1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_PERCENT 75 37 38 /* 39 * Check buffer ages in this interval (seconds) 40 */ 41 #define DM_BUFIO_WORK_TIMER_SECS 30 42 43 /* 44 * Free buffers when they are older than this (seconds) 45 */ 46 #define DM_BUFIO_DEFAULT_AGE_SECS 300 47 48 /* 49 * The nr of bytes of cached data to keep around. 50 */ 51 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 52 53 /* 54 * The number of bvec entries that are embedded directly in the buffer. 55 * If the chunk size is larger, dm-io is used to do the io. 56 */ 57 #define DM_BUFIO_INLINE_VECS 16 58 59 /* 60 * Don't try to use kmem_cache_alloc for blocks larger than this. 61 * For explanation, see alloc_buffer_data below. 62 */ 63 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 64 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 65 66 /* 67 * dm_buffer->list_mode 68 */ 69 #define LIST_CLEAN 0 70 #define LIST_DIRTY 1 71 #define LIST_SIZE 2 72 73 /* 74 * Linking of buffers: 75 * All buffers are linked to cache_hash with their hash_list field. 76 * 77 * Clean buffers that are not being written (B_WRITING not set) 78 * are linked to lru[LIST_CLEAN] with their lru_list field. 79 * 80 * Dirty and clean buffers that are being written are linked to 81 * lru[LIST_DIRTY] with their lru_list field. When the write 82 * finishes, the buffer cannot be relinked immediately (because we 83 * are in an interrupt context and relinking requires process 84 * context), so some clean-not-writing buffers can be held on 85 * dirty_lru too. They are later added to lru in the process 86 * context. 87 */ 88 struct dm_bufio_client { 89 struct mutex lock; 90 91 struct list_head lru[LIST_SIZE]; 92 unsigned long n_buffers[LIST_SIZE]; 93 94 struct block_device *bdev; 95 unsigned block_size; 96 unsigned char sectors_per_block_bits; 97 unsigned char pages_per_block_bits; 98 unsigned char blocks_per_page_bits; 99 unsigned aux_size; 100 void (*alloc_callback)(struct dm_buffer *); 101 void (*write_callback)(struct dm_buffer *); 102 103 struct dm_io_client *dm_io; 104 105 struct list_head reserved_buffers; 106 unsigned need_reserved_buffers; 107 108 unsigned minimum_buffers; 109 110 struct rb_root buffer_tree; 111 wait_queue_head_t free_buffer_wait; 112 113 sector_t start; 114 115 int async_write_error; 116 117 struct list_head client_list; 118 struct shrinker shrinker; 119 }; 120 121 /* 122 * Buffer state bits. 123 */ 124 #define B_READING 0 125 #define B_WRITING 1 126 #define B_DIRTY 2 127 128 /* 129 * Describes how the block was allocated: 130 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 131 * See the comment at alloc_buffer_data. 132 */ 133 enum data_mode { 134 DATA_MODE_SLAB = 0, 135 DATA_MODE_GET_FREE_PAGES = 1, 136 DATA_MODE_VMALLOC = 2, 137 DATA_MODE_LIMIT = 3 138 }; 139 140 struct dm_buffer { 141 struct rb_node node; 142 struct list_head lru_list; 143 sector_t block; 144 void *data; 145 enum data_mode data_mode; 146 unsigned char list_mode; /* LIST_* */ 147 unsigned hold_count; 148 int read_error; 149 int write_error; 150 unsigned long state; 151 unsigned long last_accessed; 152 struct dm_bufio_client *c; 153 struct list_head write_list; 154 struct bio bio; 155 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 156 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 157 #define MAX_STACK 10 158 struct stack_trace stack_trace; 159 unsigned long stack_entries[MAX_STACK]; 160 #endif 161 }; 162 163 /*----------------------------------------------------------------*/ 164 165 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 166 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 167 168 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 169 { 170 unsigned ret = c->blocks_per_page_bits - 1; 171 172 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 173 174 return ret; 175 } 176 177 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 178 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 179 180 #define dm_bufio_in_request() (!!current->bio_list) 181 182 static void dm_bufio_lock(struct dm_bufio_client *c) 183 { 184 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 185 } 186 187 static int dm_bufio_trylock(struct dm_bufio_client *c) 188 { 189 return mutex_trylock(&c->lock); 190 } 191 192 static void dm_bufio_unlock(struct dm_bufio_client *c) 193 { 194 mutex_unlock(&c->lock); 195 } 196 197 /*----------------------------------------------------------------*/ 198 199 /* 200 * Default cache size: available memory divided by the ratio. 201 */ 202 static unsigned long dm_bufio_default_cache_size; 203 204 /* 205 * Total cache size set by the user. 206 */ 207 static unsigned long dm_bufio_cache_size; 208 209 /* 210 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 211 * at any time. If it disagrees, the user has changed cache size. 212 */ 213 static unsigned long dm_bufio_cache_size_latch; 214 215 static DEFINE_SPINLOCK(param_spinlock); 216 217 /* 218 * Buffers are freed after this timeout 219 */ 220 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 221 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 222 223 static unsigned long dm_bufio_peak_allocated; 224 static unsigned long dm_bufio_allocated_kmem_cache; 225 static unsigned long dm_bufio_allocated_get_free_pages; 226 static unsigned long dm_bufio_allocated_vmalloc; 227 static unsigned long dm_bufio_current_allocated; 228 229 /*----------------------------------------------------------------*/ 230 231 /* 232 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 233 */ 234 static unsigned long dm_bufio_cache_size_per_client; 235 236 /* 237 * The current number of clients. 238 */ 239 static int dm_bufio_client_count; 240 241 /* 242 * The list of all clients. 243 */ 244 static LIST_HEAD(dm_bufio_all_clients); 245 246 /* 247 * This mutex protects dm_bufio_cache_size_latch, 248 * dm_bufio_cache_size_per_client and dm_bufio_client_count 249 */ 250 static DEFINE_MUTEX(dm_bufio_clients_lock); 251 252 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 253 static void buffer_record_stack(struct dm_buffer *b) 254 { 255 b->stack_trace.nr_entries = 0; 256 b->stack_trace.max_entries = MAX_STACK; 257 b->stack_trace.entries = b->stack_entries; 258 b->stack_trace.skip = 2; 259 save_stack_trace(&b->stack_trace); 260 } 261 #endif 262 263 /*---------------------------------------------------------------- 264 * A red/black tree acts as an index for all the buffers. 265 *--------------------------------------------------------------*/ 266 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 267 { 268 struct rb_node *n = c->buffer_tree.rb_node; 269 struct dm_buffer *b; 270 271 while (n) { 272 b = container_of(n, struct dm_buffer, node); 273 274 if (b->block == block) 275 return b; 276 277 n = (b->block < block) ? n->rb_left : n->rb_right; 278 } 279 280 return NULL; 281 } 282 283 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 284 { 285 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 286 struct dm_buffer *found; 287 288 while (*new) { 289 found = container_of(*new, struct dm_buffer, node); 290 291 if (found->block == b->block) { 292 BUG_ON(found != b); 293 return; 294 } 295 296 parent = *new; 297 new = (found->block < b->block) ? 298 &((*new)->rb_left) : &((*new)->rb_right); 299 } 300 301 rb_link_node(&b->node, parent, new); 302 rb_insert_color(&b->node, &c->buffer_tree); 303 } 304 305 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 306 { 307 rb_erase(&b->node, &c->buffer_tree); 308 } 309 310 /*----------------------------------------------------------------*/ 311 312 static void adjust_total_allocated(enum data_mode data_mode, long diff) 313 { 314 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 315 &dm_bufio_allocated_kmem_cache, 316 &dm_bufio_allocated_get_free_pages, 317 &dm_bufio_allocated_vmalloc, 318 }; 319 320 spin_lock(¶m_spinlock); 321 322 *class_ptr[data_mode] += diff; 323 324 dm_bufio_current_allocated += diff; 325 326 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 327 dm_bufio_peak_allocated = dm_bufio_current_allocated; 328 329 spin_unlock(¶m_spinlock); 330 } 331 332 /* 333 * Change the number of clients and recalculate per-client limit. 334 */ 335 static void __cache_size_refresh(void) 336 { 337 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 338 BUG_ON(dm_bufio_client_count < 0); 339 340 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 341 342 /* 343 * Use default if set to 0 and report the actual cache size used. 344 */ 345 if (!dm_bufio_cache_size_latch) { 346 (void)cmpxchg(&dm_bufio_cache_size, 0, 347 dm_bufio_default_cache_size); 348 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 349 } 350 351 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 352 (dm_bufio_client_count ? : 1); 353 } 354 355 /* 356 * Allocating buffer data. 357 * 358 * Small buffers are allocated with kmem_cache, to use space optimally. 359 * 360 * For large buffers, we choose between get_free_pages and vmalloc. 361 * Each has advantages and disadvantages. 362 * 363 * __get_free_pages can randomly fail if the memory is fragmented. 364 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 365 * as low as 128M) so using it for caching is not appropriate. 366 * 367 * If the allocation may fail we use __get_free_pages. Memory fragmentation 368 * won't have a fatal effect here, but it just causes flushes of some other 369 * buffers and more I/O will be performed. Don't use __get_free_pages if it 370 * always fails (i.e. order >= MAX_ORDER). 371 * 372 * If the allocation shouldn't fail we use __vmalloc. This is only for the 373 * initial reserve allocation, so there's no risk of wasting all vmalloc 374 * space. 375 */ 376 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 377 enum data_mode *data_mode) 378 { 379 unsigned noio_flag; 380 void *ptr; 381 382 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 383 *data_mode = DATA_MODE_SLAB; 384 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 385 } 386 387 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 388 gfp_mask & __GFP_NORETRY) { 389 *data_mode = DATA_MODE_GET_FREE_PAGES; 390 return (void *)__get_free_pages(gfp_mask, 391 c->pages_per_block_bits); 392 } 393 394 *data_mode = DATA_MODE_VMALLOC; 395 396 /* 397 * __vmalloc allocates the data pages and auxiliary structures with 398 * gfp_flags that were specified, but pagetables are always allocated 399 * with GFP_KERNEL, no matter what was specified as gfp_mask. 400 * 401 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 402 * all allocations done by this process (including pagetables) are done 403 * as if GFP_NOIO was specified. 404 */ 405 406 if (gfp_mask & __GFP_NORETRY) 407 noio_flag = memalloc_noio_save(); 408 409 ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL); 410 411 if (gfp_mask & __GFP_NORETRY) 412 memalloc_noio_restore(noio_flag); 413 414 return ptr; 415 } 416 417 /* 418 * Free buffer's data. 419 */ 420 static void free_buffer_data(struct dm_bufio_client *c, 421 void *data, enum data_mode data_mode) 422 { 423 switch (data_mode) { 424 case DATA_MODE_SLAB: 425 kmem_cache_free(DM_BUFIO_CACHE(c), data); 426 break; 427 428 case DATA_MODE_GET_FREE_PAGES: 429 free_pages((unsigned long)data, c->pages_per_block_bits); 430 break; 431 432 case DATA_MODE_VMALLOC: 433 vfree(data); 434 break; 435 436 default: 437 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 438 data_mode); 439 BUG(); 440 } 441 } 442 443 /* 444 * Allocate buffer and its data. 445 */ 446 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 447 { 448 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 449 gfp_mask); 450 451 if (!b) 452 return NULL; 453 454 b->c = c; 455 456 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 457 if (!b->data) { 458 kfree(b); 459 return NULL; 460 } 461 462 adjust_total_allocated(b->data_mode, (long)c->block_size); 463 464 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 465 memset(&b->stack_trace, 0, sizeof(b->stack_trace)); 466 #endif 467 return b; 468 } 469 470 /* 471 * Free buffer and its data. 472 */ 473 static void free_buffer(struct dm_buffer *b) 474 { 475 struct dm_bufio_client *c = b->c; 476 477 adjust_total_allocated(b->data_mode, -(long)c->block_size); 478 479 free_buffer_data(c, b->data, b->data_mode); 480 kfree(b); 481 } 482 483 /* 484 * Link buffer to the hash list and clean or dirty queue. 485 */ 486 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 487 { 488 struct dm_bufio_client *c = b->c; 489 490 c->n_buffers[dirty]++; 491 b->block = block; 492 b->list_mode = dirty; 493 list_add(&b->lru_list, &c->lru[dirty]); 494 __insert(b->c, b); 495 b->last_accessed = jiffies; 496 } 497 498 /* 499 * Unlink buffer from the hash list and dirty or clean queue. 500 */ 501 static void __unlink_buffer(struct dm_buffer *b) 502 { 503 struct dm_bufio_client *c = b->c; 504 505 BUG_ON(!c->n_buffers[b->list_mode]); 506 507 c->n_buffers[b->list_mode]--; 508 __remove(b->c, b); 509 list_del(&b->lru_list); 510 } 511 512 /* 513 * Place the buffer to the head of dirty or clean LRU queue. 514 */ 515 static void __relink_lru(struct dm_buffer *b, int dirty) 516 { 517 struct dm_bufio_client *c = b->c; 518 519 BUG_ON(!c->n_buffers[b->list_mode]); 520 521 c->n_buffers[b->list_mode]--; 522 c->n_buffers[dirty]++; 523 b->list_mode = dirty; 524 list_move(&b->lru_list, &c->lru[dirty]); 525 b->last_accessed = jiffies; 526 } 527 528 /*---------------------------------------------------------------- 529 * Submit I/O on the buffer. 530 * 531 * Bio interface is faster but it has some problems: 532 * the vector list is limited (increasing this limit increases 533 * memory-consumption per buffer, so it is not viable); 534 * 535 * the memory must be direct-mapped, not vmalloced; 536 * 537 * the I/O driver can reject requests spuriously if it thinks that 538 * the requests are too big for the device or if they cross a 539 * controller-defined memory boundary. 540 * 541 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 542 * it is not vmalloced, try using the bio interface. 543 * 544 * If the buffer is big, if it is vmalloced or if the underlying device 545 * rejects the bio because it is too large, use dm-io layer to do the I/O. 546 * The dm-io layer splits the I/O into multiple requests, avoiding the above 547 * shortcomings. 548 *--------------------------------------------------------------*/ 549 550 /* 551 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 552 * that the request was handled directly with bio interface. 553 */ 554 static void dmio_complete(unsigned long error, void *context) 555 { 556 struct dm_buffer *b = context; 557 558 b->bio.bi_error = error ? -EIO : 0; 559 b->bio.bi_end_io(&b->bio); 560 } 561 562 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 563 unsigned n_sectors, bio_end_io_t *end_io) 564 { 565 int r; 566 struct dm_io_request io_req = { 567 .bi_op = rw, 568 .bi_op_flags = 0, 569 .notify.fn = dmio_complete, 570 .notify.context = b, 571 .client = b->c->dm_io, 572 }; 573 struct dm_io_region region = { 574 .bdev = b->c->bdev, 575 .sector = sector, 576 .count = n_sectors, 577 }; 578 579 if (b->data_mode != DATA_MODE_VMALLOC) { 580 io_req.mem.type = DM_IO_KMEM; 581 io_req.mem.ptr.addr = b->data; 582 } else { 583 io_req.mem.type = DM_IO_VMA; 584 io_req.mem.ptr.vma = b->data; 585 } 586 587 b->bio.bi_end_io = end_io; 588 589 r = dm_io(&io_req, 1, ®ion, NULL); 590 if (r) { 591 b->bio.bi_error = r; 592 end_io(&b->bio); 593 } 594 } 595 596 static void inline_endio(struct bio *bio) 597 { 598 bio_end_io_t *end_fn = bio->bi_private; 599 int error = bio->bi_error; 600 601 /* 602 * Reset the bio to free any attached resources 603 * (e.g. bio integrity profiles). 604 */ 605 bio_reset(bio); 606 607 bio->bi_error = error; 608 end_fn(bio); 609 } 610 611 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t sector, 612 unsigned n_sectors, bio_end_io_t *end_io) 613 { 614 char *ptr; 615 int len; 616 617 bio_init(&b->bio, b->bio_vec, DM_BUFIO_INLINE_VECS); 618 b->bio.bi_iter.bi_sector = sector; 619 b->bio.bi_bdev = b->c->bdev; 620 b->bio.bi_end_io = inline_endio; 621 /* 622 * Use of .bi_private isn't a problem here because 623 * the dm_buffer's inline bio is local to bufio. 624 */ 625 b->bio.bi_private = end_io; 626 bio_set_op_attrs(&b->bio, rw, 0); 627 628 /* 629 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 630 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 631 */ 632 ptr = b->data; 633 len = n_sectors << SECTOR_SHIFT; 634 635 if (len >= PAGE_SIZE) 636 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 637 else 638 BUG_ON((unsigned long)ptr & (len - 1)); 639 640 do { 641 if (!bio_add_page(&b->bio, virt_to_page(ptr), 642 len < PAGE_SIZE ? len : PAGE_SIZE, 643 offset_in_page(ptr))) { 644 BUG_ON(b->c->block_size <= PAGE_SIZE); 645 use_dmio(b, rw, sector, n_sectors, end_io); 646 return; 647 } 648 649 len -= PAGE_SIZE; 650 ptr += PAGE_SIZE; 651 } while (len > 0); 652 653 submit_bio(&b->bio); 654 } 655 656 static void submit_io(struct dm_buffer *b, int rw, bio_end_io_t *end_io) 657 { 658 unsigned n_sectors; 659 sector_t sector; 660 661 if (rw == WRITE && b->c->write_callback) 662 b->c->write_callback(b); 663 664 sector = (b->block << b->c->sectors_per_block_bits) + b->c->start; 665 n_sectors = 1 << b->c->sectors_per_block_bits; 666 667 if (n_sectors <= ((DM_BUFIO_INLINE_VECS * PAGE_SIZE) >> SECTOR_SHIFT) && 668 b->data_mode != DATA_MODE_VMALLOC) 669 use_inline_bio(b, rw, sector, n_sectors, end_io); 670 else 671 use_dmio(b, rw, sector, n_sectors, end_io); 672 } 673 674 /*---------------------------------------------------------------- 675 * Writing dirty buffers 676 *--------------------------------------------------------------*/ 677 678 /* 679 * The endio routine for write. 680 * 681 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 682 * it. 683 */ 684 static void write_endio(struct bio *bio) 685 { 686 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 687 688 b->write_error = bio->bi_error; 689 if (unlikely(bio->bi_error)) { 690 struct dm_bufio_client *c = b->c; 691 int error = bio->bi_error; 692 (void)cmpxchg(&c->async_write_error, 0, error); 693 } 694 695 BUG_ON(!test_bit(B_WRITING, &b->state)); 696 697 smp_mb__before_atomic(); 698 clear_bit(B_WRITING, &b->state); 699 smp_mb__after_atomic(); 700 701 wake_up_bit(&b->state, B_WRITING); 702 } 703 704 /* 705 * Initiate a write on a dirty buffer, but don't wait for it. 706 * 707 * - If the buffer is not dirty, exit. 708 * - If there some previous write going on, wait for it to finish (we can't 709 * have two writes on the same buffer simultaneously). 710 * - Submit our write and don't wait on it. We set B_WRITING indicating 711 * that there is a write in progress. 712 */ 713 static void __write_dirty_buffer(struct dm_buffer *b, 714 struct list_head *write_list) 715 { 716 if (!test_bit(B_DIRTY, &b->state)) 717 return; 718 719 clear_bit(B_DIRTY, &b->state); 720 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 721 722 if (!write_list) 723 submit_io(b, WRITE, write_endio); 724 else 725 list_add_tail(&b->write_list, write_list); 726 } 727 728 static void __flush_write_list(struct list_head *write_list) 729 { 730 struct blk_plug plug; 731 blk_start_plug(&plug); 732 while (!list_empty(write_list)) { 733 struct dm_buffer *b = 734 list_entry(write_list->next, struct dm_buffer, write_list); 735 list_del(&b->write_list); 736 submit_io(b, WRITE, write_endio); 737 cond_resched(); 738 } 739 blk_finish_plug(&plug); 740 } 741 742 /* 743 * Wait until any activity on the buffer finishes. Possibly write the 744 * buffer if it is dirty. When this function finishes, there is no I/O 745 * running on the buffer and the buffer is not dirty. 746 */ 747 static void __make_buffer_clean(struct dm_buffer *b) 748 { 749 BUG_ON(b->hold_count); 750 751 if (!b->state) /* fast case */ 752 return; 753 754 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 755 __write_dirty_buffer(b, NULL); 756 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 757 } 758 759 /* 760 * Find some buffer that is not held by anybody, clean it, unlink it and 761 * return it. 762 */ 763 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 764 { 765 struct dm_buffer *b; 766 767 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 768 BUG_ON(test_bit(B_WRITING, &b->state)); 769 BUG_ON(test_bit(B_DIRTY, &b->state)); 770 771 if (!b->hold_count) { 772 __make_buffer_clean(b); 773 __unlink_buffer(b); 774 return b; 775 } 776 cond_resched(); 777 } 778 779 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 780 BUG_ON(test_bit(B_READING, &b->state)); 781 782 if (!b->hold_count) { 783 __make_buffer_clean(b); 784 __unlink_buffer(b); 785 return b; 786 } 787 cond_resched(); 788 } 789 790 return NULL; 791 } 792 793 /* 794 * Wait until some other threads free some buffer or release hold count on 795 * some buffer. 796 * 797 * This function is entered with c->lock held, drops it and regains it 798 * before exiting. 799 */ 800 static void __wait_for_free_buffer(struct dm_bufio_client *c) 801 { 802 DECLARE_WAITQUEUE(wait, current); 803 804 add_wait_queue(&c->free_buffer_wait, &wait); 805 set_current_state(TASK_UNINTERRUPTIBLE); 806 dm_bufio_unlock(c); 807 808 io_schedule(); 809 810 remove_wait_queue(&c->free_buffer_wait, &wait); 811 812 dm_bufio_lock(c); 813 } 814 815 enum new_flag { 816 NF_FRESH = 0, 817 NF_READ = 1, 818 NF_GET = 2, 819 NF_PREFETCH = 3 820 }; 821 822 /* 823 * Allocate a new buffer. If the allocation is not possible, wait until 824 * some other thread frees a buffer. 825 * 826 * May drop the lock and regain it. 827 */ 828 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 829 { 830 struct dm_buffer *b; 831 bool tried_noio_alloc = false; 832 833 /* 834 * dm-bufio is resistant to allocation failures (it just keeps 835 * one buffer reserved in cases all the allocations fail). 836 * So set flags to not try too hard: 837 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 838 * mutex and wait ourselves. 839 * __GFP_NORETRY: don't retry and rather return failure 840 * __GFP_NOMEMALLOC: don't use emergency reserves 841 * __GFP_NOWARN: don't print a warning in case of failure 842 * 843 * For debugging, if we set the cache size to 1, no new buffers will 844 * be allocated. 845 */ 846 while (1) { 847 if (dm_bufio_cache_size_latch != 1) { 848 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 849 if (b) 850 return b; 851 } 852 853 if (nf == NF_PREFETCH) 854 return NULL; 855 856 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 857 dm_bufio_unlock(c); 858 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 859 dm_bufio_lock(c); 860 if (b) 861 return b; 862 tried_noio_alloc = true; 863 } 864 865 if (!list_empty(&c->reserved_buffers)) { 866 b = list_entry(c->reserved_buffers.next, 867 struct dm_buffer, lru_list); 868 list_del(&b->lru_list); 869 c->need_reserved_buffers++; 870 871 return b; 872 } 873 874 b = __get_unclaimed_buffer(c); 875 if (b) 876 return b; 877 878 __wait_for_free_buffer(c); 879 } 880 } 881 882 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 883 { 884 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 885 886 if (!b) 887 return NULL; 888 889 if (c->alloc_callback) 890 c->alloc_callback(b); 891 892 return b; 893 } 894 895 /* 896 * Free a buffer and wake other threads waiting for free buffers. 897 */ 898 static void __free_buffer_wake(struct dm_buffer *b) 899 { 900 struct dm_bufio_client *c = b->c; 901 902 if (!c->need_reserved_buffers) 903 free_buffer(b); 904 else { 905 list_add(&b->lru_list, &c->reserved_buffers); 906 c->need_reserved_buffers--; 907 } 908 909 wake_up(&c->free_buffer_wait); 910 } 911 912 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 913 struct list_head *write_list) 914 { 915 struct dm_buffer *b, *tmp; 916 917 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 918 BUG_ON(test_bit(B_READING, &b->state)); 919 920 if (!test_bit(B_DIRTY, &b->state) && 921 !test_bit(B_WRITING, &b->state)) { 922 __relink_lru(b, LIST_CLEAN); 923 continue; 924 } 925 926 if (no_wait && test_bit(B_WRITING, &b->state)) 927 return; 928 929 __write_dirty_buffer(b, write_list); 930 cond_resched(); 931 } 932 } 933 934 /* 935 * Get writeback threshold and buffer limit for a given client. 936 */ 937 static void __get_memory_limit(struct dm_bufio_client *c, 938 unsigned long *threshold_buffers, 939 unsigned long *limit_buffers) 940 { 941 unsigned long buffers; 942 943 if (unlikely(ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch)) { 944 if (mutex_trylock(&dm_bufio_clients_lock)) { 945 __cache_size_refresh(); 946 mutex_unlock(&dm_bufio_clients_lock); 947 } 948 } 949 950 buffers = dm_bufio_cache_size_per_client >> 951 (c->sectors_per_block_bits + SECTOR_SHIFT); 952 953 if (buffers < c->minimum_buffers) 954 buffers = c->minimum_buffers; 955 956 *limit_buffers = buffers; 957 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 958 } 959 960 /* 961 * Check if we're over watermark. 962 * If we are over threshold_buffers, start freeing buffers. 963 * If we're over "limit_buffers", block until we get under the limit. 964 */ 965 static void __check_watermark(struct dm_bufio_client *c, 966 struct list_head *write_list) 967 { 968 unsigned long threshold_buffers, limit_buffers; 969 970 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 971 972 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 973 limit_buffers) { 974 975 struct dm_buffer *b = __get_unclaimed_buffer(c); 976 977 if (!b) 978 return; 979 980 __free_buffer_wake(b); 981 cond_resched(); 982 } 983 984 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 985 __write_dirty_buffers_async(c, 1, write_list); 986 } 987 988 /*---------------------------------------------------------------- 989 * Getting a buffer 990 *--------------------------------------------------------------*/ 991 992 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 993 enum new_flag nf, int *need_submit, 994 struct list_head *write_list) 995 { 996 struct dm_buffer *b, *new_b = NULL; 997 998 *need_submit = 0; 999 1000 b = __find(c, block); 1001 if (b) 1002 goto found_buffer; 1003 1004 if (nf == NF_GET) 1005 return NULL; 1006 1007 new_b = __alloc_buffer_wait(c, nf); 1008 if (!new_b) 1009 return NULL; 1010 1011 /* 1012 * We've had a period where the mutex was unlocked, so need to 1013 * recheck the hash table. 1014 */ 1015 b = __find(c, block); 1016 if (b) { 1017 __free_buffer_wake(new_b); 1018 goto found_buffer; 1019 } 1020 1021 __check_watermark(c, write_list); 1022 1023 b = new_b; 1024 b->hold_count = 1; 1025 b->read_error = 0; 1026 b->write_error = 0; 1027 __link_buffer(b, block, LIST_CLEAN); 1028 1029 if (nf == NF_FRESH) { 1030 b->state = 0; 1031 return b; 1032 } 1033 1034 b->state = 1 << B_READING; 1035 *need_submit = 1; 1036 1037 return b; 1038 1039 found_buffer: 1040 if (nf == NF_PREFETCH) 1041 return NULL; 1042 /* 1043 * Note: it is essential that we don't wait for the buffer to be 1044 * read if dm_bufio_get function is used. Both dm_bufio_get and 1045 * dm_bufio_prefetch can be used in the driver request routine. 1046 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1047 * the same buffer, it would deadlock if we waited. 1048 */ 1049 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1050 return NULL; 1051 1052 b->hold_count++; 1053 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1054 test_bit(B_WRITING, &b->state)); 1055 return b; 1056 } 1057 1058 /* 1059 * The endio routine for reading: set the error, clear the bit and wake up 1060 * anyone waiting on the buffer. 1061 */ 1062 static void read_endio(struct bio *bio) 1063 { 1064 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1065 1066 b->read_error = bio->bi_error; 1067 1068 BUG_ON(!test_bit(B_READING, &b->state)); 1069 1070 smp_mb__before_atomic(); 1071 clear_bit(B_READING, &b->state); 1072 smp_mb__after_atomic(); 1073 1074 wake_up_bit(&b->state, B_READING); 1075 } 1076 1077 /* 1078 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1079 * functions is similar except that dm_bufio_new doesn't read the 1080 * buffer from the disk (assuming that the caller overwrites all the data 1081 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1082 */ 1083 static void *new_read(struct dm_bufio_client *c, sector_t block, 1084 enum new_flag nf, struct dm_buffer **bp) 1085 { 1086 int need_submit; 1087 struct dm_buffer *b; 1088 1089 LIST_HEAD(write_list); 1090 1091 dm_bufio_lock(c); 1092 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1093 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1094 if (b && b->hold_count == 1) 1095 buffer_record_stack(b); 1096 #endif 1097 dm_bufio_unlock(c); 1098 1099 __flush_write_list(&write_list); 1100 1101 if (!b) 1102 return NULL; 1103 1104 if (need_submit) 1105 submit_io(b, READ, read_endio); 1106 1107 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1108 1109 if (b->read_error) { 1110 int error = b->read_error; 1111 1112 dm_bufio_release(b); 1113 1114 return ERR_PTR(error); 1115 } 1116 1117 *bp = b; 1118 1119 return b->data; 1120 } 1121 1122 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1123 struct dm_buffer **bp) 1124 { 1125 return new_read(c, block, NF_GET, bp); 1126 } 1127 EXPORT_SYMBOL_GPL(dm_bufio_get); 1128 1129 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1130 struct dm_buffer **bp) 1131 { 1132 BUG_ON(dm_bufio_in_request()); 1133 1134 return new_read(c, block, NF_READ, bp); 1135 } 1136 EXPORT_SYMBOL_GPL(dm_bufio_read); 1137 1138 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1139 struct dm_buffer **bp) 1140 { 1141 BUG_ON(dm_bufio_in_request()); 1142 1143 return new_read(c, block, NF_FRESH, bp); 1144 } 1145 EXPORT_SYMBOL_GPL(dm_bufio_new); 1146 1147 void dm_bufio_prefetch(struct dm_bufio_client *c, 1148 sector_t block, unsigned n_blocks) 1149 { 1150 struct blk_plug plug; 1151 1152 LIST_HEAD(write_list); 1153 1154 BUG_ON(dm_bufio_in_request()); 1155 1156 blk_start_plug(&plug); 1157 dm_bufio_lock(c); 1158 1159 for (; n_blocks--; block++) { 1160 int need_submit; 1161 struct dm_buffer *b; 1162 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1163 &write_list); 1164 if (unlikely(!list_empty(&write_list))) { 1165 dm_bufio_unlock(c); 1166 blk_finish_plug(&plug); 1167 __flush_write_list(&write_list); 1168 blk_start_plug(&plug); 1169 dm_bufio_lock(c); 1170 } 1171 if (unlikely(b != NULL)) { 1172 dm_bufio_unlock(c); 1173 1174 if (need_submit) 1175 submit_io(b, READ, read_endio); 1176 dm_bufio_release(b); 1177 1178 cond_resched(); 1179 1180 if (!n_blocks) 1181 goto flush_plug; 1182 dm_bufio_lock(c); 1183 } 1184 } 1185 1186 dm_bufio_unlock(c); 1187 1188 flush_plug: 1189 blk_finish_plug(&plug); 1190 } 1191 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1192 1193 void dm_bufio_release(struct dm_buffer *b) 1194 { 1195 struct dm_bufio_client *c = b->c; 1196 1197 dm_bufio_lock(c); 1198 1199 BUG_ON(!b->hold_count); 1200 1201 b->hold_count--; 1202 if (!b->hold_count) { 1203 wake_up(&c->free_buffer_wait); 1204 1205 /* 1206 * If there were errors on the buffer, and the buffer is not 1207 * to be written, free the buffer. There is no point in caching 1208 * invalid buffer. 1209 */ 1210 if ((b->read_error || b->write_error) && 1211 !test_bit(B_READING, &b->state) && 1212 !test_bit(B_WRITING, &b->state) && 1213 !test_bit(B_DIRTY, &b->state)) { 1214 __unlink_buffer(b); 1215 __free_buffer_wake(b); 1216 } 1217 } 1218 1219 dm_bufio_unlock(c); 1220 } 1221 EXPORT_SYMBOL_GPL(dm_bufio_release); 1222 1223 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1224 { 1225 struct dm_bufio_client *c = b->c; 1226 1227 dm_bufio_lock(c); 1228 1229 BUG_ON(test_bit(B_READING, &b->state)); 1230 1231 if (!test_and_set_bit(B_DIRTY, &b->state)) 1232 __relink_lru(b, LIST_DIRTY); 1233 1234 dm_bufio_unlock(c); 1235 } 1236 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1237 1238 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1239 { 1240 LIST_HEAD(write_list); 1241 1242 BUG_ON(dm_bufio_in_request()); 1243 1244 dm_bufio_lock(c); 1245 __write_dirty_buffers_async(c, 0, &write_list); 1246 dm_bufio_unlock(c); 1247 __flush_write_list(&write_list); 1248 } 1249 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1250 1251 /* 1252 * For performance, it is essential that the buffers are written asynchronously 1253 * and simultaneously (so that the block layer can merge the writes) and then 1254 * waited upon. 1255 * 1256 * Finally, we flush hardware disk cache. 1257 */ 1258 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1259 { 1260 int a, f; 1261 unsigned long buffers_processed = 0; 1262 struct dm_buffer *b, *tmp; 1263 1264 LIST_HEAD(write_list); 1265 1266 dm_bufio_lock(c); 1267 __write_dirty_buffers_async(c, 0, &write_list); 1268 dm_bufio_unlock(c); 1269 __flush_write_list(&write_list); 1270 dm_bufio_lock(c); 1271 1272 again: 1273 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1274 int dropped_lock = 0; 1275 1276 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1277 buffers_processed++; 1278 1279 BUG_ON(test_bit(B_READING, &b->state)); 1280 1281 if (test_bit(B_WRITING, &b->state)) { 1282 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1283 dropped_lock = 1; 1284 b->hold_count++; 1285 dm_bufio_unlock(c); 1286 wait_on_bit_io(&b->state, B_WRITING, 1287 TASK_UNINTERRUPTIBLE); 1288 dm_bufio_lock(c); 1289 b->hold_count--; 1290 } else 1291 wait_on_bit_io(&b->state, B_WRITING, 1292 TASK_UNINTERRUPTIBLE); 1293 } 1294 1295 if (!test_bit(B_DIRTY, &b->state) && 1296 !test_bit(B_WRITING, &b->state)) 1297 __relink_lru(b, LIST_CLEAN); 1298 1299 cond_resched(); 1300 1301 /* 1302 * If we dropped the lock, the list is no longer consistent, 1303 * so we must restart the search. 1304 * 1305 * In the most common case, the buffer just processed is 1306 * relinked to the clean list, so we won't loop scanning the 1307 * same buffer again and again. 1308 * 1309 * This may livelock if there is another thread simultaneously 1310 * dirtying buffers, so we count the number of buffers walked 1311 * and if it exceeds the total number of buffers, it means that 1312 * someone is doing some writes simultaneously with us. In 1313 * this case, stop, dropping the lock. 1314 */ 1315 if (dropped_lock) 1316 goto again; 1317 } 1318 wake_up(&c->free_buffer_wait); 1319 dm_bufio_unlock(c); 1320 1321 a = xchg(&c->async_write_error, 0); 1322 f = dm_bufio_issue_flush(c); 1323 if (a) 1324 return a; 1325 1326 return f; 1327 } 1328 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1329 1330 /* 1331 * Use dm-io to send and empty barrier flush the device. 1332 */ 1333 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1334 { 1335 struct dm_io_request io_req = { 1336 .bi_op = REQ_OP_WRITE, 1337 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1338 .mem.type = DM_IO_KMEM, 1339 .mem.ptr.addr = NULL, 1340 .client = c->dm_io, 1341 }; 1342 struct dm_io_region io_reg = { 1343 .bdev = c->bdev, 1344 .sector = 0, 1345 .count = 0, 1346 }; 1347 1348 BUG_ON(dm_bufio_in_request()); 1349 1350 return dm_io(&io_req, 1, &io_reg, NULL); 1351 } 1352 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1353 1354 /* 1355 * We first delete any other buffer that may be at that new location. 1356 * 1357 * Then, we write the buffer to the original location if it was dirty. 1358 * 1359 * Then, if we are the only one who is holding the buffer, relink the buffer 1360 * in the hash queue for the new location. 1361 * 1362 * If there was someone else holding the buffer, we write it to the new 1363 * location but not relink it, because that other user needs to have the buffer 1364 * at the same place. 1365 */ 1366 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1367 { 1368 struct dm_bufio_client *c = b->c; 1369 struct dm_buffer *new; 1370 1371 BUG_ON(dm_bufio_in_request()); 1372 1373 dm_bufio_lock(c); 1374 1375 retry: 1376 new = __find(c, new_block); 1377 if (new) { 1378 if (new->hold_count) { 1379 __wait_for_free_buffer(c); 1380 goto retry; 1381 } 1382 1383 /* 1384 * FIXME: Is there any point waiting for a write that's going 1385 * to be overwritten in a bit? 1386 */ 1387 __make_buffer_clean(new); 1388 __unlink_buffer(new); 1389 __free_buffer_wake(new); 1390 } 1391 1392 BUG_ON(!b->hold_count); 1393 BUG_ON(test_bit(B_READING, &b->state)); 1394 1395 __write_dirty_buffer(b, NULL); 1396 if (b->hold_count == 1) { 1397 wait_on_bit_io(&b->state, B_WRITING, 1398 TASK_UNINTERRUPTIBLE); 1399 set_bit(B_DIRTY, &b->state); 1400 __unlink_buffer(b); 1401 __link_buffer(b, new_block, LIST_DIRTY); 1402 } else { 1403 sector_t old_block; 1404 wait_on_bit_lock_io(&b->state, B_WRITING, 1405 TASK_UNINTERRUPTIBLE); 1406 /* 1407 * Relink buffer to "new_block" so that write_callback 1408 * sees "new_block" as a block number. 1409 * After the write, link the buffer back to old_block. 1410 * All this must be done in bufio lock, so that block number 1411 * change isn't visible to other threads. 1412 */ 1413 old_block = b->block; 1414 __unlink_buffer(b); 1415 __link_buffer(b, new_block, b->list_mode); 1416 submit_io(b, WRITE, write_endio); 1417 wait_on_bit_io(&b->state, B_WRITING, 1418 TASK_UNINTERRUPTIBLE); 1419 __unlink_buffer(b); 1420 __link_buffer(b, old_block, b->list_mode); 1421 } 1422 1423 dm_bufio_unlock(c); 1424 dm_bufio_release(b); 1425 } 1426 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1427 1428 /* 1429 * Free the given buffer. 1430 * 1431 * This is just a hint, if the buffer is in use or dirty, this function 1432 * does nothing. 1433 */ 1434 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1435 { 1436 struct dm_buffer *b; 1437 1438 dm_bufio_lock(c); 1439 1440 b = __find(c, block); 1441 if (b && likely(!b->hold_count) && likely(!b->state)) { 1442 __unlink_buffer(b); 1443 __free_buffer_wake(b); 1444 } 1445 1446 dm_bufio_unlock(c); 1447 } 1448 EXPORT_SYMBOL(dm_bufio_forget); 1449 1450 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1451 { 1452 c->minimum_buffers = n; 1453 } 1454 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1455 1456 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1457 { 1458 return c->block_size; 1459 } 1460 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1461 1462 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1463 { 1464 return i_size_read(c->bdev->bd_inode) >> 1465 (SECTOR_SHIFT + c->sectors_per_block_bits); 1466 } 1467 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1468 1469 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1470 { 1471 return b->block; 1472 } 1473 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1474 1475 void *dm_bufio_get_block_data(struct dm_buffer *b) 1476 { 1477 return b->data; 1478 } 1479 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1480 1481 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1482 { 1483 return b + 1; 1484 } 1485 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1486 1487 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1488 { 1489 return b->c; 1490 } 1491 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1492 1493 static void drop_buffers(struct dm_bufio_client *c) 1494 { 1495 struct dm_buffer *b; 1496 int i; 1497 bool warned = false; 1498 1499 BUG_ON(dm_bufio_in_request()); 1500 1501 /* 1502 * An optimization so that the buffers are not written one-by-one. 1503 */ 1504 dm_bufio_write_dirty_buffers_async(c); 1505 1506 dm_bufio_lock(c); 1507 1508 while ((b = __get_unclaimed_buffer(c))) 1509 __free_buffer_wake(b); 1510 1511 for (i = 0; i < LIST_SIZE; i++) 1512 list_for_each_entry(b, &c->lru[i], lru_list) { 1513 WARN_ON(!warned); 1514 warned = true; 1515 DMERR("leaked buffer %llx, hold count %u, list %d", 1516 (unsigned long long)b->block, b->hold_count, i); 1517 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1518 print_stack_trace(&b->stack_trace, 1); 1519 b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */ 1520 #endif 1521 } 1522 1523 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1524 while ((b = __get_unclaimed_buffer(c))) 1525 __free_buffer_wake(b); 1526 #endif 1527 1528 for (i = 0; i < LIST_SIZE; i++) 1529 BUG_ON(!list_empty(&c->lru[i])); 1530 1531 dm_bufio_unlock(c); 1532 } 1533 1534 /* 1535 * We may not be able to evict this buffer if IO pending or the client 1536 * is still using it. Caller is expected to know buffer is too old. 1537 * 1538 * And if GFP_NOFS is used, we must not do any I/O because we hold 1539 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1540 * rerouted to different bufio client. 1541 */ 1542 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1543 { 1544 if (!(gfp & __GFP_FS)) { 1545 if (test_bit(B_READING, &b->state) || 1546 test_bit(B_WRITING, &b->state) || 1547 test_bit(B_DIRTY, &b->state)) 1548 return false; 1549 } 1550 1551 if (b->hold_count) 1552 return false; 1553 1554 __make_buffer_clean(b); 1555 __unlink_buffer(b); 1556 __free_buffer_wake(b); 1557 1558 return true; 1559 } 1560 1561 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1562 { 1563 unsigned long retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes); 1564 return retain_bytes >> (c->sectors_per_block_bits + SECTOR_SHIFT); 1565 } 1566 1567 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1568 gfp_t gfp_mask) 1569 { 1570 int l; 1571 struct dm_buffer *b, *tmp; 1572 unsigned long freed = 0; 1573 unsigned long count = nr_to_scan; 1574 unsigned long retain_target = get_retain_buffers(c); 1575 1576 for (l = 0; l < LIST_SIZE; l++) { 1577 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1578 if (__try_evict_buffer(b, gfp_mask)) 1579 freed++; 1580 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1581 return freed; 1582 cond_resched(); 1583 } 1584 } 1585 return freed; 1586 } 1587 1588 static unsigned long 1589 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1590 { 1591 struct dm_bufio_client *c; 1592 unsigned long freed; 1593 1594 c = container_of(shrink, struct dm_bufio_client, shrinker); 1595 if (sc->gfp_mask & __GFP_FS) 1596 dm_bufio_lock(c); 1597 else if (!dm_bufio_trylock(c)) 1598 return SHRINK_STOP; 1599 1600 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1601 dm_bufio_unlock(c); 1602 return freed; 1603 } 1604 1605 static unsigned long 1606 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1607 { 1608 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1609 1610 return ACCESS_ONCE(c->n_buffers[LIST_CLEAN]) + ACCESS_ONCE(c->n_buffers[LIST_DIRTY]); 1611 } 1612 1613 /* 1614 * Create the buffering interface 1615 */ 1616 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1617 unsigned reserved_buffers, unsigned aux_size, 1618 void (*alloc_callback)(struct dm_buffer *), 1619 void (*write_callback)(struct dm_buffer *)) 1620 { 1621 int r; 1622 struct dm_bufio_client *c; 1623 unsigned i; 1624 1625 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1626 (block_size & (block_size - 1))); 1627 1628 c = kzalloc(sizeof(*c), GFP_KERNEL); 1629 if (!c) { 1630 r = -ENOMEM; 1631 goto bad_client; 1632 } 1633 c->buffer_tree = RB_ROOT; 1634 1635 c->bdev = bdev; 1636 c->block_size = block_size; 1637 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1638 c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ? 1639 __ffs(block_size) - PAGE_SHIFT : 0; 1640 c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ? 1641 PAGE_SHIFT - __ffs(block_size) : 0); 1642 1643 c->aux_size = aux_size; 1644 c->alloc_callback = alloc_callback; 1645 c->write_callback = write_callback; 1646 1647 for (i = 0; i < LIST_SIZE; i++) { 1648 INIT_LIST_HEAD(&c->lru[i]); 1649 c->n_buffers[i] = 0; 1650 } 1651 1652 mutex_init(&c->lock); 1653 INIT_LIST_HEAD(&c->reserved_buffers); 1654 c->need_reserved_buffers = reserved_buffers; 1655 1656 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1657 1658 init_waitqueue_head(&c->free_buffer_wait); 1659 c->async_write_error = 0; 1660 1661 c->dm_io = dm_io_client_create(); 1662 if (IS_ERR(c->dm_io)) { 1663 r = PTR_ERR(c->dm_io); 1664 goto bad_dm_io; 1665 } 1666 1667 mutex_lock(&dm_bufio_clients_lock); 1668 if (c->blocks_per_page_bits) { 1669 if (!DM_BUFIO_CACHE_NAME(c)) { 1670 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1671 if (!DM_BUFIO_CACHE_NAME(c)) { 1672 r = -ENOMEM; 1673 mutex_unlock(&dm_bufio_clients_lock); 1674 goto bad_cache; 1675 } 1676 } 1677 1678 if (!DM_BUFIO_CACHE(c)) { 1679 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1680 c->block_size, 1681 c->block_size, 0, NULL); 1682 if (!DM_BUFIO_CACHE(c)) { 1683 r = -ENOMEM; 1684 mutex_unlock(&dm_bufio_clients_lock); 1685 goto bad_cache; 1686 } 1687 } 1688 } 1689 mutex_unlock(&dm_bufio_clients_lock); 1690 1691 while (c->need_reserved_buffers) { 1692 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1693 1694 if (!b) { 1695 r = -ENOMEM; 1696 goto bad_buffer; 1697 } 1698 __free_buffer_wake(b); 1699 } 1700 1701 mutex_lock(&dm_bufio_clients_lock); 1702 dm_bufio_client_count++; 1703 list_add(&c->client_list, &dm_bufio_all_clients); 1704 __cache_size_refresh(); 1705 mutex_unlock(&dm_bufio_clients_lock); 1706 1707 c->shrinker.count_objects = dm_bufio_shrink_count; 1708 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1709 c->shrinker.seeks = 1; 1710 c->shrinker.batch = 0; 1711 register_shrinker(&c->shrinker); 1712 1713 return c; 1714 1715 bad_buffer: 1716 bad_cache: 1717 while (!list_empty(&c->reserved_buffers)) { 1718 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1719 struct dm_buffer, lru_list); 1720 list_del(&b->lru_list); 1721 free_buffer(b); 1722 } 1723 dm_io_client_destroy(c->dm_io); 1724 bad_dm_io: 1725 kfree(c); 1726 bad_client: 1727 return ERR_PTR(r); 1728 } 1729 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1730 1731 /* 1732 * Free the buffering interface. 1733 * It is required that there are no references on any buffers. 1734 */ 1735 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1736 { 1737 unsigned i; 1738 1739 drop_buffers(c); 1740 1741 unregister_shrinker(&c->shrinker); 1742 1743 mutex_lock(&dm_bufio_clients_lock); 1744 1745 list_del(&c->client_list); 1746 dm_bufio_client_count--; 1747 __cache_size_refresh(); 1748 1749 mutex_unlock(&dm_bufio_clients_lock); 1750 1751 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1752 BUG_ON(c->need_reserved_buffers); 1753 1754 while (!list_empty(&c->reserved_buffers)) { 1755 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1756 struct dm_buffer, lru_list); 1757 list_del(&b->lru_list); 1758 free_buffer(b); 1759 } 1760 1761 for (i = 0; i < LIST_SIZE; i++) 1762 if (c->n_buffers[i]) 1763 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1764 1765 for (i = 0; i < LIST_SIZE; i++) 1766 BUG_ON(c->n_buffers[i]); 1767 1768 dm_io_client_destroy(c->dm_io); 1769 kfree(c); 1770 } 1771 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1772 1773 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1774 { 1775 c->start = start; 1776 } 1777 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1778 1779 static unsigned get_max_age_hz(void) 1780 { 1781 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age); 1782 1783 if (max_age > UINT_MAX / HZ) 1784 max_age = UINT_MAX / HZ; 1785 1786 return max_age * HZ; 1787 } 1788 1789 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1790 { 1791 return time_after_eq(jiffies, b->last_accessed + age_hz); 1792 } 1793 1794 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1795 { 1796 struct dm_buffer *b, *tmp; 1797 unsigned long retain_target = get_retain_buffers(c); 1798 unsigned long count; 1799 LIST_HEAD(write_list); 1800 1801 dm_bufio_lock(c); 1802 1803 __check_watermark(c, &write_list); 1804 if (unlikely(!list_empty(&write_list))) { 1805 dm_bufio_unlock(c); 1806 __flush_write_list(&write_list); 1807 dm_bufio_lock(c); 1808 } 1809 1810 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1811 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1812 if (count <= retain_target) 1813 break; 1814 1815 if (!older_than(b, age_hz)) 1816 break; 1817 1818 if (__try_evict_buffer(b, 0)) 1819 count--; 1820 1821 cond_resched(); 1822 } 1823 1824 dm_bufio_unlock(c); 1825 } 1826 1827 static void cleanup_old_buffers(void) 1828 { 1829 unsigned long max_age_hz = get_max_age_hz(); 1830 struct dm_bufio_client *c; 1831 1832 mutex_lock(&dm_bufio_clients_lock); 1833 1834 __cache_size_refresh(); 1835 1836 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1837 __evict_old_buffers(c, max_age_hz); 1838 1839 mutex_unlock(&dm_bufio_clients_lock); 1840 } 1841 1842 static struct workqueue_struct *dm_bufio_wq; 1843 static struct delayed_work dm_bufio_work; 1844 1845 static void work_fn(struct work_struct *w) 1846 { 1847 cleanup_old_buffers(); 1848 1849 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1850 DM_BUFIO_WORK_TIMER_SECS * HZ); 1851 } 1852 1853 /*---------------------------------------------------------------- 1854 * Module setup 1855 *--------------------------------------------------------------*/ 1856 1857 /* 1858 * This is called only once for the whole dm_bufio module. 1859 * It initializes memory limit. 1860 */ 1861 static int __init dm_bufio_init(void) 1862 { 1863 __u64 mem; 1864 1865 dm_bufio_allocated_kmem_cache = 0; 1866 dm_bufio_allocated_get_free_pages = 0; 1867 dm_bufio_allocated_vmalloc = 0; 1868 dm_bufio_current_allocated = 0; 1869 1870 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1871 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1872 1873 mem = (__u64)((totalram_pages - totalhigh_pages) * 1874 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1875 1876 if (mem > ULONG_MAX) 1877 mem = ULONG_MAX; 1878 1879 #ifdef CONFIG_MMU 1880 /* 1881 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1882 * in fs/proc/internal.h 1883 */ 1884 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1885 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1886 #endif 1887 1888 dm_bufio_default_cache_size = mem; 1889 1890 mutex_lock(&dm_bufio_clients_lock); 1891 __cache_size_refresh(); 1892 mutex_unlock(&dm_bufio_clients_lock); 1893 1894 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 1895 if (!dm_bufio_wq) 1896 return -ENOMEM; 1897 1898 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1899 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1900 DM_BUFIO_WORK_TIMER_SECS * HZ); 1901 1902 return 0; 1903 } 1904 1905 /* 1906 * This is called once when unloading the dm_bufio module. 1907 */ 1908 static void __exit dm_bufio_exit(void) 1909 { 1910 int bug = 0; 1911 int i; 1912 1913 cancel_delayed_work_sync(&dm_bufio_work); 1914 destroy_workqueue(dm_bufio_wq); 1915 1916 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) 1917 kmem_cache_destroy(dm_bufio_caches[i]); 1918 1919 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1920 kfree(dm_bufio_cache_names[i]); 1921 1922 if (dm_bufio_client_count) { 1923 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1924 __func__, dm_bufio_client_count); 1925 bug = 1; 1926 } 1927 1928 if (dm_bufio_current_allocated) { 1929 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1930 __func__, dm_bufio_current_allocated); 1931 bug = 1; 1932 } 1933 1934 if (dm_bufio_allocated_get_free_pages) { 1935 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1936 __func__, dm_bufio_allocated_get_free_pages); 1937 bug = 1; 1938 } 1939 1940 if (dm_bufio_allocated_vmalloc) { 1941 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1942 __func__, dm_bufio_allocated_vmalloc); 1943 bug = 1; 1944 } 1945 1946 BUG_ON(bug); 1947 } 1948 1949 module_init(dm_bufio_init) 1950 module_exit(dm_bufio_exit) 1951 1952 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1953 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1954 1955 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1956 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1957 1958 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 1959 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1960 1961 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1962 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1963 1964 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1965 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1966 1967 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1968 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1969 1970 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1971 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1972 1973 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1974 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1975 1976 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1977 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1978 MODULE_LICENSE("GPL"); 1979