xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 0df499ea)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/dm-bufio.h>
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/sched/mm.h>
15 #include <linux/jiffies.h>
16 #include <linux/vmalloc.h>
17 #include <linux/shrinker.h>
18 #include <linux/module.h>
19 #include <linux/rbtree.h>
20 #include <linux/stacktrace.h>
21 #include <linux/jump_label.h>
22 
23 #define DM_MSG_PREFIX "bufio"
24 
25 /*
26  * Memory management policy:
27  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
28  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
29  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
30  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
31  *	dirty buffers.
32  */
33 #define DM_BUFIO_MIN_BUFFERS		8
34 
35 #define DM_BUFIO_MEMORY_PERCENT		2
36 #define DM_BUFIO_VMALLOC_PERCENT	25
37 #define DM_BUFIO_WRITEBACK_RATIO	3
38 #define DM_BUFIO_LOW_WATERMARK_RATIO	16
39 
40 /*
41  * Check buffer ages in this interval (seconds)
42  */
43 #define DM_BUFIO_WORK_TIMER_SECS	30
44 
45 /*
46  * Free buffers when they are older than this (seconds)
47  */
48 #define DM_BUFIO_DEFAULT_AGE_SECS	300
49 
50 /*
51  * The nr of bytes of cached data to keep around.
52  */
53 #define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
54 
55 /*
56  * Align buffer writes to this boundary.
57  * Tests show that SSDs have the highest IOPS when using 4k writes.
58  */
59 #define DM_BUFIO_WRITE_ALIGN		4096
60 
61 /*
62  * dm_buffer->list_mode
63  */
64 #define LIST_CLEAN	0
65 #define LIST_DIRTY	1
66 #define LIST_SIZE	2
67 
68 /*
69  * Linking of buffers:
70  *	All buffers are linked to buffer_tree with their node field.
71  *
72  *	Clean buffers that are not being written (B_WRITING not set)
73  *	are linked to lru[LIST_CLEAN] with their lru_list field.
74  *
75  *	Dirty and clean buffers that are being written are linked to
76  *	lru[LIST_DIRTY] with their lru_list field. When the write
77  *	finishes, the buffer cannot be relinked immediately (because we
78  *	are in an interrupt context and relinking requires process
79  *	context), so some clean-not-writing buffers can be held on
80  *	dirty_lru too.  They are later added to lru in the process
81  *	context.
82  */
83 struct dm_bufio_client {
84 	struct mutex lock;
85 	spinlock_t spinlock;
86 	bool no_sleep;
87 
88 	struct list_head lru[LIST_SIZE];
89 	unsigned long n_buffers[LIST_SIZE];
90 
91 	struct block_device *bdev;
92 	unsigned block_size;
93 	s8 sectors_per_block_bits;
94 	void (*alloc_callback)(struct dm_buffer *);
95 	void (*write_callback)(struct dm_buffer *);
96 	struct kmem_cache *slab_buffer;
97 	struct kmem_cache *slab_cache;
98 	struct dm_io_client *dm_io;
99 
100 	struct list_head reserved_buffers;
101 	unsigned need_reserved_buffers;
102 
103 	unsigned minimum_buffers;
104 
105 	struct rb_root buffer_tree;
106 	wait_queue_head_t free_buffer_wait;
107 
108 	sector_t start;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 
114 	struct shrinker shrinker;
115 	struct work_struct shrink_work;
116 	atomic_long_t need_shrink;
117 };
118 
119 /*
120  * Buffer state bits.
121  */
122 #define B_READING	0
123 #define B_WRITING	1
124 #define B_DIRTY		2
125 
126 /*
127  * Describes how the block was allocated:
128  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
129  * See the comment at alloc_buffer_data.
130  */
131 enum data_mode {
132 	DATA_MODE_SLAB = 0,
133 	DATA_MODE_GET_FREE_PAGES = 1,
134 	DATA_MODE_VMALLOC = 2,
135 	DATA_MODE_LIMIT = 3
136 };
137 
138 struct dm_buffer {
139 	struct rb_node node;
140 	struct list_head lru_list;
141 	struct list_head global_list;
142 	sector_t block;
143 	void *data;
144 	unsigned char data_mode;		/* DATA_MODE_* */
145 	unsigned char list_mode;		/* LIST_* */
146 	blk_status_t read_error;
147 	blk_status_t write_error;
148 	unsigned accessed;
149 	unsigned hold_count;
150 	unsigned long state;
151 	unsigned long last_accessed;
152 	unsigned dirty_start;
153 	unsigned dirty_end;
154 	unsigned write_start;
155 	unsigned write_end;
156 	struct dm_bufio_client *c;
157 	struct list_head write_list;
158 	void (*end_io)(struct dm_buffer *, blk_status_t);
159 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
160 #define MAX_STACK 10
161 	unsigned int stack_len;
162 	unsigned long stack_entries[MAX_STACK];
163 #endif
164 };
165 
166 static DEFINE_STATIC_KEY_FALSE(no_sleep_enabled);
167 
168 /*----------------------------------------------------------------*/
169 
170 #define dm_bufio_in_request()	(!!current->bio_list)
171 
172 static void dm_bufio_lock(struct dm_bufio_client *c)
173 {
174 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
175 		spin_lock_bh(&c->spinlock);
176 	else
177 		mutex_lock_nested(&c->lock, dm_bufio_in_request());
178 }
179 
180 static int dm_bufio_trylock(struct dm_bufio_client *c)
181 {
182 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
183 		return spin_trylock_bh(&c->spinlock);
184 	else
185 		return mutex_trylock(&c->lock);
186 }
187 
188 static void dm_bufio_unlock(struct dm_bufio_client *c)
189 {
190 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
191 		spin_unlock_bh(&c->spinlock);
192 	else
193 		mutex_unlock(&c->lock);
194 }
195 
196 /*----------------------------------------------------------------*/
197 
198 /*
199  * Default cache size: available memory divided by the ratio.
200  */
201 static unsigned long dm_bufio_default_cache_size;
202 
203 /*
204  * Total cache size set by the user.
205  */
206 static unsigned long dm_bufio_cache_size;
207 
208 /*
209  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
210  * at any time.  If it disagrees, the user has changed cache size.
211  */
212 static unsigned long dm_bufio_cache_size_latch;
213 
214 static DEFINE_SPINLOCK(global_spinlock);
215 
216 static LIST_HEAD(global_queue);
217 
218 static unsigned long global_num = 0;
219 
220 /*
221  * Buffers are freed after this timeout
222  */
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
224 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
225 
226 static unsigned long dm_bufio_peak_allocated;
227 static unsigned long dm_bufio_allocated_kmem_cache;
228 static unsigned long dm_bufio_allocated_get_free_pages;
229 static unsigned long dm_bufio_allocated_vmalloc;
230 static unsigned long dm_bufio_current_allocated;
231 
232 /*----------------------------------------------------------------*/
233 
234 /*
235  * The current number of clients.
236  */
237 static int dm_bufio_client_count;
238 
239 /*
240  * The list of all clients.
241  */
242 static LIST_HEAD(dm_bufio_all_clients);
243 
244 /*
245  * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count
246  */
247 static DEFINE_MUTEX(dm_bufio_clients_lock);
248 
249 static struct workqueue_struct *dm_bufio_wq;
250 static struct delayed_work dm_bufio_cleanup_old_work;
251 static struct work_struct dm_bufio_replacement_work;
252 
253 
254 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
255 static void buffer_record_stack(struct dm_buffer *b)
256 {
257 	b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2);
258 }
259 #endif
260 
261 /*----------------------------------------------------------------
262  * A red/black tree acts as an index for all the buffers.
263  *--------------------------------------------------------------*/
264 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
265 {
266 	struct rb_node *n = c->buffer_tree.rb_node;
267 	struct dm_buffer *b;
268 
269 	while (n) {
270 		b = container_of(n, struct dm_buffer, node);
271 
272 		if (b->block == block)
273 			return b;
274 
275 		n = block < b->block ? n->rb_left : n->rb_right;
276 	}
277 
278 	return NULL;
279 }
280 
281 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block)
282 {
283 	struct rb_node *n = c->buffer_tree.rb_node;
284 	struct dm_buffer *b;
285 	struct dm_buffer *best = NULL;
286 
287 	while (n) {
288 		b = container_of(n, struct dm_buffer, node);
289 
290 		if (b->block == block)
291 			return b;
292 
293 		if (block <= b->block) {
294 			n = n->rb_left;
295 			best = b;
296 		} else {
297 			n = n->rb_right;
298 		}
299 	}
300 
301 	return best;
302 }
303 
304 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
305 {
306 	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
307 	struct dm_buffer *found;
308 
309 	while (*new) {
310 		found = container_of(*new, struct dm_buffer, node);
311 
312 		if (found->block == b->block) {
313 			BUG_ON(found != b);
314 			return;
315 		}
316 
317 		parent = *new;
318 		new = b->block < found->block ?
319 			&found->node.rb_left : &found->node.rb_right;
320 	}
321 
322 	rb_link_node(&b->node, parent, new);
323 	rb_insert_color(&b->node, &c->buffer_tree);
324 }
325 
326 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
327 {
328 	rb_erase(&b->node, &c->buffer_tree);
329 }
330 
331 /*----------------------------------------------------------------*/
332 
333 static void adjust_total_allocated(struct dm_buffer *b, bool unlink)
334 {
335 	unsigned char data_mode;
336 	long diff;
337 
338 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
339 		&dm_bufio_allocated_kmem_cache,
340 		&dm_bufio_allocated_get_free_pages,
341 		&dm_bufio_allocated_vmalloc,
342 	};
343 
344 	data_mode = b->data_mode;
345 	diff = (long)b->c->block_size;
346 	if (unlink)
347 		diff = -diff;
348 
349 	spin_lock(&global_spinlock);
350 
351 	*class_ptr[data_mode] += diff;
352 
353 	dm_bufio_current_allocated += diff;
354 
355 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
356 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
357 
358 	b->accessed = 1;
359 
360 	if (!unlink) {
361 		list_add(&b->global_list, &global_queue);
362 		global_num++;
363 		if (dm_bufio_current_allocated > dm_bufio_cache_size)
364 			queue_work(dm_bufio_wq, &dm_bufio_replacement_work);
365 	} else {
366 		list_del(&b->global_list);
367 		global_num--;
368 	}
369 
370 	spin_unlock(&global_spinlock);
371 }
372 
373 /*
374  * Change the number of clients and recalculate per-client limit.
375  */
376 static void __cache_size_refresh(void)
377 {
378 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
379 	BUG_ON(dm_bufio_client_count < 0);
380 
381 	dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size);
382 
383 	/*
384 	 * Use default if set to 0 and report the actual cache size used.
385 	 */
386 	if (!dm_bufio_cache_size_latch) {
387 		(void)cmpxchg(&dm_bufio_cache_size, 0,
388 			      dm_bufio_default_cache_size);
389 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
390 	}
391 }
392 
393 /*
394  * Allocating buffer data.
395  *
396  * Small buffers are allocated with kmem_cache, to use space optimally.
397  *
398  * For large buffers, we choose between get_free_pages and vmalloc.
399  * Each has advantages and disadvantages.
400  *
401  * __get_free_pages can randomly fail if the memory is fragmented.
402  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
403  * as low as 128M) so using it for caching is not appropriate.
404  *
405  * If the allocation may fail we use __get_free_pages. Memory fragmentation
406  * won't have a fatal effect here, but it just causes flushes of some other
407  * buffers and more I/O will be performed. Don't use __get_free_pages if it
408  * always fails (i.e. order >= MAX_ORDER).
409  *
410  * If the allocation shouldn't fail we use __vmalloc. This is only for the
411  * initial reserve allocation, so there's no risk of wasting all vmalloc
412  * space.
413  */
414 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
415 			       unsigned char *data_mode)
416 {
417 	if (unlikely(c->slab_cache != NULL)) {
418 		*data_mode = DATA_MODE_SLAB;
419 		return kmem_cache_alloc(c->slab_cache, gfp_mask);
420 	}
421 
422 	if (c->block_size <= KMALLOC_MAX_SIZE &&
423 	    gfp_mask & __GFP_NORETRY) {
424 		*data_mode = DATA_MODE_GET_FREE_PAGES;
425 		return (void *)__get_free_pages(gfp_mask,
426 						c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
427 	}
428 
429 	*data_mode = DATA_MODE_VMALLOC;
430 
431 	/*
432 	 * __vmalloc allocates the data pages and auxiliary structures with
433 	 * gfp_flags that were specified, but pagetables are always allocated
434 	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
435 	 *
436 	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
437 	 * all allocations done by this process (including pagetables) are done
438 	 * as if GFP_NOIO was specified.
439 	 */
440 	if (gfp_mask & __GFP_NORETRY) {
441 		unsigned noio_flag = memalloc_noio_save();
442 		void *ptr = __vmalloc(c->block_size, gfp_mask);
443 
444 		memalloc_noio_restore(noio_flag);
445 		return ptr;
446 	}
447 
448 	return __vmalloc(c->block_size, gfp_mask);
449 }
450 
451 /*
452  * Free buffer's data.
453  */
454 static void free_buffer_data(struct dm_bufio_client *c,
455 			     void *data, unsigned char data_mode)
456 {
457 	switch (data_mode) {
458 	case DATA_MODE_SLAB:
459 		kmem_cache_free(c->slab_cache, data);
460 		break;
461 
462 	case DATA_MODE_GET_FREE_PAGES:
463 		free_pages((unsigned long)data,
464 			   c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT));
465 		break;
466 
467 	case DATA_MODE_VMALLOC:
468 		vfree(data);
469 		break;
470 
471 	default:
472 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
473 		       data_mode);
474 		BUG();
475 	}
476 }
477 
478 /*
479  * Allocate buffer and its data.
480  */
481 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
482 {
483 	struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask);
484 
485 	if (!b)
486 		return NULL;
487 
488 	b->c = c;
489 
490 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
491 	if (!b->data) {
492 		kmem_cache_free(c->slab_buffer, b);
493 		return NULL;
494 	}
495 
496 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
497 	b->stack_len = 0;
498 #endif
499 	return b;
500 }
501 
502 /*
503  * Free buffer and its data.
504  */
505 static void free_buffer(struct dm_buffer *b)
506 {
507 	struct dm_bufio_client *c = b->c;
508 
509 	free_buffer_data(c, b->data, b->data_mode);
510 	kmem_cache_free(c->slab_buffer, b);
511 }
512 
513 /*
514  * Link buffer to the buffer tree and clean or dirty queue.
515  */
516 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
517 {
518 	struct dm_bufio_client *c = b->c;
519 
520 	c->n_buffers[dirty]++;
521 	b->block = block;
522 	b->list_mode = dirty;
523 	list_add(&b->lru_list, &c->lru[dirty]);
524 	__insert(b->c, b);
525 	b->last_accessed = jiffies;
526 
527 	adjust_total_allocated(b, false);
528 }
529 
530 /*
531  * Unlink buffer from the buffer tree and dirty or clean queue.
532  */
533 static void __unlink_buffer(struct dm_buffer *b)
534 {
535 	struct dm_bufio_client *c = b->c;
536 
537 	BUG_ON(!c->n_buffers[b->list_mode]);
538 
539 	c->n_buffers[b->list_mode]--;
540 	__remove(b->c, b);
541 	list_del(&b->lru_list);
542 
543 	adjust_total_allocated(b, true);
544 }
545 
546 /*
547  * Place the buffer to the head of dirty or clean LRU queue.
548  */
549 static void __relink_lru(struct dm_buffer *b, int dirty)
550 {
551 	struct dm_bufio_client *c = b->c;
552 
553 	b->accessed = 1;
554 
555 	BUG_ON(!c->n_buffers[b->list_mode]);
556 
557 	c->n_buffers[b->list_mode]--;
558 	c->n_buffers[dirty]++;
559 	b->list_mode = dirty;
560 	list_move(&b->lru_list, &c->lru[dirty]);
561 	b->last_accessed = jiffies;
562 }
563 
564 /*----------------------------------------------------------------
565  * Submit I/O on the buffer.
566  *
567  * Bio interface is faster but it has some problems:
568  *	the vector list is limited (increasing this limit increases
569  *	memory-consumption per buffer, so it is not viable);
570  *
571  *	the memory must be direct-mapped, not vmalloced;
572  *
573  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
574  * it is not vmalloced, try using the bio interface.
575  *
576  * If the buffer is big, if it is vmalloced or if the underlying device
577  * rejects the bio because it is too large, use dm-io layer to do the I/O.
578  * The dm-io layer splits the I/O into multiple requests, avoiding the above
579  * shortcomings.
580  *--------------------------------------------------------------*/
581 
582 /*
583  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
584  * that the request was handled directly with bio interface.
585  */
586 static void dmio_complete(unsigned long error, void *context)
587 {
588 	struct dm_buffer *b = context;
589 
590 	b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0);
591 }
592 
593 static void use_dmio(struct dm_buffer *b, enum req_op op, sector_t sector,
594 		     unsigned n_sectors, unsigned offset)
595 {
596 	int r;
597 	struct dm_io_request io_req = {
598 		.bi_opf = op,
599 		.notify.fn = dmio_complete,
600 		.notify.context = b,
601 		.client = b->c->dm_io,
602 	};
603 	struct dm_io_region region = {
604 		.bdev = b->c->bdev,
605 		.sector = sector,
606 		.count = n_sectors,
607 	};
608 
609 	if (b->data_mode != DATA_MODE_VMALLOC) {
610 		io_req.mem.type = DM_IO_KMEM;
611 		io_req.mem.ptr.addr = (char *)b->data + offset;
612 	} else {
613 		io_req.mem.type = DM_IO_VMA;
614 		io_req.mem.ptr.vma = (char *)b->data + offset;
615 	}
616 
617 	r = dm_io(&io_req, 1, &region, NULL);
618 	if (unlikely(r))
619 		b->end_io(b, errno_to_blk_status(r));
620 }
621 
622 static void bio_complete(struct bio *bio)
623 {
624 	struct dm_buffer *b = bio->bi_private;
625 	blk_status_t status = bio->bi_status;
626 	bio_uninit(bio);
627 	kfree(bio);
628 	b->end_io(b, status);
629 }
630 
631 static void use_bio(struct dm_buffer *b, enum req_op op, sector_t sector,
632 		    unsigned n_sectors, unsigned offset)
633 {
634 	struct bio *bio;
635 	char *ptr;
636 	unsigned vec_size, len;
637 
638 	vec_size = b->c->block_size >> PAGE_SHIFT;
639 	if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT))
640 		vec_size += 2;
641 
642 	bio = bio_kmalloc(vec_size, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN);
643 	if (!bio) {
644 dmio:
645 		use_dmio(b, op, sector, n_sectors, offset);
646 		return;
647 	}
648 	bio_init(bio, b->c->bdev, bio->bi_inline_vecs, vec_size, op);
649 	bio->bi_iter.bi_sector = sector;
650 	bio->bi_end_io = bio_complete;
651 	bio->bi_private = b;
652 
653 	ptr = (char *)b->data + offset;
654 	len = n_sectors << SECTOR_SHIFT;
655 
656 	do {
657 		unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len);
658 		if (!bio_add_page(bio, virt_to_page(ptr), this_step,
659 				  offset_in_page(ptr))) {
660 			bio_put(bio);
661 			goto dmio;
662 		}
663 
664 		len -= this_step;
665 		ptr += this_step;
666 	} while (len > 0);
667 
668 	submit_bio(bio);
669 }
670 
671 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block)
672 {
673 	sector_t sector;
674 
675 	if (likely(c->sectors_per_block_bits >= 0))
676 		sector = block << c->sectors_per_block_bits;
677 	else
678 		sector = block * (c->block_size >> SECTOR_SHIFT);
679 	sector += c->start;
680 
681 	return sector;
682 }
683 
684 static void submit_io(struct dm_buffer *b, enum req_op op,
685 		      void (*end_io)(struct dm_buffer *, blk_status_t))
686 {
687 	unsigned n_sectors;
688 	sector_t sector;
689 	unsigned offset, end;
690 
691 	b->end_io = end_io;
692 
693 	sector = block_to_sector(b->c, b->block);
694 
695 	if (op != REQ_OP_WRITE) {
696 		n_sectors = b->c->block_size >> SECTOR_SHIFT;
697 		offset = 0;
698 	} else {
699 		if (b->c->write_callback)
700 			b->c->write_callback(b);
701 		offset = b->write_start;
702 		end = b->write_end;
703 		offset &= -DM_BUFIO_WRITE_ALIGN;
704 		end += DM_BUFIO_WRITE_ALIGN - 1;
705 		end &= -DM_BUFIO_WRITE_ALIGN;
706 		if (unlikely(end > b->c->block_size))
707 			end = b->c->block_size;
708 
709 		sector += offset >> SECTOR_SHIFT;
710 		n_sectors = (end - offset) >> SECTOR_SHIFT;
711 	}
712 
713 	if (b->data_mode != DATA_MODE_VMALLOC)
714 		use_bio(b, op, sector, n_sectors, offset);
715 	else
716 		use_dmio(b, op, sector, n_sectors, offset);
717 }
718 
719 /*----------------------------------------------------------------
720  * Writing dirty buffers
721  *--------------------------------------------------------------*/
722 
723 /*
724  * The endio routine for write.
725  *
726  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
727  * it.
728  */
729 static void write_endio(struct dm_buffer *b, blk_status_t status)
730 {
731 	b->write_error = status;
732 	if (unlikely(status)) {
733 		struct dm_bufio_client *c = b->c;
734 
735 		(void)cmpxchg(&c->async_write_error, 0,
736 				blk_status_to_errno(status));
737 	}
738 
739 	BUG_ON(!test_bit(B_WRITING, &b->state));
740 
741 	smp_mb__before_atomic();
742 	clear_bit(B_WRITING, &b->state);
743 	smp_mb__after_atomic();
744 
745 	wake_up_bit(&b->state, B_WRITING);
746 }
747 
748 /*
749  * Initiate a write on a dirty buffer, but don't wait for it.
750  *
751  * - If the buffer is not dirty, exit.
752  * - If there some previous write going on, wait for it to finish (we can't
753  *   have two writes on the same buffer simultaneously).
754  * - Submit our write and don't wait on it. We set B_WRITING indicating
755  *   that there is a write in progress.
756  */
757 static void __write_dirty_buffer(struct dm_buffer *b,
758 				 struct list_head *write_list)
759 {
760 	if (!test_bit(B_DIRTY, &b->state))
761 		return;
762 
763 	clear_bit(B_DIRTY, &b->state);
764 	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
765 
766 	b->write_start = b->dirty_start;
767 	b->write_end = b->dirty_end;
768 
769 	if (!write_list)
770 		submit_io(b, REQ_OP_WRITE, write_endio);
771 	else
772 		list_add_tail(&b->write_list, write_list);
773 }
774 
775 static void __flush_write_list(struct list_head *write_list)
776 {
777 	struct blk_plug plug;
778 	blk_start_plug(&plug);
779 	while (!list_empty(write_list)) {
780 		struct dm_buffer *b =
781 			list_entry(write_list->next, struct dm_buffer, write_list);
782 		list_del(&b->write_list);
783 		submit_io(b, REQ_OP_WRITE, write_endio);
784 		cond_resched();
785 	}
786 	blk_finish_plug(&plug);
787 }
788 
789 /*
790  * Wait until any activity on the buffer finishes.  Possibly write the
791  * buffer if it is dirty.  When this function finishes, there is no I/O
792  * running on the buffer and the buffer is not dirty.
793  */
794 static void __make_buffer_clean(struct dm_buffer *b)
795 {
796 	BUG_ON(b->hold_count);
797 
798 	if (!b->state)	/* fast case */
799 		return;
800 
801 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
802 	__write_dirty_buffer(b, NULL);
803 	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
804 }
805 
806 /*
807  * Find some buffer that is not held by anybody, clean it, unlink it and
808  * return it.
809  */
810 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
811 {
812 	struct dm_buffer *b;
813 
814 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
815 		BUG_ON(test_bit(B_WRITING, &b->state));
816 		BUG_ON(test_bit(B_DIRTY, &b->state));
817 
818 		if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep &&
819 		    unlikely(test_bit(B_READING, &b->state)))
820 			continue;
821 
822 		if (!b->hold_count) {
823 			__make_buffer_clean(b);
824 			__unlink_buffer(b);
825 			return b;
826 		}
827 		cond_resched();
828 	}
829 
830 	if (static_branch_unlikely(&no_sleep_enabled) && c->no_sleep)
831 		return NULL;
832 
833 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
834 		BUG_ON(test_bit(B_READING, &b->state));
835 
836 		if (!b->hold_count) {
837 			__make_buffer_clean(b);
838 			__unlink_buffer(b);
839 			return b;
840 		}
841 		cond_resched();
842 	}
843 
844 	return NULL;
845 }
846 
847 /*
848  * Wait until some other threads free some buffer or release hold count on
849  * some buffer.
850  *
851  * This function is entered with c->lock held, drops it and regains it
852  * before exiting.
853  */
854 static void __wait_for_free_buffer(struct dm_bufio_client *c)
855 {
856 	DECLARE_WAITQUEUE(wait, current);
857 
858 	add_wait_queue(&c->free_buffer_wait, &wait);
859 	set_current_state(TASK_UNINTERRUPTIBLE);
860 	dm_bufio_unlock(c);
861 
862 	io_schedule();
863 
864 	remove_wait_queue(&c->free_buffer_wait, &wait);
865 
866 	dm_bufio_lock(c);
867 }
868 
869 enum new_flag {
870 	NF_FRESH = 0,
871 	NF_READ = 1,
872 	NF_GET = 2,
873 	NF_PREFETCH = 3
874 };
875 
876 /*
877  * Allocate a new buffer. If the allocation is not possible, wait until
878  * some other thread frees a buffer.
879  *
880  * May drop the lock and regain it.
881  */
882 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
883 {
884 	struct dm_buffer *b;
885 	bool tried_noio_alloc = false;
886 
887 	/*
888 	 * dm-bufio is resistant to allocation failures (it just keeps
889 	 * one buffer reserved in cases all the allocations fail).
890 	 * So set flags to not try too hard:
891 	 *	GFP_NOWAIT: don't wait; if we need to sleep we'll release our
892 	 *		    mutex and wait ourselves.
893 	 *	__GFP_NORETRY: don't retry and rather return failure
894 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
895 	 *	__GFP_NOWARN: don't print a warning in case of failure
896 	 *
897 	 * For debugging, if we set the cache size to 1, no new buffers will
898 	 * be allocated.
899 	 */
900 	while (1) {
901 		if (dm_bufio_cache_size_latch != 1) {
902 			b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
903 			if (b)
904 				return b;
905 		}
906 
907 		if (nf == NF_PREFETCH)
908 			return NULL;
909 
910 		if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
911 			dm_bufio_unlock(c);
912 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
913 			dm_bufio_lock(c);
914 			if (b)
915 				return b;
916 			tried_noio_alloc = true;
917 		}
918 
919 		if (!list_empty(&c->reserved_buffers)) {
920 			b = list_entry(c->reserved_buffers.next,
921 				       struct dm_buffer, lru_list);
922 			list_del(&b->lru_list);
923 			c->need_reserved_buffers++;
924 
925 			return b;
926 		}
927 
928 		b = __get_unclaimed_buffer(c);
929 		if (b)
930 			return b;
931 
932 		__wait_for_free_buffer(c);
933 	}
934 }
935 
936 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
937 {
938 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
939 
940 	if (!b)
941 		return NULL;
942 
943 	if (c->alloc_callback)
944 		c->alloc_callback(b);
945 
946 	return b;
947 }
948 
949 /*
950  * Free a buffer and wake other threads waiting for free buffers.
951  */
952 static void __free_buffer_wake(struct dm_buffer *b)
953 {
954 	struct dm_bufio_client *c = b->c;
955 
956 	if (!c->need_reserved_buffers)
957 		free_buffer(b);
958 	else {
959 		list_add(&b->lru_list, &c->reserved_buffers);
960 		c->need_reserved_buffers--;
961 	}
962 
963 	wake_up(&c->free_buffer_wait);
964 }
965 
966 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
967 					struct list_head *write_list)
968 {
969 	struct dm_buffer *b, *tmp;
970 
971 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
972 		BUG_ON(test_bit(B_READING, &b->state));
973 
974 		if (!test_bit(B_DIRTY, &b->state) &&
975 		    !test_bit(B_WRITING, &b->state)) {
976 			__relink_lru(b, LIST_CLEAN);
977 			continue;
978 		}
979 
980 		if (no_wait && test_bit(B_WRITING, &b->state))
981 			return;
982 
983 		__write_dirty_buffer(b, write_list);
984 		cond_resched();
985 	}
986 }
987 
988 /*
989  * Check if we're over watermark.
990  * If we are over threshold_buffers, start freeing buffers.
991  * If we're over "limit_buffers", block until we get under the limit.
992  */
993 static void __check_watermark(struct dm_bufio_client *c,
994 			      struct list_head *write_list)
995 {
996 	if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO)
997 		__write_dirty_buffers_async(c, 1, write_list);
998 }
999 
1000 /*----------------------------------------------------------------
1001  * Getting a buffer
1002  *--------------------------------------------------------------*/
1003 
1004 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
1005 				     enum new_flag nf, int *need_submit,
1006 				     struct list_head *write_list)
1007 {
1008 	struct dm_buffer *b, *new_b = NULL;
1009 
1010 	*need_submit = 0;
1011 
1012 	b = __find(c, block);
1013 	if (b)
1014 		goto found_buffer;
1015 
1016 	if (nf == NF_GET)
1017 		return NULL;
1018 
1019 	new_b = __alloc_buffer_wait(c, nf);
1020 	if (!new_b)
1021 		return NULL;
1022 
1023 	/*
1024 	 * We've had a period where the mutex was unlocked, so need to
1025 	 * recheck the buffer tree.
1026 	 */
1027 	b = __find(c, block);
1028 	if (b) {
1029 		__free_buffer_wake(new_b);
1030 		goto found_buffer;
1031 	}
1032 
1033 	__check_watermark(c, write_list);
1034 
1035 	b = new_b;
1036 	b->hold_count = 1;
1037 	b->read_error = 0;
1038 	b->write_error = 0;
1039 	__link_buffer(b, block, LIST_CLEAN);
1040 
1041 	if (nf == NF_FRESH) {
1042 		b->state = 0;
1043 		return b;
1044 	}
1045 
1046 	b->state = 1 << B_READING;
1047 	*need_submit = 1;
1048 
1049 	return b;
1050 
1051 found_buffer:
1052 	if (nf == NF_PREFETCH)
1053 		return NULL;
1054 	/*
1055 	 * Note: it is essential that we don't wait for the buffer to be
1056 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1057 	 * dm_bufio_prefetch can be used in the driver request routine.
1058 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1059 	 * the same buffer, it would deadlock if we waited.
1060 	 */
1061 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1062 		return NULL;
1063 
1064 	b->hold_count++;
1065 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1066 		     test_bit(B_WRITING, &b->state));
1067 	return b;
1068 }
1069 
1070 /*
1071  * The endio routine for reading: set the error, clear the bit and wake up
1072  * anyone waiting on the buffer.
1073  */
1074 static void read_endio(struct dm_buffer *b, blk_status_t status)
1075 {
1076 	b->read_error = status;
1077 
1078 	BUG_ON(!test_bit(B_READING, &b->state));
1079 
1080 	smp_mb__before_atomic();
1081 	clear_bit(B_READING, &b->state);
1082 	smp_mb__after_atomic();
1083 
1084 	wake_up_bit(&b->state, B_READING);
1085 }
1086 
1087 /*
1088  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1089  * functions is similar except that dm_bufio_new doesn't read the
1090  * buffer from the disk (assuming that the caller overwrites all the data
1091  * and uses dm_bufio_mark_buffer_dirty to write new data back).
1092  */
1093 static void *new_read(struct dm_bufio_client *c, sector_t block,
1094 		      enum new_flag nf, struct dm_buffer **bp)
1095 {
1096 	int need_submit;
1097 	struct dm_buffer *b;
1098 
1099 	LIST_HEAD(write_list);
1100 
1101 	dm_bufio_lock(c);
1102 	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1103 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1104 	if (b && b->hold_count == 1)
1105 		buffer_record_stack(b);
1106 #endif
1107 	dm_bufio_unlock(c);
1108 
1109 	__flush_write_list(&write_list);
1110 
1111 	if (!b)
1112 		return NULL;
1113 
1114 	if (need_submit)
1115 		submit_io(b, REQ_OP_READ, read_endio);
1116 
1117 	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1118 
1119 	if (b->read_error) {
1120 		int error = blk_status_to_errno(b->read_error);
1121 
1122 		dm_bufio_release(b);
1123 
1124 		return ERR_PTR(error);
1125 	}
1126 
1127 	*bp = b;
1128 
1129 	return b->data;
1130 }
1131 
1132 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1133 		   struct dm_buffer **bp)
1134 {
1135 	return new_read(c, block, NF_GET, bp);
1136 }
1137 EXPORT_SYMBOL_GPL(dm_bufio_get);
1138 
1139 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1140 		    struct dm_buffer **bp)
1141 {
1142 	BUG_ON(dm_bufio_in_request());
1143 
1144 	return new_read(c, block, NF_READ, bp);
1145 }
1146 EXPORT_SYMBOL_GPL(dm_bufio_read);
1147 
1148 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1149 		   struct dm_buffer **bp)
1150 {
1151 	BUG_ON(dm_bufio_in_request());
1152 
1153 	return new_read(c, block, NF_FRESH, bp);
1154 }
1155 EXPORT_SYMBOL_GPL(dm_bufio_new);
1156 
1157 void dm_bufio_prefetch(struct dm_bufio_client *c,
1158 		       sector_t block, unsigned n_blocks)
1159 {
1160 	struct blk_plug plug;
1161 
1162 	LIST_HEAD(write_list);
1163 
1164 	BUG_ON(dm_bufio_in_request());
1165 
1166 	blk_start_plug(&plug);
1167 	dm_bufio_lock(c);
1168 
1169 	for (; n_blocks--; block++) {
1170 		int need_submit;
1171 		struct dm_buffer *b;
1172 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1173 				&write_list);
1174 		if (unlikely(!list_empty(&write_list))) {
1175 			dm_bufio_unlock(c);
1176 			blk_finish_plug(&plug);
1177 			__flush_write_list(&write_list);
1178 			blk_start_plug(&plug);
1179 			dm_bufio_lock(c);
1180 		}
1181 		if (unlikely(b != NULL)) {
1182 			dm_bufio_unlock(c);
1183 
1184 			if (need_submit)
1185 				submit_io(b, REQ_OP_READ, read_endio);
1186 			dm_bufio_release(b);
1187 
1188 			cond_resched();
1189 
1190 			if (!n_blocks)
1191 				goto flush_plug;
1192 			dm_bufio_lock(c);
1193 		}
1194 	}
1195 
1196 	dm_bufio_unlock(c);
1197 
1198 flush_plug:
1199 	blk_finish_plug(&plug);
1200 }
1201 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1202 
1203 void dm_bufio_release(struct dm_buffer *b)
1204 {
1205 	struct dm_bufio_client *c = b->c;
1206 
1207 	dm_bufio_lock(c);
1208 
1209 	BUG_ON(!b->hold_count);
1210 
1211 	b->hold_count--;
1212 	if (!b->hold_count) {
1213 		wake_up(&c->free_buffer_wait);
1214 
1215 		/*
1216 		 * If there were errors on the buffer, and the buffer is not
1217 		 * to be written, free the buffer. There is no point in caching
1218 		 * invalid buffer.
1219 		 */
1220 		if ((b->read_error || b->write_error) &&
1221 		    !test_bit(B_READING, &b->state) &&
1222 		    !test_bit(B_WRITING, &b->state) &&
1223 		    !test_bit(B_DIRTY, &b->state)) {
1224 			__unlink_buffer(b);
1225 			__free_buffer_wake(b);
1226 		}
1227 	}
1228 
1229 	dm_bufio_unlock(c);
1230 }
1231 EXPORT_SYMBOL_GPL(dm_bufio_release);
1232 
1233 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b,
1234 					unsigned start, unsigned end)
1235 {
1236 	struct dm_bufio_client *c = b->c;
1237 
1238 	BUG_ON(start >= end);
1239 	BUG_ON(end > b->c->block_size);
1240 
1241 	dm_bufio_lock(c);
1242 
1243 	BUG_ON(test_bit(B_READING, &b->state));
1244 
1245 	if (!test_and_set_bit(B_DIRTY, &b->state)) {
1246 		b->dirty_start = start;
1247 		b->dirty_end = end;
1248 		__relink_lru(b, LIST_DIRTY);
1249 	} else {
1250 		if (start < b->dirty_start)
1251 			b->dirty_start = start;
1252 		if (end > b->dirty_end)
1253 			b->dirty_end = end;
1254 	}
1255 
1256 	dm_bufio_unlock(c);
1257 }
1258 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty);
1259 
1260 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1261 {
1262 	dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size);
1263 }
1264 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1265 
1266 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1267 {
1268 	LIST_HEAD(write_list);
1269 
1270 	BUG_ON(dm_bufio_in_request());
1271 
1272 	dm_bufio_lock(c);
1273 	__write_dirty_buffers_async(c, 0, &write_list);
1274 	dm_bufio_unlock(c);
1275 	__flush_write_list(&write_list);
1276 }
1277 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1278 
1279 /*
1280  * For performance, it is essential that the buffers are written asynchronously
1281  * and simultaneously (so that the block layer can merge the writes) and then
1282  * waited upon.
1283  *
1284  * Finally, we flush hardware disk cache.
1285  */
1286 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1287 {
1288 	int a, f;
1289 	unsigned long buffers_processed = 0;
1290 	struct dm_buffer *b, *tmp;
1291 
1292 	LIST_HEAD(write_list);
1293 
1294 	dm_bufio_lock(c);
1295 	__write_dirty_buffers_async(c, 0, &write_list);
1296 	dm_bufio_unlock(c);
1297 	__flush_write_list(&write_list);
1298 	dm_bufio_lock(c);
1299 
1300 again:
1301 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1302 		int dropped_lock = 0;
1303 
1304 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1305 			buffers_processed++;
1306 
1307 		BUG_ON(test_bit(B_READING, &b->state));
1308 
1309 		if (test_bit(B_WRITING, &b->state)) {
1310 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1311 				dropped_lock = 1;
1312 				b->hold_count++;
1313 				dm_bufio_unlock(c);
1314 				wait_on_bit_io(&b->state, B_WRITING,
1315 					       TASK_UNINTERRUPTIBLE);
1316 				dm_bufio_lock(c);
1317 				b->hold_count--;
1318 			} else
1319 				wait_on_bit_io(&b->state, B_WRITING,
1320 					       TASK_UNINTERRUPTIBLE);
1321 		}
1322 
1323 		if (!test_bit(B_DIRTY, &b->state) &&
1324 		    !test_bit(B_WRITING, &b->state))
1325 			__relink_lru(b, LIST_CLEAN);
1326 
1327 		cond_resched();
1328 
1329 		/*
1330 		 * If we dropped the lock, the list is no longer consistent,
1331 		 * so we must restart the search.
1332 		 *
1333 		 * In the most common case, the buffer just processed is
1334 		 * relinked to the clean list, so we won't loop scanning the
1335 		 * same buffer again and again.
1336 		 *
1337 		 * This may livelock if there is another thread simultaneously
1338 		 * dirtying buffers, so we count the number of buffers walked
1339 		 * and if it exceeds the total number of buffers, it means that
1340 		 * someone is doing some writes simultaneously with us.  In
1341 		 * this case, stop, dropping the lock.
1342 		 */
1343 		if (dropped_lock)
1344 			goto again;
1345 	}
1346 	wake_up(&c->free_buffer_wait);
1347 	dm_bufio_unlock(c);
1348 
1349 	a = xchg(&c->async_write_error, 0);
1350 	f = dm_bufio_issue_flush(c);
1351 	if (a)
1352 		return a;
1353 
1354 	return f;
1355 }
1356 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1357 
1358 /*
1359  * Use dm-io to send an empty barrier to flush the device.
1360  */
1361 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1362 {
1363 	struct dm_io_request io_req = {
1364 		.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1365 		.mem.type = DM_IO_KMEM,
1366 		.mem.ptr.addr = NULL,
1367 		.client = c->dm_io,
1368 	};
1369 	struct dm_io_region io_reg = {
1370 		.bdev = c->bdev,
1371 		.sector = 0,
1372 		.count = 0,
1373 	};
1374 
1375 	BUG_ON(dm_bufio_in_request());
1376 
1377 	return dm_io(&io_req, 1, &io_reg, NULL);
1378 }
1379 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1380 
1381 /*
1382  * Use dm-io to send a discard request to flush the device.
1383  */
1384 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count)
1385 {
1386 	struct dm_io_request io_req = {
1387 		.bi_opf = REQ_OP_DISCARD | REQ_SYNC,
1388 		.mem.type = DM_IO_KMEM,
1389 		.mem.ptr.addr = NULL,
1390 		.client = c->dm_io,
1391 	};
1392 	struct dm_io_region io_reg = {
1393 		.bdev = c->bdev,
1394 		.sector = block_to_sector(c, block),
1395 		.count = block_to_sector(c, count),
1396 	};
1397 
1398 	BUG_ON(dm_bufio_in_request());
1399 
1400 	return dm_io(&io_req, 1, &io_reg, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard);
1403 
1404 /*
1405  * We first delete any other buffer that may be at that new location.
1406  *
1407  * Then, we write the buffer to the original location if it was dirty.
1408  *
1409  * Then, if we are the only one who is holding the buffer, relink the buffer
1410  * in the buffer tree for the new location.
1411  *
1412  * If there was someone else holding the buffer, we write it to the new
1413  * location but not relink it, because that other user needs to have the buffer
1414  * at the same place.
1415  */
1416 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1417 {
1418 	struct dm_bufio_client *c = b->c;
1419 	struct dm_buffer *new;
1420 
1421 	BUG_ON(dm_bufio_in_request());
1422 
1423 	dm_bufio_lock(c);
1424 
1425 retry:
1426 	new = __find(c, new_block);
1427 	if (new) {
1428 		if (new->hold_count) {
1429 			__wait_for_free_buffer(c);
1430 			goto retry;
1431 		}
1432 
1433 		/*
1434 		 * FIXME: Is there any point waiting for a write that's going
1435 		 * to be overwritten in a bit?
1436 		 */
1437 		__make_buffer_clean(new);
1438 		__unlink_buffer(new);
1439 		__free_buffer_wake(new);
1440 	}
1441 
1442 	BUG_ON(!b->hold_count);
1443 	BUG_ON(test_bit(B_READING, &b->state));
1444 
1445 	__write_dirty_buffer(b, NULL);
1446 	if (b->hold_count == 1) {
1447 		wait_on_bit_io(&b->state, B_WRITING,
1448 			       TASK_UNINTERRUPTIBLE);
1449 		set_bit(B_DIRTY, &b->state);
1450 		b->dirty_start = 0;
1451 		b->dirty_end = c->block_size;
1452 		__unlink_buffer(b);
1453 		__link_buffer(b, new_block, LIST_DIRTY);
1454 	} else {
1455 		sector_t old_block;
1456 		wait_on_bit_lock_io(&b->state, B_WRITING,
1457 				    TASK_UNINTERRUPTIBLE);
1458 		/*
1459 		 * Relink buffer to "new_block" so that write_callback
1460 		 * sees "new_block" as a block number.
1461 		 * After the write, link the buffer back to old_block.
1462 		 * All this must be done in bufio lock, so that block number
1463 		 * change isn't visible to other threads.
1464 		 */
1465 		old_block = b->block;
1466 		__unlink_buffer(b);
1467 		__link_buffer(b, new_block, b->list_mode);
1468 		submit_io(b, REQ_OP_WRITE, write_endio);
1469 		wait_on_bit_io(&b->state, B_WRITING,
1470 			       TASK_UNINTERRUPTIBLE);
1471 		__unlink_buffer(b);
1472 		__link_buffer(b, old_block, b->list_mode);
1473 	}
1474 
1475 	dm_bufio_unlock(c);
1476 	dm_bufio_release(b);
1477 }
1478 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1479 
1480 static void forget_buffer_locked(struct dm_buffer *b)
1481 {
1482 	if (likely(!b->hold_count) && likely(!b->state)) {
1483 		__unlink_buffer(b);
1484 		__free_buffer_wake(b);
1485 	}
1486 }
1487 
1488 /*
1489  * Free the given buffer.
1490  *
1491  * This is just a hint, if the buffer is in use or dirty, this function
1492  * does nothing.
1493  */
1494 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1495 {
1496 	struct dm_buffer *b;
1497 
1498 	dm_bufio_lock(c);
1499 
1500 	b = __find(c, block);
1501 	if (b)
1502 		forget_buffer_locked(b);
1503 
1504 	dm_bufio_unlock(c);
1505 }
1506 EXPORT_SYMBOL_GPL(dm_bufio_forget);
1507 
1508 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks)
1509 {
1510 	struct dm_buffer *b;
1511 	sector_t end_block = block + n_blocks;
1512 
1513 	while (block < end_block) {
1514 		dm_bufio_lock(c);
1515 
1516 		b = __find_next(c, block);
1517 		if (b) {
1518 			block = b->block + 1;
1519 			forget_buffer_locked(b);
1520 		}
1521 
1522 		dm_bufio_unlock(c);
1523 
1524 		if (!b)
1525 			break;
1526 	}
1527 
1528 }
1529 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers);
1530 
1531 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1532 {
1533 	c->minimum_buffers = n;
1534 }
1535 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers);
1536 
1537 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1538 {
1539 	return c->block_size;
1540 }
1541 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1542 
1543 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1544 {
1545 	sector_t s = bdev_nr_sectors(c->bdev);
1546 	if (s >= c->start)
1547 		s -= c->start;
1548 	else
1549 		s = 0;
1550 	if (likely(c->sectors_per_block_bits >= 0))
1551 		s >>= c->sectors_per_block_bits;
1552 	else
1553 		sector_div(s, c->block_size >> SECTOR_SHIFT);
1554 	return s;
1555 }
1556 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1557 
1558 struct dm_io_client *dm_bufio_get_dm_io_client(struct dm_bufio_client *c)
1559 {
1560 	return c->dm_io;
1561 }
1562 EXPORT_SYMBOL_GPL(dm_bufio_get_dm_io_client);
1563 
1564 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1565 {
1566 	return b->block;
1567 }
1568 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1569 
1570 void *dm_bufio_get_block_data(struct dm_buffer *b)
1571 {
1572 	return b->data;
1573 }
1574 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1575 
1576 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1577 {
1578 	return b + 1;
1579 }
1580 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1581 
1582 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1583 {
1584 	return b->c;
1585 }
1586 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1587 
1588 static void drop_buffers(struct dm_bufio_client *c)
1589 {
1590 	struct dm_buffer *b;
1591 	int i;
1592 	bool warned = false;
1593 
1594 	BUG_ON(dm_bufio_in_request());
1595 
1596 	/*
1597 	 * An optimization so that the buffers are not written one-by-one.
1598 	 */
1599 	dm_bufio_write_dirty_buffers_async(c);
1600 
1601 	dm_bufio_lock(c);
1602 
1603 	while ((b = __get_unclaimed_buffer(c)))
1604 		__free_buffer_wake(b);
1605 
1606 	for (i = 0; i < LIST_SIZE; i++)
1607 		list_for_each_entry(b, &c->lru[i], lru_list) {
1608 			WARN_ON(!warned);
1609 			warned = true;
1610 			DMERR("leaked buffer %llx, hold count %u, list %d",
1611 			      (unsigned long long)b->block, b->hold_count, i);
1612 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1613 			stack_trace_print(b->stack_entries, b->stack_len, 1);
1614 			/* mark unclaimed to avoid BUG_ON below */
1615 			b->hold_count = 0;
1616 #endif
1617 		}
1618 
1619 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1620 	while ((b = __get_unclaimed_buffer(c)))
1621 		__free_buffer_wake(b);
1622 #endif
1623 
1624 	for (i = 0; i < LIST_SIZE; i++)
1625 		BUG_ON(!list_empty(&c->lru[i]));
1626 
1627 	dm_bufio_unlock(c);
1628 }
1629 
1630 /*
1631  * We may not be able to evict this buffer if IO pending or the client
1632  * is still using it.  Caller is expected to know buffer is too old.
1633  *
1634  * And if GFP_NOFS is used, we must not do any I/O because we hold
1635  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1636  * rerouted to different bufio client.
1637  */
1638 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1639 {
1640 	if (!(gfp & __GFP_FS) ||
1641 	    (static_branch_unlikely(&no_sleep_enabled) && b->c->no_sleep)) {
1642 		if (test_bit(B_READING, &b->state) ||
1643 		    test_bit(B_WRITING, &b->state) ||
1644 		    test_bit(B_DIRTY, &b->state))
1645 			return false;
1646 	}
1647 
1648 	if (b->hold_count)
1649 		return false;
1650 
1651 	__make_buffer_clean(b);
1652 	__unlink_buffer(b);
1653 	__free_buffer_wake(b);
1654 
1655 	return true;
1656 }
1657 
1658 static unsigned long get_retain_buffers(struct dm_bufio_client *c)
1659 {
1660 	unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes);
1661 	if (likely(c->sectors_per_block_bits >= 0))
1662 		retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT;
1663 	else
1664 		retain_bytes /= c->block_size;
1665 	return retain_bytes;
1666 }
1667 
1668 static void __scan(struct dm_bufio_client *c)
1669 {
1670 	int l;
1671 	struct dm_buffer *b, *tmp;
1672 	unsigned long freed = 0;
1673 	unsigned long count = c->n_buffers[LIST_CLEAN] +
1674 			      c->n_buffers[LIST_DIRTY];
1675 	unsigned long retain_target = get_retain_buffers(c);
1676 
1677 	for (l = 0; l < LIST_SIZE; l++) {
1678 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1679 			if (count - freed <= retain_target)
1680 				atomic_long_set(&c->need_shrink, 0);
1681 			if (!atomic_long_read(&c->need_shrink))
1682 				return;
1683 			if (__try_evict_buffer(b, GFP_KERNEL)) {
1684 				atomic_long_dec(&c->need_shrink);
1685 				freed++;
1686 			}
1687 			cond_resched();
1688 		}
1689 	}
1690 }
1691 
1692 static void shrink_work(struct work_struct *w)
1693 {
1694 	struct dm_bufio_client *c = container_of(w, struct dm_bufio_client, shrink_work);
1695 
1696 	dm_bufio_lock(c);
1697 	__scan(c);
1698 	dm_bufio_unlock(c);
1699 }
1700 
1701 static unsigned long dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1702 {
1703 	struct dm_bufio_client *c;
1704 
1705 	c = container_of(shrink, struct dm_bufio_client, shrinker);
1706 	atomic_long_add(sc->nr_to_scan, &c->need_shrink);
1707 	queue_work(dm_bufio_wq, &c->shrink_work);
1708 
1709 	return sc->nr_to_scan;
1710 }
1711 
1712 static unsigned long dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1713 {
1714 	struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker);
1715 	unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) +
1716 			      READ_ONCE(c->n_buffers[LIST_DIRTY]);
1717 	unsigned long retain_target = get_retain_buffers(c);
1718 	unsigned long queued_for_cleanup = atomic_long_read(&c->need_shrink);
1719 
1720 	if (unlikely(count < retain_target))
1721 		count = 0;
1722 	else
1723 		count -= retain_target;
1724 
1725 	if (unlikely(count < queued_for_cleanup))
1726 		count = 0;
1727 	else
1728 		count -= queued_for_cleanup;
1729 
1730 	return count;
1731 }
1732 
1733 /*
1734  * Create the buffering interface
1735  */
1736 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1737 					       unsigned reserved_buffers, unsigned aux_size,
1738 					       void (*alloc_callback)(struct dm_buffer *),
1739 					       void (*write_callback)(struct dm_buffer *),
1740 					       unsigned int flags)
1741 {
1742 	int r;
1743 	struct dm_bufio_client *c;
1744 	unsigned i;
1745 	char slab_name[27];
1746 
1747 	if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) {
1748 		DMERR("%s: block size not specified or is not multiple of 512b", __func__);
1749 		r = -EINVAL;
1750 		goto bad_client;
1751 	}
1752 
1753 	c = kzalloc(sizeof(*c), GFP_KERNEL);
1754 	if (!c) {
1755 		r = -ENOMEM;
1756 		goto bad_client;
1757 	}
1758 	c->buffer_tree = RB_ROOT;
1759 
1760 	c->bdev = bdev;
1761 	c->block_size = block_size;
1762 	if (is_power_of_2(block_size))
1763 		c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1764 	else
1765 		c->sectors_per_block_bits = -1;
1766 
1767 	c->alloc_callback = alloc_callback;
1768 	c->write_callback = write_callback;
1769 
1770 	if (flags & DM_BUFIO_CLIENT_NO_SLEEP) {
1771 		c->no_sleep = true;
1772 		static_branch_inc(&no_sleep_enabled);
1773 	}
1774 
1775 	for (i = 0; i < LIST_SIZE; i++) {
1776 		INIT_LIST_HEAD(&c->lru[i]);
1777 		c->n_buffers[i] = 0;
1778 	}
1779 
1780 	mutex_init(&c->lock);
1781 	spin_lock_init(&c->spinlock);
1782 	INIT_LIST_HEAD(&c->reserved_buffers);
1783 	c->need_reserved_buffers = reserved_buffers;
1784 
1785 	dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS);
1786 
1787 	init_waitqueue_head(&c->free_buffer_wait);
1788 	c->async_write_error = 0;
1789 
1790 	c->dm_io = dm_io_client_create();
1791 	if (IS_ERR(c->dm_io)) {
1792 		r = PTR_ERR(c->dm_io);
1793 		goto bad_dm_io;
1794 	}
1795 
1796 	if (block_size <= KMALLOC_MAX_SIZE &&
1797 	    (block_size < PAGE_SIZE || !is_power_of_2(block_size))) {
1798 		unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE);
1799 		snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size);
1800 		c->slab_cache = kmem_cache_create(slab_name, block_size, align,
1801 						  SLAB_RECLAIM_ACCOUNT, NULL);
1802 		if (!c->slab_cache) {
1803 			r = -ENOMEM;
1804 			goto bad;
1805 		}
1806 	}
1807 	if (aux_size)
1808 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size);
1809 	else
1810 		snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer");
1811 	c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size,
1812 					   0, SLAB_RECLAIM_ACCOUNT, NULL);
1813 	if (!c->slab_buffer) {
1814 		r = -ENOMEM;
1815 		goto bad;
1816 	}
1817 
1818 	while (c->need_reserved_buffers) {
1819 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1820 
1821 		if (!b) {
1822 			r = -ENOMEM;
1823 			goto bad;
1824 		}
1825 		__free_buffer_wake(b);
1826 	}
1827 
1828 	INIT_WORK(&c->shrink_work, shrink_work);
1829 	atomic_long_set(&c->need_shrink, 0);
1830 
1831 	c->shrinker.count_objects = dm_bufio_shrink_count;
1832 	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1833 	c->shrinker.seeks = 1;
1834 	c->shrinker.batch = 0;
1835 	r = register_shrinker(&c->shrinker, "md-%s:(%u:%u)", slab_name,
1836 			      MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
1837 	if (r)
1838 		goto bad;
1839 
1840 	mutex_lock(&dm_bufio_clients_lock);
1841 	dm_bufio_client_count++;
1842 	list_add(&c->client_list, &dm_bufio_all_clients);
1843 	__cache_size_refresh();
1844 	mutex_unlock(&dm_bufio_clients_lock);
1845 
1846 	return c;
1847 
1848 bad:
1849 	while (!list_empty(&c->reserved_buffers)) {
1850 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1851 						 struct dm_buffer, lru_list);
1852 		list_del(&b->lru_list);
1853 		free_buffer(b);
1854 	}
1855 	kmem_cache_destroy(c->slab_cache);
1856 	kmem_cache_destroy(c->slab_buffer);
1857 	dm_io_client_destroy(c->dm_io);
1858 bad_dm_io:
1859 	mutex_destroy(&c->lock);
1860 	kfree(c);
1861 bad_client:
1862 	return ERR_PTR(r);
1863 }
1864 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1865 
1866 /*
1867  * Free the buffering interface.
1868  * It is required that there are no references on any buffers.
1869  */
1870 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1871 {
1872 	unsigned i;
1873 
1874 	drop_buffers(c);
1875 
1876 	unregister_shrinker(&c->shrinker);
1877 	flush_work(&c->shrink_work);
1878 
1879 	mutex_lock(&dm_bufio_clients_lock);
1880 
1881 	list_del(&c->client_list);
1882 	dm_bufio_client_count--;
1883 	__cache_size_refresh();
1884 
1885 	mutex_unlock(&dm_bufio_clients_lock);
1886 
1887 	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1888 	BUG_ON(c->need_reserved_buffers);
1889 
1890 	while (!list_empty(&c->reserved_buffers)) {
1891 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1892 						 struct dm_buffer, lru_list);
1893 		list_del(&b->lru_list);
1894 		free_buffer(b);
1895 	}
1896 
1897 	for (i = 0; i < LIST_SIZE; i++)
1898 		if (c->n_buffers[i])
1899 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1900 
1901 	for (i = 0; i < LIST_SIZE; i++)
1902 		BUG_ON(c->n_buffers[i]);
1903 
1904 	kmem_cache_destroy(c->slab_cache);
1905 	kmem_cache_destroy(c->slab_buffer);
1906 	dm_io_client_destroy(c->dm_io);
1907 	mutex_destroy(&c->lock);
1908 	if (c->no_sleep)
1909 		static_branch_dec(&no_sleep_enabled);
1910 	kfree(c);
1911 }
1912 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1913 
1914 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start)
1915 {
1916 	c->start = start;
1917 }
1918 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset);
1919 
1920 static unsigned get_max_age_hz(void)
1921 {
1922 	unsigned max_age = READ_ONCE(dm_bufio_max_age);
1923 
1924 	if (max_age > UINT_MAX / HZ)
1925 		max_age = UINT_MAX / HZ;
1926 
1927 	return max_age * HZ;
1928 }
1929 
1930 static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1931 {
1932 	return time_after_eq(jiffies, b->last_accessed + age_hz);
1933 }
1934 
1935 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1936 {
1937 	struct dm_buffer *b, *tmp;
1938 	unsigned long retain_target = get_retain_buffers(c);
1939 	unsigned long count;
1940 	LIST_HEAD(write_list);
1941 
1942 	dm_bufio_lock(c);
1943 
1944 	__check_watermark(c, &write_list);
1945 	if (unlikely(!list_empty(&write_list))) {
1946 		dm_bufio_unlock(c);
1947 		__flush_write_list(&write_list);
1948 		dm_bufio_lock(c);
1949 	}
1950 
1951 	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1952 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1953 		if (count <= retain_target)
1954 			break;
1955 
1956 		if (!older_than(b, age_hz))
1957 			break;
1958 
1959 		if (__try_evict_buffer(b, 0))
1960 			count--;
1961 
1962 		cond_resched();
1963 	}
1964 
1965 	dm_bufio_unlock(c);
1966 }
1967 
1968 static void do_global_cleanup(struct work_struct *w)
1969 {
1970 	struct dm_bufio_client *locked_client = NULL;
1971 	struct dm_bufio_client *current_client;
1972 	struct dm_buffer *b;
1973 	unsigned spinlock_hold_count;
1974 	unsigned long threshold = dm_bufio_cache_size -
1975 		dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO;
1976 	unsigned long loops = global_num * 2;
1977 
1978 	mutex_lock(&dm_bufio_clients_lock);
1979 
1980 	while (1) {
1981 		cond_resched();
1982 
1983 		spin_lock(&global_spinlock);
1984 		if (unlikely(dm_bufio_current_allocated <= threshold))
1985 			break;
1986 
1987 		spinlock_hold_count = 0;
1988 get_next:
1989 		if (!loops--)
1990 			break;
1991 		if (unlikely(list_empty(&global_queue)))
1992 			break;
1993 		b = list_entry(global_queue.prev, struct dm_buffer, global_list);
1994 
1995 		if (b->accessed) {
1996 			b->accessed = 0;
1997 			list_move(&b->global_list, &global_queue);
1998 			if (likely(++spinlock_hold_count < 16))
1999 				goto get_next;
2000 			spin_unlock(&global_spinlock);
2001 			continue;
2002 		}
2003 
2004 		current_client = b->c;
2005 		if (unlikely(current_client != locked_client)) {
2006 			if (locked_client)
2007 				dm_bufio_unlock(locked_client);
2008 
2009 			if (!dm_bufio_trylock(current_client)) {
2010 				spin_unlock(&global_spinlock);
2011 				dm_bufio_lock(current_client);
2012 				locked_client = current_client;
2013 				continue;
2014 			}
2015 
2016 			locked_client = current_client;
2017 		}
2018 
2019 		spin_unlock(&global_spinlock);
2020 
2021 		if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) {
2022 			spin_lock(&global_spinlock);
2023 			list_move(&b->global_list, &global_queue);
2024 			spin_unlock(&global_spinlock);
2025 		}
2026 	}
2027 
2028 	spin_unlock(&global_spinlock);
2029 
2030 	if (locked_client)
2031 		dm_bufio_unlock(locked_client);
2032 
2033 	mutex_unlock(&dm_bufio_clients_lock);
2034 }
2035 
2036 static void cleanup_old_buffers(void)
2037 {
2038 	unsigned long max_age_hz = get_max_age_hz();
2039 	struct dm_bufio_client *c;
2040 
2041 	mutex_lock(&dm_bufio_clients_lock);
2042 
2043 	__cache_size_refresh();
2044 
2045 	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
2046 		__evict_old_buffers(c, max_age_hz);
2047 
2048 	mutex_unlock(&dm_bufio_clients_lock);
2049 }
2050 
2051 static void work_fn(struct work_struct *w)
2052 {
2053 	cleanup_old_buffers();
2054 
2055 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2056 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2057 }
2058 
2059 /*----------------------------------------------------------------
2060  * Module setup
2061  *--------------------------------------------------------------*/
2062 
2063 /*
2064  * This is called only once for the whole dm_bufio module.
2065  * It initializes memory limit.
2066  */
2067 static int __init dm_bufio_init(void)
2068 {
2069 	__u64 mem;
2070 
2071 	dm_bufio_allocated_kmem_cache = 0;
2072 	dm_bufio_allocated_get_free_pages = 0;
2073 	dm_bufio_allocated_vmalloc = 0;
2074 	dm_bufio_current_allocated = 0;
2075 
2076 	mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(),
2077 			       DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT;
2078 
2079 	if (mem > ULONG_MAX)
2080 		mem = ULONG_MAX;
2081 
2082 #ifdef CONFIG_MMU
2083 	if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100))
2084 		mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100);
2085 #endif
2086 
2087 	dm_bufio_default_cache_size = mem;
2088 
2089 	mutex_lock(&dm_bufio_clients_lock);
2090 	__cache_size_refresh();
2091 	mutex_unlock(&dm_bufio_clients_lock);
2092 
2093 	dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0);
2094 	if (!dm_bufio_wq)
2095 		return -ENOMEM;
2096 
2097 	INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn);
2098 	INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup);
2099 	queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work,
2100 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
2101 
2102 	return 0;
2103 }
2104 
2105 /*
2106  * This is called once when unloading the dm_bufio module.
2107  */
2108 static void __exit dm_bufio_exit(void)
2109 {
2110 	int bug = 0;
2111 
2112 	cancel_delayed_work_sync(&dm_bufio_cleanup_old_work);
2113 	destroy_workqueue(dm_bufio_wq);
2114 
2115 	if (dm_bufio_client_count) {
2116 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
2117 			__func__, dm_bufio_client_count);
2118 		bug = 1;
2119 	}
2120 
2121 	if (dm_bufio_current_allocated) {
2122 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
2123 			__func__, dm_bufio_current_allocated);
2124 		bug = 1;
2125 	}
2126 
2127 	if (dm_bufio_allocated_get_free_pages) {
2128 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
2129 		       __func__, dm_bufio_allocated_get_free_pages);
2130 		bug = 1;
2131 	}
2132 
2133 	if (dm_bufio_allocated_vmalloc) {
2134 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
2135 		       __func__, dm_bufio_allocated_vmalloc);
2136 		bug = 1;
2137 	}
2138 
2139 	BUG_ON(bug);
2140 }
2141 
2142 module_init(dm_bufio_init)
2143 module_exit(dm_bufio_exit)
2144 
2145 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
2146 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
2147 
2148 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
2149 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
2150 
2151 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR);
2152 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
2153 
2154 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
2155 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
2156 
2157 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
2158 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
2159 
2160 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
2161 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
2162 
2163 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
2164 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
2165 
2166 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
2167 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
2168 
2169 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2170 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
2171 MODULE_LICENSE("GPL");
2172