xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2009-2011 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/dm-bufio.h>
11 
12 #include <linux/device-mapper.h>
13 #include <linux/dm-io.h>
14 #include <linux/slab.h>
15 #include <linux/sched/mm.h>
16 #include <linux/jiffies.h>
17 #include <linux/vmalloc.h>
18 #include <linux/shrinker.h>
19 #include <linux/module.h>
20 #include <linux/rbtree.h>
21 #include <linux/stacktrace.h>
22 #include <linux/jump_label.h>
23 
24 #include "dm.h"
25 
26 #define DM_MSG_PREFIX "bufio"
27 
28 /*
29  * Memory management policy:
30  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
31  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
32  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
33  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
34  *	dirty buffers.
35  */
36 #define DM_BUFIO_MIN_BUFFERS		8
37 
38 #define DM_BUFIO_MEMORY_PERCENT		2
39 #define DM_BUFIO_VMALLOC_PERCENT	25
40 #define DM_BUFIO_WRITEBACK_RATIO	3
41 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
42 
43 /*
44  * Check buffer ages in this interval (seconds)
45  */
46 #define DM_BUFIO_WORK_TIMER_SECS	30
47 
48 /*
49  * Free buffers when they are older than this (seconds)
50  */
51 #define DM_BUFIO_DEFAULT_AGE_SECS	300
52 
53 /*
54  * The nr of bytes of cached data to keep around.
55  */
56 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
57 
58 /*
59  * Align buffer writes to this boundary.
60  * Tests show that SSDs have the highest IOPS when using 4k writes.
61  */
62 #define DM_BUFIO_WRITE_ALIGN		4096
63 
64 /*
65  * dm_buffer->list_mode
66  */
67 #define LIST_CLEAN	0
68 #define LIST_DIRTY	1
69 #define LIST_SIZE	2
70 
71 /*--------------------------------------------------------------*/
72 
73 /*
74  * Rather than use an LRU list, we use a clock algorithm where entries
75  * are held in a circular list.  When an entry is 'hit' a reference bit
76  * is set.  The least recently used entry is approximated by running a
77  * cursor around the list selecting unreferenced entries. Referenced
78  * entries have their reference bit cleared as the cursor passes them.
79  */
80 struct lru_entry {
81 	struct list_head list;
82 	atomic_t referenced;
83 };
84 
85 struct lru_iter {
86 	struct lru *lru;
87 	struct list_head list;
88 	struct lru_entry *stop;
89 	struct lru_entry *e;
90 };
91 
92 struct lru {
93 	struct list_head *cursor;
94 	unsigned long count;
95 
96 	struct list_head iterators;
97 };
98 
99 /*--------------*/
100 
101 static void lru_init(struct lru *lru)
102 {
103 	lru->cursor = NULL;
104 	lru->count = 0;
105 	INIT_LIST_HEAD(&lru->iterators);
106 }
107 
108 static void lru_destroy(struct lru *lru)
109 {
110 	WARN_ON_ONCE(lru->cursor);
111 	WARN_ON_ONCE(!list_empty(&lru->iterators));
112 }
113 
114 /*
115  * Insert a new entry into the lru.
116  */
117 static void lru_insert(struct lru *lru, struct lru_entry *le)
118 {
119 	/*
120 	 * Don't be tempted to set to 1, makes the lru aspect
121 	 * perform poorly.
122 	 */
123 	atomic_set(&le->referenced, 0);
124 
125 	if (lru->cursor) {
126 		list_add_tail(&le->list, lru->cursor);
127 	} else {
128 		INIT_LIST_HEAD(&le->list);
129 		lru->cursor = &le->list;
130 	}
131 	lru->count++;
132 }
133 
134 /*--------------*/
135 
136 /*
137  * Convert a list_head pointer to an lru_entry pointer.
138  */
139 static inline struct lru_entry *to_le(struct list_head *l)
140 {
141 	return container_of(l, struct lru_entry, list);
142 }
143 
144 /*
145  * Initialize an lru_iter and add it to the list of cursors in the lru.
146  */
147 static void lru_iter_begin(struct lru *lru, struct lru_iter *it)
148 {
149 	it->lru = lru;
150 	it->stop = lru->cursor ? to_le(lru->cursor->prev) : NULL;
151 	it->e = lru->cursor ? to_le(lru->cursor) : NULL;
152 	list_add(&it->list, &lru->iterators);
153 }
154 
155 /*
156  * Remove an lru_iter from the list of cursors in the lru.
157  */
158 static inline void lru_iter_end(struct lru_iter *it)
159 {
160 	list_del(&it->list);
161 }
162 
163 /* Predicate function type to be used with lru_iter_next */
164 typedef bool (*iter_predicate)(struct lru_entry *le, void *context);
165 
166 /*
167  * Advance the cursor to the next entry that passes the
168  * predicate, and return that entry.  Returns NULL if the
169  * iteration is complete.
170  */
171 static struct lru_entry *lru_iter_next(struct lru_iter *it,
172 				       iter_predicate pred, void *context)
173 {
174 	struct lru_entry *e;
175 
176 	while (it->e) {
177 		e = it->e;
178 
179 		/* advance the cursor */
180 		if (it->e == it->stop)
181 			it->e = NULL;
182 		else
183 			it->e = to_le(it->e->list.next);
184 
185 		if (pred(e, context))
186 			return e;
187 	}
188 
189 	return NULL;
190 }
191 
192 /*
193  * Invalidate a specific lru_entry and update all cursors in
194  * the lru accordingly.
195  */
196 static void lru_iter_invalidate(struct lru *lru, struct lru_entry *e)
197 {
198 	struct lru_iter *it;
199 
200 	list_for_each_entry(it, &lru->iterators, list) {
201 		/* Move c->e forwards if necc. */
202 		if (it->e == e) {
203 			it->e = to_le(it->e->list.next);
204 			if (it->e == e)
205 				it->e = NULL;
206 		}
207 
208 		/* Move it->stop backwards if necc. */
209 		if (it->stop == e) {
210 			it->stop = to_le(it->stop->list.prev);
211 			if (it->stop == e)
212 				it->stop = NULL;
213 		}
214 	}
215 }
216 
217 /*--------------*/
218 
219 /*
220  * Remove a specific entry from the lru.
221  */
222 static void lru_remove(struct lru *lru, struct lru_entry *le)
223 {
224 	lru_iter_invalidate(lru, le);
225 	if (lru->count == 1) {
226 		lru->cursor = NULL;
227 	} else {
228 		if (lru->cursor == &le->list)
229 			lru->cursor = lru->cursor->next;
230 		list_del(&le->list);
231 	}
232 	lru->count--;
233 }
234 
235 /*
236  * Mark as referenced.
237  */
238 static inline void lru_reference(struct lru_entry *le)
239 {
240 	atomic_set(&le->referenced, 1);
241 }
242 
243 /*--------------*/
244 
245 /*
246  * Remove the least recently used entry (approx), that passes the predicate.
247  * Returns NULL on failure.
248  */
249 enum evict_result {
250 	ER_EVICT,
251 	ER_DONT_EVICT,
252 	ER_STOP, /* stop looking for something to evict */
253 };
254 
255 typedef enum evict_result (*le_predicate)(struct lru_entry *le, void *context);
256 
257 static struct lru_entry *lru_evict(struct lru *lru, le_predicate pred, void *context, bool no_sleep)
258 {
259 	unsigned long tested = 0;
260 	struct list_head *h = lru->cursor;
261 	struct lru_entry *le;
262 
263 	if (!h)
264 		return NULL;
265 	/*
266 	 * In the worst case we have to loop around twice. Once to clear
267 	 * the reference flags, and then again to discover the predicate
268 	 * fails for all entries.
269 	 */
270 	while (tested < lru->count) {
271 		le = container_of(h, struct lru_entry, list);
272 
273 		if (atomic_read(&le->referenced)) {
274 			atomic_set(&le->referenced, 0);
275 		} else {
276 			tested++;
277 			switch (pred(le, context)) {
278 			case ER_EVICT:
279 				/*
280 				 * Adjust the cursor, so we start the next
281 				 * search from here.
282 				 */
283 				lru->cursor = le->list.next;
284 				lru_remove(lru, le);
285 				return le;
286 
287 			case ER_DONT_EVICT:
288 				break;
289 
290 			case ER_STOP:
291 				lru->cursor = le->list.next;
292 				return NULL;
293 			}
294 		}
295 
296 		h = h->next;
297 
298 		if (!no_sleep)
299 			cond_resched();
300 	}
301 
302 	return NULL;
303 }
304 
305 /*--------------------------------------------------------------*/
306 
307 /*
308  * Buffer state bits.
309  */
310 #define B_READING	0
311 #define B_WRITING	1
312 #define B_DIRTY		2
313 
314 /*
315  * Describes how the block was allocated:
316  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
317  * See the comment at alloc_buffer_data.
318  */
319 enum data_mode {
320 	DATA_MODE_SLAB = 0,
321 	DATA_MODE_GET_FREE_PAGES = 1,
322 	DATA_MODE_VMALLOC = 2,
323 	DATA_MODE_LIMIT = 3
324 };
325 
326 struct dm_buffer {
327 	/* protected by the locks in dm_buffer_cache */
328 	struct rb_node node;
329 
330 	/* immutable, so don't need protecting */
331 	sector_t block;
332 	void *data;
333 	unsigned char data_mode;		/* DATA_MODE_* */
334 
335 	/*
336 	 * These two fields are used in isolation, so do not need
337 	 * a surrounding lock.
338 	 */
339 	atomic_t hold_count;
340 	unsigned long last_accessed;
341 
342 	/*
343 	 * Everything else is protected by the mutex in
344 	 * dm_bufio_client
345 	 */
346 	unsigned long state;
347 	struct lru_entry lru;
348 	unsigned char list_mode;		/* LIST_* */
349 	blk_status_t read_error;
350 	blk_status_t write_error;
351 	unsigned int dirty_start;
352 	unsigned int dirty_end;
353 	unsigned int write_start;
354 	unsigned int write_end;
355 	struct list_head write_list;
356 	struct dm_bufio_client *c;
357 	void (*end_io)(struct dm_buffer *b, blk_status_t bs);
358 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
359 #define MAX_STACK 10
360 	unsigned int stack_len;
361 	unsigned long stack_entries[MAX_STACK];
362 #endif
363 };
364 
365 /*--------------------------------------------------------------*/
366 
367 /*
368  * The buffer cache manages buffers, particularly:
369  *  - inc/dec of holder count
370  *  - setting the last_accessed field
371  *  - maintains clean/dirty state along with lru
372  *  - selecting buffers that match predicates
373  *
374  * It does *not* handle:
375  *  - allocation/freeing of buffers.
376  *  - IO
377  *  - Eviction or cache sizing.
378  *
379  * cache_get() and cache_put() are threadsafe, you do not need to
380  * protect these calls with a surrounding mutex.  All the other
381  * methods are not threadsafe; they do use locking primitives, but
382  * only enough to ensure get/put are threadsafe.
383  */
384 
385 struct buffer_tree {
386 	union {
387 		struct rw_semaphore lock;
388 		rwlock_t spinlock;
389 	} u;
390 	struct rb_root root;
391 } ____cacheline_aligned_in_smp;
392 
393 struct dm_buffer_cache {
394 	struct lru lru[LIST_SIZE];
395 	/*
396 	 * We spread entries across multiple trees to reduce contention
397 	 * on the locks.
398 	 */
399 	unsigned int num_locks;
400 	bool no_sleep;
401 	struct buffer_tree trees[];
402 };
403 
404 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
405 
406 static inline unsigned int cache_index(sector_t block, unsigned int num_locks)
407 {
408 	return dm_hash_locks_index(block, num_locks);
409 }
410 
411 static inline void cache_read_lock(struct dm_buffer_cache *bc, sector_t block)
412 {
413 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
414 		read_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
415 	else
416 		down_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
417 }
418 
419 static inline void cache_read_unlock(struct dm_buffer_cache *bc, sector_t block)
420 {
421 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
422 		read_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
423 	else
424 		up_read(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
425 }
426 
427 static inline void cache_write_lock(struct dm_buffer_cache *bc, sector_t block)
428 {
429 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
430 		write_lock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
431 	else
432 		down_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
433 }
434 
435 static inline void cache_write_unlock(struct dm_buffer_cache *bc, sector_t block)
436 {
437 	if (static_branch_unlikely(&no_sleep_enabled) && bc->no_sleep)
438 		write_unlock_bh(&bc->trees[cache_index(block, bc->num_locks)].u.spinlock);
439 	else
440 		up_write(&bc->trees[cache_index(block, bc->num_locks)].u.lock);
441 }
442 
443 /*
444  * Sometimes we want to repeatedly get and drop locks as part of an iteration.
445  * This struct helps avoid redundant drop and gets of the same lock.
446  */
447 struct lock_history {
448 	struct dm_buffer_cache *cache;
449 	bool write;
450 	unsigned int previous;
451 	unsigned int no_previous;
452 };
453 
454 static void lh_init(struct lock_history *lh, struct dm_buffer_cache *cache, bool write)
455 {
456 	lh->cache = cache;
457 	lh->write = write;
458 	lh->no_previous = cache->num_locks;
459 	lh->previous = lh->no_previous;
460 }
461 
462 static void __lh_lock(struct lock_history *lh, unsigned int index)
463 {
464 	if (lh->write) {
465 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
466 			write_lock_bh(&lh->cache->trees[index].u.spinlock);
467 		else
468 			down_write(&lh->cache->trees[index].u.lock);
469 	} else {
470 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
471 			read_lock_bh(&lh->cache->trees[index].u.spinlock);
472 		else
473 			down_read(&lh->cache->trees[index].u.lock);
474 	}
475 }
476 
477 static void __lh_unlock(struct lock_history *lh, unsigned int index)
478 {
479 	if (lh->write) {
480 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
481 			write_unlock_bh(&lh->cache->trees[index].u.spinlock);
482 		else
483 			up_write(&lh->cache->trees[index].u.lock);
484 	} else {
485 		if (static_branch_unlikely(&no_sleep_enabled) && lh->cache->no_sleep)
486 			read_unlock_bh(&lh->cache->trees[index].u.spinlock);
487 		else
488 			up_read(&lh->cache->trees[index].u.lock);
489 	}
490 }
491 
492 /*
493  * Make sure you call this since it will unlock the final lock.
494  */
495 static void lh_exit(struct lock_history *lh)
496 {
497 	if (lh->previous != lh->no_previous) {
498 		__lh_unlock(lh, lh->previous);
499 		lh->previous = lh->no_previous;
500 	}
501 }
502 
503 /*
504  * Named 'next' because there is no corresponding
505  * 'up/unlock' call since it's done automatically.
506  */
507 static void lh_next(struct lock_history *lh, sector_t b)
508 {
509 	unsigned int index = cache_index(b, lh->no_previous); /* no_previous is num_locks */
510 
511 	if (lh->previous != lh->no_previous) {
512 		if (lh->previous != index) {
513 			__lh_unlock(lh, lh->previous);
514 			__lh_lock(lh, index);
515 			lh->previous = index;
516 		}
517 	} else {
518 		__lh_lock(lh, index);
519 		lh->previous = index;
520 	}
521 }
522 
523 static inline struct dm_buffer *le_to_buffer(struct lru_entry *le)
524 {
525 	return container_of(le, struct dm_buffer, lru);
526 }
527 
528 static struct dm_buffer *list_to_buffer(struct list_head *l)
529 {
530 	struct lru_entry *le = list_entry(l, struct lru_entry, list);
531 
532 	if (!le)
533 		return NULL;
534 
535 	return le_to_buffer(le);
536 }
537 
538 static void cache_init(struct dm_buffer_cache *bc, unsigned int num_locks, bool no_sleep)
539 {
540 	unsigned int i;
541 
542 	bc->num_locks = num_locks;
543 	bc->no_sleep = no_sleep;
544 
545 	for (i = 0; i < bc->num_locks; i++) {
546 		if (no_sleep)
547 			rwlock_init(&bc->trees[i].u.spinlock);
548 		else
549 			init_rwsem(&bc->trees[i].u.lock);
550 		bc->trees[i].root = RB_ROOT;
551 	}
552 
553 	lru_init(&bc->lru[LIST_CLEAN]);
554 	lru_init(&bc->lru[LIST_DIRTY]);
555 }
556 
557 static void cache_destroy(struct dm_buffer_cache *bc)
558 {
559 	unsigned int i;
560 
561 	for (i = 0; i < bc->num_locks; i++)
562 		WARN_ON_ONCE(!RB_EMPTY_ROOT(&bc->trees[i].root));
563 
564 	lru_destroy(&bc->lru[LIST_CLEAN]);
565 	lru_destroy(&bc->lru[LIST_DIRTY]);
566 }
567 
568 /*--------------*/
569 
570 /*
571  * not threadsafe, or racey depending how you look at it
572  */
573 static inline unsigned long cache_count(struct dm_buffer_cache *bc, int list_mode)
574 {
575 	return bc->lru[list_mode].count;
576 }
577 
578 static inline unsigned long cache_total(struct dm_buffer_cache *bc)
579 {
580 	return cache_count(bc, LIST_CLEAN) + cache_count(bc, LIST_DIRTY);
581 }
582 
583 /*--------------*/
584 
585 /*
586  * Gets a specific buffer, indexed by block.
587  * If the buffer is found then its holder count will be incremented and
588  * lru_reference will be called.
589  *
590  * threadsafe
591  */
592 static struct dm_buffer *__cache_get(const struct rb_root *root, sector_t block)
593 {
594 	struct rb_node *n = root->rb_node;
595 	struct dm_buffer *b;
596 
597 	while (n) {
598 		b = container_of(n, struct dm_buffer, node);
599 
600 		if (b->block == block)
601 			return b;
602 
603 		n = block < b->block ? n->rb_left : n->rb_right;
604 	}
605 
606 	return NULL;
607 }
608 
609 static void __cache_inc_buffer(struct dm_buffer *b)
610 {
611 	atomic_inc(&b->hold_count);
612 	WRITE_ONCE(b->last_accessed, jiffies);
613 }
614 
615 static struct dm_buffer *cache_get(struct dm_buffer_cache *bc, sector_t block)
616 {
617 	struct dm_buffer *b;
618 
619 	cache_read_lock(bc, block);
620 	b = __cache_get(&bc->trees[cache_index(block, bc->num_locks)].root, block);
621 	if (b) {
622 		lru_reference(&b->lru);
623 		__cache_inc_buffer(b);
624 	}
625 	cache_read_unlock(bc, block);
626 
627 	return b;
628 }
629 
630 /*--------------*/
631 
632 /*
633  * Returns true if the hold count hits zero.
634  * threadsafe
635  */
636 static bool cache_put(struct dm_buffer_cache *bc, struct dm_buffer *b)
637 {
638 	bool r;
639 
640 	cache_read_lock(bc, b->block);
641 	BUG_ON(!atomic_read(&b->hold_count));
642 	r = atomic_dec_and_test(&b->hold_count);
643 	cache_read_unlock(bc, b->block);
644 
645 	return r;
646 }
647 
648 /*--------------*/
649 
650 typedef enum evict_result (*b_predicate)(struct dm_buffer *, void *);
651 
652 /*
653  * Evicts a buffer based on a predicate.  The oldest buffer that
654  * matches the predicate will be selected.  In addition to the
655  * predicate the hold_count of the selected buffer will be zero.
656  */
657 struct evict_wrapper {
658 	struct lock_history *lh;
659 	b_predicate pred;
660 	void *context;
661 };
662 
663 /*
664  * Wraps the buffer predicate turning it into an lru predicate.  Adds
665  * extra test for hold_count.
666  */
667 static enum evict_result __evict_pred(struct lru_entry *le, void *context)
668 {
669 	struct evict_wrapper *w = context;
670 	struct dm_buffer *b = le_to_buffer(le);
671 
672 	lh_next(w->lh, b->block);
673 
674 	if (atomic_read(&b->hold_count))
675 		return ER_DONT_EVICT;
676 
677 	return w->pred(b, w->context);
678 }
679 
680 static struct dm_buffer *__cache_evict(struct dm_buffer_cache *bc, int list_mode,
681 				       b_predicate pred, void *context,
682 				       struct lock_history *lh)
683 {
684 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
685 	struct lru_entry *le;
686 	struct dm_buffer *b;
687 
688 	le = lru_evict(&bc->lru[list_mode], __evict_pred, &w, bc->no_sleep);
689 	if (!le)
690 		return NULL;
691 
692 	b = le_to_buffer(le);
693 	/* __evict_pred will have locked the appropriate tree. */
694 	rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
695 
696 	return b;
697 }
698 
699 static struct dm_buffer *cache_evict(struct dm_buffer_cache *bc, int list_mode,
700 				     b_predicate pred, void *context)
701 {
702 	struct dm_buffer *b;
703 	struct lock_history lh;
704 
705 	lh_init(&lh, bc, true);
706 	b = __cache_evict(bc, list_mode, pred, context, &lh);
707 	lh_exit(&lh);
708 
709 	return b;
710 }
711 
712 /*--------------*/
713 
714 /*
715  * Mark a buffer as clean or dirty. Not threadsafe.
716  */
717 static void cache_mark(struct dm_buffer_cache *bc, struct dm_buffer *b, int list_mode)
718 {
719 	cache_write_lock(bc, b->block);
720 	if (list_mode != b->list_mode) {
721 		lru_remove(&bc->lru[b->list_mode], &b->lru);
722 		b->list_mode = list_mode;
723 		lru_insert(&bc->lru[b->list_mode], &b->lru);
724 	}
725 	cache_write_unlock(bc, b->block);
726 }
727 
728 /*--------------*/
729 
730 /*
731  * Runs through the lru associated with 'old_mode', if the predicate matches then
732  * it moves them to 'new_mode'.  Not threadsafe.
733  */
734 static void __cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
735 			      b_predicate pred, void *context, struct lock_history *lh)
736 {
737 	struct lru_entry *le;
738 	struct dm_buffer *b;
739 	struct evict_wrapper w = {.lh = lh, .pred = pred, .context = context};
740 
741 	while (true) {
742 		le = lru_evict(&bc->lru[old_mode], __evict_pred, &w, bc->no_sleep);
743 		if (!le)
744 			break;
745 
746 		b = le_to_buffer(le);
747 		b->list_mode = new_mode;
748 		lru_insert(&bc->lru[b->list_mode], &b->lru);
749 	}
750 }
751 
752 static void cache_mark_many(struct dm_buffer_cache *bc, int old_mode, int new_mode,
753 			    b_predicate pred, void *context)
754 {
755 	struct lock_history lh;
756 
757 	lh_init(&lh, bc, true);
758 	__cache_mark_many(bc, old_mode, new_mode, pred, context, &lh);
759 	lh_exit(&lh);
760 }
761 
762 /*--------------*/
763 
764 /*
765  * Iterates through all clean or dirty entries calling a function for each
766  * entry.  The callback may terminate the iteration early.  Not threadsafe.
767  */
768 
769 /*
770  * Iterator functions should return one of these actions to indicate
771  * how the iteration should proceed.
772  */
773 enum it_action {
774 	IT_NEXT,
775 	IT_COMPLETE,
776 };
777 
778 typedef enum it_action (*iter_fn)(struct dm_buffer *b, void *context);
779 
780 static void __cache_iterate(struct dm_buffer_cache *bc, int list_mode,
781 			    iter_fn fn, void *context, struct lock_history *lh)
782 {
783 	struct lru *lru = &bc->lru[list_mode];
784 	struct lru_entry *le, *first;
785 
786 	if (!lru->cursor)
787 		return;
788 
789 	first = le = to_le(lru->cursor);
790 	do {
791 		struct dm_buffer *b = le_to_buffer(le);
792 
793 		lh_next(lh, b->block);
794 
795 		switch (fn(b, context)) {
796 		case IT_NEXT:
797 			break;
798 
799 		case IT_COMPLETE:
800 			return;
801 		}
802 		cond_resched();
803 
804 		le = to_le(le->list.next);
805 	} while (le != first);
806 }
807 
808 static void cache_iterate(struct dm_buffer_cache *bc, int list_mode,
809 			  iter_fn fn, void *context)
810 {
811 	struct lock_history lh;
812 
813 	lh_init(&lh, bc, false);
814 	__cache_iterate(bc, list_mode, fn, context, &lh);
815 	lh_exit(&lh);
816 }
817 
818 /*--------------*/
819 
820 /*
821  * Passes ownership of the buffer to the cache. Returns false if the
822  * buffer was already present (in which case ownership does not pass).
823  * eg, a race with another thread.
824  *
825  * Holder count should be 1 on insertion.
826  *
827  * Not threadsafe.
828  */
829 static bool __cache_insert(struct rb_root *root, struct dm_buffer *b)
830 {
831 	struct rb_node **new = &root->rb_node, *parent = NULL;
832 	struct dm_buffer *found;
833 
834 	while (*new) {
835 		found = container_of(*new, struct dm_buffer, node);
836 
837 		if (found->block == b->block)
838 			return false;
839 
840 		parent = *new;
841 		new = b->block < found->block ?
842 			&found->node.rb_left : &found->node.rb_right;
843 	}
844 
845 	rb_link_node(&b->node, parent, new);
846 	rb_insert_color(&b->node, root);
847 
848 	return true;
849 }
850 
851 static bool cache_insert(struct dm_buffer_cache *bc, struct dm_buffer *b)
852 {
853 	bool r;
854 
855 	if (WARN_ON_ONCE(b->list_mode >= LIST_SIZE))
856 		return false;
857 
858 	cache_write_lock(bc, b->block);
859 	BUG_ON(atomic_read(&b->hold_count) != 1);
860 	r = __cache_insert(&bc->trees[cache_index(b->block, bc->num_locks)].root, b);
861 	if (r)
862 		lru_insert(&bc->lru[b->list_mode], &b->lru);
863 	cache_write_unlock(bc, b->block);
864 
865 	return r;
866 }
867 
868 /*--------------*/
869 
870 /*
871  * Removes buffer from cache, ownership of the buffer passes back to the caller.
872  * Fails if the hold_count is not one (ie. the caller holds the only reference).
873  *
874  * Not threadsafe.
875  */
876 static bool cache_remove(struct dm_buffer_cache *bc, struct dm_buffer *b)
877 {
878 	bool r;
879 
880 	cache_write_lock(bc, b->block);
881 
882 	if (atomic_read(&b->hold_count) != 1) {
883 		r = false;
884 	} else {
885 		r = true;
886 		rb_erase(&b->node, &bc->trees[cache_index(b->block, bc->num_locks)].root);
887 		lru_remove(&bc->lru[b->list_mode], &b->lru);
888 	}
889 
890 	cache_write_unlock(bc, b->block);
891 
892 	return r;
893 }
894 
895 /*--------------*/
896 
897 typedef void (*b_release)(struct dm_buffer *);
898 
899 static struct dm_buffer *__find_next(struct rb_root *root, sector_t block)
900 {
901 	struct rb_node *n = root->rb_node;
902 	struct dm_buffer *b;
903 	struct dm_buffer *best = NULL;
904 
905 	while (n) {
906 		b = container_of(n, struct dm_buffer, node);
907 
908 		if (b->block == block)
909 			return b;
910 
911 		if (block <= b->block) {
912 			n = n->rb_left;
913 			best = b;
914 		} else {
915 			n = n->rb_right;
916 		}
917 	}
918 
919 	return best;
920 }
921 
922 static void __remove_range(struct dm_buffer_cache *bc,
923 			   struct rb_root *root,
924 			   sector_t begin, sector_t end,
925 			   b_predicate pred, b_release release)
926 {
927 	struct dm_buffer *b;
928 
929 	while (true) {
930 		cond_resched();
931 
932 		b = __find_next(root, begin);
933 		if (!b || (b->block >= end))
934 			break;
935 
936 		begin = b->block + 1;
937 
938 		if (atomic_read(&b->hold_count))
939 			continue;
940 
941 		if (pred(b, NULL) == ER_EVICT) {
942 			rb_erase(&b->node, root);
943 			lru_remove(&bc->lru[b->list_mode], &b->lru);
944 			release(b);
945 		}
946 	}
947 }
948 
949 static void cache_remove_range(struct dm_buffer_cache *bc,
950 			       sector_t begin, sector_t end,
951 			       b_predicate pred, b_release release)
952 {
953 	unsigned int i;
954 
955 	BUG_ON(bc->no_sleep);
956 	for (i = 0; i < bc->num_locks; i++) {
957 		down_write(&bc->trees[i].u.lock);
958 		__remove_range(bc, &bc->trees[i].root, begin, end, pred, release);
959 		up_write(&bc->trees[i].u.lock);
960 	}
961 }
962 
963 /*----------------------------------------------------------------*/
964 
965 /*
966  * Linking of buffers:
967  *	All buffers are linked to buffer_cache with their node field.
968  *
969  *	Clean buffers that are not being written (B_WRITING not set)
970  *	are linked to lru[LIST_CLEAN] with their lru_list field.
971  *
972  *	Dirty and clean buffers that are being written are linked to
973  *	lru[LIST_DIRTY] with their lru_list field. When the write
974  *	finishes, the buffer cannot be relinked immediately (because we
975  *	are in an interrupt context and relinking requires process
976  *	context), so some clean-not-writing buffers can be held on
977  *	dirty_lru too.  They are later added to lru in the process
978  *	context.
979  */
980 struct dm_bufio_client {
981 	struct block_device *bdev;
982 	unsigned int block_size;
983 	s8 sectors_per_block_bits;
984 
985 	bool no_sleep;
986 	struct mutex lock;
987 	spinlock_t spinlock;
988 
989 	int async_write_error;
990 
991 	void (*alloc_callback)(struct dm_buffer *buf);
992 	void (*write_callback)(struct dm_buffer *buf);
993 	struct kmem_cache *slab_buffer;
994 	struct kmem_cache *slab_cache;
995 	struct dm_io_client *dm_io;
996 
997 	struct list_head reserved_buffers;
998 	unsigned int need_reserved_buffers;
999 
1000 	unsigned int minimum_buffers;
1001 
1002 	sector_t start;
1003 
1004 	struct shrinker shrinker;
1005 	struct work_struct shrink_work;
1006 	atomic_long_t need_shrink;
1007 
1008 	wait_queue_head_t free_buffer_wait;
1009 
1010 	struct list_head client_list;
1011 
1012 	/*
1013 	 * Used by global_cleanup to sort the clients list.
1014 	 */
1015 	unsigned long oldest_buffer;
1016 
1017 	struct dm_buffer_cache cache; /* must be last member */
1018 };
1019 
1020 /*----------------------------------------------------------------*/
1021 
1022 #define dm_bufio_in_request()	(!!current->bio_list)
1023 
1024 static void dm_bufio_lock(struct dm_bufio_client *c)
1025 {
1026 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1027 		spin_lock_bh(&c->spinlock);
1028 	else
1029 		mutex_lock_nested(&c->lock, dm_bufio_in_request());
1030 }
1031 
1032 static void dm_bufio_unlock(struct dm_bufio_client *c)
1033 {
1034 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1035 		spin_unlock_bh(&c->spinlock);
1036 	else
1037 		mutex_unlock(&c->lock);
1038 }
1039 
1040 /*----------------------------------------------------------------*/
1041 
1042 /*
1043  * Default cache size: available memory divided by the ratio.
1044  */
1045 static unsigned long dm_bufio_default_cache_size;
1046 
1047 /*
1048  * Total cache size set by the user.
1049  */
1050 static unsigned long dm_bufio_cache_size;
1051 
1052 /*
1053  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
1054  * at any time.  If it disagrees, the user has changed cache size.
1055  */
1056 static unsigned long dm_bufio_cache_size_latch;
1057 
1058 static DEFINE_SPINLOCK(global_spinlock);
1059 
1060 /*
1061  * Buffers are freed after this timeout
1062  */
1063 static unsigned int dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
1064 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
1065 
1066 static unsigned long dm_bufio_peak_allocated;
1067 static unsigned long dm_bufio_allocated_kmem_cache;
1068 static unsigned long dm_bufio_allocated_get_free_pages;
1069 static unsigned long dm_bufio_allocated_vmalloc;
1070 static unsigned long dm_bufio_current_allocated;
1071 
1072 /*----------------------------------------------------------------*/
1073 
1074 /*
1075  * The current number of clients.
1076  */
1077 static int dm_bufio_client_count;
1078 
1079 /*
1080  * The list of all clients.
1081  */
1082 static LIST_HEAD(dm_bufio_all_clients);
1083 
1084 /*
1085  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
1086  */
1087 static DEFINE_MUTEX(dm_bufio_clients_lock);
1088 
1089 static struct workqueue_struct *dm_bufio_wq;
1090 static struct delayed_work dm_bufio_cleanup_old_work;
1091 static struct work_struct dm_bufio_replacement_work;
1092 
1093 
1094 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1095 static void buffer_record_stack(struct dm_buffer *b)
1096 {
1097 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
1098 }
1099 #endif
1100 
1101 /*----------------------------------------------------------------*/
1102 
1103 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
1104 {
1105 	unsigned char data_mode;
1106 	long diff;
1107 
1108 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
1109 		&dm_bufio_allocated_kmem_cache,
1110 		&dm_bufio_allocated_get_free_pages,
1111 		&dm_bufio_allocated_vmalloc,
1112 	};
1113 
1114 	data_mode = b->data_mode;
1115 	diff = (long)b->c->block_size;
1116 	if (unlink)
1117 		diff = -diff;
1118 
1119 	spin_lock(&global_spinlock);
1120 
1121 	*class_ptr[data_mode] += diff;
1122 
1123 	dm_bufio_current_allocated += diff;
1124 
1125 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
1126 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
1127 
1128 	if (!unlink) {
1129 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
1130 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
1131 	}
1132 
1133 	spin_unlock(&global_spinlock);
1134 }
1135 
1136 /*
1137  * Change the number of clients and recalculate per-client limit.
1138  */
1139 static void __cache_size_refresh(void)
1140 {
1141 	if (WARN_ON(!mutex_is_locked(&dm_bufio_clients_lock)))
1142 		return;
1143 	if (WARN_ON(dm_bufio_client_count < 0))
1144 		return;
1145 
1146 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
1147 
1148 	/*
1149 	 * Use default if set to 0 and report the actual cache size used.
1150 	 */
1151 	if (!dm_bufio_cache_size_latch) {
1152 		(void)cmpxchg(&dm_bufio_cache_size, 0,
1153 			      dm_bufio_default_cache_size);
1154 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
1155 	}
1156 }
1157 
1158 /*
1159  * Allocating buffer data.
1160  *
1161  * Small buffers are allocated with kmem_cache, to use space optimally.
1162  *
1163  * For large buffers, we choose between get_free_pages and vmalloc.
1164  * Each has advantages and disadvantages.
1165  *
1166  * __get_free_pages can randomly fail if the memory is fragmented.
1167  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
1168  * as low as 128M) so using it for caching is not appropriate.
1169  *
1170  * If the allocation may fail we use __get_free_pages. Memory fragmentation
1171  * won't have a fatal effect here, but it just causes flushes of some other
1172  * buffers and more I/O will be performed. Don't use __get_free_pages if it
1173  * always fails (i.e. order > MAX_ORDER).
1174  *
1175  * If the allocation shouldn't fail we use __vmalloc. This is only for the
1176  * initial reserve allocation, so there's no risk of wasting all vmalloc
1177  * space.
1178  */
1179 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
1180 			       unsigned char *data_mode)
1181 {
1182 	if (unlikely(c->slab_cache != NULL)) {
1183 		*data_mode = DATA_MODE_SLAB;
1184 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
1185 	}
1186 
1187 	if (c->block_size <= KMALLOC_MAX_SIZE &&
1188 	    gfp_mask & __GFP_NORETRY) {
1189 		*data_mode = DATA_MODE_GET_FREE_PAGES;
1190 		return (void *)__get_free_pages(gfp_mask,
1191 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1192 	}
1193 
1194 	*data_mode = DATA_MODE_VMALLOC;
1195 
1196 	return __vmalloc(c->block_size, gfp_mask);
1197 }
1198 
1199 /*
1200  * Free buffer's data.
1201  */
1202 static void free_buffer_data(struct dm_bufio_client *c,
1203 			     void *data, unsigned char data_mode)
1204 {
1205 	switch (data_mode) {
1206 	case DATA_MODE_SLAB:
1207 		kmem_cache_free(c->slab_cache, data);
1208 		break;
1209 
1210 	case DATA_MODE_GET_FREE_PAGES:
1211 		free_pages((unsigned long)data,
1212 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
1213 		break;
1214 
1215 	case DATA_MODE_VMALLOC:
1216 		vfree(data);
1217 		break;
1218 
1219 	default:
1220 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
1221 		       data_mode);
1222 		BUG();
1223 	}
1224 }
1225 
1226 /*
1227  * Allocate buffer and its data.
1228  */
1229 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
1230 {
1231 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
1232 
1233 	if (!b)
1234 		return NULL;
1235 
1236 	b->c = c;
1237 
1238 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
1239 	if (!b->data) {
1240 		kmem_cache_free(c->slab_buffer, b);
1241 		return NULL;
1242 	}
1243 	adjust_total_allocated(b, false);
1244 
1245 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1246 	b->stack_len = 0;
1247 #endif
1248 	return b;
1249 }
1250 
1251 /*
1252  * Free buffer and its data.
1253  */
1254 static void free_buffer(struct dm_buffer *b)
1255 {
1256 	struct dm_bufio_client *c = b->c;
1257 
1258 	adjust_total_allocated(b, true);
1259 	free_buffer_data(c, b->data, b->data_mode);
1260 	kmem_cache_free(c->slab_buffer, b);
1261 }
1262 
1263 /*
1264  *--------------------------------------------------------------------------
1265  * Submit I/O on the buffer.
1266  *
1267  * Bio interface is faster but it has some problems:
1268  *	the vector list is limited (increasing this limit increases
1269  *	memory-consumption per buffer, so it is not viable);
1270  *
1271  *	the memory must be direct-mapped, not vmalloced;
1272  *
1273  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
1274  * it is not vmalloced, try using the bio interface.
1275  *
1276  * If the buffer is big, if it is vmalloced or if the underlying device
1277  * rejects the bio because it is too large, use dm-io layer to do the I/O.
1278  * The dm-io layer splits the I/O into multiple requests, avoiding the above
1279  * shortcomings.
1280  *--------------------------------------------------------------------------
1281  */
1282 
1283 /*
1284  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
1285  * that the request was handled directly with bio interface.
1286  */
1287 static void dmio_complete(unsigned long error, void *context)
1288 {
1289 	struct dm_buffer *b = context;
1290 
1291 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
1292 }
1293 
1294 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
1295 		     unsigned int n_sectors, unsigned int offset)
1296 {
1297 	int r;
1298 	struct dm_io_request io_req = {
1299 		.bi_opf = op,
1300 		.notify.fn = dmio_complete,
1301 		.notify.context = b,
1302 		.client = b->c->dm_io,
1303 	};
1304 	struct dm_io_region region = {
1305 		.bdev = b->c->bdev,
1306 		.sector = sector,
1307 		.count = n_sectors,
1308 	};
1309 
1310 	if (b->data_mode != DATA_MODE_VMALLOC) {
1311 		io_req.mem.type = DM_IO_KMEM;
1312 		io_req.mem.ptr.addr = (char *)b->data + offset;
1313 	} else {
1314 		io_req.mem.type = DM_IO_VMA;
1315 		io_req.mem.ptr.vma = (char *)b->data + offset;
1316 	}
1317 
1318 	r = dm_io(&io_req, 1, &region, NULL);
1319 	if (unlikely(r))
1320 		b->end_io(b, errno_to_blk_status(r));
1321 }
1322 
1323 static void bio_complete(struct bio *bio)
1324 {
1325 	struct dm_buffer *b = bio->bi_private;
1326 	blk_status_t status = bio->bi_status;
1327 
1328 	bio_uninit(bio);
1329 	kfree(bio);
1330 	b->end_io(b, status);
1331 }
1332 
1333 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
1334 		    unsigned int n_sectors, unsigned int offset)
1335 {
1336 	struct bio *bio;
1337 	char *ptr;
1338 	unsigned int len;
1339 
1340 	bio = bio_kmalloc(1, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
1341 	if (!bio) {
1342 		use_dmio(b, op, sector, n_sectors, offset);
1343 		return;
1344 	}
1345 	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, 1, op);
1346 	bio->bi_iter.bi_sector = sector;
1347 	bio->bi_end_io = bio_complete;
1348 	bio->bi_private = b;
1349 
1350 	ptr = (char *)b->data + offset;
1351 	len = n_sectors << SECTOR_SHIFT;
1352 
1353 	__bio_add_page(bio, virt_to_page(ptr), len, offset_in_page(ptr));
1354 
1355 	submit_bio(bio);
1356 }
1357 
1358 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
1359 {
1360 	sector_t sector;
1361 
1362 	if (likely(c->sectors_per_block_bits >= 0))
1363 		sector = block << c->sectors_per_block_bits;
1364 	else
1365 		sector = block * (c->block_size >> SECTOR_SHIFT);
1366 	sector += c->start;
1367 
1368 	return sector;
1369 }
1370 
1371 static void submit_io(struct dm_buffer *b, enum req_op op,
1372 		      void (*end_io)(struct dm_buffer *, blk_status_t))
1373 {
1374 	unsigned int n_sectors;
1375 	sector_t sector;
1376 	unsigned int offset, end;
1377 
1378 	b->end_io = end_io;
1379 
1380 	sector = block_to_sector(b->c, b->block);
1381 
1382 	if (op != REQ_OP_WRITE) {
1383 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
1384 		offset = 0;
1385 	} else {
1386 		if (b->c->write_callback)
1387 			b->c->write_callback(b);
1388 		offset = b->write_start;
1389 		end = b->write_end;
1390 		offset &= -DM_BUFIO_WRITE_ALIGN;
1391 		end += DM_BUFIO_WRITE_ALIGN - 1;
1392 		end &= -DM_BUFIO_WRITE_ALIGN;
1393 		if (unlikely(end > b->c->block_size))
1394 			end = b->c->block_size;
1395 
1396 		sector += offset >> SECTOR_SHIFT;
1397 		n_sectors = (end - offset) >> SECTOR_SHIFT;
1398 	}
1399 
1400 	if (b->data_mode != DATA_MODE_VMALLOC)
1401 		use_bio(b, op, sector, n_sectors, offset);
1402 	else
1403 		use_dmio(b, op, sector, n_sectors, offset);
1404 }
1405 
1406 /*
1407  *--------------------------------------------------------------
1408  * Writing dirty buffers
1409  *--------------------------------------------------------------
1410  */
1411 
1412 /*
1413  * The endio routine for write.
1414  *
1415  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
1416  * it.
1417  */
1418 static void write_endio(struct dm_buffer *b, blk_status_t status)
1419 {
1420 	b->write_error = status;
1421 	if (unlikely(status)) {
1422 		struct dm_bufio_client *c = b->c;
1423 
1424 		(void)cmpxchg(&c->async_write_error, 0,
1425 				blk_status_to_errno(status));
1426 	}
1427 
1428 	BUG_ON(!test_bit(B_WRITING, &b->state));
1429 
1430 	smp_mb__before_atomic();
1431 	clear_bit(B_WRITING, &b->state);
1432 	smp_mb__after_atomic();
1433 
1434 	wake_up_bit(&b->state, B_WRITING);
1435 }
1436 
1437 /*
1438  * Initiate a write on a dirty buffer, but don't wait for it.
1439  *
1440  * - If the buffer is not dirty, exit.
1441  * - If there some previous write going on, wait for it to finish (we can't
1442  *   have two writes on the same buffer simultaneously).
1443  * - Submit our write and don't wait on it. We set B_WRITING indicating
1444  *   that there is a write in progress.
1445  */
1446 static void __write_dirty_buffer(struct dm_buffer *b,
1447 				 struct list_head *write_list)
1448 {
1449 	if (!test_bit(B_DIRTY, &b->state))
1450 		return;
1451 
1452 	clear_bit(B_DIRTY, &b->state);
1453 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1454 
1455 	b->write_start = b->dirty_start;
1456 	b->write_end = b->dirty_end;
1457 
1458 	if (!write_list)
1459 		submit_io(b, REQ_OP_WRITE, write_endio);
1460 	else
1461 		list_add_tail(&b->write_list, write_list);
1462 }
1463 
1464 static void __flush_write_list(struct list_head *write_list)
1465 {
1466 	struct blk_plug plug;
1467 
1468 	blk_start_plug(&plug);
1469 	while (!list_empty(write_list)) {
1470 		struct dm_buffer *b =
1471 			list_entry(write_list->next, struct dm_buffer, write_list);
1472 		list_del(&b->write_list);
1473 		submit_io(b, REQ_OP_WRITE, write_endio);
1474 		cond_resched();
1475 	}
1476 	blk_finish_plug(&plug);
1477 }
1478 
1479 /*
1480  * Wait until any activity on the buffer finishes.  Possibly write the
1481  * buffer if it is dirty.  When this function finishes, there is no I/O
1482  * running on the buffer and the buffer is not dirty.
1483  */
1484 static void __make_buffer_clean(struct dm_buffer *b)
1485 {
1486 	BUG_ON(atomic_read(&b->hold_count));
1487 
1488 	/* smp_load_acquire() pairs with read_endio()'s smp_mb__before_atomic() */
1489 	if (!smp_load_acquire(&b->state))	/* fast case */
1490 		return;
1491 
1492 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1493 	__write_dirty_buffer(b, NULL);
1494 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
1495 }
1496 
1497 static enum evict_result is_clean(struct dm_buffer *b, void *context)
1498 {
1499 	struct dm_bufio_client *c = context;
1500 
1501 	/* These should never happen */
1502 	if (WARN_ON_ONCE(test_bit(B_WRITING, &b->state)))
1503 		return ER_DONT_EVICT;
1504 	if (WARN_ON_ONCE(test_bit(B_DIRTY, &b->state)))
1505 		return ER_DONT_EVICT;
1506 	if (WARN_ON_ONCE(b->list_mode != LIST_CLEAN))
1507 		return ER_DONT_EVICT;
1508 
1509 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
1510 	    unlikely(test_bit(B_READING, &b->state)))
1511 		return ER_DONT_EVICT;
1512 
1513 	return ER_EVICT;
1514 }
1515 
1516 static enum evict_result is_dirty(struct dm_buffer *b, void *context)
1517 {
1518 	/* These should never happen */
1519 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1520 		return ER_DONT_EVICT;
1521 	if (WARN_ON_ONCE(b->list_mode != LIST_DIRTY))
1522 		return ER_DONT_EVICT;
1523 
1524 	return ER_EVICT;
1525 }
1526 
1527 /*
1528  * Find some buffer that is not held by anybody, clean it, unlink it and
1529  * return it.
1530  */
1531 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
1532 {
1533 	struct dm_buffer *b;
1534 
1535 	b = cache_evict(&c->cache, LIST_CLEAN, is_clean, c);
1536 	if (b) {
1537 		/* this also waits for pending reads */
1538 		__make_buffer_clean(b);
1539 		return b;
1540 	}
1541 
1542 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
1543 		return NULL;
1544 
1545 	b = cache_evict(&c->cache, LIST_DIRTY, is_dirty, NULL);
1546 	if (b) {
1547 		__make_buffer_clean(b);
1548 		return b;
1549 	}
1550 
1551 	return NULL;
1552 }
1553 
1554 /*
1555  * Wait until some other threads free some buffer or release hold count on
1556  * some buffer.
1557  *
1558  * This function is entered with c->lock held, drops it and regains it
1559  * before exiting.
1560  */
1561 static void __wait_for_free_buffer(struct dm_bufio_client *c)
1562 {
1563 	DECLARE_WAITQUEUE(wait, current);
1564 
1565 	add_wait_queue(&c->free_buffer_wait, &wait);
1566 	set_current_state(TASK_UNINTERRUPTIBLE);
1567 	dm_bufio_unlock(c);
1568 
1569 	/*
1570 	 * It's possible to miss a wake up event since we don't always
1571 	 * hold c->lock when wake_up is called.  So we have a timeout here,
1572 	 * just in case.
1573 	 */
1574 	io_schedule_timeout(5 * HZ);
1575 
1576 	remove_wait_queue(&c->free_buffer_wait, &wait);
1577 
1578 	dm_bufio_lock(c);
1579 }
1580 
1581 enum new_flag {
1582 	NF_FRESH = 0,
1583 	NF_READ = 1,
1584 	NF_GET = 2,
1585 	NF_PREFETCH = 3
1586 };
1587 
1588 /*
1589  * Allocate a new buffer. If the allocation is not possible, wait until
1590  * some other thread frees a buffer.
1591  *
1592  * May drop the lock and regain it.
1593  */
1594 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
1595 {
1596 	struct dm_buffer *b;
1597 	bool tried_noio_alloc = false;
1598 
1599 	/*
1600 	 * dm-bufio is resistant to allocation failures (it just keeps
1601 	 * one buffer reserved in cases all the allocations fail).
1602 	 * So set flags to not try too hard:
1603 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
1604 	 *		    mutex and wait ourselves.
1605 	 *	__GFP_NORETRY: don't retry and rather return failure
1606 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
1607 	 *	__GFP_NOWARN: don't print a warning in case of failure
1608 	 *
1609 	 * For debugging, if we set the cache size to 1, no new buffers will
1610 	 * be allocated.
1611 	 */
1612 	while (1) {
1613 		if (dm_bufio_cache_size_latch != 1) {
1614 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1615 			if (b)
1616 				return b;
1617 		}
1618 
1619 		if (nf == NF_PREFETCH)
1620 			return NULL;
1621 
1622 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
1623 			dm_bufio_unlock(c);
1624 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
1625 			dm_bufio_lock(c);
1626 			if (b)
1627 				return b;
1628 			tried_noio_alloc = true;
1629 		}
1630 
1631 		if (!list_empty(&c->reserved_buffers)) {
1632 			b = list_to_buffer(c->reserved_buffers.next);
1633 			list_del(&b->lru.list);
1634 			c->need_reserved_buffers++;
1635 
1636 			return b;
1637 		}
1638 
1639 		b = __get_unclaimed_buffer(c);
1640 		if (b)
1641 			return b;
1642 
1643 		__wait_for_free_buffer(c);
1644 	}
1645 }
1646 
1647 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
1648 {
1649 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
1650 
1651 	if (!b)
1652 		return NULL;
1653 
1654 	if (c->alloc_callback)
1655 		c->alloc_callback(b);
1656 
1657 	return b;
1658 }
1659 
1660 /*
1661  * Free a buffer and wake other threads waiting for free buffers.
1662  */
1663 static void __free_buffer_wake(struct dm_buffer *b)
1664 {
1665 	struct dm_bufio_client *c = b->c;
1666 
1667 	b->block = -1;
1668 	if (!c->need_reserved_buffers)
1669 		free_buffer(b);
1670 	else {
1671 		list_add(&b->lru.list, &c->reserved_buffers);
1672 		c->need_reserved_buffers--;
1673 	}
1674 
1675 	/*
1676 	 * We hold the bufio lock here, so no one can add entries to the
1677 	 * wait queue anyway.
1678 	 */
1679 	if (unlikely(waitqueue_active(&c->free_buffer_wait)))
1680 		wake_up(&c->free_buffer_wait);
1681 }
1682 
1683 static enum evict_result cleaned(struct dm_buffer *b, void *context)
1684 {
1685 	if (WARN_ON_ONCE(test_bit(B_READING, &b->state)))
1686 		return ER_DONT_EVICT; /* should never happen */
1687 
1688 	if (test_bit(B_DIRTY, &b->state) || test_bit(B_WRITING, &b->state))
1689 		return ER_DONT_EVICT;
1690 	else
1691 		return ER_EVICT;
1692 }
1693 
1694 static void __move_clean_buffers(struct dm_bufio_client *c)
1695 {
1696 	cache_mark_many(&c->cache, LIST_DIRTY, LIST_CLEAN, cleaned, NULL);
1697 }
1698 
1699 struct write_context {
1700 	int no_wait;
1701 	struct list_head *write_list;
1702 };
1703 
1704 static enum it_action write_one(struct dm_buffer *b, void *context)
1705 {
1706 	struct write_context *wc = context;
1707 
1708 	if (wc->no_wait && test_bit(B_WRITING, &b->state))
1709 		return IT_COMPLETE;
1710 
1711 	__write_dirty_buffer(b, wc->write_list);
1712 	return IT_NEXT;
1713 }
1714 
1715 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
1716 					struct list_head *write_list)
1717 {
1718 	struct write_context wc = {.no_wait = no_wait, .write_list = write_list};
1719 
1720 	__move_clean_buffers(c);
1721 	cache_iterate(&c->cache, LIST_DIRTY, write_one, &wc);
1722 }
1723 
1724 /*
1725  * Check if we're over watermark.
1726  * If we are over threshold_buffers, start freeing buffers.
1727  * If we're over "limit_buffers", block until we get under the limit.
1728  */
1729 static void __check_watermark(struct dm_bufio_client *c,
1730 			      struct list_head *write_list)
1731 {
1732 	if (cache_count(&c->cache, LIST_DIRTY) >
1733 	    cache_count(&c->cache, LIST_CLEAN) * DM_BUFIO_WRITEBACK_RATIO)
1734 		__write_dirty_buffers_async(c, 1, write_list);
1735 }
1736 
1737 /*
1738  *--------------------------------------------------------------
1739  * Getting a buffer
1740  *--------------------------------------------------------------
1741  */
1742 
1743 static void cache_put_and_wake(struct dm_bufio_client *c, struct dm_buffer *b)
1744 {
1745 	/*
1746 	 * Relying on waitqueue_active() is racey, but we sleep
1747 	 * with schedule_timeout anyway.
1748 	 */
1749 	if (cache_put(&c->cache, b) &&
1750 	    unlikely(waitqueue_active(&c->free_buffer_wait)))
1751 		wake_up(&c->free_buffer_wait);
1752 }
1753 
1754 /*
1755  * This assumes you have already checked the cache to see if the buffer
1756  * is already present (it will recheck after dropping the lock for allocation).
1757  */
1758 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1759 				     enum new_flag nf, int *need_submit,
1760 				     struct list_head *write_list)
1761 {
1762 	struct dm_buffer *b, *new_b = NULL;
1763 
1764 	*need_submit = 0;
1765 
1766 	/* This can't be called with NF_GET */
1767 	if (WARN_ON_ONCE(nf == NF_GET))
1768 		return NULL;
1769 
1770 	new_b = __alloc_buffer_wait(c, nf);
1771 	if (!new_b)
1772 		return NULL;
1773 
1774 	/*
1775 	 * We've had a period where the mutex was unlocked, so need to
1776 	 * recheck the buffer tree.
1777 	 */
1778 	b = cache_get(&c->cache, block);
1779 	if (b) {
1780 		__free_buffer_wake(new_b);
1781 		goto found_buffer;
1782 	}
1783 
1784 	__check_watermark(c, write_list);
1785 
1786 	b = new_b;
1787 	atomic_set(&b->hold_count, 1);
1788 	WRITE_ONCE(b->last_accessed, jiffies);
1789 	b->block = block;
1790 	b->read_error = 0;
1791 	b->write_error = 0;
1792 	b->list_mode = LIST_CLEAN;
1793 
1794 	if (nf == NF_FRESH)
1795 		b->state = 0;
1796 	else {
1797 		b->state = 1 << B_READING;
1798 		*need_submit = 1;
1799 	}
1800 
1801 	/*
1802 	 * We mustn't insert into the cache until the B_READING state
1803 	 * is set.  Otherwise another thread could get it and use
1804 	 * it before it had been read.
1805 	 */
1806 	cache_insert(&c->cache, b);
1807 
1808 	return b;
1809 
1810 found_buffer:
1811 	if (nf == NF_PREFETCH) {
1812 		cache_put_and_wake(c, b);
1813 		return NULL;
1814 	}
1815 
1816 	/*
1817 	 * Note: it is essential that we don't wait for the buffer to be
1818 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1819 	 * dm_bufio_prefetch can be used in the driver request routine.
1820 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1821 	 * the same buffer, it would deadlock if we waited.
1822 	 */
1823 	if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1824 		cache_put_and_wake(c, b);
1825 		return NULL;
1826 	}
1827 
1828 	return b;
1829 }
1830 
1831 /*
1832  * The endio routine for reading: set the error, clear the bit and wake up
1833  * anyone waiting on the buffer.
1834  */
1835 static void read_endio(struct dm_buffer *b, blk_status_t status)
1836 {
1837 	b->read_error = status;
1838 
1839 	BUG_ON(!test_bit(B_READING, &b->state));
1840 
1841 	smp_mb__before_atomic();
1842 	clear_bit(B_READING, &b->state);
1843 	smp_mb__after_atomic();
1844 
1845 	wake_up_bit(&b->state, B_READING);
1846 }
1847 
1848 /*
1849  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1850  * functions is similar except that dm_bufio_new doesn't read the
1851  * buffer from the disk (assuming that the caller overwrites all the data
1852  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1853  */
1854 static void *new_read(struct dm_bufio_client *c, sector_t block,
1855 		      enum new_flag nf, struct dm_buffer **bp)
1856 {
1857 	int need_submit = 0;
1858 	struct dm_buffer *b;
1859 
1860 	LIST_HEAD(write_list);
1861 
1862 	*bp = NULL;
1863 
1864 	/*
1865 	 * Fast path, hopefully the block is already in the cache.  No need
1866 	 * to get the client lock for this.
1867 	 */
1868 	b = cache_get(&c->cache, block);
1869 	if (b) {
1870 		if (nf == NF_PREFETCH) {
1871 			cache_put_and_wake(c, b);
1872 			return NULL;
1873 		}
1874 
1875 		/*
1876 		 * Note: it is essential that we don't wait for the buffer to be
1877 		 * read if dm_bufio_get function is used. Both dm_bufio_get and
1878 		 * dm_bufio_prefetch can be used in the driver request routine.
1879 		 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1880 		 * the same buffer, it would deadlock if we waited.
1881 		 */
1882 		if (nf == NF_GET && unlikely(test_bit_acquire(B_READING, &b->state))) {
1883 			cache_put_and_wake(c, b);
1884 			return NULL;
1885 		}
1886 	}
1887 
1888 	if (!b) {
1889 		if (nf == NF_GET)
1890 			return NULL;
1891 
1892 		dm_bufio_lock(c);
1893 		b = __bufio_new(c, block, nf, &need_submit, &write_list);
1894 		dm_bufio_unlock(c);
1895 	}
1896 
1897 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1898 	if (b && (atomic_read(&b->hold_count) == 1))
1899 		buffer_record_stack(b);
1900 #endif
1901 
1902 	__flush_write_list(&write_list);
1903 
1904 	if (!b)
1905 		return NULL;
1906 
1907 	if (need_submit)
1908 		submit_io(b, REQ_OP_READ, read_endio);
1909 
1910 	if (nf != NF_GET)	/* we already tested this condition above */
1911 		wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1912 
1913 	if (b->read_error) {
1914 		int error = blk_status_to_errno(b->read_error);
1915 
1916 		dm_bufio_release(b);
1917 
1918 		return ERR_PTR(error);
1919 	}
1920 
1921 	*bp = b;
1922 
1923 	return b->data;
1924 }
1925 
1926 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1927 		   struct dm_buffer **bp)
1928 {
1929 	return new_read(c, block, NF_GET, bp);
1930 }
1931 EXPORT_SYMBOL_GPL(dm_bufio_get);
1932 
1933 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1934 		    struct dm_buffer **bp)
1935 {
1936 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1937 		return ERR_PTR(-EINVAL);
1938 
1939 	return new_read(c, block, NF_READ, bp);
1940 }
1941 EXPORT_SYMBOL_GPL(dm_bufio_read);
1942 
1943 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1944 		   struct dm_buffer **bp)
1945 {
1946 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1947 		return ERR_PTR(-EINVAL);
1948 
1949 	return new_read(c, block, NF_FRESH, bp);
1950 }
1951 EXPORT_SYMBOL_GPL(dm_bufio_new);
1952 
1953 void dm_bufio_prefetch(struct dm_bufio_client *c,
1954 		       sector_t block, unsigned int n_blocks)
1955 {
1956 	struct blk_plug plug;
1957 
1958 	LIST_HEAD(write_list);
1959 
1960 	if (WARN_ON_ONCE(dm_bufio_in_request()))
1961 		return; /* should never happen */
1962 
1963 	blk_start_plug(&plug);
1964 
1965 	for (; n_blocks--; block++) {
1966 		int need_submit;
1967 		struct dm_buffer *b;
1968 
1969 		b = cache_get(&c->cache, block);
1970 		if (b) {
1971 			/* already in cache */
1972 			cache_put_and_wake(c, b);
1973 			continue;
1974 		}
1975 
1976 		dm_bufio_lock(c);
1977 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1978 				&write_list);
1979 		if (unlikely(!list_empty(&write_list))) {
1980 			dm_bufio_unlock(c);
1981 			blk_finish_plug(&plug);
1982 			__flush_write_list(&write_list);
1983 			blk_start_plug(&plug);
1984 			dm_bufio_lock(c);
1985 		}
1986 		if (unlikely(b != NULL)) {
1987 			dm_bufio_unlock(c);
1988 
1989 			if (need_submit)
1990 				submit_io(b, REQ_OP_READ, read_endio);
1991 			dm_bufio_release(b);
1992 
1993 			cond_resched();
1994 
1995 			if (!n_blocks)
1996 				goto flush_plug;
1997 			dm_bufio_lock(c);
1998 		}
1999 		dm_bufio_unlock(c);
2000 	}
2001 
2002 flush_plug:
2003 	blk_finish_plug(&plug);
2004 }
2005 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
2006 
2007 void dm_bufio_release(struct dm_buffer *b)
2008 {
2009 	struct dm_bufio_client *c = b->c;
2010 
2011 	/*
2012 	 * If there were errors on the buffer, and the buffer is not
2013 	 * to be written, free the buffer. There is no point in caching
2014 	 * invalid buffer.
2015 	 */
2016 	if ((b->read_error || b->write_error) &&
2017 	    !test_bit_acquire(B_READING, &b->state) &&
2018 	    !test_bit(B_WRITING, &b->state) &&
2019 	    !test_bit(B_DIRTY, &b->state)) {
2020 		dm_bufio_lock(c);
2021 
2022 		/* cache remove can fail if there are other holders */
2023 		if (cache_remove(&c->cache, b)) {
2024 			__free_buffer_wake(b);
2025 			dm_bufio_unlock(c);
2026 			return;
2027 		}
2028 
2029 		dm_bufio_unlock(c);
2030 	}
2031 
2032 	cache_put_and_wake(c, b);
2033 }
2034 EXPORT_SYMBOL_GPL(dm_bufio_release);
2035 
2036 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
2037 					unsigned int start, unsigned int end)
2038 {
2039 	struct dm_bufio_client *c = b->c;
2040 
2041 	BUG_ON(start >= end);
2042 	BUG_ON(end > b->c->block_size);
2043 
2044 	dm_bufio_lock(c);
2045 
2046 	BUG_ON(test_bit(B_READING, &b->state));
2047 
2048 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
2049 		b->dirty_start = start;
2050 		b->dirty_end = end;
2051 		cache_mark(&c->cache, b, LIST_DIRTY);
2052 	} else {
2053 		if (start < b->dirty_start)
2054 			b->dirty_start = start;
2055 		if (end > b->dirty_end)
2056 			b->dirty_end = end;
2057 	}
2058 
2059 	dm_bufio_unlock(c);
2060 }
2061 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
2062 
2063 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
2064 {
2065 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
2066 }
2067 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
2068 
2069 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
2070 {
2071 	LIST_HEAD(write_list);
2072 
2073 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2074 		return; /* should never happen */
2075 
2076 	dm_bufio_lock(c);
2077 	__write_dirty_buffers_async(c, 0, &write_list);
2078 	dm_bufio_unlock(c);
2079 	__flush_write_list(&write_list);
2080 }
2081 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
2082 
2083 /*
2084  * For performance, it is essential that the buffers are written asynchronously
2085  * and simultaneously (so that the block layer can merge the writes) and then
2086  * waited upon.
2087  *
2088  * Finally, we flush hardware disk cache.
2089  */
2090 static bool is_writing(struct lru_entry *e, void *context)
2091 {
2092 	struct dm_buffer *b = le_to_buffer(e);
2093 
2094 	return test_bit(B_WRITING, &b->state);
2095 }
2096 
2097 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
2098 {
2099 	int a, f;
2100 	unsigned long nr_buffers;
2101 	struct lru_entry *e;
2102 	struct lru_iter it;
2103 
2104 	LIST_HEAD(write_list);
2105 
2106 	dm_bufio_lock(c);
2107 	__write_dirty_buffers_async(c, 0, &write_list);
2108 	dm_bufio_unlock(c);
2109 	__flush_write_list(&write_list);
2110 	dm_bufio_lock(c);
2111 
2112 	nr_buffers = cache_count(&c->cache, LIST_DIRTY);
2113 	lru_iter_begin(&c->cache.lru[LIST_DIRTY], &it);
2114 	while ((e = lru_iter_next(&it, is_writing, c))) {
2115 		struct dm_buffer *b = le_to_buffer(e);
2116 		__cache_inc_buffer(b);
2117 
2118 		BUG_ON(test_bit(B_READING, &b->state));
2119 
2120 		if (nr_buffers) {
2121 			nr_buffers--;
2122 			dm_bufio_unlock(c);
2123 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2124 			dm_bufio_lock(c);
2125 		} else {
2126 			wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
2127 		}
2128 
2129 		if (!test_bit(B_DIRTY, &b->state) && !test_bit(B_WRITING, &b->state))
2130 			cache_mark(&c->cache, b, LIST_CLEAN);
2131 
2132 		cache_put_and_wake(c, b);
2133 
2134 		cond_resched();
2135 	}
2136 	lru_iter_end(&it);
2137 
2138 	wake_up(&c->free_buffer_wait);
2139 	dm_bufio_unlock(c);
2140 
2141 	a = xchg(&c->async_write_error, 0);
2142 	f = dm_bufio_issue_flush(c);
2143 	if (a)
2144 		return a;
2145 
2146 	return f;
2147 }
2148 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
2149 
2150 /*
2151  * Use dm-io to send an empty barrier to flush the device.
2152  */
2153 int dm_bufio_issue_flush(struct dm_bufio_client *c)
2154 {
2155 	struct dm_io_request io_req = {
2156 		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
2157 		.mem.type = DM_IO_KMEM,
2158 		.mem.ptr.addr = NULL,
2159 		.client = c->dm_io,
2160 	};
2161 	struct dm_io_region io_reg = {
2162 		.bdev = c->bdev,
2163 		.sector = 0,
2164 		.count = 0,
2165 	};
2166 
2167 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2168 		return -EINVAL;
2169 
2170 	return dm_io(&io_req, 1, &io_reg, NULL);
2171 }
2172 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
2173 
2174 /*
2175  * Use dm-io to send a discard request to flush the device.
2176  */
2177 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
2178 {
2179 	struct dm_io_request io_req = {
2180 		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
2181 		.mem.type = DM_IO_KMEM,
2182 		.mem.ptr.addr = NULL,
2183 		.client = c->dm_io,
2184 	};
2185 	struct dm_io_region io_reg = {
2186 		.bdev = c->bdev,
2187 		.sector = block_to_sector(c, block),
2188 		.count = block_to_sector(c, count),
2189 	};
2190 
2191 	if (WARN_ON_ONCE(dm_bufio_in_request()))
2192 		return -EINVAL; /* discards are optional */
2193 
2194 	return dm_io(&io_req, 1, &io_reg, NULL);
2195 }
2196 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
2197 
2198 static bool forget_buffer(struct dm_bufio_client *c, sector_t block)
2199 {
2200 	struct dm_buffer *b;
2201 
2202 	b = cache_get(&c->cache, block);
2203 	if (b) {
2204 		if (likely(!smp_load_acquire(&b->state))) {
2205 			if (cache_remove(&c->cache, b))
2206 				__free_buffer_wake(b);
2207 			else
2208 				cache_put_and_wake(c, b);
2209 		} else {
2210 			cache_put_and_wake(c, b);
2211 		}
2212 	}
2213 
2214 	return b ? true : false;
2215 }
2216 
2217 /*
2218  * Free the given buffer.
2219  *
2220  * This is just a hint, if the buffer is in use or dirty, this function
2221  * does nothing.
2222  */
2223 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
2224 {
2225 	dm_bufio_lock(c);
2226 	forget_buffer(c, block);
2227 	dm_bufio_unlock(c);
2228 }
2229 EXPORT_SYMBOL_GPL(dm_bufio_forget);
2230 
2231 static enum evict_result idle(struct dm_buffer *b, void *context)
2232 {
2233 	return b->state ? ER_DONT_EVICT : ER_EVICT;
2234 }
2235 
2236 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
2237 {
2238 	dm_bufio_lock(c);
2239 	cache_remove_range(&c->cache, block, block + n_blocks, idle, __free_buffer_wake);
2240 	dm_bufio_unlock(c);
2241 }
2242 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
2243 
2244 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned int n)
2245 {
2246 	c->minimum_buffers = n;
2247 }
2248 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
2249 
2250 unsigned int dm_bufio_get_block_size(struct dm_bufio_client *c)
2251 {
2252 	return c->block_size;
2253 }
2254 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
2255 
2256 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
2257 {
2258 	sector_t s = bdev_nr_sectors(c->bdev);
2259 
2260 	if (s >= c->start)
2261 		s -= c->start;
2262 	else
2263 		s = 0;
2264 	if (likely(c->sectors_per_block_bits >= 0))
2265 		s >>= c->sectors_per_block_bits;
2266 	else
2267 		sector_div(s, c->block_size >> SECTOR_SHIFT);
2268 	return s;
2269 }
2270 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
2271 
2272 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
2273 {
2274 	return c->dm_io;
2275 }
2276 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
2277 
2278 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
2279 {
2280 	return b->block;
2281 }
2282 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
2283 
2284 void *dm_bufio_get_block_data(struct dm_buffer *b)
2285 {
2286 	return b->data;
2287 }
2288 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
2289 
2290 void *dm_bufio_get_aux_data(struct dm_buffer *b)
2291 {
2292 	return b + 1;
2293 }
2294 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
2295 
2296 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
2297 {
2298 	return b->c;
2299 }
2300 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
2301 
2302 static enum it_action warn_leak(struct dm_buffer *b, void *context)
2303 {
2304 	bool *warned = context;
2305 
2306 	WARN_ON(!(*warned));
2307 	*warned = true;
2308 	DMERR("leaked buffer %llx, hold count %u, list %d",
2309 	      (unsigned long long)b->block, atomic_read(&b->hold_count), b->list_mode);
2310 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2311 	stack_trace_print(b->stack_entries, b->stack_len, 1);
2312 	/* mark unclaimed to avoid WARN_ON at end of drop_buffers() */
2313 	atomic_set(&b->hold_count, 0);
2314 #endif
2315 	return IT_NEXT;
2316 }
2317 
2318 static void drop_buffers(struct dm_bufio_client *c)
2319 {
2320 	int i;
2321 	struct dm_buffer *b;
2322 
2323 	if (WARN_ON(dm_bufio_in_request()))
2324 		return; /* should never happen */
2325 
2326 	/*
2327 	 * An optimization so that the buffers are not written one-by-one.
2328 	 */
2329 	dm_bufio_write_dirty_buffers_async(c);
2330 
2331 	dm_bufio_lock(c);
2332 
2333 	while ((b = __get_unclaimed_buffer(c)))
2334 		__free_buffer_wake(b);
2335 
2336 	for (i = 0; i < LIST_SIZE; i++) {
2337 		bool warned = false;
2338 
2339 		cache_iterate(&c->cache, i, warn_leak, &warned);
2340 	}
2341 
2342 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
2343 	while ((b = __get_unclaimed_buffer(c)))
2344 		__free_buffer_wake(b);
2345 #endif
2346 
2347 	for (i = 0; i < LIST_SIZE; i++)
2348 		WARN_ON(cache_count(&c->cache, i));
2349 
2350 	dm_bufio_unlock(c);
2351 }
2352 
2353 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
2354 {
2355 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
2356 
2357 	if (likely(c->sectors_per_block_bits >= 0))
2358 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
2359 	else
2360 		retain_bytes /= c->block_size;
2361 
2362 	return retain_bytes;
2363 }
2364 
2365 static void __scan(struct dm_bufio_client *c)
2366 {
2367 	int l;
2368 	struct dm_buffer *b;
2369 	unsigned long freed = 0;
2370 	unsigned long retain_target = get_retain_buffers(c);
2371 	unsigned long count = cache_total(&c->cache);
2372 
2373 	for (l = 0; l < LIST_SIZE; l++) {
2374 		while (true) {
2375 			if (count - freed <= retain_target)
2376 				atomic_long_set(&c->need_shrink, 0);
2377 			if (!atomic_long_read(&c->need_shrink))
2378 				break;
2379 
2380 			b = cache_evict(&c->cache, l,
2381 					l == LIST_CLEAN ? is_clean : is_dirty, c);
2382 			if (!b)
2383 				break;
2384 
2385 			__make_buffer_clean(b);
2386 			__free_buffer_wake(b);
2387 
2388 			atomic_long_dec(&c->need_shrink);
2389 			freed++;
2390 			cond_resched();
2391 		}
2392 	}
2393 }
2394 
2395 static void shrink_work(struct work_struct *w)
2396 {
2397 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
2398 
2399 	dm_bufio_lock(c);
2400 	__scan(c);
2401 	dm_bufio_unlock(c);
2402 }
2403 
2404 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
2405 {
2406 	struct dm_bufio_client *c;
2407 
2408 	c = container_of(shrink, struct dm_bufio_client, shrinker);
2409 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
2410 	queue_work(dm_bufio_wq, &c->shrink_work);
2411 
2412 	return sc->nr_to_scan;
2413 }
2414 
2415 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
2416 {
2417 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
2418 	unsigned long count = cache_total(&c->cache);
2419 	unsigned long retain_target = get_retain_buffers(c);
2420 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
2421 
2422 	if (unlikely(count < retain_target))
2423 		count = 0;
2424 	else
2425 		count -= retain_target;
2426 
2427 	if (unlikely(count < queued_for_cleanup))
2428 		count = 0;
2429 	else
2430 		count -= queued_for_cleanup;
2431 
2432 	return count;
2433 }
2434 
2435 /*
2436  * Create the buffering interface
2437  */
2438 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned int block_size,
2439 					       unsigned int reserved_buffers, unsigned int aux_size,
2440 					       void (*alloc_callback)(struct dm_buffer *),
2441 					       void (*write_callback)(struct dm_buffer *),
2442 					       unsigned int flags)
2443 {
2444 	int r;
2445 	unsigned int num_locks;
2446 	struct dm_bufio_client *c;
2447 	char slab_name[27];
2448 
2449 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
2450 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
2451 		r = -EINVAL;
2452 		goto bad_client;
2453 	}
2454 
2455 	num_locks = dm_num_hash_locks();
2456 	c = kzalloc(sizeof(*c) + (num_locks * sizeof(struct buffer_tree)), GFP_KERNEL);
2457 	if (!c) {
2458 		r = -ENOMEM;
2459 		goto bad_client;
2460 	}
2461 	cache_init(&c->cache, num_locks, (flags & DM_BUFIO_CLIENT_NO_SLEEP) != 0);
2462 
2463 	c->bdev = bdev;
2464 	c->block_size = block_size;
2465 	if (is_power_of_2(block_size))
2466 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
2467 	else
2468 		c->sectors_per_block_bits = -1;
2469 
2470 	c->alloc_callback = alloc_callback;
2471 	c->write_callback = write_callback;
2472 
2473 	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
2474 		c->no_sleep = true;
2475 		static_branch_inc(&no_sleep_enabled);
2476 	}
2477 
2478 	mutex_init(&c->lock);
2479 	spin_lock_init(&c->spinlock);
2480 	INIT_LIST_HEAD(&c->reserved_buffers);
2481 	c->need_reserved_buffers = reserved_buffers;
2482 
2483 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
2484 
2485 	init_waitqueue_head(&c->free_buffer_wait);
2486 	c->async_write_error = 0;
2487 
2488 	c->dm_io = dm_io_client_create();
2489 	if (IS_ERR(c->dm_io)) {
2490 		r = PTR_ERR(c->dm_io);
2491 		goto bad_dm_io;
2492 	}
2493 
2494 	if (block_size <= KMALLOC_MAX_SIZE &&
2495 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
2496 		unsigned int align = min(1U << __ffs(block_size), (unsigned int)PAGE_SIZE);
2497 
2498 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_cache-%u", block_size);
2499 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
2500 						  SLAB_RECLAIM_ACCOUNT, NULL);
2501 		if (!c->slab_cache) {
2502 			r = -ENOMEM;
2503 			goto bad;
2504 		}
2505 	}
2506 	if (aux_size)
2507 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer-%u", aux_size);
2508 	else
2509 		snprintf(slab_name, sizeof(slab_name), "dm_bufio_buffer");
2510 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
2511 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
2512 	if (!c->slab_buffer) {
2513 		r = -ENOMEM;
2514 		goto bad;
2515 	}
2516 
2517 	while (c->need_reserved_buffers) {
2518 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
2519 
2520 		if (!b) {
2521 			r = -ENOMEM;
2522 			goto bad;
2523 		}
2524 		__free_buffer_wake(b);
2525 	}
2526 
2527 	INIT_WORK(&c->shrink_work, shrink_work);
2528 	atomic_long_set(&c->need_shrink, 0);
2529 
2530 	c->shrinker.count_objects = dm_bufio_shrink_count;
2531 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
2532 	c->shrinker.seeks = 1;
2533 	c->shrinker.batch = 0;
2534 	r = register_shrinker(&c->shrinker, "dm-bufio:(%u:%u)",
2535 			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2536 	if (r)
2537 		goto bad;
2538 
2539 	mutex_lock(&dm_bufio_clients_lock);
2540 	dm_bufio_client_count++;
2541 	list_add(&c->client_list, &dm_bufio_all_clients);
2542 	__cache_size_refresh();
2543 	mutex_unlock(&dm_bufio_clients_lock);
2544 
2545 	return c;
2546 
2547 bad:
2548 	while (!list_empty(&c->reserved_buffers)) {
2549 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2550 
2551 		list_del(&b->lru.list);
2552 		free_buffer(b);
2553 	}
2554 	kmem_cache_destroy(c->slab_cache);
2555 	kmem_cache_destroy(c->slab_buffer);
2556 	dm_io_client_destroy(c->dm_io);
2557 bad_dm_io:
2558 	mutex_destroy(&c->lock);
2559 	if (c->no_sleep)
2560 		static_branch_dec(&no_sleep_enabled);
2561 	kfree(c);
2562 bad_client:
2563 	return ERR_PTR(r);
2564 }
2565 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
2566 
2567 /*
2568  * Free the buffering interface.
2569  * It is required that there are no references on any buffers.
2570  */
2571 void dm_bufio_client_destroy(struct dm_bufio_client *c)
2572 {
2573 	unsigned int i;
2574 
2575 	drop_buffers(c);
2576 
2577 	unregister_shrinker(&c->shrinker);
2578 	flush_work(&c->shrink_work);
2579 
2580 	mutex_lock(&dm_bufio_clients_lock);
2581 
2582 	list_del(&c->client_list);
2583 	dm_bufio_client_count--;
2584 	__cache_size_refresh();
2585 
2586 	mutex_unlock(&dm_bufio_clients_lock);
2587 
2588 	WARN_ON(c->need_reserved_buffers);
2589 
2590 	while (!list_empty(&c->reserved_buffers)) {
2591 		struct dm_buffer *b = list_to_buffer(c->reserved_buffers.next);
2592 
2593 		list_del(&b->lru.list);
2594 		free_buffer(b);
2595 	}
2596 
2597 	for (i = 0; i < LIST_SIZE; i++)
2598 		if (cache_count(&c->cache, i))
2599 			DMERR("leaked buffer count %d: %lu", i, cache_count(&c->cache, i));
2600 
2601 	for (i = 0; i < LIST_SIZE; i++)
2602 		WARN_ON(cache_count(&c->cache, i));
2603 
2604 	cache_destroy(&c->cache);
2605 	kmem_cache_destroy(c->slab_cache);
2606 	kmem_cache_destroy(c->slab_buffer);
2607 	dm_io_client_destroy(c->dm_io);
2608 	mutex_destroy(&c->lock);
2609 	if (c->no_sleep)
2610 		static_branch_dec(&no_sleep_enabled);
2611 	kfree(c);
2612 }
2613 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
2614 
2615 void dm_bufio_client_reset(struct dm_bufio_client *c)
2616 {
2617 	drop_buffers(c);
2618 	flush_work(&c->shrink_work);
2619 }
2620 EXPORT_SYMBOL_GPL(dm_bufio_client_reset);
2621 
2622 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
2623 {
2624 	c->start = start;
2625 }
2626 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
2627 
2628 /*--------------------------------------------------------------*/
2629 
2630 static unsigned int get_max_age_hz(void)
2631 {
2632 	unsigned int max_age = READ_ONCE(dm_bufio_max_age);
2633 
2634 	if (max_age > UINT_MAX / HZ)
2635 		max_age = UINT_MAX / HZ;
2636 
2637 	return max_age * HZ;
2638 }
2639 
2640 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
2641 {
2642 	return time_after_eq(jiffies, READ_ONCE(b->last_accessed) + age_hz);
2643 }
2644 
2645 struct evict_params {
2646 	gfp_t gfp;
2647 	unsigned long age_hz;
2648 
2649 	/*
2650 	 * This gets updated with the largest last_accessed (ie. most
2651 	 * recently used) of the evicted buffers.  It will not be reinitialised
2652 	 * by __evict_many(), so you can use it across multiple invocations.
2653 	 */
2654 	unsigned long last_accessed;
2655 };
2656 
2657 /*
2658  * We may not be able to evict this buffer if IO pending or the client
2659  * is still using it.
2660  *
2661  * And if GFP_NOFS is used, we must not do any I/O because we hold
2662  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
2663  * rerouted to different bufio client.
2664  */
2665 static enum evict_result select_for_evict(struct dm_buffer *b, void *context)
2666 {
2667 	struct evict_params *params = context;
2668 
2669 	if (!(params->gfp & __GFP_FS) ||
2670 	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
2671 		if (test_bit_acquire(B_READING, &b->state) ||
2672 		    test_bit(B_WRITING, &b->state) ||
2673 		    test_bit(B_DIRTY, &b->state))
2674 			return ER_DONT_EVICT;
2675 	}
2676 
2677 	return older_than(b, params->age_hz) ? ER_EVICT : ER_STOP;
2678 }
2679 
2680 static unsigned long __evict_many(struct dm_bufio_client *c,
2681 				  struct evict_params *params,
2682 				  int list_mode, unsigned long max_count)
2683 {
2684 	unsigned long count;
2685 	unsigned long last_accessed;
2686 	struct dm_buffer *b;
2687 
2688 	for (count = 0; count < max_count; count++) {
2689 		b = cache_evict(&c->cache, list_mode, select_for_evict, params);
2690 		if (!b)
2691 			break;
2692 
2693 		last_accessed = READ_ONCE(b->last_accessed);
2694 		if (time_after_eq(params->last_accessed, last_accessed))
2695 			params->last_accessed = last_accessed;
2696 
2697 		__make_buffer_clean(b);
2698 		__free_buffer_wake(b);
2699 
2700 		cond_resched();
2701 	}
2702 
2703 	return count;
2704 }
2705 
2706 static void evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
2707 {
2708 	struct evict_params params = {.gfp = 0, .age_hz = age_hz, .last_accessed = 0};
2709 	unsigned long retain = get_retain_buffers(c);
2710 	unsigned long count;
2711 	LIST_HEAD(write_list);
2712 
2713 	dm_bufio_lock(c);
2714 
2715 	__check_watermark(c, &write_list);
2716 	if (unlikely(!list_empty(&write_list))) {
2717 		dm_bufio_unlock(c);
2718 		__flush_write_list(&write_list);
2719 		dm_bufio_lock(c);
2720 	}
2721 
2722 	count = cache_total(&c->cache);
2723 	if (count > retain)
2724 		__evict_many(c, &params, LIST_CLEAN, count - retain);
2725 
2726 	dm_bufio_unlock(c);
2727 }
2728 
2729 static void cleanup_old_buffers(void)
2730 {
2731 	unsigned long max_age_hz = get_max_age_hz();
2732 	struct dm_bufio_client *c;
2733 
2734 	mutex_lock(&dm_bufio_clients_lock);
2735 
2736 	__cache_size_refresh();
2737 
2738 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2739 		evict_old_buffers(c, max_age_hz);
2740 
2741 	mutex_unlock(&dm_bufio_clients_lock);
2742 }
2743 
2744 static void work_fn(struct work_struct *w)
2745 {
2746 	cleanup_old_buffers();
2747 
2748 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2749 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2750 }
2751 
2752 /*--------------------------------------------------------------*/
2753 
2754 /*
2755  * Global cleanup tries to evict the oldest buffers from across _all_
2756  * the clients.  It does this by repeatedly evicting a few buffers from
2757  * the client that holds the oldest buffer.  It's approximate, but hopefully
2758  * good enough.
2759  */
2760 static struct dm_bufio_client *__pop_client(void)
2761 {
2762 	struct list_head *h;
2763 
2764 	if (list_empty(&dm_bufio_all_clients))
2765 		return NULL;
2766 
2767 	h = dm_bufio_all_clients.next;
2768 	list_del(h);
2769 	return container_of(h, struct dm_bufio_client, client_list);
2770 }
2771 
2772 /*
2773  * Inserts the client in the global client list based on its
2774  * 'oldest_buffer' field.
2775  */
2776 static void __insert_client(struct dm_bufio_client *new_client)
2777 {
2778 	struct dm_bufio_client *c;
2779 	struct list_head *h = dm_bufio_all_clients.next;
2780 
2781 	while (h != &dm_bufio_all_clients) {
2782 		c = container_of(h, struct dm_bufio_client, client_list);
2783 		if (time_after_eq(c->oldest_buffer, new_client->oldest_buffer))
2784 			break;
2785 		h = h->next;
2786 	}
2787 
2788 	list_add_tail(&new_client->client_list, h);
2789 }
2790 
2791 static unsigned long __evict_a_few(unsigned long nr_buffers)
2792 {
2793 	unsigned long count;
2794 	struct dm_bufio_client *c;
2795 	struct evict_params params = {
2796 		.gfp = GFP_KERNEL,
2797 		.age_hz = 0,
2798 		/* set to jiffies in case there are no buffers in this client */
2799 		.last_accessed = jiffies
2800 	};
2801 
2802 	c = __pop_client();
2803 	if (!c)
2804 		return 0;
2805 
2806 	dm_bufio_lock(c);
2807 	count = __evict_many(c, &params, LIST_CLEAN, nr_buffers);
2808 	dm_bufio_unlock(c);
2809 
2810 	if (count)
2811 		c->oldest_buffer = params.last_accessed;
2812 	__insert_client(c);
2813 
2814 	return count;
2815 }
2816 
2817 static void check_watermarks(void)
2818 {
2819 	LIST_HEAD(write_list);
2820 	struct dm_bufio_client *c;
2821 
2822 	mutex_lock(&dm_bufio_clients_lock);
2823 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
2824 		dm_bufio_lock(c);
2825 		__check_watermark(c, &write_list);
2826 		dm_bufio_unlock(c);
2827 	}
2828 	mutex_unlock(&dm_bufio_clients_lock);
2829 
2830 	__flush_write_list(&write_list);
2831 }
2832 
2833 static void evict_old(void)
2834 {
2835 	unsigned long threshold = dm_bufio_cache_size -
2836 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
2837 
2838 	mutex_lock(&dm_bufio_clients_lock);
2839 	while (dm_bufio_current_allocated > threshold) {
2840 		if (!__evict_a_few(64))
2841 			break;
2842 		cond_resched();
2843 	}
2844 	mutex_unlock(&dm_bufio_clients_lock);
2845 }
2846 
2847 static void do_global_cleanup(struct work_struct *w)
2848 {
2849 	check_watermarks();
2850 	evict_old();
2851 }
2852 
2853 /*
2854  *--------------------------------------------------------------
2855  * Module setup
2856  *--------------------------------------------------------------
2857  */
2858 
2859 /*
2860  * This is called only once for the whole dm_bufio module.
2861  * It initializes memory limit.
2862  */
2863 static int __init dm_bufio_init(void)
2864 {
2865 	__u64 mem;
2866 
2867 	dm_bufio_allocated_kmem_cache = 0;
2868 	dm_bufio_allocated_get_free_pages = 0;
2869 	dm_bufio_allocated_vmalloc = 0;
2870 	dm_bufio_current_allocated = 0;
2871 
2872 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2873 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2874 
2875 	if (mem > ULONG_MAX)
2876 		mem = ULONG_MAX;
2877 
2878 #ifdef CONFIG_MMU
2879 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2880 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2881 #endif
2882 
2883 	dm_bufio_default_cache_size = mem;
2884 
2885 	mutex_lock(&dm_bufio_clients_lock);
2886 	__cache_size_refresh();
2887 	mutex_unlock(&dm_bufio_clients_lock);
2888 
2889 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2890 	if (!dm_bufio_wq)
2891 		return -ENOMEM;
2892 
2893 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2894 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2895 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2896 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2897 
2898 	return 0;
2899 }
2900 
2901 /*
2902  * This is called once when unloading the dm_bufio module.
2903  */
2904 static void __exit dm_bufio_exit(void)
2905 {
2906 	int bug = 0;
2907 
2908 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2909 	destroy_workqueue(dm_bufio_wq);
2910 
2911 	if (dm_bufio_client_count) {
2912 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2913 			__func__, dm_bufio_client_count);
2914 		bug = 1;
2915 	}
2916 
2917 	if (dm_bufio_current_allocated) {
2918 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2919 			__func__, dm_bufio_current_allocated);
2920 		bug = 1;
2921 	}
2922 
2923 	if (dm_bufio_allocated_get_free_pages) {
2924 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2925 		       __func__, dm_bufio_allocated_get_free_pages);
2926 		bug = 1;
2927 	}
2928 
2929 	if (dm_bufio_allocated_vmalloc) {
2930 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2931 		       __func__, dm_bufio_allocated_vmalloc);
2932 		bug = 1;
2933 	}
2934 
2935 	WARN_ON(bug); /* leaks are not worth crashing the system */
2936 }
2937 
2938 module_init(dm_bufio_init)
2939 module_exit(dm_bufio_exit)
2940 
2941 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, 0644);
2942 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2943 
2944 module_param_named(max_age_seconds, dm_bufio_max_age, uint, 0644);
2945 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2946 
2947 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, 0644);
2948 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2949 
2950 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, 0644);
2951 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2952 
2953 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, 0444);
2954 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2955 
2956 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, 0444);
2957 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2958 
2959 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, 0444);
2960 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2961 
2962 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, 0444);
2963 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2964 
2965 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2966 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2967 MODULE_LICENSE("GPL");
2968