xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 14474950)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/dm-bufio.h>
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 
22 #define DM_MSG_PREFIX "bufio"
23 
24 /*
25  * Memory management policy:
26  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
27  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
28  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
29  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
30  *	dirty buffers.
31  */
32 #define DM_BUFIO_MIN_BUFFERS		8
33 
34 #define DM_BUFIO_MEMORY_PERCENT		2
35 #define DM_BUFIO_VMALLOC_PERCENT	25
36 #define DM_BUFIO_WRITEBACK_RATIO	3
37 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
38 
39 /*
40  * Check buffer ages in this interval (seconds)
41  */
42 #define DM_BUFIO_WORK_TIMER_SECS	30
43 
44 /*
45  * Free buffers when they are older than this (seconds)
46  */
47 #define DM_BUFIO_DEFAULT_AGE_SECS	300
48 
49 /*
50  * The nr of bytes of cached data to keep around.
51  */
52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
53 
54 /*
55  * Align buffer writes to this boundary.
56  * Tests show that SSDs have the highest IOPS when using 4k writes.
57  */
58 #define DM_BUFIO_WRITE_ALIGN		4096
59 
60 /*
61  * dm_buffer->list_mode
62  */
63 #define LIST_CLEAN	0
64 #define LIST_DIRTY	1
65 #define LIST_SIZE	2
66 
67 /*
68  * Linking of buffers:
69  *	All buffers are linked to buffer_tree with their node field.
70  *
71  *	Clean buffers that are not being written (B_WRITING not set)
72  *	are linked to lru[LIST_CLEAN] with their lru_list field.
73  *
74  *	Dirty and clean buffers that are being written are linked to
75  *	lru[LIST_DIRTY] with their lru_list field. When the write
76  *	finishes, the buffer cannot be relinked immediately (because we
77  *	are in an interrupt context and relinking requires process
78  *	context), so some clean-not-writing buffers can be held on
79  *	dirty_lru too.  They are later added to lru in the process
80  *	context.
81  */
82 struct dm_bufio_client {
83 	struct mutex lock;
84 
85 	struct list_head lru[LIST_SIZE];
86 	unsigned long n_buffers[LIST_SIZE];
87 
88 	struct block_device *bdev;
89 	unsigned block_size;
90 	s8 sectors_per_block_bits;
91 	void (*alloc_callback)(struct dm_buffer *);
92 	void (*write_callback)(struct dm_buffer *);
93 
94 	struct kmem_cache *slab_buffer;
95 	struct kmem_cache *slab_cache;
96 	struct dm_io_client *dm_io;
97 
98 	struct list_head reserved_buffers;
99 	unsigned need_reserved_buffers;
100 
101 	unsigned minimum_buffers;
102 
103 	struct rb_root buffer_tree;
104 	wait_queue_head_t free_buffer_wait;
105 
106 	sector_t start;
107 
108 	int async_write_error;
109 
110 	struct list_head client_list;
111 	struct shrinker shrinker;
112 };
113 
114 /*
115  * Buffer state bits.
116  */
117 #define B_READING	0
118 #define B_WRITING	1
119 #define B_DIRTY		2
120 
121 /*
122  * Describes how the block was allocated:
123  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
124  * See the comment at alloc_buffer_data.
125  */
126 enum data_mode {
127 	DATA_MODE_SLAB = 0,
128 	DATA_MODE_GET_FREE_PAGES = 1,
129 	DATA_MODE_VMALLOC = 2,
130 	DATA_MODE_LIMIT = 3
131 };
132 
133 struct dm_buffer {
134 	struct rb_node node;
135 	struct list_head lru_list;
136 	struct list_head global_list;
137 	sector_t block;
138 	void *data;
139 	unsigned char data_mode;		/* DATA_MODE_* */
140 	unsigned char list_mode;		/* LIST_* */
141 	blk_status_t read_error;
142 	blk_status_t write_error;
143 	unsigned accessed;
144 	unsigned hold_count;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	unsigned dirty_start;
148 	unsigned dirty_end;
149 	unsigned write_start;
150 	unsigned write_end;
151 	struct dm_bufio_client *c;
152 	struct list_head write_list;
153 	void (*end_io)(struct dm_buffer *, blk_status_t);
154 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
155 #define MAX_STACK 10
156 	unsigned int stack_len;
157 	unsigned long stack_entries[MAX_STACK];
158 #endif
159 };
160 
161 /*----------------------------------------------------------------*/
162 
163 #define dm_bufio_in_request()	(!!current->bio_list)
164 
165 static void dm_bufio_lock(struct dm_bufio_client *c)
166 {
167 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
168 }
169 
170 static int dm_bufio_trylock(struct dm_bufio_client *c)
171 {
172 	return mutex_trylock(&c->lock);
173 }
174 
175 static void dm_bufio_unlock(struct dm_bufio_client *c)
176 {
177 	mutex_unlock(&c->lock);
178 }
179 
180 /*----------------------------------------------------------------*/
181 
182 /*
183  * Default cache size: available memory divided by the ratio.
184  */
185 static unsigned long dm_bufio_default_cache_size;
186 
187 /*
188  * Total cache size set by the user.
189  */
190 static unsigned long dm_bufio_cache_size;
191 
192 /*
193  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
194  * at any time.  If it disagrees, the user has changed cache size.
195  */
196 static unsigned long dm_bufio_cache_size_latch;
197 
198 static DEFINE_SPINLOCK(global_spinlock);
199 
200 static LIST_HEAD(global_queue);
201 
202 static unsigned long global_num = 0;
203 
204 /*
205  * Buffers are freed after this timeout
206  */
207 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
208 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
209 
210 static unsigned long dm_bufio_peak_allocated;
211 static unsigned long dm_bufio_allocated_kmem_cache;
212 static unsigned long dm_bufio_allocated_get_free_pages;
213 static unsigned long dm_bufio_allocated_vmalloc;
214 static unsigned long dm_bufio_current_allocated;
215 
216 /*----------------------------------------------------------------*/
217 
218 /*
219  * The current number of clients.
220  */
221 static int dm_bufio_client_count;
222 
223 /*
224  * The list of all clients.
225  */
226 static LIST_HEAD(dm_bufio_all_clients);
227 
228 /*
229  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
230  */
231 static DEFINE_MUTEX(dm_bufio_clients_lock);
232 
233 static struct workqueue_struct *dm_bufio_wq;
234 static struct delayed_work dm_bufio_cleanup_old_work;
235 static struct work_struct dm_bufio_replacement_work;
236 
237 
238 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
239 static void buffer_record_stack(struct dm_buffer *b)
240 {
241 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
242 }
243 #endif
244 
245 /*----------------------------------------------------------------
246  * A red/black tree acts as an index for all the buffers.
247  *--------------------------------------------------------------*/
248 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
249 {
250 	struct rb_node *n = c->buffer_tree.rb_node;
251 	struct dm_buffer *b;
252 
253 	while (n) {
254 		b = container_of(n, struct dm_buffer, node);
255 
256 		if (b->block == block)
257 			return b;
258 
259 		n = block < b->block ? n->rb_left : n->rb_right;
260 	}
261 
262 	return NULL;
263 }
264 
265 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
266 {
267 	struct rb_node *n = c->buffer_tree.rb_node;
268 	struct dm_buffer *b;
269 	struct dm_buffer *best = NULL;
270 
271 	while (n) {
272 		b = container_of(n, struct dm_buffer, node);
273 
274 		if (b->block == block)
275 			return b;
276 
277 		if (block <= b->block) {
278 			n = n->rb_left;
279 			best = b;
280 		} else {
281 			n = n->rb_right;
282 		}
283 	}
284 
285 	return best;
286 }
287 
288 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
289 {
290 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
291 	struct dm_buffer *found;
292 
293 	while (*new) {
294 		found = container_of(*new, struct dm_buffer, node);
295 
296 		if (found->block == b->block) {
297 			BUG_ON(found != b);
298 			return;
299 		}
300 
301 		parent = *new;
302 		new = b->block < found->block ?
303 			&found->node.rb_left : &found->node.rb_right;
304 	}
305 
306 	rb_link_node(&b->node, parent, new);
307 	rb_insert_color(&b->node, &c->buffer_tree);
308 }
309 
310 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
311 {
312 	rb_erase(&b->node, &c->buffer_tree);
313 }
314 
315 /*----------------------------------------------------------------*/
316 
317 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
318 {
319 	unsigned char data_mode;
320 	long diff;
321 
322 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
323 		&dm_bufio_allocated_kmem_cache,
324 		&dm_bufio_allocated_get_free_pages,
325 		&dm_bufio_allocated_vmalloc,
326 	};
327 
328 	data_mode = b->data_mode;
329 	diff = (long)b->c->block_size;
330 	if (unlink)
331 		diff = -diff;
332 
333 	spin_lock(&global_spinlock);
334 
335 	*class_ptr[data_mode] += diff;
336 
337 	dm_bufio_current_allocated += diff;
338 
339 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
340 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
341 
342 	b->accessed = 1;
343 
344 	if (!unlink) {
345 		list_add(&b->global_list, &global_queue);
346 		global_num++;
347 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
348 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
349 	} else {
350 		list_del(&b->global_list);
351 		global_num--;
352 	}
353 
354 	spin_unlock(&global_spinlock);
355 }
356 
357 /*
358  * Change the number of clients and recalculate per-client limit.
359  */
360 static void __cache_size_refresh(void)
361 {
362 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
363 	BUG_ON(dm_bufio_client_count < 0);
364 
365 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
366 
367 	/*
368 	 * Use default if set to 0 and report the actual cache size used.
369 	 */
370 	if (!dm_bufio_cache_size_latch) {
371 		(void)cmpxchg(&dm_bufio_cache_size, 0,
372 			      dm_bufio_default_cache_size);
373 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
374 	}
375 }
376 
377 /*
378  * Allocating buffer data.
379  *
380  * Small buffers are allocated with kmem_cache, to use space optimally.
381  *
382  * For large buffers, we choose between get_free_pages and vmalloc.
383  * Each has advantages and disadvantages.
384  *
385  * __get_free_pages can randomly fail if the memory is fragmented.
386  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
387  * as low as 128M) so using it for caching is not appropriate.
388  *
389  * If the allocation may fail we use __get_free_pages. Memory fragmentation
390  * won't have a fatal effect here, but it just causes flushes of some other
391  * buffers and more I/O will be performed. Don't use __get_free_pages if it
392  * always fails (i.e. order >= MAX_ORDER).
393  *
394  * If the allocation shouldn't fail we use __vmalloc. This is only for the
395  * initial reserve allocation, so there's no risk of wasting all vmalloc
396  * space.
397  */
398 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
399 			       unsigned char *data_mode)
400 {
401 	if (unlikely(c->slab_cache != NULL)) {
402 		*data_mode = DATA_MODE_SLAB;
403 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
404 	}
405 
406 	if (c->block_size <= KMALLOC_MAX_SIZE &&
407 	    gfp_mask & __GFP_NORETRY) {
408 		*data_mode = DATA_MODE_GET_FREE_PAGES;
409 		return (void *)__get_free_pages(gfp_mask,
410 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
411 	}
412 
413 	*data_mode = DATA_MODE_VMALLOC;
414 
415 	/*
416 	 * __vmalloc allocates the data pages and auxiliary structures with
417 	 * gfp_flags that were specified, but pagetables are always allocated
418 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
419 	 *
420 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
421 	 * all allocations done by this process (including pagetables) are done
422 	 * as if GFP_NOIO was specified.
423 	 */
424 	if (gfp_mask & __GFP_NORETRY) {
425 		unsigned noio_flag = memalloc_noio_save();
426 		void *ptr = __vmalloc(c->block_size, gfp_mask);
427 
428 		memalloc_noio_restore(noio_flag);
429 		return ptr;
430 	}
431 
432 	return __vmalloc(c->block_size, gfp_mask);
433 }
434 
435 /*
436  * Free buffer's data.
437  */
438 static void free_buffer_data(struct dm_bufio_client *c,
439 			     void *data, unsigned char data_mode)
440 {
441 	switch (data_mode) {
442 	case DATA_MODE_SLAB:
443 		kmem_cache_free(c->slab_cache, data);
444 		break;
445 
446 	case DATA_MODE_GET_FREE_PAGES:
447 		free_pages((unsigned long)data,
448 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
449 		break;
450 
451 	case DATA_MODE_VMALLOC:
452 		vfree(data);
453 		break;
454 
455 	default:
456 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
457 		       data_mode);
458 		BUG();
459 	}
460 }
461 
462 /*
463  * Allocate buffer and its data.
464  */
465 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
466 {
467 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
468 
469 	if (!b)
470 		return NULL;
471 
472 	b->c = c;
473 
474 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
475 	if (!b->data) {
476 		kmem_cache_free(c->slab_buffer, b);
477 		return NULL;
478 	}
479 
480 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
481 	b->stack_len = 0;
482 #endif
483 	return b;
484 }
485 
486 /*
487  * Free buffer and its data.
488  */
489 static void free_buffer(struct dm_buffer *b)
490 {
491 	struct dm_bufio_client *c = b->c;
492 
493 	free_buffer_data(c, b->data, b->data_mode);
494 	kmem_cache_free(c->slab_buffer, b);
495 }
496 
497 /*
498  * Link buffer to the buffer tree and clean or dirty queue.
499  */
500 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
501 {
502 	struct dm_bufio_client *c = b->c;
503 
504 	c->n_buffers[dirty]++;
505 	b->block = block;
506 	b->list_mode = dirty;
507 	list_add(&b->lru_list, &c->lru[dirty]);
508 	__insert(b->c, b);
509 	b->last_accessed = jiffies;
510 
511 	adjust_total_allocated(b, false);
512 }
513 
514 /*
515  * Unlink buffer from the buffer tree and dirty or clean queue.
516  */
517 static void __unlink_buffer(struct dm_buffer *b)
518 {
519 	struct dm_bufio_client *c = b->c;
520 
521 	BUG_ON(!c->n_buffers[b->list_mode]);
522 
523 	c->n_buffers[b->list_mode]--;
524 	__remove(b->c, b);
525 	list_del(&b->lru_list);
526 
527 	adjust_total_allocated(b, true);
528 }
529 
530 /*
531  * Place the buffer to the head of dirty or clean LRU queue.
532  */
533 static void __relink_lru(struct dm_buffer *b, int dirty)
534 {
535 	struct dm_bufio_client *c = b->c;
536 
537 	b->accessed = 1;
538 
539 	BUG_ON(!c->n_buffers[b->list_mode]);
540 
541 	c->n_buffers[b->list_mode]--;
542 	c->n_buffers[dirty]++;
543 	b->list_mode = dirty;
544 	list_move(&b->lru_list, &c->lru[dirty]);
545 	b->last_accessed = jiffies;
546 }
547 
548 /*----------------------------------------------------------------
549  * Submit I/O on the buffer.
550  *
551  * Bio interface is faster but it has some problems:
552  *	the vector list is limited (increasing this limit increases
553  *	memory-consumption per buffer, so it is not viable);
554  *
555  *	the memory must be direct-mapped, not vmalloced;
556  *
557  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
558  * it is not vmalloced, try using the bio interface.
559  *
560  * If the buffer is big, if it is vmalloced or if the underlying device
561  * rejects the bio because it is too large, use dm-io layer to do the I/O.
562  * The dm-io layer splits the I/O into multiple requests, avoiding the above
563  * shortcomings.
564  *--------------------------------------------------------------*/
565 
566 /*
567  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
568  * that the request was handled directly with bio interface.
569  */
570 static void dmio_complete(unsigned long error, void *context)
571 {
572 	struct dm_buffer *b = context;
573 
574 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
575 }
576 
577 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector,
578 		     unsigned n_sectors, unsigned offset)
579 {
580 	int r;
581 	struct dm_io_request io_req = {
582 		.bi_op = rw,
583 		.bi_op_flags = 0,
584 		.notify.fn = dmio_complete,
585 		.notify.context = b,
586 		.client = b->c->dm_io,
587 	};
588 	struct dm_io_region region = {
589 		.bdev = b->c->bdev,
590 		.sector = sector,
591 		.count = n_sectors,
592 	};
593 
594 	if (b->data_mode != DATA_MODE_VMALLOC) {
595 		io_req.mem.type = DM_IO_KMEM;
596 		io_req.mem.ptr.addr = (char *)b->data + offset;
597 	} else {
598 		io_req.mem.type = DM_IO_VMA;
599 		io_req.mem.ptr.vma = (char *)b->data + offset;
600 	}
601 
602 	r = dm_io(&io_req, 1, &region, NULL);
603 	if (unlikely(r))
604 		b->end_io(b, errno_to_blk_status(r));
605 }
606 
607 static void bio_complete(struct bio *bio)
608 {
609 	struct dm_buffer *b = bio->bi_private;
610 	blk_status_t status = bio->bi_status;
611 	bio_put(bio);
612 	b->end_io(b, status);
613 }
614 
615 static void use_bio(struct dm_buffer *b, int rw, sector_t sector,
616 		    unsigned n_sectors, unsigned offset)
617 {
618 	struct bio *bio;
619 	char *ptr;
620 	unsigned vec_size, len;
621 
622 	vec_size = b->c->block_size >> PAGE_SHIFT;
623 	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
624 		vec_size += 2;
625 
626 	bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size);
627 	if (!bio) {
628 dmio:
629 		use_dmio(b, rw, sector, n_sectors, offset);
630 		return;
631 	}
632 
633 	bio->bi_iter.bi_sector = sector;
634 	bio_set_dev(bio, b->c->bdev);
635 	bio_set_op_attrs(bio, rw, 0);
636 	bio->bi_end_io = bio_complete;
637 	bio->bi_private = b;
638 
639 	ptr = (char *)b->data + offset;
640 	len = n_sectors << SECTOR_SHIFT;
641 
642 	do {
643 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
644 		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
645 				  offset_in_page(ptr))) {
646 			bio_put(bio);
647 			goto dmio;
648 		}
649 
650 		len -= this_step;
651 		ptr += this_step;
652 	} while (len > 0);
653 
654 	submit_bio(bio);
655 }
656 
657 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
658 {
659 	sector_t sector;
660 
661 	if (likely(c->sectors_per_block_bits >= 0))
662 		sector = block << c->sectors_per_block_bits;
663 	else
664 		sector = block * (c->block_size >> SECTOR_SHIFT);
665 	sector += c->start;
666 
667 	return sector;
668 }
669 
670 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t))
671 {
672 	unsigned n_sectors;
673 	sector_t sector;
674 	unsigned offset, end;
675 
676 	b->end_io = end_io;
677 
678 	sector = block_to_sector(b->c, b->block);
679 
680 	if (rw != REQ_OP_WRITE) {
681 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
682 		offset = 0;
683 	} else {
684 		if (b->c->write_callback)
685 			b->c->write_callback(b);
686 		offset = b->write_start;
687 		end = b->write_end;
688 		offset &= -DM_BUFIO_WRITE_ALIGN;
689 		end += DM_BUFIO_WRITE_ALIGN - 1;
690 		end &= -DM_BUFIO_WRITE_ALIGN;
691 		if (unlikely(end > b->c->block_size))
692 			end = b->c->block_size;
693 
694 		sector += offset >> SECTOR_SHIFT;
695 		n_sectors = (end - offset) >> SECTOR_SHIFT;
696 	}
697 
698 	if (b->data_mode != DATA_MODE_VMALLOC)
699 		use_bio(b, rw, sector, n_sectors, offset);
700 	else
701 		use_dmio(b, rw, sector, n_sectors, offset);
702 }
703 
704 /*----------------------------------------------------------------
705  * Writing dirty buffers
706  *--------------------------------------------------------------*/
707 
708 /*
709  * The endio routine for write.
710  *
711  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
712  * it.
713  */
714 static void write_endio(struct dm_buffer *b, blk_status_t status)
715 {
716 	b->write_error = status;
717 	if (unlikely(status)) {
718 		struct dm_bufio_client *c = b->c;
719 
720 		(void)cmpxchg(&c->async_write_error, 0,
721 				blk_status_to_errno(status));
722 	}
723 
724 	BUG_ON(!test_bit(B_WRITING, &b->state));
725 
726 	smp_mb__before_atomic();
727 	clear_bit(B_WRITING, &b->state);
728 	smp_mb__after_atomic();
729 
730 	wake_up_bit(&b->state, B_WRITING);
731 }
732 
733 /*
734  * Initiate a write on a dirty buffer, but don't wait for it.
735  *
736  * - If the buffer is not dirty, exit.
737  * - If there some previous write going on, wait for it to finish (we can't
738  *   have two writes on the same buffer simultaneously).
739  * - Submit our write and don't wait on it. We set B_WRITING indicating
740  *   that there is a write in progress.
741  */
742 static void __write_dirty_buffer(struct dm_buffer *b,
743 				 struct list_head *write_list)
744 {
745 	if (!test_bit(B_DIRTY, &b->state))
746 		return;
747 
748 	clear_bit(B_DIRTY, &b->state);
749 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
750 
751 	b->write_start = b->dirty_start;
752 	b->write_end = b->dirty_end;
753 
754 	if (!write_list)
755 		submit_io(b, REQ_OP_WRITE, write_endio);
756 	else
757 		list_add_tail(&b->write_list, write_list);
758 }
759 
760 static void __flush_write_list(struct list_head *write_list)
761 {
762 	struct blk_plug plug;
763 	blk_start_plug(&plug);
764 	while (!list_empty(write_list)) {
765 		struct dm_buffer *b =
766 			list_entry(write_list->next, struct dm_buffer, write_list);
767 		list_del(&b->write_list);
768 		submit_io(b, REQ_OP_WRITE, write_endio);
769 		cond_resched();
770 	}
771 	blk_finish_plug(&plug);
772 }
773 
774 /*
775  * Wait until any activity on the buffer finishes.  Possibly write the
776  * buffer if it is dirty.  When this function finishes, there is no I/O
777  * running on the buffer and the buffer is not dirty.
778  */
779 static void __make_buffer_clean(struct dm_buffer *b)
780 {
781 	BUG_ON(b->hold_count);
782 
783 	if (!b->state)	/* fast case */
784 		return;
785 
786 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
787 	__write_dirty_buffer(b, NULL);
788 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
789 }
790 
791 /*
792  * Find some buffer that is not held by anybody, clean it, unlink it and
793  * return it.
794  */
795 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
796 {
797 	struct dm_buffer *b;
798 
799 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
800 		BUG_ON(test_bit(B_WRITING, &b->state));
801 		BUG_ON(test_bit(B_DIRTY, &b->state));
802 
803 		if (!b->hold_count) {
804 			__make_buffer_clean(b);
805 			__unlink_buffer(b);
806 			return b;
807 		}
808 		cond_resched();
809 	}
810 
811 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
812 		BUG_ON(test_bit(B_READING, &b->state));
813 
814 		if (!b->hold_count) {
815 			__make_buffer_clean(b);
816 			__unlink_buffer(b);
817 			return b;
818 		}
819 		cond_resched();
820 	}
821 
822 	return NULL;
823 }
824 
825 /*
826  * Wait until some other threads free some buffer or release hold count on
827  * some buffer.
828  *
829  * This function is entered with c->lock held, drops it and regains it
830  * before exiting.
831  */
832 static void __wait_for_free_buffer(struct dm_bufio_client *c)
833 {
834 	DECLARE_WAITQUEUE(wait, current);
835 
836 	add_wait_queue(&c->free_buffer_wait, &wait);
837 	set_current_state(TASK_UNINTERRUPTIBLE);
838 	dm_bufio_unlock(c);
839 
840 	io_schedule();
841 
842 	remove_wait_queue(&c->free_buffer_wait, &wait);
843 
844 	dm_bufio_lock(c);
845 }
846 
847 enum new_flag {
848 	NF_FRESH = 0,
849 	NF_READ = 1,
850 	NF_GET = 2,
851 	NF_PREFETCH = 3
852 };
853 
854 /*
855  * Allocate a new buffer. If the allocation is not possible, wait until
856  * some other thread frees a buffer.
857  *
858  * May drop the lock and regain it.
859  */
860 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
861 {
862 	struct dm_buffer *b;
863 	bool tried_noio_alloc = false;
864 
865 	/*
866 	 * dm-bufio is resistant to allocation failures (it just keeps
867 	 * one buffer reserved in cases all the allocations fail).
868 	 * So set flags to not try too hard:
869 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
870 	 *		    mutex and wait ourselves.
871 	 *	__GFP_NORETRY: don't retry and rather return failure
872 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
873 	 *	__GFP_NOWARN: don't print a warning in case of failure
874 	 *
875 	 * For debugging, if we set the cache size to 1, no new buffers will
876 	 * be allocated.
877 	 */
878 	while (1) {
879 		if (dm_bufio_cache_size_latch != 1) {
880 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
881 			if (b)
882 				return b;
883 		}
884 
885 		if (nf == NF_PREFETCH)
886 			return NULL;
887 
888 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
889 			dm_bufio_unlock(c);
890 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
891 			dm_bufio_lock(c);
892 			if (b)
893 				return b;
894 			tried_noio_alloc = true;
895 		}
896 
897 		if (!list_empty(&c->reserved_buffers)) {
898 			b = list_entry(c->reserved_buffers.next,
899 				       struct dm_buffer, lru_list);
900 			list_del(&b->lru_list);
901 			c->need_reserved_buffers++;
902 
903 			return b;
904 		}
905 
906 		b = __get_unclaimed_buffer(c);
907 		if (b)
908 			return b;
909 
910 		__wait_for_free_buffer(c);
911 	}
912 }
913 
914 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
915 {
916 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
917 
918 	if (!b)
919 		return NULL;
920 
921 	if (c->alloc_callback)
922 		c->alloc_callback(b);
923 
924 	return b;
925 }
926 
927 /*
928  * Free a buffer and wake other threads waiting for free buffers.
929  */
930 static void __free_buffer_wake(struct dm_buffer *b)
931 {
932 	struct dm_bufio_client *c = b->c;
933 
934 	if (!c->need_reserved_buffers)
935 		free_buffer(b);
936 	else {
937 		list_add(&b->lru_list, &c->reserved_buffers);
938 		c->need_reserved_buffers--;
939 	}
940 
941 	wake_up(&c->free_buffer_wait);
942 }
943 
944 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
945 					struct list_head *write_list)
946 {
947 	struct dm_buffer *b, *tmp;
948 
949 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
950 		BUG_ON(test_bit(B_READING, &b->state));
951 
952 		if (!test_bit(B_DIRTY, &b->state) &&
953 		    !test_bit(B_WRITING, &b->state)) {
954 			__relink_lru(b, LIST_CLEAN);
955 			continue;
956 		}
957 
958 		if (no_wait && test_bit(B_WRITING, &b->state))
959 			return;
960 
961 		__write_dirty_buffer(b, write_list);
962 		cond_resched();
963 	}
964 }
965 
966 /*
967  * Check if we're over watermark.
968  * If we are over threshold_buffers, start freeing buffers.
969  * If we're over "limit_buffers", block until we get under the limit.
970  */
971 static void __check_watermark(struct dm_bufio_client *c,
972 			      struct list_head *write_list)
973 {
974 	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
975 		__write_dirty_buffers_async(c, 1, write_list);
976 }
977 
978 /*----------------------------------------------------------------
979  * Getting a buffer
980  *--------------------------------------------------------------*/
981 
982 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
983 				     enum new_flag nf, int *need_submit,
984 				     struct list_head *write_list)
985 {
986 	struct dm_buffer *b, *new_b = NULL;
987 
988 	*need_submit = 0;
989 
990 	b = __find(c, block);
991 	if (b)
992 		goto found_buffer;
993 
994 	if (nf == NF_GET)
995 		return NULL;
996 
997 	new_b = __alloc_buffer_wait(c, nf);
998 	if (!new_b)
999 		return NULL;
1000 
1001 	/*
1002 	 * We've had a period where the mutex was unlocked, so need to
1003 	 * recheck the buffer tree.
1004 	 */
1005 	b = __find(c, block);
1006 	if (b) {
1007 		__free_buffer_wake(new_b);
1008 		goto found_buffer;
1009 	}
1010 
1011 	__check_watermark(c, write_list);
1012 
1013 	b = new_b;
1014 	b->hold_count = 1;
1015 	b->read_error = 0;
1016 	b->write_error = 0;
1017 	__link_buffer(b, block, LIST_CLEAN);
1018 
1019 	if (nf == NF_FRESH) {
1020 		b->state = 0;
1021 		return b;
1022 	}
1023 
1024 	b->state = 1 << B_READING;
1025 	*need_submit = 1;
1026 
1027 	return b;
1028 
1029 found_buffer:
1030 	if (nf == NF_PREFETCH)
1031 		return NULL;
1032 	/*
1033 	 * Note: it is essential that we don't wait for the buffer to be
1034 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1035 	 * dm_bufio_prefetch can be used in the driver request routine.
1036 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1037 	 * the same buffer, it would deadlock if we waited.
1038 	 */
1039 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1040 		return NULL;
1041 
1042 	b->hold_count++;
1043 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1044 		     test_bit(B_WRITING, &b->state));
1045 	return b;
1046 }
1047 
1048 /*
1049  * The endio routine for reading: set the error, clear the bit and wake up
1050  * anyone waiting on the buffer.
1051  */
1052 static void read_endio(struct dm_buffer *b, blk_status_t status)
1053 {
1054 	b->read_error = status;
1055 
1056 	BUG_ON(!test_bit(B_READING, &b->state));
1057 
1058 	smp_mb__before_atomic();
1059 	clear_bit(B_READING, &b->state);
1060 	smp_mb__after_atomic();
1061 
1062 	wake_up_bit(&b->state, B_READING);
1063 }
1064 
1065 /*
1066  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1067  * functions is similar except that dm_bufio_new doesn't read the
1068  * buffer from the disk (assuming that the caller overwrites all the data
1069  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1070  */
1071 static void *new_read(struct dm_bufio_client *c, sector_t block,
1072 		      enum new_flag nf, struct dm_buffer **bp)
1073 {
1074 	int need_submit;
1075 	struct dm_buffer *b;
1076 
1077 	LIST_HEAD(write_list);
1078 
1079 	dm_bufio_lock(c);
1080 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1081 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1082 	if (b && b->hold_count == 1)
1083 		buffer_record_stack(b);
1084 #endif
1085 	dm_bufio_unlock(c);
1086 
1087 	__flush_write_list(&write_list);
1088 
1089 	if (!b)
1090 		return NULL;
1091 
1092 	if (need_submit)
1093 		submit_io(b, REQ_OP_READ, read_endio);
1094 
1095 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1096 
1097 	if (b->read_error) {
1098 		int error = blk_status_to_errno(b->read_error);
1099 
1100 		dm_bufio_release(b);
1101 
1102 		return ERR_PTR(error);
1103 	}
1104 
1105 	*bp = b;
1106 
1107 	return b->data;
1108 }
1109 
1110 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1111 		   struct dm_buffer **bp)
1112 {
1113 	return new_read(c, block, NF_GET, bp);
1114 }
1115 EXPORT_SYMBOL_GPL(dm_bufio_get);
1116 
1117 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1118 		    struct dm_buffer **bp)
1119 {
1120 	BUG_ON(dm_bufio_in_request());
1121 
1122 	return new_read(c, block, NF_READ, bp);
1123 }
1124 EXPORT_SYMBOL_GPL(dm_bufio_read);
1125 
1126 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1127 		   struct dm_buffer **bp)
1128 {
1129 	BUG_ON(dm_bufio_in_request());
1130 
1131 	return new_read(c, block, NF_FRESH, bp);
1132 }
1133 EXPORT_SYMBOL_GPL(dm_bufio_new);
1134 
1135 void dm_bufio_prefetch(struct dm_bufio_client *c,
1136 		       sector_t block, unsigned n_blocks)
1137 {
1138 	struct blk_plug plug;
1139 
1140 	LIST_HEAD(write_list);
1141 
1142 	BUG_ON(dm_bufio_in_request());
1143 
1144 	blk_start_plug(&plug);
1145 	dm_bufio_lock(c);
1146 
1147 	for (; n_blocks--; block++) {
1148 		int need_submit;
1149 		struct dm_buffer *b;
1150 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1151 				&write_list);
1152 		if (unlikely(!list_empty(&write_list))) {
1153 			dm_bufio_unlock(c);
1154 			blk_finish_plug(&plug);
1155 			__flush_write_list(&write_list);
1156 			blk_start_plug(&plug);
1157 			dm_bufio_lock(c);
1158 		}
1159 		if (unlikely(b != NULL)) {
1160 			dm_bufio_unlock(c);
1161 
1162 			if (need_submit)
1163 				submit_io(b, REQ_OP_READ, read_endio);
1164 			dm_bufio_release(b);
1165 
1166 			cond_resched();
1167 
1168 			if (!n_blocks)
1169 				goto flush_plug;
1170 			dm_bufio_lock(c);
1171 		}
1172 	}
1173 
1174 	dm_bufio_unlock(c);
1175 
1176 flush_plug:
1177 	blk_finish_plug(&plug);
1178 }
1179 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1180 
1181 void dm_bufio_release(struct dm_buffer *b)
1182 {
1183 	struct dm_bufio_client *c = b->c;
1184 
1185 	dm_bufio_lock(c);
1186 
1187 	BUG_ON(!b->hold_count);
1188 
1189 	b->hold_count--;
1190 	if (!b->hold_count) {
1191 		wake_up(&c->free_buffer_wait);
1192 
1193 		/*
1194 		 * If there were errors on the buffer, and the buffer is not
1195 		 * to be written, free the buffer. There is no point in caching
1196 		 * invalid buffer.
1197 		 */
1198 		if ((b->read_error || b->write_error) &&
1199 		    !test_bit(B_READING, &b->state) &&
1200 		    !test_bit(B_WRITING, &b->state) &&
1201 		    !test_bit(B_DIRTY, &b->state)) {
1202 			__unlink_buffer(b);
1203 			__free_buffer_wake(b);
1204 		}
1205 	}
1206 
1207 	dm_bufio_unlock(c);
1208 }
1209 EXPORT_SYMBOL_GPL(dm_bufio_release);
1210 
1211 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1212 					unsigned start, unsigned end)
1213 {
1214 	struct dm_bufio_client *c = b->c;
1215 
1216 	BUG_ON(start >= end);
1217 	BUG_ON(end > b->c->block_size);
1218 
1219 	dm_bufio_lock(c);
1220 
1221 	BUG_ON(test_bit(B_READING, &b->state));
1222 
1223 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1224 		b->dirty_start = start;
1225 		b->dirty_end = end;
1226 		__relink_lru(b, LIST_DIRTY);
1227 	} else {
1228 		if (start < b->dirty_start)
1229 			b->dirty_start = start;
1230 		if (end > b->dirty_end)
1231 			b->dirty_end = end;
1232 	}
1233 
1234 	dm_bufio_unlock(c);
1235 }
1236 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1237 
1238 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1239 {
1240 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1241 }
1242 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1243 
1244 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1245 {
1246 	LIST_HEAD(write_list);
1247 
1248 	BUG_ON(dm_bufio_in_request());
1249 
1250 	dm_bufio_lock(c);
1251 	__write_dirty_buffers_async(c, 0, &write_list);
1252 	dm_bufio_unlock(c);
1253 	__flush_write_list(&write_list);
1254 }
1255 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1256 
1257 /*
1258  * For performance, it is essential that the buffers are written asynchronously
1259  * and simultaneously (so that the block layer can merge the writes) and then
1260  * waited upon.
1261  *
1262  * Finally, we flush hardware disk cache.
1263  */
1264 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1265 {
1266 	int a, f;
1267 	unsigned long buffers_processed = 0;
1268 	struct dm_buffer *b, *tmp;
1269 
1270 	LIST_HEAD(write_list);
1271 
1272 	dm_bufio_lock(c);
1273 	__write_dirty_buffers_async(c, 0, &write_list);
1274 	dm_bufio_unlock(c);
1275 	__flush_write_list(&write_list);
1276 	dm_bufio_lock(c);
1277 
1278 again:
1279 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1280 		int dropped_lock = 0;
1281 
1282 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1283 			buffers_processed++;
1284 
1285 		BUG_ON(test_bit(B_READING, &b->state));
1286 
1287 		if (test_bit(B_WRITING, &b->state)) {
1288 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1289 				dropped_lock = 1;
1290 				b->hold_count++;
1291 				dm_bufio_unlock(c);
1292 				wait_on_bit_io(&b->state, B_WRITING,
1293 					       TASK_UNINTERRUPTIBLE);
1294 				dm_bufio_lock(c);
1295 				b->hold_count--;
1296 			} else
1297 				wait_on_bit_io(&b->state, B_WRITING,
1298 					       TASK_UNINTERRUPTIBLE);
1299 		}
1300 
1301 		if (!test_bit(B_DIRTY, &b->state) &&
1302 		    !test_bit(B_WRITING, &b->state))
1303 			__relink_lru(b, LIST_CLEAN);
1304 
1305 		cond_resched();
1306 
1307 		/*
1308 		 * If we dropped the lock, the list is no longer consistent,
1309 		 * so we must restart the search.
1310 		 *
1311 		 * In the most common case, the buffer just processed is
1312 		 * relinked to the clean list, so we won't loop scanning the
1313 		 * same buffer again and again.
1314 		 *
1315 		 * This may livelock if there is another thread simultaneously
1316 		 * dirtying buffers, so we count the number of buffers walked
1317 		 * and if it exceeds the total number of buffers, it means that
1318 		 * someone is doing some writes simultaneously with us.  In
1319 		 * this case, stop, dropping the lock.
1320 		 */
1321 		if (dropped_lock)
1322 			goto again;
1323 	}
1324 	wake_up(&c->free_buffer_wait);
1325 	dm_bufio_unlock(c);
1326 
1327 	a = xchg(&c->async_write_error, 0);
1328 	f = dm_bufio_issue_flush(c);
1329 	if (a)
1330 		return a;
1331 
1332 	return f;
1333 }
1334 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1335 
1336 /*
1337  * Use dm-io to send an empty barrier to flush the device.
1338  */
1339 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1340 {
1341 	struct dm_io_request io_req = {
1342 		.bi_op = REQ_OP_WRITE,
1343 		.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1344 		.mem.type = DM_IO_KMEM,
1345 		.mem.ptr.addr = NULL,
1346 		.client = c->dm_io,
1347 	};
1348 	struct dm_io_region io_reg = {
1349 		.bdev = c->bdev,
1350 		.sector = 0,
1351 		.count = 0,
1352 	};
1353 
1354 	BUG_ON(dm_bufio_in_request());
1355 
1356 	return dm_io(&io_req, 1, &io_reg, NULL);
1357 }
1358 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1359 
1360 /*
1361  * Use dm-io to send a discard request to flush the device.
1362  */
1363 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1364 {
1365 	struct dm_io_request io_req = {
1366 		.bi_op = REQ_OP_DISCARD,
1367 		.bi_op_flags = REQ_SYNC,
1368 		.mem.type = DM_IO_KMEM,
1369 		.mem.ptr.addr = NULL,
1370 		.client = c->dm_io,
1371 	};
1372 	struct dm_io_region io_reg = {
1373 		.bdev = c->bdev,
1374 		.sector = block_to_sector(c, block),
1375 		.count = block_to_sector(c, count),
1376 	};
1377 
1378 	BUG_ON(dm_bufio_in_request());
1379 
1380 	return dm_io(&io_req, 1, &io_reg, NULL);
1381 }
1382 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1383 
1384 /*
1385  * We first delete any other buffer that may be at that new location.
1386  *
1387  * Then, we write the buffer to the original location if it was dirty.
1388  *
1389  * Then, if we are the only one who is holding the buffer, relink the buffer
1390  * in the buffer tree for the new location.
1391  *
1392  * If there was someone else holding the buffer, we write it to the new
1393  * location but not relink it, because that other user needs to have the buffer
1394  * at the same place.
1395  */
1396 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1397 {
1398 	struct dm_bufio_client *c = b->c;
1399 	struct dm_buffer *new;
1400 
1401 	BUG_ON(dm_bufio_in_request());
1402 
1403 	dm_bufio_lock(c);
1404 
1405 retry:
1406 	new = __find(c, new_block);
1407 	if (new) {
1408 		if (new->hold_count) {
1409 			__wait_for_free_buffer(c);
1410 			goto retry;
1411 		}
1412 
1413 		/*
1414 		 * FIXME: Is there any point waiting for a write that's going
1415 		 * to be overwritten in a bit?
1416 		 */
1417 		__make_buffer_clean(new);
1418 		__unlink_buffer(new);
1419 		__free_buffer_wake(new);
1420 	}
1421 
1422 	BUG_ON(!b->hold_count);
1423 	BUG_ON(test_bit(B_READING, &b->state));
1424 
1425 	__write_dirty_buffer(b, NULL);
1426 	if (b->hold_count == 1) {
1427 		wait_on_bit_io(&b->state, B_WRITING,
1428 			       TASK_UNINTERRUPTIBLE);
1429 		set_bit(B_DIRTY, &b->state);
1430 		b->dirty_start = 0;
1431 		b->dirty_end = c->block_size;
1432 		__unlink_buffer(b);
1433 		__link_buffer(b, new_block, LIST_DIRTY);
1434 	} else {
1435 		sector_t old_block;
1436 		wait_on_bit_lock_io(&b->state, B_WRITING,
1437 				    TASK_UNINTERRUPTIBLE);
1438 		/*
1439 		 * Relink buffer to "new_block" so that write_callback
1440 		 * sees "new_block" as a block number.
1441 		 * After the write, link the buffer back to old_block.
1442 		 * All this must be done in bufio lock, so that block number
1443 		 * change isn't visible to other threads.
1444 		 */
1445 		old_block = b->block;
1446 		__unlink_buffer(b);
1447 		__link_buffer(b, new_block, b->list_mode);
1448 		submit_io(b, REQ_OP_WRITE, write_endio);
1449 		wait_on_bit_io(&b->state, B_WRITING,
1450 			       TASK_UNINTERRUPTIBLE);
1451 		__unlink_buffer(b);
1452 		__link_buffer(b, old_block, b->list_mode);
1453 	}
1454 
1455 	dm_bufio_unlock(c);
1456 	dm_bufio_release(b);
1457 }
1458 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1459 
1460 static void forget_buffer_locked(struct dm_buffer *b)
1461 {
1462 	if (likely(!b->hold_count) && likely(!b->state)) {
1463 		__unlink_buffer(b);
1464 		__free_buffer_wake(b);
1465 	}
1466 }
1467 
1468 /*
1469  * Free the given buffer.
1470  *
1471  * This is just a hint, if the buffer is in use or dirty, this function
1472  * does nothing.
1473  */
1474 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1475 {
1476 	struct dm_buffer *b;
1477 
1478 	dm_bufio_lock(c);
1479 
1480 	b = __find(c, block);
1481 	if (b)
1482 		forget_buffer_locked(b);
1483 
1484 	dm_bufio_unlock(c);
1485 }
1486 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1487 
1488 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1489 {
1490 	struct dm_buffer *b;
1491 	sector_t end_block = block + n_blocks;
1492 
1493 	while (block < end_block) {
1494 		dm_bufio_lock(c);
1495 
1496 		b = __find_next(c, block);
1497 		if (b) {
1498 			block = b->block + 1;
1499 			forget_buffer_locked(b);
1500 		}
1501 
1502 		dm_bufio_unlock(c);
1503 
1504 		if (!b)
1505 			break;
1506 	}
1507 
1508 }
1509 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1510 
1511 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1512 {
1513 	c->minimum_buffers = n;
1514 }
1515 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1516 
1517 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1518 {
1519 	return c->block_size;
1520 }
1521 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1522 
1523 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1524 {
1525 	sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT;
1526 	if (likely(c->sectors_per_block_bits >= 0))
1527 		s >>= c->sectors_per_block_bits;
1528 	else
1529 		sector_div(s, c->block_size >> SECTOR_SHIFT);
1530 	return s;
1531 }
1532 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1533 
1534 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1535 {
1536 	return b->block;
1537 }
1538 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1539 
1540 void *dm_bufio_get_block_data(struct dm_buffer *b)
1541 {
1542 	return b->data;
1543 }
1544 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1545 
1546 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1547 {
1548 	return b + 1;
1549 }
1550 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1551 
1552 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1553 {
1554 	return b->c;
1555 }
1556 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1557 
1558 static void drop_buffers(struct dm_bufio_client *c)
1559 {
1560 	struct dm_buffer *b;
1561 	int i;
1562 	bool warned = false;
1563 
1564 	BUG_ON(dm_bufio_in_request());
1565 
1566 	/*
1567 	 * An optimization so that the buffers are not written one-by-one.
1568 	 */
1569 	dm_bufio_write_dirty_buffers_async(c);
1570 
1571 	dm_bufio_lock(c);
1572 
1573 	while ((b = __get_unclaimed_buffer(c)))
1574 		__free_buffer_wake(b);
1575 
1576 	for (i = 0; i < LIST_SIZE; i++)
1577 		list_for_each_entry(b, &c->lru[i], lru_list) {
1578 			WARN_ON(!warned);
1579 			warned = true;
1580 			DMERR("leaked buffer %llx, hold count %u, list %d",
1581 			      (unsigned long long)b->block, b->hold_count, i);
1582 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1583 			stack_trace_print(b->stack_entries, b->stack_len, 1);
1584 			/* mark unclaimed to avoid BUG_ON below */
1585 			b->hold_count = 0;
1586 #endif
1587 		}
1588 
1589 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1590 	while ((b = __get_unclaimed_buffer(c)))
1591 		__free_buffer_wake(b);
1592 #endif
1593 
1594 	for (i = 0; i < LIST_SIZE; i++)
1595 		BUG_ON(!list_empty(&c->lru[i]));
1596 
1597 	dm_bufio_unlock(c);
1598 }
1599 
1600 /*
1601  * We may not be able to evict this buffer if IO pending or the client
1602  * is still using it.  Caller is expected to know buffer is too old.
1603  *
1604  * And if GFP_NOFS is used, we must not do any I/O because we hold
1605  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1606  * rerouted to different bufio client.
1607  */
1608 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1609 {
1610 	if (!(gfp & __GFP_FS)) {
1611 		if (test_bit(B_READING, &b->state) ||
1612 		    test_bit(B_WRITING, &b->state) ||
1613 		    test_bit(B_DIRTY, &b->state))
1614 			return false;
1615 	}
1616 
1617 	if (b->hold_count)
1618 		return false;
1619 
1620 	__make_buffer_clean(b);
1621 	__unlink_buffer(b);
1622 	__free_buffer_wake(b);
1623 
1624 	return true;
1625 }
1626 
1627 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1628 {
1629 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1630 	if (likely(c->sectors_per_block_bits >= 0))
1631 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1632 	else
1633 		retain_bytes /= c->block_size;
1634 	return retain_bytes;
1635 }
1636 
1637 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1638 			    gfp_t gfp_mask)
1639 {
1640 	int l;
1641 	struct dm_buffer *b, *tmp;
1642 	unsigned long freed = 0;
1643 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1644 			      c->n_buffers[LIST_DIRTY];
1645 	unsigned long retain_target = get_retain_buffers(c);
1646 
1647 	for (l = 0; l < LIST_SIZE; l++) {
1648 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1649 			if (__try_evict_buffer(b, gfp_mask))
1650 				freed++;
1651 			if (!--nr_to_scan || ((count - freed) <= retain_target))
1652 				return freed;
1653 			cond_resched();
1654 		}
1655 	}
1656 	return freed;
1657 }
1658 
1659 static unsigned long
1660 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1661 {
1662 	struct dm_bufio_client *c;
1663 	unsigned long freed;
1664 
1665 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1666 	if (sc->gfp_mask & __GFP_FS)
1667 		dm_bufio_lock(c);
1668 	else if (!dm_bufio_trylock(c))
1669 		return SHRINK_STOP;
1670 
1671 	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1672 	dm_bufio_unlock(c);
1673 	return freed;
1674 }
1675 
1676 static unsigned long
1677 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1678 {
1679 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1680 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1681 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1682 	unsigned long retain_target = get_retain_buffers(c);
1683 
1684 	return (count < retain_target) ? 0 : (count - retain_target);
1685 }
1686 
1687 /*
1688  * Create the buffering interface
1689  */
1690 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1691 					       unsigned reserved_buffers, unsigned aux_size,
1692 					       void (*alloc_callback)(struct dm_buffer *),
1693 					       void (*write_callback)(struct dm_buffer *))
1694 {
1695 	int r;
1696 	struct dm_bufio_client *c;
1697 	unsigned i;
1698 	char slab_name[27];
1699 
1700 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1701 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1702 		r = -EINVAL;
1703 		goto bad_client;
1704 	}
1705 
1706 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1707 	if (!c) {
1708 		r = -ENOMEM;
1709 		goto bad_client;
1710 	}
1711 	c->buffer_tree = RB_ROOT;
1712 
1713 	c->bdev = bdev;
1714 	c->block_size = block_size;
1715 	if (is_power_of_2(block_size))
1716 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1717 	else
1718 		c->sectors_per_block_bits = -1;
1719 
1720 	c->alloc_callback = alloc_callback;
1721 	c->write_callback = write_callback;
1722 
1723 	for (i = 0; i < LIST_SIZE; i++) {
1724 		INIT_LIST_HEAD(&c->lru[i]);
1725 		c->n_buffers[i] = 0;
1726 	}
1727 
1728 	mutex_init(&c->lock);
1729 	INIT_LIST_HEAD(&c->reserved_buffers);
1730 	c->need_reserved_buffers = reserved_buffers;
1731 
1732 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1733 
1734 	init_waitqueue_head(&c->free_buffer_wait);
1735 	c->async_write_error = 0;
1736 
1737 	c->dm_io = dm_io_client_create();
1738 	if (IS_ERR(c->dm_io)) {
1739 		r = PTR_ERR(c->dm_io);
1740 		goto bad_dm_io;
1741 	}
1742 
1743 	if (block_size <= KMALLOC_MAX_SIZE &&
1744 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1745 		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1746 		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1747 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1748 						  SLAB_RECLAIM_ACCOUNT, NULL);
1749 		if (!c->slab_cache) {
1750 			r = -ENOMEM;
1751 			goto bad;
1752 		}
1753 	}
1754 	if (aux_size)
1755 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1756 	else
1757 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1758 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1759 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1760 	if (!c->slab_buffer) {
1761 		r = -ENOMEM;
1762 		goto bad;
1763 	}
1764 
1765 	while (c->need_reserved_buffers) {
1766 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1767 
1768 		if (!b) {
1769 			r = -ENOMEM;
1770 			goto bad;
1771 		}
1772 		__free_buffer_wake(b);
1773 	}
1774 
1775 	c->shrinker.count_objects = dm_bufio_shrink_count;
1776 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1777 	c->shrinker.seeks = 1;
1778 	c->shrinker.batch = 0;
1779 	r = register_shrinker(&c->shrinker);
1780 	if (r)
1781 		goto bad;
1782 
1783 	mutex_lock(&dm_bufio_clients_lock);
1784 	dm_bufio_client_count++;
1785 	list_add(&c->client_list, &dm_bufio_all_clients);
1786 	__cache_size_refresh();
1787 	mutex_unlock(&dm_bufio_clients_lock);
1788 
1789 	return c;
1790 
1791 bad:
1792 	while (!list_empty(&c->reserved_buffers)) {
1793 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1794 						 struct dm_buffer, lru_list);
1795 		list_del(&b->lru_list);
1796 		free_buffer(b);
1797 	}
1798 	kmem_cache_destroy(c->slab_cache);
1799 	kmem_cache_destroy(c->slab_buffer);
1800 	dm_io_client_destroy(c->dm_io);
1801 bad_dm_io:
1802 	mutex_destroy(&c->lock);
1803 	kfree(c);
1804 bad_client:
1805 	return ERR_PTR(r);
1806 }
1807 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1808 
1809 /*
1810  * Free the buffering interface.
1811  * It is required that there are no references on any buffers.
1812  */
1813 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1814 {
1815 	unsigned i;
1816 
1817 	drop_buffers(c);
1818 
1819 	unregister_shrinker(&c->shrinker);
1820 
1821 	mutex_lock(&dm_bufio_clients_lock);
1822 
1823 	list_del(&c->client_list);
1824 	dm_bufio_client_count--;
1825 	__cache_size_refresh();
1826 
1827 	mutex_unlock(&dm_bufio_clients_lock);
1828 
1829 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1830 	BUG_ON(c->need_reserved_buffers);
1831 
1832 	while (!list_empty(&c->reserved_buffers)) {
1833 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1834 						 struct dm_buffer, lru_list);
1835 		list_del(&b->lru_list);
1836 		free_buffer(b);
1837 	}
1838 
1839 	for (i = 0; i < LIST_SIZE; i++)
1840 		if (c->n_buffers[i])
1841 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1842 
1843 	for (i = 0; i < LIST_SIZE; i++)
1844 		BUG_ON(c->n_buffers[i]);
1845 
1846 	kmem_cache_destroy(c->slab_cache);
1847 	kmem_cache_destroy(c->slab_buffer);
1848 	dm_io_client_destroy(c->dm_io);
1849 	mutex_destroy(&c->lock);
1850 	kfree(c);
1851 }
1852 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1853 
1854 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1855 {
1856 	c->start = start;
1857 }
1858 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1859 
1860 static unsigned get_max_age_hz(void)
1861 {
1862 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1863 
1864 	if (max_age > UINT_MAX / HZ)
1865 		max_age = UINT_MAX / HZ;
1866 
1867 	return max_age * HZ;
1868 }
1869 
1870 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1871 {
1872 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1873 }
1874 
1875 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1876 {
1877 	struct dm_buffer *b, *tmp;
1878 	unsigned long retain_target = get_retain_buffers(c);
1879 	unsigned long count;
1880 	LIST_HEAD(write_list);
1881 
1882 	dm_bufio_lock(c);
1883 
1884 	__check_watermark(c, &write_list);
1885 	if (unlikely(!list_empty(&write_list))) {
1886 		dm_bufio_unlock(c);
1887 		__flush_write_list(&write_list);
1888 		dm_bufio_lock(c);
1889 	}
1890 
1891 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1892 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1893 		if (count <= retain_target)
1894 			break;
1895 
1896 		if (!older_than(b, age_hz))
1897 			break;
1898 
1899 		if (__try_evict_buffer(b, 0))
1900 			count--;
1901 
1902 		cond_resched();
1903 	}
1904 
1905 	dm_bufio_unlock(c);
1906 }
1907 
1908 static void do_global_cleanup(struct work_struct *w)
1909 {
1910 	struct dm_bufio_client *locked_client = NULL;
1911 	struct dm_bufio_client *current_client;
1912 	struct dm_buffer *b;
1913 	unsigned spinlock_hold_count;
1914 	unsigned long threshold = dm_bufio_cache_size -
1915 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1916 	unsigned long loops = global_num * 2;
1917 
1918 	mutex_lock(&dm_bufio_clients_lock);
1919 
1920 	while (1) {
1921 		cond_resched();
1922 
1923 		spin_lock(&global_spinlock);
1924 		if (unlikely(dm_bufio_current_allocated <= threshold))
1925 			break;
1926 
1927 		spinlock_hold_count = 0;
1928 get_next:
1929 		if (!loops--)
1930 			break;
1931 		if (unlikely(list_empty(&global_queue)))
1932 			break;
1933 		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1934 
1935 		if (b->accessed) {
1936 			b->accessed = 0;
1937 			list_move(&b->global_list, &global_queue);
1938 			if (likely(++spinlock_hold_count < 16))
1939 				goto get_next;
1940 			spin_unlock(&global_spinlock);
1941 			continue;
1942 		}
1943 
1944 		current_client = b->c;
1945 		if (unlikely(current_client != locked_client)) {
1946 			if (locked_client)
1947 				dm_bufio_unlock(locked_client);
1948 
1949 			if (!dm_bufio_trylock(current_client)) {
1950 				spin_unlock(&global_spinlock);
1951 				dm_bufio_lock(current_client);
1952 				locked_client = current_client;
1953 				continue;
1954 			}
1955 
1956 			locked_client = current_client;
1957 		}
1958 
1959 		spin_unlock(&global_spinlock);
1960 
1961 		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
1962 			spin_lock(&global_spinlock);
1963 			list_move(&b->global_list, &global_queue);
1964 			spin_unlock(&global_spinlock);
1965 		}
1966 	}
1967 
1968 	spin_unlock(&global_spinlock);
1969 
1970 	if (locked_client)
1971 		dm_bufio_unlock(locked_client);
1972 
1973 	mutex_unlock(&dm_bufio_clients_lock);
1974 }
1975 
1976 static void cleanup_old_buffers(void)
1977 {
1978 	unsigned long max_age_hz = get_max_age_hz();
1979 	struct dm_bufio_client *c;
1980 
1981 	mutex_lock(&dm_bufio_clients_lock);
1982 
1983 	__cache_size_refresh();
1984 
1985 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1986 		__evict_old_buffers(c, max_age_hz);
1987 
1988 	mutex_unlock(&dm_bufio_clients_lock);
1989 }
1990 
1991 static void work_fn(struct work_struct *w)
1992 {
1993 	cleanup_old_buffers();
1994 
1995 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
1996 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1997 }
1998 
1999 /*----------------------------------------------------------------
2000  * Module setup
2001  *--------------------------------------------------------------*/
2002 
2003 /*
2004  * This is called only once for the whole dm_bufio module.
2005  * It initializes memory limit.
2006  */
2007 static int __init dm_bufio_init(void)
2008 {
2009 	__u64 mem;
2010 
2011 	dm_bufio_allocated_kmem_cache = 0;
2012 	dm_bufio_allocated_get_free_pages = 0;
2013 	dm_bufio_allocated_vmalloc = 0;
2014 	dm_bufio_current_allocated = 0;
2015 
2016 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2017 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2018 
2019 	if (mem > ULONG_MAX)
2020 		mem = ULONG_MAX;
2021 
2022 #ifdef CONFIG_MMU
2023 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2024 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2025 #endif
2026 
2027 	dm_bufio_default_cache_size = mem;
2028 
2029 	mutex_lock(&dm_bufio_clients_lock);
2030 	__cache_size_refresh();
2031 	mutex_unlock(&dm_bufio_clients_lock);
2032 
2033 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2034 	if (!dm_bufio_wq)
2035 		return -ENOMEM;
2036 
2037 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2038 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2039 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2040 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2041 
2042 	return 0;
2043 }
2044 
2045 /*
2046  * This is called once when unloading the dm_bufio module.
2047  */
2048 static void __exit dm_bufio_exit(void)
2049 {
2050 	int bug = 0;
2051 
2052 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2053 	flush_workqueue(dm_bufio_wq);
2054 	destroy_workqueue(dm_bufio_wq);
2055 
2056 	if (dm_bufio_client_count) {
2057 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2058 			__func__, dm_bufio_client_count);
2059 		bug = 1;
2060 	}
2061 
2062 	if (dm_bufio_current_allocated) {
2063 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2064 			__func__, dm_bufio_current_allocated);
2065 		bug = 1;
2066 	}
2067 
2068 	if (dm_bufio_allocated_get_free_pages) {
2069 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2070 		       __func__, dm_bufio_allocated_get_free_pages);
2071 		bug = 1;
2072 	}
2073 
2074 	if (dm_bufio_allocated_vmalloc) {
2075 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2076 		       __func__, dm_bufio_allocated_vmalloc);
2077 		bug = 1;
2078 	}
2079 
2080 	BUG_ON(bug);
2081 }
2082 
2083 module_init(dm_bufio_init)
2084 module_exit(dm_bufio_exit)
2085 
2086 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2087 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2088 
2089 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2090 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2091 
2092 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2093 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2094 
2095 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2096 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2097 
2098 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2099 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2100 
2101 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2102 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2103 
2104 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2105 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2106 
2107 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2108 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2109 
2110 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2111 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2112 MODULE_LICENSE("GPL");
2113