1575 1576 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1577 gfp_t gfp_mask) 1578 { 1579 int l; 1580 struct dm_buffer *b, *tmp; 1581 unsigned long freed = 0; 1582 unsigned long count = c->n_buffers[LIST_CLEAN] + 1583 c->n_buffers[LIST_DIRTY]; 1584 unsigned long retain_target = get_retain_buffers(c); 1585 1586 for (l = 0; l < LIST_SIZE; l++) { 1587 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1588 if (__try_evict_buffer(b, gfp_mask)) 1589 freed++; 1590 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1591 return freed; 1592 cond_resched(); 1593 } 1594 } 1595 return freed; 1596 } 1597 1598 static unsigned long 1599 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1600 { 1601 struct dm_bufio_client *c; 1602 unsigned long freed; 1603 1604 c = container_of(shrink, struct dm_bufio_client, shrinker); 1605 if (sc->gfp_mask & __GFP_FS) 1606 dm_bufio_lock(c); 1607 else if (!dm_bufio_trylock(c)) 1608 return SHRINK_STOP; 1609 1610 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1611 dm_bufio_unlock(c); 1612 return freed; 1613 } 1614 1615 static unsigned long 1616 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1617 { 1618 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1619 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1620 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1621 unsigned long retain_target = get_retain_buffers(c); 1622 1623 return (count < retain_target) ? 0 : (count - retain_target); 1624 } 1625 1626 /* 1627 * Create the buffering interface 1628 */ 1629 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1630 unsigned reserved_buffers, unsigned aux_size, 1631 void (*alloc_callback)(struct dm_buffer *), 1632 void (*write_callback)(struct dm_buffer *)) 1633 { 1634 int r; 1635 struct dm_bufio_client *c; 1636 unsigned i; 1637 char slab_name[27]; 1638 1639 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 1640 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 1641 r = -EINVAL; 1642 goto bad_client; 1643 } 1644 1645 c = kzalloc(sizeof(*c), GFP_KERNEL); 1646 if (!c) { 1647 r = -ENOMEM; 1648 goto bad_client; 1649 } 1650 c->buffer_tree = RB_ROOT; 1651 1652 c->bdev = bdev; 1653 c->block_size = block_size; 1654 if (is_power_of_2(block_size)) 1655 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1656 else 1657 c->sectors_per_block_bits = -1; 1658 1659 c->alloc_callback = alloc_callback; 1660 c->write_callback = write_callback; 1661 1662 for (i = 0; i < LIST_SIZE; i++) { 1663 INIT_LIST_HEAD(&c->lru[i]); 1664 c->n_buffers[i] = 0; 1665 } 1666 1667 mutex_init(&c->lock); 1668 INIT_LIST_HEAD(&c->reserved_buffers); 1669 c->need_reserved_buffers = reserved_buffers; 1670 1671 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 1672 1673 init_waitqueue_head(&c->free_buffer_wait); 1674 c->async_write_error = 0; 1675 1676 c->dm_io = dm_io_client_create(); 1677 if (IS_ERR(c->dm_io)) { 1678 r = PTR_ERR(c->dm_io); 1679 goto bad_dm_io; 1680 } 1681 1682 if (block_size <= KMALLOC_MAX_SIZE && 1683 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 1684 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", c->block_size); 1685 c->slab_cache = kmem_cache_create(slab_name, c->block_size, ARCH_KMALLOC_MINALIGN, 1686 SLAB_RECLAIM_ACCOUNT, NULL); 1687 if (!c->slab_cache) { 1688 r = -ENOMEM; 1689 goto bad; 1690 } 1691 } 1692 if (aux_size) 1693 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size); 1694 else 1695 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer"); 1696 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 1697 0, SLAB_RECLAIM_ACCOUNT, NULL); 1698 if (!c->slab_buffer) { 1699 r = -ENOMEM; 1700 goto bad; 1701 } 1702 1703 while (c->need_reserved_buffers) { 1704 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1705 1706 if (!b) { 1707 r = -ENOMEM; 1708 goto bad; 1709 } 1710 __free_buffer_wake(b); 1711 } 1712 1713 c->shrinker.count_objects = dm_bufio_shrink_count; 1714 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1715 c->shrinker.seeks = 1; 1716 c->shrinker.batch = 0; 1717 r = register_shrinker(&c->shrinker); 1718 if (r) 1719 goto bad; 1720 1721 mutex_lock(&dm_bufio_clients_lock); 1722 dm_bufio_client_count++; 1723 list_add(&c->client_list, &dm_bufio_all_clients); 1724 __cache_size_refresh(); 1725 mutex_unlock(&dm_bufio_clients_lock); 1726 1727 return c; 1728 1729 bad: 1730 while (!list_empty(&c->reserved_buffers)) { 1731 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1732 struct dm_buffer, lru_list); 1733 list_del(&b->lru_list); 1734 free_buffer(b); 1735 } 1736 kmem_cache_destroy(c->slab_cache); 1737 kmem_cache_destroy(c->slab_buffer); 1738 dm_io_client_destroy(c->dm_io); 1739 bad_dm_io: 1740 mutex_destroy(&c->lock); 1741 kfree(c); 1742 bad_client: 1743 return ERR_PTR(r); 1744 } 1745 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1746 1747 /* 1748 * Free the buffering interface. 1749 * It is required that there are no references on any buffers. 1750 */ 1751 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1752 { 1753 unsigned i; 1754 1755 drop_buffers(c); 1756 1757 unregister_shrinker(&c->shrinker); 1758 1759 mutex_lock(&dm_bufio_clients_lock); 1760 1761 list_del(&c->client_list); 1762 dm_bufio_client_count--; 1763 __cache_size_refresh(); 1764 1765 mutex_unlock(&dm_bufio_clients_lock); 1766 1767 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1768 BUG_ON(c->need_reserved_buffers); 1769 1770 while (!list_empty(&c->reserved_buffers)) { 1771 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1772 struct dm_buffer, lru_list); 1773 list_del(&b->lru_list); 1774 free_buffer(b); 1775 } 1776 1777 for (i = 0; i < LIST_SIZE; i++) 1778 if (c->n_buffers[i]) 1779 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1780 1781 for (i = 0; i < LIST_SIZE; i++) 1782 BUG_ON(c->n_buffers[i]); 1783 1784 kmem_cache_destroy(c->slab_cache); 1785 kmem_cache_destroy(c->slab_buffer); 1786 dm_io_client_destroy(c->dm_io); 1787 mutex_destroy(&c->lock); 1788 kfree(c); 1789 } 1790 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1791 1792 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1793 { 1794 c->start = start; 1795 } 1796 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1797 1798 static unsigned get_max_age_hz(void) 1799 { 1800 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1801 1802 if (max_age > UINT_MAX / HZ) 1803 max_age = UINT_MAX / HZ; 1804 1805 return max_age * HZ; 1806 } 1807 1808 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1809 { 1810 return time_after_eq(jiffies, b->last_accessed + age_hz); 1811 } 1812 1813 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1814 { 1815 struct dm_buffer *b, *tmp; 1816 unsigned long retain_target = get_retain_buffers(c); 1817 unsigned long count; 1818 LIST_HEAD(write_list); 1819 1820 dm_bufio_lock(c); 1821 1822 __check_watermark(c, &write_list); 1823 if (unlikely(!list_empty(&write_list))) { 1824 dm_bufio_unlock(c); 1825 __flush_write_list(&write_list); 1826 dm_bufio_lock(c); 1827 } 1828 1829 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1830 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1831 if (count <= retain_target) 1832 break; 1833 1834 if (!older_than(b, age_hz)) 1835 break; 1836 1837 if (__try_evict_buffer(b, 0)) 1838 count--; 1839 1840 cond_resched(); 1841 } 1842 1843 dm_bufio_unlock(c); 1844 } 1845 1846 static void cleanup_old_buffers(void) 1847 { 1848 unsigned long max_age_hz = get_max_age_hz(); 1849 struct dm_bufio_client *c; 1850 1851 mutex_lock(&dm_bufio_clients_lock); 1852 1853 __cache_size_refresh(); 1854 1855 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1856 __evict_old_buffers(c, max_age_hz); 1857 1858 mutex_unlock(&dm_bufio_clients_lock); 1859 } 1860 1861 static struct workqueue_struct *dm_bufio_wq; 1862 static struct delayed_work dm_bufio_work; 1863 1864 static void work_fn(struct work_struct *w) 1865 { 1866 cleanup_old_buffers(); 1867 1868 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1869 DM_BUFIO_WORK_TIMER_SECS * HZ); 1870 } 1871 1872 /*---------------------------------------------------------------- 1873 * Module setup 1874 *--------------------------------------------------------------*/ 1875 1876 /* 1877 * This is called only once for the whole dm_bufio module. 1878 * It initializes memory limit. 1879 */ 1880 static int __init dm_bufio_init(void) 1881 { 1882 __u64 mem; 1883 1884 dm_bufio_allocated_kmem_cache = 0; 1885 dm_bufio_allocated_get_free_pages = 0; 1886 dm_bufio_allocated_vmalloc = 0; 1887 dm_bufio_current_allocated = 0; 1888 1889 mem = (__u64)mult_frac(totalram_pages - totalhigh_pages, 1890 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 1891 1892 if (mem > ULONG_MAX) 1893 mem = ULONG_MAX; 1894 1895 #ifdef CONFIG_MMU 1896 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 1897 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 1898 #endif 1899 1900 dm_bufio_default_cache_size = mem; 1901 1902 mutex_lock(&dm_bufio_clients_lock); 1903 __cache_size_refresh(); 1904 mutex_unlock(&dm_bufio_clients_lock); 1905 1906 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1907 if (!dm_bufio_wq) 1908 return -ENOMEM; 1909 1910 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1911 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1912 DM_BUFIO_WORK_TIMER_SECS * HZ); 1913 1914 return 0; 1915 } 1916 1917 /* 1918 * This is called once when unloading the dm_bufio module. 1919 */ 1920 static void __exit dm_bufio_exit(void) 1921 { 1922 int bug = 0; 1923 1924 cancel_delayed_work_sync(&dm_bufio_work); 1925 destroy_workqueue(dm_bufio_wq); 1926 1927 if (dm_bufio_client_count) { 1928 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1929 __func__, dm_bufio_client_count); 1930 bug = 1; 1931 } 1932 1933 if (dm_bufio_current_allocated) { 1934 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1935 __func__, dm_bufio_current_allocated); 1936 bug = 1; 1937 } 1938 1939 if (dm_bufio_allocated_get_free_pages) { 1940 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1941 __func__, dm_bufio_allocated_get_free_pages); 1942 bug = 1; 1943 } 1944 1945 if (dm_bufio_allocated_vmalloc) { 1946 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1947 __func__, dm_bufio_allocated_vmalloc); 1948 bug = 1; 1949 } 1950 1951 BUG_ON(bug); 1952 } 1953 1954 module_init(dm_bufio_init) 1955 module_exit(dm_bufio_exit) 1956 1957 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1958 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1959 1960 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1961 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1962 1963 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 1964 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1965 1966 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1967 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1968 1969 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1970 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1971 1972 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1973 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1974 1975 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1976 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1977 1978 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1979 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1980 1981 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1982 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1983 MODULE_LICENSE("GPL"); 1984