xref: /openbmc/linux/drivers/md/dm-bufio.c (revision 0d456bad)
1 /*
2  * Copyright (C) 2009-2011 Red Hat, Inc.
3  *
4  * Author: Mikulas Patocka <mpatocka@redhat.com>
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include "dm-bufio.h"
10 
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
17 
18 #define DM_MSG_PREFIX "bufio"
19 
20 /*
21  * Memory management policy:
22  *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23  *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24  *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25  *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26  *	dirty buffers.
27  */
28 #define DM_BUFIO_MIN_BUFFERS		8
29 
30 #define DM_BUFIO_MEMORY_PERCENT		2
31 #define DM_BUFIO_VMALLOC_PERCENT	25
32 #define DM_BUFIO_WRITEBACK_PERCENT	75
33 
34 /*
35  * Check buffer ages in this interval (seconds)
36  */
37 #define DM_BUFIO_WORK_TIMER_SECS	10
38 
39 /*
40  * Free buffers when they are older than this (seconds)
41  */
42 #define DM_BUFIO_DEFAULT_AGE_SECS	60
43 
44 /*
45  * The number of bvec entries that are embedded directly in the buffer.
46  * If the chunk size is larger, dm-io is used to do the io.
47  */
48 #define DM_BUFIO_INLINE_VECS		16
49 
50 /*
51  * Buffer hash
52  */
53 #define DM_BUFIO_HASH_BITS	20
54 #define DM_BUFIO_HASH(block) \
55 	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 	 ((1 << DM_BUFIO_HASH_BITS) - 1))
57 
58 /*
59  * Don't try to use kmem_cache_alloc for blocks larger than this.
60  * For explanation, see alloc_buffer_data below.
61  */
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
64 
65 /*
66  * dm_buffer->list_mode
67  */
68 #define LIST_CLEAN	0
69 #define LIST_DIRTY	1
70 #define LIST_SIZE	2
71 
72 /*
73  * Linking of buffers:
74  *	All buffers are linked to cache_hash with their hash_list field.
75  *
76  *	Clean buffers that are not being written (B_WRITING not set)
77  *	are linked to lru[LIST_CLEAN] with their lru_list field.
78  *
79  *	Dirty and clean buffers that are being written are linked to
80  *	lru[LIST_DIRTY] with their lru_list field. When the write
81  *	finishes, the buffer cannot be relinked immediately (because we
82  *	are in an interrupt context and relinking requires process
83  *	context), so some clean-not-writing buffers can be held on
84  *	dirty_lru too.  They are later added to lru in the process
85  *	context.
86  */
87 struct dm_bufio_client {
88 	struct mutex lock;
89 
90 	struct list_head lru[LIST_SIZE];
91 	unsigned long n_buffers[LIST_SIZE];
92 
93 	struct block_device *bdev;
94 	unsigned block_size;
95 	unsigned char sectors_per_block_bits;
96 	unsigned char pages_per_block_bits;
97 	unsigned char blocks_per_page_bits;
98 	unsigned aux_size;
99 	void (*alloc_callback)(struct dm_buffer *);
100 	void (*write_callback)(struct dm_buffer *);
101 
102 	struct dm_io_client *dm_io;
103 
104 	struct list_head reserved_buffers;
105 	unsigned need_reserved_buffers;
106 
107 	struct hlist_head *cache_hash;
108 	wait_queue_head_t free_buffer_wait;
109 
110 	int async_write_error;
111 
112 	struct list_head client_list;
113 	struct shrinker shrinker;
114 };
115 
116 /*
117  * Buffer state bits.
118  */
119 #define B_READING	0
120 #define B_WRITING	1
121 #define B_DIRTY		2
122 
123 /*
124  * Describes how the block was allocated:
125  * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126  * See the comment at alloc_buffer_data.
127  */
128 enum data_mode {
129 	DATA_MODE_SLAB = 0,
130 	DATA_MODE_GET_FREE_PAGES = 1,
131 	DATA_MODE_VMALLOC = 2,
132 	DATA_MODE_LIMIT = 3
133 };
134 
135 struct dm_buffer {
136 	struct hlist_node hash_list;
137 	struct list_head lru_list;
138 	sector_t block;
139 	void *data;
140 	enum data_mode data_mode;
141 	unsigned char list_mode;		/* LIST_* */
142 	unsigned hold_count;
143 	int read_error;
144 	int write_error;
145 	unsigned long state;
146 	unsigned long last_accessed;
147 	struct dm_bufio_client *c;
148 	struct bio bio;
149 	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
150 };
151 
152 /*----------------------------------------------------------------*/
153 
154 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
155 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
156 
157 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
158 {
159 	unsigned ret = c->blocks_per_page_bits - 1;
160 
161 	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
162 
163 	return ret;
164 }
165 
166 #define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
167 #define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
168 
169 #define dm_bufio_in_request()	(!!current->bio_list)
170 
171 static void dm_bufio_lock(struct dm_bufio_client *c)
172 {
173 	mutex_lock_nested(&c->lock, dm_bufio_in_request());
174 }
175 
176 static int dm_bufio_trylock(struct dm_bufio_client *c)
177 {
178 	return mutex_trylock(&c->lock);
179 }
180 
181 static void dm_bufio_unlock(struct dm_bufio_client *c)
182 {
183 	mutex_unlock(&c->lock);
184 }
185 
186 /*
187  * FIXME Move to sched.h?
188  */
189 #ifdef CONFIG_PREEMPT_VOLUNTARY
190 #  define dm_bufio_cond_resched()		\
191 do {						\
192 	if (unlikely(need_resched()))		\
193 		_cond_resched();		\
194 } while (0)
195 #else
196 #  define dm_bufio_cond_resched()                do { } while (0)
197 #endif
198 
199 /*----------------------------------------------------------------*/
200 
201 /*
202  * Default cache size: available memory divided by the ratio.
203  */
204 static unsigned long dm_bufio_default_cache_size;
205 
206 /*
207  * Total cache size set by the user.
208  */
209 static unsigned long dm_bufio_cache_size;
210 
211 /*
212  * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
213  * at any time.  If it disagrees, the user has changed cache size.
214  */
215 static unsigned long dm_bufio_cache_size_latch;
216 
217 static DEFINE_SPINLOCK(param_spinlock);
218 
219 /*
220  * Buffers are freed after this timeout
221  */
222 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
223 
224 static unsigned long dm_bufio_peak_allocated;
225 static unsigned long dm_bufio_allocated_kmem_cache;
226 static unsigned long dm_bufio_allocated_get_free_pages;
227 static unsigned long dm_bufio_allocated_vmalloc;
228 static unsigned long dm_bufio_current_allocated;
229 
230 /*----------------------------------------------------------------*/
231 
232 /*
233  * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
234  */
235 static unsigned long dm_bufio_cache_size_per_client;
236 
237 /*
238  * The current number of clients.
239  */
240 static int dm_bufio_client_count;
241 
242 /*
243  * The list of all clients.
244  */
245 static LIST_HEAD(dm_bufio_all_clients);
246 
247 /*
248  * This mutex protects dm_bufio_cache_size_latch,
249  * dm_bufio_cache_size_per_client and dm_bufio_client_count
250  */
251 static DEFINE_MUTEX(dm_bufio_clients_lock);
252 
253 /*----------------------------------------------------------------*/
254 
255 static void adjust_total_allocated(enum data_mode data_mode, long diff)
256 {
257 	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
258 		&dm_bufio_allocated_kmem_cache,
259 		&dm_bufio_allocated_get_free_pages,
260 		&dm_bufio_allocated_vmalloc,
261 	};
262 
263 	spin_lock(&param_spinlock);
264 
265 	*class_ptr[data_mode] += diff;
266 
267 	dm_bufio_current_allocated += diff;
268 
269 	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
270 		dm_bufio_peak_allocated = dm_bufio_current_allocated;
271 
272 	spin_unlock(&param_spinlock);
273 }
274 
275 /*
276  * Change the number of clients and recalculate per-client limit.
277  */
278 static void __cache_size_refresh(void)
279 {
280 	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
281 	BUG_ON(dm_bufio_client_count < 0);
282 
283 	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
284 
285 	/*
286 	 * Use default if set to 0 and report the actual cache size used.
287 	 */
288 	if (!dm_bufio_cache_size_latch) {
289 		(void)cmpxchg(&dm_bufio_cache_size, 0,
290 			      dm_bufio_default_cache_size);
291 		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
292 	}
293 
294 	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
295 					 (dm_bufio_client_count ? : 1);
296 }
297 
298 /*
299  * Allocating buffer data.
300  *
301  * Small buffers are allocated with kmem_cache, to use space optimally.
302  *
303  * For large buffers, we choose between get_free_pages and vmalloc.
304  * Each has advantages and disadvantages.
305  *
306  * __get_free_pages can randomly fail if the memory is fragmented.
307  * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
308  * as low as 128M) so using it for caching is not appropriate.
309  *
310  * If the allocation may fail we use __get_free_pages. Memory fragmentation
311  * won't have a fatal effect here, but it just causes flushes of some other
312  * buffers and more I/O will be performed. Don't use __get_free_pages if it
313  * always fails (i.e. order >= MAX_ORDER).
314  *
315  * If the allocation shouldn't fail we use __vmalloc. This is only for the
316  * initial reserve allocation, so there's no risk of wasting all vmalloc
317  * space.
318  */
319 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
320 			       enum data_mode *data_mode)
321 {
322 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
323 		*data_mode = DATA_MODE_SLAB;
324 		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
325 	}
326 
327 	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
328 	    gfp_mask & __GFP_NORETRY) {
329 		*data_mode = DATA_MODE_GET_FREE_PAGES;
330 		return (void *)__get_free_pages(gfp_mask,
331 						c->pages_per_block_bits);
332 	}
333 
334 	*data_mode = DATA_MODE_VMALLOC;
335 	return __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
336 }
337 
338 /*
339  * Free buffer's data.
340  */
341 static void free_buffer_data(struct dm_bufio_client *c,
342 			     void *data, enum data_mode data_mode)
343 {
344 	switch (data_mode) {
345 	case DATA_MODE_SLAB:
346 		kmem_cache_free(DM_BUFIO_CACHE(c), data);
347 		break;
348 
349 	case DATA_MODE_GET_FREE_PAGES:
350 		free_pages((unsigned long)data, c->pages_per_block_bits);
351 		break;
352 
353 	case DATA_MODE_VMALLOC:
354 		vfree(data);
355 		break;
356 
357 	default:
358 		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
359 		       data_mode);
360 		BUG();
361 	}
362 }
363 
364 /*
365  * Allocate buffer and its data.
366  */
367 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
368 {
369 	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
370 				      gfp_mask);
371 
372 	if (!b)
373 		return NULL;
374 
375 	b->c = c;
376 
377 	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
378 	if (!b->data) {
379 		kfree(b);
380 		return NULL;
381 	}
382 
383 	adjust_total_allocated(b->data_mode, (long)c->block_size);
384 
385 	return b;
386 }
387 
388 /*
389  * Free buffer and its data.
390  */
391 static void free_buffer(struct dm_buffer *b)
392 {
393 	struct dm_bufio_client *c = b->c;
394 
395 	adjust_total_allocated(b->data_mode, -(long)c->block_size);
396 
397 	free_buffer_data(c, b->data, b->data_mode);
398 	kfree(b);
399 }
400 
401 /*
402  * Link buffer to the hash list and clean or dirty queue.
403  */
404 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
405 {
406 	struct dm_bufio_client *c = b->c;
407 
408 	c->n_buffers[dirty]++;
409 	b->block = block;
410 	b->list_mode = dirty;
411 	list_add(&b->lru_list, &c->lru[dirty]);
412 	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
413 	b->last_accessed = jiffies;
414 }
415 
416 /*
417  * Unlink buffer from the hash list and dirty or clean queue.
418  */
419 static void __unlink_buffer(struct dm_buffer *b)
420 {
421 	struct dm_bufio_client *c = b->c;
422 
423 	BUG_ON(!c->n_buffers[b->list_mode]);
424 
425 	c->n_buffers[b->list_mode]--;
426 	hlist_del(&b->hash_list);
427 	list_del(&b->lru_list);
428 }
429 
430 /*
431  * Place the buffer to the head of dirty or clean LRU queue.
432  */
433 static void __relink_lru(struct dm_buffer *b, int dirty)
434 {
435 	struct dm_bufio_client *c = b->c;
436 
437 	BUG_ON(!c->n_buffers[b->list_mode]);
438 
439 	c->n_buffers[b->list_mode]--;
440 	c->n_buffers[dirty]++;
441 	b->list_mode = dirty;
442 	list_move(&b->lru_list, &c->lru[dirty]);
443 }
444 
445 /*----------------------------------------------------------------
446  * Submit I/O on the buffer.
447  *
448  * Bio interface is faster but it has some problems:
449  *	the vector list is limited (increasing this limit increases
450  *	memory-consumption per buffer, so it is not viable);
451  *
452  *	the memory must be direct-mapped, not vmalloced;
453  *
454  *	the I/O driver can reject requests spuriously if it thinks that
455  *	the requests are too big for the device or if they cross a
456  *	controller-defined memory boundary.
457  *
458  * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
459  * it is not vmalloced, try using the bio interface.
460  *
461  * If the buffer is big, if it is vmalloced or if the underlying device
462  * rejects the bio because it is too large, use dm-io layer to do the I/O.
463  * The dm-io layer splits the I/O into multiple requests, avoiding the above
464  * shortcomings.
465  *--------------------------------------------------------------*/
466 
467 /*
468  * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
469  * that the request was handled directly with bio interface.
470  */
471 static void dmio_complete(unsigned long error, void *context)
472 {
473 	struct dm_buffer *b = context;
474 
475 	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
476 }
477 
478 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
479 		     bio_end_io_t *end_io)
480 {
481 	int r;
482 	struct dm_io_request io_req = {
483 		.bi_rw = rw,
484 		.notify.fn = dmio_complete,
485 		.notify.context = b,
486 		.client = b->c->dm_io,
487 	};
488 	struct dm_io_region region = {
489 		.bdev = b->c->bdev,
490 		.sector = block << b->c->sectors_per_block_bits,
491 		.count = b->c->block_size >> SECTOR_SHIFT,
492 	};
493 
494 	if (b->data_mode != DATA_MODE_VMALLOC) {
495 		io_req.mem.type = DM_IO_KMEM;
496 		io_req.mem.ptr.addr = b->data;
497 	} else {
498 		io_req.mem.type = DM_IO_VMA;
499 		io_req.mem.ptr.vma = b->data;
500 	}
501 
502 	b->bio.bi_end_io = end_io;
503 
504 	r = dm_io(&io_req, 1, &region, NULL);
505 	if (r)
506 		end_io(&b->bio, r);
507 }
508 
509 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
510 			   bio_end_io_t *end_io)
511 {
512 	char *ptr;
513 	int len;
514 
515 	bio_init(&b->bio);
516 	b->bio.bi_io_vec = b->bio_vec;
517 	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
518 	b->bio.bi_sector = block << b->c->sectors_per_block_bits;
519 	b->bio.bi_bdev = b->c->bdev;
520 	b->bio.bi_end_io = end_io;
521 
522 	/*
523 	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
524 	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
525 	 */
526 	ptr = b->data;
527 	len = b->c->block_size;
528 
529 	if (len >= PAGE_SIZE)
530 		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
531 	else
532 		BUG_ON((unsigned long)ptr & (len - 1));
533 
534 	do {
535 		if (!bio_add_page(&b->bio, virt_to_page(ptr),
536 				  len < PAGE_SIZE ? len : PAGE_SIZE,
537 				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
538 			BUG_ON(b->c->block_size <= PAGE_SIZE);
539 			use_dmio(b, rw, block, end_io);
540 			return;
541 		}
542 
543 		len -= PAGE_SIZE;
544 		ptr += PAGE_SIZE;
545 	} while (len > 0);
546 
547 	submit_bio(rw, &b->bio);
548 }
549 
550 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
551 		      bio_end_io_t *end_io)
552 {
553 	if (rw == WRITE && b->c->write_callback)
554 		b->c->write_callback(b);
555 
556 	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
557 	    b->data_mode != DATA_MODE_VMALLOC)
558 		use_inline_bio(b, rw, block, end_io);
559 	else
560 		use_dmio(b, rw, block, end_io);
561 }
562 
563 /*----------------------------------------------------------------
564  * Writing dirty buffers
565  *--------------------------------------------------------------*/
566 
567 /*
568  * The endio routine for write.
569  *
570  * Set the error, clear B_WRITING bit and wake anyone who was waiting on
571  * it.
572  */
573 static void write_endio(struct bio *bio, int error)
574 {
575 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
576 
577 	b->write_error = error;
578 	if (unlikely(error)) {
579 		struct dm_bufio_client *c = b->c;
580 		(void)cmpxchg(&c->async_write_error, 0, error);
581 	}
582 
583 	BUG_ON(!test_bit(B_WRITING, &b->state));
584 
585 	smp_mb__before_clear_bit();
586 	clear_bit(B_WRITING, &b->state);
587 	smp_mb__after_clear_bit();
588 
589 	wake_up_bit(&b->state, B_WRITING);
590 }
591 
592 /*
593  * This function is called when wait_on_bit is actually waiting.
594  */
595 static int do_io_schedule(void *word)
596 {
597 	io_schedule();
598 
599 	return 0;
600 }
601 
602 /*
603  * Initiate a write on a dirty buffer, but don't wait for it.
604  *
605  * - If the buffer is not dirty, exit.
606  * - If there some previous write going on, wait for it to finish (we can't
607  *   have two writes on the same buffer simultaneously).
608  * - Submit our write and don't wait on it. We set B_WRITING indicating
609  *   that there is a write in progress.
610  */
611 static void __write_dirty_buffer(struct dm_buffer *b)
612 {
613 	if (!test_bit(B_DIRTY, &b->state))
614 		return;
615 
616 	clear_bit(B_DIRTY, &b->state);
617 	wait_on_bit_lock(&b->state, B_WRITING,
618 			 do_io_schedule, TASK_UNINTERRUPTIBLE);
619 
620 	submit_io(b, WRITE, b->block, write_endio);
621 }
622 
623 /*
624  * Wait until any activity on the buffer finishes.  Possibly write the
625  * buffer if it is dirty.  When this function finishes, there is no I/O
626  * running on the buffer and the buffer is not dirty.
627  */
628 static void __make_buffer_clean(struct dm_buffer *b)
629 {
630 	BUG_ON(b->hold_count);
631 
632 	if (!b->state)	/* fast case */
633 		return;
634 
635 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
636 	__write_dirty_buffer(b);
637 	wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
638 }
639 
640 /*
641  * Find some buffer that is not held by anybody, clean it, unlink it and
642  * return it.
643  */
644 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
645 {
646 	struct dm_buffer *b;
647 
648 	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
649 		BUG_ON(test_bit(B_WRITING, &b->state));
650 		BUG_ON(test_bit(B_DIRTY, &b->state));
651 
652 		if (!b->hold_count) {
653 			__make_buffer_clean(b);
654 			__unlink_buffer(b);
655 			return b;
656 		}
657 		dm_bufio_cond_resched();
658 	}
659 
660 	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
661 		BUG_ON(test_bit(B_READING, &b->state));
662 
663 		if (!b->hold_count) {
664 			__make_buffer_clean(b);
665 			__unlink_buffer(b);
666 			return b;
667 		}
668 		dm_bufio_cond_resched();
669 	}
670 
671 	return NULL;
672 }
673 
674 /*
675  * Wait until some other threads free some buffer or release hold count on
676  * some buffer.
677  *
678  * This function is entered with c->lock held, drops it and regains it
679  * before exiting.
680  */
681 static void __wait_for_free_buffer(struct dm_bufio_client *c)
682 {
683 	DECLARE_WAITQUEUE(wait, current);
684 
685 	add_wait_queue(&c->free_buffer_wait, &wait);
686 	set_task_state(current, TASK_UNINTERRUPTIBLE);
687 	dm_bufio_unlock(c);
688 
689 	io_schedule();
690 
691 	set_task_state(current, TASK_RUNNING);
692 	remove_wait_queue(&c->free_buffer_wait, &wait);
693 
694 	dm_bufio_lock(c);
695 }
696 
697 enum new_flag {
698 	NF_FRESH = 0,
699 	NF_READ = 1,
700 	NF_GET = 2,
701 	NF_PREFETCH = 3
702 };
703 
704 /*
705  * Allocate a new buffer. If the allocation is not possible, wait until
706  * some other thread frees a buffer.
707  *
708  * May drop the lock and regain it.
709  */
710 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
711 {
712 	struct dm_buffer *b;
713 
714 	/*
715 	 * dm-bufio is resistant to allocation failures (it just keeps
716 	 * one buffer reserved in cases all the allocations fail).
717 	 * So set flags to not try too hard:
718 	 *	GFP_NOIO: don't recurse into the I/O layer
719 	 *	__GFP_NORETRY: don't retry and rather return failure
720 	 *	__GFP_NOMEMALLOC: don't use emergency reserves
721 	 *	__GFP_NOWARN: don't print a warning in case of failure
722 	 *
723 	 * For debugging, if we set the cache size to 1, no new buffers will
724 	 * be allocated.
725 	 */
726 	while (1) {
727 		if (dm_bufio_cache_size_latch != 1) {
728 			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
729 			if (b)
730 				return b;
731 		}
732 
733 		if (nf == NF_PREFETCH)
734 			return NULL;
735 
736 		if (!list_empty(&c->reserved_buffers)) {
737 			b = list_entry(c->reserved_buffers.next,
738 				       struct dm_buffer, lru_list);
739 			list_del(&b->lru_list);
740 			c->need_reserved_buffers++;
741 
742 			return b;
743 		}
744 
745 		b = __get_unclaimed_buffer(c);
746 		if (b)
747 			return b;
748 
749 		__wait_for_free_buffer(c);
750 	}
751 }
752 
753 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
754 {
755 	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
756 
757 	if (!b)
758 		return NULL;
759 
760 	if (c->alloc_callback)
761 		c->alloc_callback(b);
762 
763 	return b;
764 }
765 
766 /*
767  * Free a buffer and wake other threads waiting for free buffers.
768  */
769 static void __free_buffer_wake(struct dm_buffer *b)
770 {
771 	struct dm_bufio_client *c = b->c;
772 
773 	if (!c->need_reserved_buffers)
774 		free_buffer(b);
775 	else {
776 		list_add(&b->lru_list, &c->reserved_buffers);
777 		c->need_reserved_buffers--;
778 	}
779 
780 	wake_up(&c->free_buffer_wait);
781 }
782 
783 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
784 {
785 	struct dm_buffer *b, *tmp;
786 
787 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
788 		BUG_ON(test_bit(B_READING, &b->state));
789 
790 		if (!test_bit(B_DIRTY, &b->state) &&
791 		    !test_bit(B_WRITING, &b->state)) {
792 			__relink_lru(b, LIST_CLEAN);
793 			continue;
794 		}
795 
796 		if (no_wait && test_bit(B_WRITING, &b->state))
797 			return;
798 
799 		__write_dirty_buffer(b);
800 		dm_bufio_cond_resched();
801 	}
802 }
803 
804 /*
805  * Get writeback threshold and buffer limit for a given client.
806  */
807 static void __get_memory_limit(struct dm_bufio_client *c,
808 			       unsigned long *threshold_buffers,
809 			       unsigned long *limit_buffers)
810 {
811 	unsigned long buffers;
812 
813 	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
814 		mutex_lock(&dm_bufio_clients_lock);
815 		__cache_size_refresh();
816 		mutex_unlock(&dm_bufio_clients_lock);
817 	}
818 
819 	buffers = dm_bufio_cache_size_per_client >>
820 		  (c->sectors_per_block_bits + SECTOR_SHIFT);
821 
822 	if (buffers < DM_BUFIO_MIN_BUFFERS)
823 		buffers = DM_BUFIO_MIN_BUFFERS;
824 
825 	*limit_buffers = buffers;
826 	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
827 }
828 
829 /*
830  * Check if we're over watermark.
831  * If we are over threshold_buffers, start freeing buffers.
832  * If we're over "limit_buffers", block until we get under the limit.
833  */
834 static void __check_watermark(struct dm_bufio_client *c)
835 {
836 	unsigned long threshold_buffers, limit_buffers;
837 
838 	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
839 
840 	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
841 	       limit_buffers) {
842 
843 		struct dm_buffer *b = __get_unclaimed_buffer(c);
844 
845 		if (!b)
846 			return;
847 
848 		__free_buffer_wake(b);
849 		dm_bufio_cond_resched();
850 	}
851 
852 	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
853 		__write_dirty_buffers_async(c, 1);
854 }
855 
856 /*
857  * Find a buffer in the hash.
858  */
859 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
860 {
861 	struct dm_buffer *b;
862 	struct hlist_node *hn;
863 
864 	hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)],
865 			     hash_list) {
866 		dm_bufio_cond_resched();
867 		if (b->block == block)
868 			return b;
869 	}
870 
871 	return NULL;
872 }
873 
874 /*----------------------------------------------------------------
875  * Getting a buffer
876  *--------------------------------------------------------------*/
877 
878 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
879 				     enum new_flag nf, int *need_submit)
880 {
881 	struct dm_buffer *b, *new_b = NULL;
882 
883 	*need_submit = 0;
884 
885 	b = __find(c, block);
886 	if (b)
887 		goto found_buffer;
888 
889 	if (nf == NF_GET)
890 		return NULL;
891 
892 	new_b = __alloc_buffer_wait(c, nf);
893 	if (!new_b)
894 		return NULL;
895 
896 	/*
897 	 * We've had a period where the mutex was unlocked, so need to
898 	 * recheck the hash table.
899 	 */
900 	b = __find(c, block);
901 	if (b) {
902 		__free_buffer_wake(new_b);
903 		goto found_buffer;
904 	}
905 
906 	__check_watermark(c);
907 
908 	b = new_b;
909 	b->hold_count = 1;
910 	b->read_error = 0;
911 	b->write_error = 0;
912 	__link_buffer(b, block, LIST_CLEAN);
913 
914 	if (nf == NF_FRESH) {
915 		b->state = 0;
916 		return b;
917 	}
918 
919 	b->state = 1 << B_READING;
920 	*need_submit = 1;
921 
922 	return b;
923 
924 found_buffer:
925 	if (nf == NF_PREFETCH)
926 		return NULL;
927 	/*
928 	 * Note: it is essential that we don't wait for the buffer to be
929 	 * read if dm_bufio_get function is used. Both dm_bufio_get and
930 	 * dm_bufio_prefetch can be used in the driver request routine.
931 	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
932 	 * the same buffer, it would deadlock if we waited.
933 	 */
934 	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
935 		return NULL;
936 
937 	b->hold_count++;
938 	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
939 		     test_bit(B_WRITING, &b->state));
940 	return b;
941 }
942 
943 /*
944  * The endio routine for reading: set the error, clear the bit and wake up
945  * anyone waiting on the buffer.
946  */
947 static void read_endio(struct bio *bio, int error)
948 {
949 	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
950 
951 	b->read_error = error;
952 
953 	BUG_ON(!test_bit(B_READING, &b->state));
954 
955 	smp_mb__before_clear_bit();
956 	clear_bit(B_READING, &b->state);
957 	smp_mb__after_clear_bit();
958 
959 	wake_up_bit(&b->state, B_READING);
960 }
961 
962 /*
963  * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
964  * functions is similar except that dm_bufio_new doesn't read the
965  * buffer from the disk (assuming that the caller overwrites all the data
966  * and uses dm_bufio_mark_buffer_dirty to write new data back).
967  */
968 static void *new_read(struct dm_bufio_client *c, sector_t block,
969 		      enum new_flag nf, struct dm_buffer **bp)
970 {
971 	int need_submit;
972 	struct dm_buffer *b;
973 
974 	dm_bufio_lock(c);
975 	b = __bufio_new(c, block, nf, &need_submit);
976 	dm_bufio_unlock(c);
977 
978 	if (!b)
979 		return b;
980 
981 	if (need_submit)
982 		submit_io(b, READ, b->block, read_endio);
983 
984 	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
985 
986 	if (b->read_error) {
987 		int error = b->read_error;
988 
989 		dm_bufio_release(b);
990 
991 		return ERR_PTR(error);
992 	}
993 
994 	*bp = b;
995 
996 	return b->data;
997 }
998 
999 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1000 		   struct dm_buffer **bp)
1001 {
1002 	return new_read(c, block, NF_GET, bp);
1003 }
1004 EXPORT_SYMBOL_GPL(dm_bufio_get);
1005 
1006 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1007 		    struct dm_buffer **bp)
1008 {
1009 	BUG_ON(dm_bufio_in_request());
1010 
1011 	return new_read(c, block, NF_READ, bp);
1012 }
1013 EXPORT_SYMBOL_GPL(dm_bufio_read);
1014 
1015 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1016 		   struct dm_buffer **bp)
1017 {
1018 	BUG_ON(dm_bufio_in_request());
1019 
1020 	return new_read(c, block, NF_FRESH, bp);
1021 }
1022 EXPORT_SYMBOL_GPL(dm_bufio_new);
1023 
1024 void dm_bufio_prefetch(struct dm_bufio_client *c,
1025 		       sector_t block, unsigned n_blocks)
1026 {
1027 	struct blk_plug plug;
1028 
1029 	blk_start_plug(&plug);
1030 	dm_bufio_lock(c);
1031 
1032 	for (; n_blocks--; block++) {
1033 		int need_submit;
1034 		struct dm_buffer *b;
1035 		b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
1036 		if (unlikely(b != NULL)) {
1037 			dm_bufio_unlock(c);
1038 
1039 			if (need_submit)
1040 				submit_io(b, READ, b->block, read_endio);
1041 			dm_bufio_release(b);
1042 
1043 			dm_bufio_cond_resched();
1044 
1045 			if (!n_blocks)
1046 				goto flush_plug;
1047 			dm_bufio_lock(c);
1048 		}
1049 
1050 	}
1051 
1052 	dm_bufio_unlock(c);
1053 
1054 flush_plug:
1055 	blk_finish_plug(&plug);
1056 }
1057 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1058 
1059 void dm_bufio_release(struct dm_buffer *b)
1060 {
1061 	struct dm_bufio_client *c = b->c;
1062 
1063 	dm_bufio_lock(c);
1064 
1065 	BUG_ON(!b->hold_count);
1066 
1067 	b->hold_count--;
1068 	if (!b->hold_count) {
1069 		wake_up(&c->free_buffer_wait);
1070 
1071 		/*
1072 		 * If there were errors on the buffer, and the buffer is not
1073 		 * to be written, free the buffer. There is no point in caching
1074 		 * invalid buffer.
1075 		 */
1076 		if ((b->read_error || b->write_error) &&
1077 		    !test_bit(B_READING, &b->state) &&
1078 		    !test_bit(B_WRITING, &b->state) &&
1079 		    !test_bit(B_DIRTY, &b->state)) {
1080 			__unlink_buffer(b);
1081 			__free_buffer_wake(b);
1082 		}
1083 	}
1084 
1085 	dm_bufio_unlock(c);
1086 }
1087 EXPORT_SYMBOL_GPL(dm_bufio_release);
1088 
1089 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1090 {
1091 	struct dm_bufio_client *c = b->c;
1092 
1093 	dm_bufio_lock(c);
1094 
1095 	BUG_ON(test_bit(B_READING, &b->state));
1096 
1097 	if (!test_and_set_bit(B_DIRTY, &b->state))
1098 		__relink_lru(b, LIST_DIRTY);
1099 
1100 	dm_bufio_unlock(c);
1101 }
1102 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1103 
1104 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1105 {
1106 	BUG_ON(dm_bufio_in_request());
1107 
1108 	dm_bufio_lock(c);
1109 	__write_dirty_buffers_async(c, 0);
1110 	dm_bufio_unlock(c);
1111 }
1112 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1113 
1114 /*
1115  * For performance, it is essential that the buffers are written asynchronously
1116  * and simultaneously (so that the block layer can merge the writes) and then
1117  * waited upon.
1118  *
1119  * Finally, we flush hardware disk cache.
1120  */
1121 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1122 {
1123 	int a, f;
1124 	unsigned long buffers_processed = 0;
1125 	struct dm_buffer *b, *tmp;
1126 
1127 	dm_bufio_lock(c);
1128 	__write_dirty_buffers_async(c, 0);
1129 
1130 again:
1131 	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1132 		int dropped_lock = 0;
1133 
1134 		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1135 			buffers_processed++;
1136 
1137 		BUG_ON(test_bit(B_READING, &b->state));
1138 
1139 		if (test_bit(B_WRITING, &b->state)) {
1140 			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1141 				dropped_lock = 1;
1142 				b->hold_count++;
1143 				dm_bufio_unlock(c);
1144 				wait_on_bit(&b->state, B_WRITING,
1145 					    do_io_schedule,
1146 					    TASK_UNINTERRUPTIBLE);
1147 				dm_bufio_lock(c);
1148 				b->hold_count--;
1149 			} else
1150 				wait_on_bit(&b->state, B_WRITING,
1151 					    do_io_schedule,
1152 					    TASK_UNINTERRUPTIBLE);
1153 		}
1154 
1155 		if (!test_bit(B_DIRTY, &b->state) &&
1156 		    !test_bit(B_WRITING, &b->state))
1157 			__relink_lru(b, LIST_CLEAN);
1158 
1159 		dm_bufio_cond_resched();
1160 
1161 		/*
1162 		 * If we dropped the lock, the list is no longer consistent,
1163 		 * so we must restart the search.
1164 		 *
1165 		 * In the most common case, the buffer just processed is
1166 		 * relinked to the clean list, so we won't loop scanning the
1167 		 * same buffer again and again.
1168 		 *
1169 		 * This may livelock if there is another thread simultaneously
1170 		 * dirtying buffers, so we count the number of buffers walked
1171 		 * and if it exceeds the total number of buffers, it means that
1172 		 * someone is doing some writes simultaneously with us.  In
1173 		 * this case, stop, dropping the lock.
1174 		 */
1175 		if (dropped_lock)
1176 			goto again;
1177 	}
1178 	wake_up(&c->free_buffer_wait);
1179 	dm_bufio_unlock(c);
1180 
1181 	a = xchg(&c->async_write_error, 0);
1182 	f = dm_bufio_issue_flush(c);
1183 	if (a)
1184 		return a;
1185 
1186 	return f;
1187 }
1188 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1189 
1190 /*
1191  * Use dm-io to send and empty barrier flush the device.
1192  */
1193 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1194 {
1195 	struct dm_io_request io_req = {
1196 		.bi_rw = REQ_FLUSH,
1197 		.mem.type = DM_IO_KMEM,
1198 		.mem.ptr.addr = NULL,
1199 		.client = c->dm_io,
1200 	};
1201 	struct dm_io_region io_reg = {
1202 		.bdev = c->bdev,
1203 		.sector = 0,
1204 		.count = 0,
1205 	};
1206 
1207 	BUG_ON(dm_bufio_in_request());
1208 
1209 	return dm_io(&io_req, 1, &io_reg, NULL);
1210 }
1211 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1212 
1213 /*
1214  * We first delete any other buffer that may be at that new location.
1215  *
1216  * Then, we write the buffer to the original location if it was dirty.
1217  *
1218  * Then, if we are the only one who is holding the buffer, relink the buffer
1219  * in the hash queue for the new location.
1220  *
1221  * If there was someone else holding the buffer, we write it to the new
1222  * location but not relink it, because that other user needs to have the buffer
1223  * at the same place.
1224  */
1225 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1226 {
1227 	struct dm_bufio_client *c = b->c;
1228 	struct dm_buffer *new;
1229 
1230 	BUG_ON(dm_bufio_in_request());
1231 
1232 	dm_bufio_lock(c);
1233 
1234 retry:
1235 	new = __find(c, new_block);
1236 	if (new) {
1237 		if (new->hold_count) {
1238 			__wait_for_free_buffer(c);
1239 			goto retry;
1240 		}
1241 
1242 		/*
1243 		 * FIXME: Is there any point waiting for a write that's going
1244 		 * to be overwritten in a bit?
1245 		 */
1246 		__make_buffer_clean(new);
1247 		__unlink_buffer(new);
1248 		__free_buffer_wake(new);
1249 	}
1250 
1251 	BUG_ON(!b->hold_count);
1252 	BUG_ON(test_bit(B_READING, &b->state));
1253 
1254 	__write_dirty_buffer(b);
1255 	if (b->hold_count == 1) {
1256 		wait_on_bit(&b->state, B_WRITING,
1257 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1258 		set_bit(B_DIRTY, &b->state);
1259 		__unlink_buffer(b);
1260 		__link_buffer(b, new_block, LIST_DIRTY);
1261 	} else {
1262 		sector_t old_block;
1263 		wait_on_bit_lock(&b->state, B_WRITING,
1264 				 do_io_schedule, TASK_UNINTERRUPTIBLE);
1265 		/*
1266 		 * Relink buffer to "new_block" so that write_callback
1267 		 * sees "new_block" as a block number.
1268 		 * After the write, link the buffer back to old_block.
1269 		 * All this must be done in bufio lock, so that block number
1270 		 * change isn't visible to other threads.
1271 		 */
1272 		old_block = b->block;
1273 		__unlink_buffer(b);
1274 		__link_buffer(b, new_block, b->list_mode);
1275 		submit_io(b, WRITE, new_block, write_endio);
1276 		wait_on_bit(&b->state, B_WRITING,
1277 			    do_io_schedule, TASK_UNINTERRUPTIBLE);
1278 		__unlink_buffer(b);
1279 		__link_buffer(b, old_block, b->list_mode);
1280 	}
1281 
1282 	dm_bufio_unlock(c);
1283 	dm_bufio_release(b);
1284 }
1285 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1286 
1287 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1288 {
1289 	return c->block_size;
1290 }
1291 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1292 
1293 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1294 {
1295 	return i_size_read(c->bdev->bd_inode) >>
1296 			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1297 }
1298 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1299 
1300 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1301 {
1302 	return b->block;
1303 }
1304 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1305 
1306 void *dm_bufio_get_block_data(struct dm_buffer *b)
1307 {
1308 	return b->data;
1309 }
1310 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1311 
1312 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1313 {
1314 	return b + 1;
1315 }
1316 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1317 
1318 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1319 {
1320 	return b->c;
1321 }
1322 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1323 
1324 static void drop_buffers(struct dm_bufio_client *c)
1325 {
1326 	struct dm_buffer *b;
1327 	int i;
1328 
1329 	BUG_ON(dm_bufio_in_request());
1330 
1331 	/*
1332 	 * An optimization so that the buffers are not written one-by-one.
1333 	 */
1334 	dm_bufio_write_dirty_buffers_async(c);
1335 
1336 	dm_bufio_lock(c);
1337 
1338 	while ((b = __get_unclaimed_buffer(c)))
1339 		__free_buffer_wake(b);
1340 
1341 	for (i = 0; i < LIST_SIZE; i++)
1342 		list_for_each_entry(b, &c->lru[i], lru_list)
1343 			DMERR("leaked buffer %llx, hold count %u, list %d",
1344 			      (unsigned long long)b->block, b->hold_count, i);
1345 
1346 	for (i = 0; i < LIST_SIZE; i++)
1347 		BUG_ON(!list_empty(&c->lru[i]));
1348 
1349 	dm_bufio_unlock(c);
1350 }
1351 
1352 /*
1353  * Test if the buffer is unused and too old, and commit it.
1354  * At if noio is set, we must not do any I/O because we hold
1355  * dm_bufio_clients_lock and we would risk deadlock if the I/O gets rerouted to
1356  * different bufio client.
1357  */
1358 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1359 				unsigned long max_jiffies)
1360 {
1361 	if (jiffies - b->last_accessed < max_jiffies)
1362 		return 1;
1363 
1364 	if (!(gfp & __GFP_IO)) {
1365 		if (test_bit(B_READING, &b->state) ||
1366 		    test_bit(B_WRITING, &b->state) ||
1367 		    test_bit(B_DIRTY, &b->state))
1368 			return 1;
1369 	}
1370 
1371 	if (b->hold_count)
1372 		return 1;
1373 
1374 	__make_buffer_clean(b);
1375 	__unlink_buffer(b);
1376 	__free_buffer_wake(b);
1377 
1378 	return 0;
1379 }
1380 
1381 static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1382 		   struct shrink_control *sc)
1383 {
1384 	int l;
1385 	struct dm_buffer *b, *tmp;
1386 
1387 	for (l = 0; l < LIST_SIZE; l++) {
1388 		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
1389 			if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
1390 			    !--nr_to_scan)
1391 				return;
1392 		dm_bufio_cond_resched();
1393 	}
1394 }
1395 
1396 static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1397 {
1398 	struct dm_bufio_client *c =
1399 	    container_of(shrinker, struct dm_bufio_client, shrinker);
1400 	unsigned long r;
1401 	unsigned long nr_to_scan = sc->nr_to_scan;
1402 
1403 	if (sc->gfp_mask & __GFP_IO)
1404 		dm_bufio_lock(c);
1405 	else if (!dm_bufio_trylock(c))
1406 		return !nr_to_scan ? 0 : -1;
1407 
1408 	if (nr_to_scan)
1409 		__scan(c, nr_to_scan, sc);
1410 
1411 	r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1412 	if (r > INT_MAX)
1413 		r = INT_MAX;
1414 
1415 	dm_bufio_unlock(c);
1416 
1417 	return r;
1418 }
1419 
1420 /*
1421  * Create the buffering interface
1422  */
1423 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1424 					       unsigned reserved_buffers, unsigned aux_size,
1425 					       void (*alloc_callback)(struct dm_buffer *),
1426 					       void (*write_callback)(struct dm_buffer *))
1427 {
1428 	int r;
1429 	struct dm_bufio_client *c;
1430 	unsigned i;
1431 
1432 	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1433 	       (block_size & (block_size - 1)));
1434 
1435 	c = kmalloc(sizeof(*c), GFP_KERNEL);
1436 	if (!c) {
1437 		r = -ENOMEM;
1438 		goto bad_client;
1439 	}
1440 	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1441 	if (!c->cache_hash) {
1442 		r = -ENOMEM;
1443 		goto bad_hash;
1444 	}
1445 
1446 	c->bdev = bdev;
1447 	c->block_size = block_size;
1448 	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1449 	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1450 				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1451 	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1452 				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1453 
1454 	c->aux_size = aux_size;
1455 	c->alloc_callback = alloc_callback;
1456 	c->write_callback = write_callback;
1457 
1458 	for (i = 0; i < LIST_SIZE; i++) {
1459 		INIT_LIST_HEAD(&c->lru[i]);
1460 		c->n_buffers[i] = 0;
1461 	}
1462 
1463 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1464 		INIT_HLIST_HEAD(&c->cache_hash[i]);
1465 
1466 	mutex_init(&c->lock);
1467 	INIT_LIST_HEAD(&c->reserved_buffers);
1468 	c->need_reserved_buffers = reserved_buffers;
1469 
1470 	init_waitqueue_head(&c->free_buffer_wait);
1471 	c->async_write_error = 0;
1472 
1473 	c->dm_io = dm_io_client_create();
1474 	if (IS_ERR(c->dm_io)) {
1475 		r = PTR_ERR(c->dm_io);
1476 		goto bad_dm_io;
1477 	}
1478 
1479 	mutex_lock(&dm_bufio_clients_lock);
1480 	if (c->blocks_per_page_bits) {
1481 		if (!DM_BUFIO_CACHE_NAME(c)) {
1482 			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1483 			if (!DM_BUFIO_CACHE_NAME(c)) {
1484 				r = -ENOMEM;
1485 				mutex_unlock(&dm_bufio_clients_lock);
1486 				goto bad_cache;
1487 			}
1488 		}
1489 
1490 		if (!DM_BUFIO_CACHE(c)) {
1491 			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1492 							      c->block_size,
1493 							      c->block_size, 0, NULL);
1494 			if (!DM_BUFIO_CACHE(c)) {
1495 				r = -ENOMEM;
1496 				mutex_unlock(&dm_bufio_clients_lock);
1497 				goto bad_cache;
1498 			}
1499 		}
1500 	}
1501 	mutex_unlock(&dm_bufio_clients_lock);
1502 
1503 	while (c->need_reserved_buffers) {
1504 		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1505 
1506 		if (!b) {
1507 			r = -ENOMEM;
1508 			goto bad_buffer;
1509 		}
1510 		__free_buffer_wake(b);
1511 	}
1512 
1513 	mutex_lock(&dm_bufio_clients_lock);
1514 	dm_bufio_client_count++;
1515 	list_add(&c->client_list, &dm_bufio_all_clients);
1516 	__cache_size_refresh();
1517 	mutex_unlock(&dm_bufio_clients_lock);
1518 
1519 	c->shrinker.shrink = shrink;
1520 	c->shrinker.seeks = 1;
1521 	c->shrinker.batch = 0;
1522 	register_shrinker(&c->shrinker);
1523 
1524 	return c;
1525 
1526 bad_buffer:
1527 bad_cache:
1528 	while (!list_empty(&c->reserved_buffers)) {
1529 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1530 						 struct dm_buffer, lru_list);
1531 		list_del(&b->lru_list);
1532 		free_buffer(b);
1533 	}
1534 	dm_io_client_destroy(c->dm_io);
1535 bad_dm_io:
1536 	vfree(c->cache_hash);
1537 bad_hash:
1538 	kfree(c);
1539 bad_client:
1540 	return ERR_PTR(r);
1541 }
1542 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1543 
1544 /*
1545  * Free the buffering interface.
1546  * It is required that there are no references on any buffers.
1547  */
1548 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1549 {
1550 	unsigned i;
1551 
1552 	drop_buffers(c);
1553 
1554 	unregister_shrinker(&c->shrinker);
1555 
1556 	mutex_lock(&dm_bufio_clients_lock);
1557 
1558 	list_del(&c->client_list);
1559 	dm_bufio_client_count--;
1560 	__cache_size_refresh();
1561 
1562 	mutex_unlock(&dm_bufio_clients_lock);
1563 
1564 	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1565 		BUG_ON(!hlist_empty(&c->cache_hash[i]));
1566 
1567 	BUG_ON(c->need_reserved_buffers);
1568 
1569 	while (!list_empty(&c->reserved_buffers)) {
1570 		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1571 						 struct dm_buffer, lru_list);
1572 		list_del(&b->lru_list);
1573 		free_buffer(b);
1574 	}
1575 
1576 	for (i = 0; i < LIST_SIZE; i++)
1577 		if (c->n_buffers[i])
1578 			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1579 
1580 	for (i = 0; i < LIST_SIZE; i++)
1581 		BUG_ON(c->n_buffers[i]);
1582 
1583 	dm_io_client_destroy(c->dm_io);
1584 	vfree(c->cache_hash);
1585 	kfree(c);
1586 }
1587 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1588 
1589 static void cleanup_old_buffers(void)
1590 {
1591 	unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1592 	struct dm_bufio_client *c;
1593 
1594 	if (max_age > ULONG_MAX / HZ)
1595 		max_age = ULONG_MAX / HZ;
1596 
1597 	mutex_lock(&dm_bufio_clients_lock);
1598 	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1599 		if (!dm_bufio_trylock(c))
1600 			continue;
1601 
1602 		while (!list_empty(&c->lru[LIST_CLEAN])) {
1603 			struct dm_buffer *b;
1604 			b = list_entry(c->lru[LIST_CLEAN].prev,
1605 				       struct dm_buffer, lru_list);
1606 			if (__cleanup_old_buffer(b, 0, max_age * HZ))
1607 				break;
1608 			dm_bufio_cond_resched();
1609 		}
1610 
1611 		dm_bufio_unlock(c);
1612 		dm_bufio_cond_resched();
1613 	}
1614 	mutex_unlock(&dm_bufio_clients_lock);
1615 }
1616 
1617 static struct workqueue_struct *dm_bufio_wq;
1618 static struct delayed_work dm_bufio_work;
1619 
1620 static void work_fn(struct work_struct *w)
1621 {
1622 	cleanup_old_buffers();
1623 
1624 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1625 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1626 }
1627 
1628 /*----------------------------------------------------------------
1629  * Module setup
1630  *--------------------------------------------------------------*/
1631 
1632 /*
1633  * This is called only once for the whole dm_bufio module.
1634  * It initializes memory limit.
1635  */
1636 static int __init dm_bufio_init(void)
1637 {
1638 	__u64 mem;
1639 
1640 	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1641 	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1642 
1643 	mem = (__u64)((totalram_pages - totalhigh_pages) *
1644 		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1645 
1646 	if (mem > ULONG_MAX)
1647 		mem = ULONG_MAX;
1648 
1649 #ifdef CONFIG_MMU
1650 	/*
1651 	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1652 	 * in fs/proc/internal.h
1653 	 */
1654 	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1655 		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1656 #endif
1657 
1658 	dm_bufio_default_cache_size = mem;
1659 
1660 	mutex_lock(&dm_bufio_clients_lock);
1661 	__cache_size_refresh();
1662 	mutex_unlock(&dm_bufio_clients_lock);
1663 
1664 	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1665 	if (!dm_bufio_wq)
1666 		return -ENOMEM;
1667 
1668 	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1669 	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1670 			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1671 
1672 	return 0;
1673 }
1674 
1675 /*
1676  * This is called once when unloading the dm_bufio module.
1677  */
1678 static void __exit dm_bufio_exit(void)
1679 {
1680 	int bug = 0;
1681 	int i;
1682 
1683 	cancel_delayed_work_sync(&dm_bufio_work);
1684 	destroy_workqueue(dm_bufio_wq);
1685 
1686 	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1687 		struct kmem_cache *kc = dm_bufio_caches[i];
1688 
1689 		if (kc)
1690 			kmem_cache_destroy(kc);
1691 	}
1692 
1693 	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1694 		kfree(dm_bufio_cache_names[i]);
1695 
1696 	if (dm_bufio_client_count) {
1697 		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1698 			__func__, dm_bufio_client_count);
1699 		bug = 1;
1700 	}
1701 
1702 	if (dm_bufio_current_allocated) {
1703 		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1704 			__func__, dm_bufio_current_allocated);
1705 		bug = 1;
1706 	}
1707 
1708 	if (dm_bufio_allocated_get_free_pages) {
1709 		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1710 		       __func__, dm_bufio_allocated_get_free_pages);
1711 		bug = 1;
1712 	}
1713 
1714 	if (dm_bufio_allocated_vmalloc) {
1715 		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1716 		       __func__, dm_bufio_allocated_vmalloc);
1717 		bug = 1;
1718 	}
1719 
1720 	if (bug)
1721 		BUG();
1722 }
1723 
1724 module_init(dm_bufio_init)
1725 module_exit(dm_bufio_exit)
1726 
1727 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1728 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1729 
1730 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1731 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1732 
1733 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1734 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1735 
1736 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1737 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1738 
1739 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1740 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1741 
1742 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1743 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1744 
1745 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1746 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1747 
1748 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1749 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1750 MODULE_LICENSE("GPL");
1751