1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include "dm-bufio.h" 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/jiffies.h> 15 #include <linux/vmalloc.h> 16 #include <linux/shrinker.h> 17 #include <linux/module.h> 18 #include <linux/rbtree.h> 19 20 #define DM_MSG_PREFIX "bufio" 21 22 /* 23 * Memory management policy: 24 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 25 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 26 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 27 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 28 * dirty buffers. 29 */ 30 #define DM_BUFIO_MIN_BUFFERS 8 31 32 #define DM_BUFIO_MEMORY_PERCENT 2 33 #define DM_BUFIO_VMALLOC_PERCENT 25 34 #define DM_BUFIO_WRITEBACK_PERCENT 75 35 36 /* 37 * Check buffer ages in this interval (seconds) 38 */ 39 #define DM_BUFIO_WORK_TIMER_SECS 30 40 41 /* 42 * Free buffers when they are older than this (seconds) 43 */ 44 #define DM_BUFIO_DEFAULT_AGE_SECS 300 45 46 /* 47 * The nr of bytes of cached data to keep around. 48 */ 49 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 50 51 /* 52 * The number of bvec entries that are embedded directly in the buffer. 53 * If the chunk size is larger, dm-io is used to do the io. 54 */ 55 #define DM_BUFIO_INLINE_VECS 16 56 57 /* 58 * Don't try to use kmem_cache_alloc for blocks larger than this. 59 * For explanation, see alloc_buffer_data below. 60 */ 61 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1) 62 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1)) 63 64 /* 65 * dm_buffer->list_mode 66 */ 67 #define LIST_CLEAN 0 68 #define LIST_DIRTY 1 69 #define LIST_SIZE 2 70 71 /* 72 * Linking of buffers: 73 * All buffers are linked to cache_hash with their hash_list field. 74 * 75 * Clean buffers that are not being written (B_WRITING not set) 76 * are linked to lru[LIST_CLEAN] with their lru_list field. 77 * 78 * Dirty and clean buffers that are being written are linked to 79 * lru[LIST_DIRTY] with their lru_list field. When the write 80 * finishes, the buffer cannot be relinked immediately (because we 81 * are in an interrupt context and relinking requires process 82 * context), so some clean-not-writing buffers can be held on 83 * dirty_lru too. They are later added to lru in the process 84 * context. 85 */ 86 struct dm_bufio_client { 87 struct mutex lock; 88 89 struct list_head lru[LIST_SIZE]; 90 unsigned long n_buffers[LIST_SIZE]; 91 92 struct block_device *bdev; 93 unsigned block_size; 94 unsigned char sectors_per_block_bits; 95 unsigned char pages_per_block_bits; 96 unsigned char blocks_per_page_bits; 97 unsigned aux_size; 98 void (*alloc_callback)(struct dm_buffer *); 99 void (*write_callback)(struct dm_buffer *); 100 101 struct dm_io_client *dm_io; 102 103 struct list_head reserved_buffers; 104 unsigned need_reserved_buffers; 105 106 unsigned minimum_buffers; 107 108 struct rb_root buffer_tree; 109 wait_queue_head_t free_buffer_wait; 110 111 int async_write_error; 112 113 struct list_head client_list; 114 struct shrinker shrinker; 115 }; 116 117 /* 118 * Buffer state bits. 119 */ 120 #define B_READING 0 121 #define B_WRITING 1 122 #define B_DIRTY 2 123 124 /* 125 * Describes how the block was allocated: 126 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 127 * See the comment at alloc_buffer_data. 128 */ 129 enum data_mode { 130 DATA_MODE_SLAB = 0, 131 DATA_MODE_GET_FREE_PAGES = 1, 132 DATA_MODE_VMALLOC = 2, 133 DATA_MODE_LIMIT = 3 134 }; 135 136 struct dm_buffer { 137 struct rb_node node; 138 struct list_head lru_list; 139 sector_t block; 140 void *data; 141 enum data_mode data_mode; 142 unsigned char list_mode; /* LIST_* */ 143 unsigned hold_count; 144 int read_error; 145 int write_error; 146 unsigned long state; 147 unsigned long last_accessed; 148 struct dm_bufio_client *c; 149 struct list_head write_list; 150 struct bio bio; 151 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS]; 152 }; 153 154 /*----------------------------------------------------------------*/ 155 156 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT]; 157 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT]; 158 159 static inline int dm_bufio_cache_index(struct dm_bufio_client *c) 160 { 161 unsigned ret = c->blocks_per_page_bits - 1; 162 163 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches)); 164 165 return ret; 166 } 167 168 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)]) 169 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)]) 170 171 #define dm_bufio_in_request() (!!current->bio_list) 172 173 static void dm_bufio_lock(struct dm_bufio_client *c) 174 { 175 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 176 } 177 178 static int dm_bufio_trylock(struct dm_bufio_client *c) 179 { 180 return mutex_trylock(&c->lock); 181 } 182 183 static void dm_bufio_unlock(struct dm_bufio_client *c) 184 { 185 mutex_unlock(&c->lock); 186 } 187 188 /* 189 * FIXME Move to sched.h? 190 */ 191 #ifdef CONFIG_PREEMPT_VOLUNTARY 192 # define dm_bufio_cond_resched() \ 193 do { \ 194 if (unlikely(need_resched())) \ 195 _cond_resched(); \ 196 } while (0) 197 #else 198 # define dm_bufio_cond_resched() do { } while (0) 199 #endif 200 201 /*----------------------------------------------------------------*/ 202 203 /* 204 * Default cache size: available memory divided by the ratio. 205 */ 206 static unsigned long dm_bufio_default_cache_size; 207 208 /* 209 * Total cache size set by the user. 210 */ 211 static unsigned long dm_bufio_cache_size; 212 213 /* 214 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 215 * at any time. If it disagrees, the user has changed cache size. 216 */ 217 static unsigned long dm_bufio_cache_size_latch; 218 219 static DEFINE_SPINLOCK(param_spinlock); 220 221 /* 222 * Buffers are freed after this timeout 223 */ 224 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 225 static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 226 227 static unsigned long dm_bufio_peak_allocated; 228 static unsigned long dm_bufio_allocated_kmem_cache; 229 static unsigned long dm_bufio_allocated_get_free_pages; 230 static unsigned long dm_bufio_allocated_vmalloc; 231 static unsigned long dm_bufio_current_allocated; 232 233 /*----------------------------------------------------------------*/ 234 235 /* 236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count 237 */ 238 static unsigned long dm_bufio_cache_size_per_client; 239 240 /* 241 * The current number of clients. 242 */ 243 static int dm_bufio_client_count; 244 245 /* 246 * The list of all clients. 247 */ 248 static LIST_HEAD(dm_bufio_all_clients); 249 250 /* 251 * This mutex protects dm_bufio_cache_size_latch, 252 * dm_bufio_cache_size_per_client and dm_bufio_client_count 253 */ 254 static DEFINE_MUTEX(dm_bufio_clients_lock); 255 256 /*---------------------------------------------------------------- 257 * A red/black tree acts as an index for all the buffers. 258 *--------------------------------------------------------------*/ 259 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 260 { 261 struct rb_node *n = c->buffer_tree.rb_node; 262 struct dm_buffer *b; 263 264 while (n) { 265 b = container_of(n, struct dm_buffer, node); 266 267 if (b->block == block) 268 return b; 269 270 n = (b->block < block) ? n->rb_left : n->rb_right; 271 } 272 273 return NULL; 274 } 275 276 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 277 { 278 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 279 struct dm_buffer *found; 280 281 while (*new) { 282 found = container_of(*new, struct dm_buffer, node); 283 284 if (found->block == b->block) { 285 BUG_ON(found != b); 286 return; 287 } 288 289 parent = *new; 290 new = (found->block < b->block) ? 291 &((*new)->rb_left) : &((*new)->rb_right); 292 } 293 294 rb_link_node(&b->node, parent, new); 295 rb_insert_color(&b->node, &c->buffer_tree); 296 } 297 298 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 299 { 300 rb_erase(&b->node, &c->buffer_tree); 301 } 302 303 /*----------------------------------------------------------------*/ 304 305 static void adjust_total_allocated(enum data_mode data_mode, long diff) 306 { 307 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 308 &dm_bufio_allocated_kmem_cache, 309 &dm_bufio_allocated_get_free_pages, 310 &dm_bufio_allocated_vmalloc, 311 }; 312 313 spin_lock(¶m_spinlock); 314 315 *class_ptr[data_mode] += diff; 316 317 dm_bufio_current_allocated += diff; 318 319 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 320 dm_bufio_peak_allocated = dm_bufio_current_allocated; 321 322 spin_unlock(¶m_spinlock); 323 } 324 325 /* 326 * Change the number of clients and recalculate per-client limit. 327 */ 328 static void __cache_size_refresh(void) 329 { 330 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 331 BUG_ON(dm_bufio_client_count < 0); 332 333 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size); 334 335 /* 336 * Use default if set to 0 and report the actual cache size used. 337 */ 338 if (!dm_bufio_cache_size_latch) { 339 (void)cmpxchg(&dm_bufio_cache_size, 0, 340 dm_bufio_default_cache_size); 341 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 342 } 343 344 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch / 345 (dm_bufio_client_count ? : 1); 346 } 347 348 /* 349 * Allocating buffer data. 350 * 351 * Small buffers are allocated with kmem_cache, to use space optimally. 352 * 353 * For large buffers, we choose between get_free_pages and vmalloc. 354 * Each has advantages and disadvantages. 355 * 356 * __get_free_pages can randomly fail if the memory is fragmented. 357 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 358 * as low as 128M) so using it for caching is not appropriate. 359 * 360 * If the allocation may fail we use __get_free_pages. Memory fragmentation 361 * won't have a fatal effect here, but it just causes flushes of some other 362 * buffers and more I/O will be performed. Don't use __get_free_pages if it 363 * always fails (i.e. order >= MAX_ORDER). 364 * 365 * If the allocation shouldn't fail we use __vmalloc. This is only for the 366 * initial reserve allocation, so there's no risk of wasting all vmalloc 367 * space. 368 */ 369 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 370 enum data_mode *data_mode) 371 { 372 unsigned noio_flag; 373 void *ptr; 374 375 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) { 376 *data_mode = DATA_MODE_SLAB; 377 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask); 378 } 379 380 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT && 381 gfp_mask & __GFP_NORETRY) { 382 *data_mode = DATA_MODE_GET_FREE_PAGES; 383 return (void *)__get_free_pages(gfp_mask, 384 c->pages_per_block_bits); 385 } 386 387 *data_mode = DATA_MODE_VMALLOC; 388 389 /* 390 * __vmalloc allocates the data pages and auxiliary structures with 391 * gfp_flags that were specified, but pagetables are always allocated 392 * with GFP_KERNEL, no matter what was specified as gfp_mask. 393 * 394 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 395 * all allocations done by this process (including pagetables) are done 396 * as if GFP_NOIO was specified. 397 */ 398 399 if (gfp_mask & __GFP_NORETRY) 400 noio_flag = memalloc_noio_save(); 401 402 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL); 403 404 if (gfp_mask & __GFP_NORETRY) 405 memalloc_noio_restore(noio_flag); 406 407 return ptr; 408 } 409 410 /* 411 * Free buffer's data. 412 */ 413 static void free_buffer_data(struct dm_bufio_client *c, 414 void *data, enum data_mode data_mode) 415 { 416 switch (data_mode) { 417 case DATA_MODE_SLAB: 418 kmem_cache_free(DM_BUFIO_CACHE(c), data); 419 break; 420 421 case DATA_MODE_GET_FREE_PAGES: 422 free_pages((unsigned long)data, c->pages_per_block_bits); 423 break; 424 425 case DATA_MODE_VMALLOC: 426 vfree(data); 427 break; 428 429 default: 430 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 431 data_mode); 432 BUG(); 433 } 434 } 435 436 /* 437 * Allocate buffer and its data. 438 */ 439 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 440 { 441 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size, 442 gfp_mask); 443 444 if (!b) 445 return NULL; 446 447 b->c = c; 448 449 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 450 if (!b->data) { 451 kfree(b); 452 return NULL; 453 } 454 455 adjust_total_allocated(b->data_mode, (long)c->block_size); 456 457 return b; 458 } 459 460 /* 461 * Free buffer and its data. 462 */ 463 static void free_buffer(struct dm_buffer *b) 464 { 465 struct dm_bufio_client *c = b->c; 466 467 adjust_total_allocated(b->data_mode, -(long)c->block_size); 468 469 free_buffer_data(c, b->data, b->data_mode); 470 kfree(b); 471 } 472 473 /* 474 * Link buffer to the hash list and clean or dirty queue. 475 */ 476 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 477 { 478 struct dm_bufio_client *c = b->c; 479 480 c->n_buffers[dirty]++; 481 b->block = block; 482 b->list_mode = dirty; 483 list_add(&b->lru_list, &c->lru[dirty]); 484 __insert(b->c, b); 485 b->last_accessed = jiffies; 486 } 487 488 /* 489 * Unlink buffer from the hash list and dirty or clean queue. 490 */ 491 static void __unlink_buffer(struct dm_buffer *b) 492 { 493 struct dm_bufio_client *c = b->c; 494 495 BUG_ON(!c->n_buffers[b->list_mode]); 496 497 c->n_buffers[b->list_mode]--; 498 __remove(b->c, b); 499 list_del(&b->lru_list); 500 } 501 502 /* 503 * Place the buffer to the head of dirty or clean LRU queue. 504 */ 505 static void __relink_lru(struct dm_buffer *b, int dirty) 506 { 507 struct dm_bufio_client *c = b->c; 508 509 BUG_ON(!c->n_buffers[b->list_mode]); 510 511 c->n_buffers[b->list_mode]--; 512 c->n_buffers[dirty]++; 513 b->list_mode = dirty; 514 list_move(&b->lru_list, &c->lru[dirty]); 515 b->last_accessed = jiffies; 516 } 517 518 /*---------------------------------------------------------------- 519 * Submit I/O on the buffer. 520 * 521 * Bio interface is faster but it has some problems: 522 * the vector list is limited (increasing this limit increases 523 * memory-consumption per buffer, so it is not viable); 524 * 525 * the memory must be direct-mapped, not vmalloced; 526 * 527 * the I/O driver can reject requests spuriously if it thinks that 528 * the requests are too big for the device or if they cross a 529 * controller-defined memory boundary. 530 * 531 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 532 * it is not vmalloced, try using the bio interface. 533 * 534 * If the buffer is big, if it is vmalloced or if the underlying device 535 * rejects the bio because it is too large, use dm-io layer to do the I/O. 536 * The dm-io layer splits the I/O into multiple requests, avoiding the above 537 * shortcomings. 538 *--------------------------------------------------------------*/ 539 540 /* 541 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 542 * that the request was handled directly with bio interface. 543 */ 544 static void dmio_complete(unsigned long error, void *context) 545 { 546 struct dm_buffer *b = context; 547 548 b->bio.bi_end_io(&b->bio, error ? -EIO : 0); 549 } 550 551 static void use_dmio(struct dm_buffer *b, int rw, sector_t block, 552 bio_end_io_t *end_io) 553 { 554 int r; 555 struct dm_io_request io_req = { 556 .bi_rw = rw, 557 .notify.fn = dmio_complete, 558 .notify.context = b, 559 .client = b->c->dm_io, 560 }; 561 struct dm_io_region region = { 562 .bdev = b->c->bdev, 563 .sector = block << b->c->sectors_per_block_bits, 564 .count = b->c->block_size >> SECTOR_SHIFT, 565 }; 566 567 if (b->data_mode != DATA_MODE_VMALLOC) { 568 io_req.mem.type = DM_IO_KMEM; 569 io_req.mem.ptr.addr = b->data; 570 } else { 571 io_req.mem.type = DM_IO_VMA; 572 io_req.mem.ptr.vma = b->data; 573 } 574 575 b->bio.bi_end_io = end_io; 576 577 r = dm_io(&io_req, 1, ®ion, NULL); 578 if (r) 579 end_io(&b->bio, r); 580 } 581 582 static void inline_endio(struct bio *bio, int error) 583 { 584 bio_end_io_t *end_fn = bio->bi_private; 585 586 /* 587 * Reset the bio to free any attached resources 588 * (e.g. bio integrity profiles). 589 */ 590 bio_reset(bio); 591 592 end_fn(bio, error); 593 } 594 595 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block, 596 bio_end_io_t *end_io) 597 { 598 char *ptr; 599 int len; 600 601 bio_init(&b->bio); 602 b->bio.bi_io_vec = b->bio_vec; 603 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS; 604 b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits; 605 b->bio.bi_bdev = b->c->bdev; 606 b->bio.bi_end_io = inline_endio; 607 /* 608 * Use of .bi_private isn't a problem here because 609 * the dm_buffer's inline bio is local to bufio. 610 */ 611 b->bio.bi_private = end_io; 612 613 /* 614 * We assume that if len >= PAGE_SIZE ptr is page-aligned. 615 * If len < PAGE_SIZE the buffer doesn't cross page boundary. 616 */ 617 ptr = b->data; 618 len = b->c->block_size; 619 620 if (len >= PAGE_SIZE) 621 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1)); 622 else 623 BUG_ON((unsigned long)ptr & (len - 1)); 624 625 do { 626 if (!bio_add_page(&b->bio, virt_to_page(ptr), 627 len < PAGE_SIZE ? len : PAGE_SIZE, 628 virt_to_phys(ptr) & (PAGE_SIZE - 1))) { 629 BUG_ON(b->c->block_size <= PAGE_SIZE); 630 use_dmio(b, rw, block, end_io); 631 return; 632 } 633 634 len -= PAGE_SIZE; 635 ptr += PAGE_SIZE; 636 } while (len > 0); 637 638 submit_bio(rw, &b->bio); 639 } 640 641 static void submit_io(struct dm_buffer *b, int rw, sector_t block, 642 bio_end_io_t *end_io) 643 { 644 if (rw == WRITE && b->c->write_callback) 645 b->c->write_callback(b); 646 647 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE && 648 b->data_mode != DATA_MODE_VMALLOC) 649 use_inline_bio(b, rw, block, end_io); 650 else 651 use_dmio(b, rw, block, end_io); 652 } 653 654 /*---------------------------------------------------------------- 655 * Writing dirty buffers 656 *--------------------------------------------------------------*/ 657 658 /* 659 * The endio routine for write. 660 * 661 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 662 * it. 663 */ 664 static void write_endio(struct bio *bio, int error) 665 { 666 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 667 668 b->write_error = error; 669 if (unlikely(error)) { 670 struct dm_bufio_client *c = b->c; 671 (void)cmpxchg(&c->async_write_error, 0, error); 672 } 673 674 BUG_ON(!test_bit(B_WRITING, &b->state)); 675 676 smp_mb__before_atomic(); 677 clear_bit(B_WRITING, &b->state); 678 smp_mb__after_atomic(); 679 680 wake_up_bit(&b->state, B_WRITING); 681 } 682 683 /* 684 * Initiate a write on a dirty buffer, but don't wait for it. 685 * 686 * - If the buffer is not dirty, exit. 687 * - If there some previous write going on, wait for it to finish (we can't 688 * have two writes on the same buffer simultaneously). 689 * - Submit our write and don't wait on it. We set B_WRITING indicating 690 * that there is a write in progress. 691 */ 692 static void __write_dirty_buffer(struct dm_buffer *b, 693 struct list_head *write_list) 694 { 695 if (!test_bit(B_DIRTY, &b->state)) 696 return; 697 698 clear_bit(B_DIRTY, &b->state); 699 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 700 701 if (!write_list) 702 submit_io(b, WRITE, b->block, write_endio); 703 else 704 list_add_tail(&b->write_list, write_list); 705 } 706 707 static void __flush_write_list(struct list_head *write_list) 708 { 709 struct blk_plug plug; 710 blk_start_plug(&plug); 711 while (!list_empty(write_list)) { 712 struct dm_buffer *b = 713 list_entry(write_list->next, struct dm_buffer, write_list); 714 list_del(&b->write_list); 715 submit_io(b, WRITE, b->block, write_endio); 716 dm_bufio_cond_resched(); 717 } 718 blk_finish_plug(&plug); 719 } 720 721 /* 722 * Wait until any activity on the buffer finishes. Possibly write the 723 * buffer if it is dirty. When this function finishes, there is no I/O 724 * running on the buffer and the buffer is not dirty. 725 */ 726 static void __make_buffer_clean(struct dm_buffer *b) 727 { 728 BUG_ON(b->hold_count); 729 730 if (!b->state) /* fast case */ 731 return; 732 733 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 734 __write_dirty_buffer(b, NULL); 735 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 736 } 737 738 /* 739 * Find some buffer that is not held by anybody, clean it, unlink it and 740 * return it. 741 */ 742 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 743 { 744 struct dm_buffer *b; 745 746 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 747 BUG_ON(test_bit(B_WRITING, &b->state)); 748 BUG_ON(test_bit(B_DIRTY, &b->state)); 749 750 if (!b->hold_count) { 751 __make_buffer_clean(b); 752 __unlink_buffer(b); 753 return b; 754 } 755 dm_bufio_cond_resched(); 756 } 757 758 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 759 BUG_ON(test_bit(B_READING, &b->state)); 760 761 if (!b->hold_count) { 762 __make_buffer_clean(b); 763 __unlink_buffer(b); 764 return b; 765 } 766 dm_bufio_cond_resched(); 767 } 768 769 return NULL; 770 } 771 772 /* 773 * Wait until some other threads free some buffer or release hold count on 774 * some buffer. 775 * 776 * This function is entered with c->lock held, drops it and regains it 777 * before exiting. 778 */ 779 static void __wait_for_free_buffer(struct dm_bufio_client *c) 780 { 781 DECLARE_WAITQUEUE(wait, current); 782 783 add_wait_queue(&c->free_buffer_wait, &wait); 784 set_task_state(current, TASK_UNINTERRUPTIBLE); 785 dm_bufio_unlock(c); 786 787 io_schedule(); 788 789 remove_wait_queue(&c->free_buffer_wait, &wait); 790 791 dm_bufio_lock(c); 792 } 793 794 enum new_flag { 795 NF_FRESH = 0, 796 NF_READ = 1, 797 NF_GET = 2, 798 NF_PREFETCH = 3 799 }; 800 801 /* 802 * Allocate a new buffer. If the allocation is not possible, wait until 803 * some other thread frees a buffer. 804 * 805 * May drop the lock and regain it. 806 */ 807 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 808 { 809 struct dm_buffer *b; 810 811 /* 812 * dm-bufio is resistant to allocation failures (it just keeps 813 * one buffer reserved in cases all the allocations fail). 814 * So set flags to not try too hard: 815 * GFP_NOIO: don't recurse into the I/O layer 816 * __GFP_NORETRY: don't retry and rather return failure 817 * __GFP_NOMEMALLOC: don't use emergency reserves 818 * __GFP_NOWARN: don't print a warning in case of failure 819 * 820 * For debugging, if we set the cache size to 1, no new buffers will 821 * be allocated. 822 */ 823 while (1) { 824 if (dm_bufio_cache_size_latch != 1) { 825 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 826 if (b) 827 return b; 828 } 829 830 if (nf == NF_PREFETCH) 831 return NULL; 832 833 if (!list_empty(&c->reserved_buffers)) { 834 b = list_entry(c->reserved_buffers.next, 835 struct dm_buffer, lru_list); 836 list_del(&b->lru_list); 837 c->need_reserved_buffers++; 838 839 return b; 840 } 841 842 b = __get_unclaimed_buffer(c); 843 if (b) 844 return b; 845 846 __wait_for_free_buffer(c); 847 } 848 } 849 850 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 851 { 852 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 853 854 if (!b) 855 return NULL; 856 857 if (c->alloc_callback) 858 c->alloc_callback(b); 859 860 return b; 861 } 862 863 /* 864 * Free a buffer and wake other threads waiting for free buffers. 865 */ 866 static void __free_buffer_wake(struct dm_buffer *b) 867 { 868 struct dm_bufio_client *c = b->c; 869 870 if (!c->need_reserved_buffers) 871 free_buffer(b); 872 else { 873 list_add(&b->lru_list, &c->reserved_buffers); 874 c->need_reserved_buffers--; 875 } 876 877 wake_up(&c->free_buffer_wait); 878 } 879 880 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 881 struct list_head *write_list) 882 { 883 struct dm_buffer *b, *tmp; 884 885 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 886 BUG_ON(test_bit(B_READING, &b->state)); 887 888 if (!test_bit(B_DIRTY, &b->state) && 889 !test_bit(B_WRITING, &b->state)) { 890 __relink_lru(b, LIST_CLEAN); 891 continue; 892 } 893 894 if (no_wait && test_bit(B_WRITING, &b->state)) 895 return; 896 897 __write_dirty_buffer(b, write_list); 898 dm_bufio_cond_resched(); 899 } 900 } 901 902 /* 903 * Get writeback threshold and buffer limit for a given client. 904 */ 905 static void __get_memory_limit(struct dm_bufio_client *c, 906 unsigned long *threshold_buffers, 907 unsigned long *limit_buffers) 908 { 909 unsigned long buffers; 910 911 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) { 912 mutex_lock(&dm_bufio_clients_lock); 913 __cache_size_refresh(); 914 mutex_unlock(&dm_bufio_clients_lock); 915 } 916 917 buffers = dm_bufio_cache_size_per_client >> 918 (c->sectors_per_block_bits + SECTOR_SHIFT); 919 920 if (buffers < c->minimum_buffers) 921 buffers = c->minimum_buffers; 922 923 *limit_buffers = buffers; 924 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100; 925 } 926 927 /* 928 * Check if we're over watermark. 929 * If we are over threshold_buffers, start freeing buffers. 930 * If we're over "limit_buffers", block until we get under the limit. 931 */ 932 static void __check_watermark(struct dm_bufio_client *c, 933 struct list_head *write_list) 934 { 935 unsigned long threshold_buffers, limit_buffers; 936 937 __get_memory_limit(c, &threshold_buffers, &limit_buffers); 938 939 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] > 940 limit_buffers) { 941 942 struct dm_buffer *b = __get_unclaimed_buffer(c); 943 944 if (!b) 945 return; 946 947 __free_buffer_wake(b); 948 dm_bufio_cond_resched(); 949 } 950 951 if (c->n_buffers[LIST_DIRTY] > threshold_buffers) 952 __write_dirty_buffers_async(c, 1, write_list); 953 } 954 955 /*---------------------------------------------------------------- 956 * Getting a buffer 957 *--------------------------------------------------------------*/ 958 959 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 960 enum new_flag nf, int *need_submit, 961 struct list_head *write_list) 962 { 963 struct dm_buffer *b, *new_b = NULL; 964 965 *need_submit = 0; 966 967 b = __find(c, block); 968 if (b) 969 goto found_buffer; 970 971 if (nf == NF_GET) 972 return NULL; 973 974 new_b = __alloc_buffer_wait(c, nf); 975 if (!new_b) 976 return NULL; 977 978 /* 979 * We've had a period where the mutex was unlocked, so need to 980 * recheck the hash table. 981 */ 982 b = __find(c, block); 983 if (b) { 984 __free_buffer_wake(new_b); 985 goto found_buffer; 986 } 987 988 __check_watermark(c, write_list); 989 990 b = new_b; 991 b->hold_count = 1; 992 b->read_error = 0; 993 b->write_error = 0; 994 __link_buffer(b, block, LIST_CLEAN); 995 996 if (nf == NF_FRESH) { 997 b->state = 0; 998 return b; 999 } 1000 1001 b->state = 1 << B_READING; 1002 *need_submit = 1; 1003 1004 return b; 1005 1006 found_buffer: 1007 if (nf == NF_PREFETCH) 1008 return NULL; 1009 /* 1010 * Note: it is essential that we don't wait for the buffer to be 1011 * read if dm_bufio_get function is used. Both dm_bufio_get and 1012 * dm_bufio_prefetch can be used in the driver request routine. 1013 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1014 * the same buffer, it would deadlock if we waited. 1015 */ 1016 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1017 return NULL; 1018 1019 b->hold_count++; 1020 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1021 test_bit(B_WRITING, &b->state)); 1022 return b; 1023 } 1024 1025 /* 1026 * The endio routine for reading: set the error, clear the bit and wake up 1027 * anyone waiting on the buffer. 1028 */ 1029 static void read_endio(struct bio *bio, int error) 1030 { 1031 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio); 1032 1033 b->read_error = error; 1034 1035 BUG_ON(!test_bit(B_READING, &b->state)); 1036 1037 smp_mb__before_atomic(); 1038 clear_bit(B_READING, &b->state); 1039 smp_mb__after_atomic(); 1040 1041 wake_up_bit(&b->state, B_READING); 1042 } 1043 1044 /* 1045 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1046 * functions is similar except that dm_bufio_new doesn't read the 1047 * buffer from the disk (assuming that the caller overwrites all the data 1048 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1049 */ 1050 static void *new_read(struct dm_bufio_client *c, sector_t block, 1051 enum new_flag nf, struct dm_buffer **bp) 1052 { 1053 int need_submit; 1054 struct dm_buffer *b; 1055 1056 LIST_HEAD(write_list); 1057 1058 dm_bufio_lock(c); 1059 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1060 dm_bufio_unlock(c); 1061 1062 __flush_write_list(&write_list); 1063 1064 if (!b) 1065 return b; 1066 1067 if (need_submit) 1068 submit_io(b, READ, b->block, read_endio); 1069 1070 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1071 1072 if (b->read_error) { 1073 int error = b->read_error; 1074 1075 dm_bufio_release(b); 1076 1077 return ERR_PTR(error); 1078 } 1079 1080 *bp = b; 1081 1082 return b->data; 1083 } 1084 1085 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1086 struct dm_buffer **bp) 1087 { 1088 return new_read(c, block, NF_GET, bp); 1089 } 1090 EXPORT_SYMBOL_GPL(dm_bufio_get); 1091 1092 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1093 struct dm_buffer **bp) 1094 { 1095 BUG_ON(dm_bufio_in_request()); 1096 1097 return new_read(c, block, NF_READ, bp); 1098 } 1099 EXPORT_SYMBOL_GPL(dm_bufio_read); 1100 1101 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1102 struct dm_buffer **bp) 1103 { 1104 BUG_ON(dm_bufio_in_request()); 1105 1106 return new_read(c, block, NF_FRESH, bp); 1107 } 1108 EXPORT_SYMBOL_GPL(dm_bufio_new); 1109 1110 void dm_bufio_prefetch(struct dm_bufio_client *c, 1111 sector_t block, unsigned n_blocks) 1112 { 1113 struct blk_plug plug; 1114 1115 LIST_HEAD(write_list); 1116 1117 BUG_ON(dm_bufio_in_request()); 1118 1119 blk_start_plug(&plug); 1120 dm_bufio_lock(c); 1121 1122 for (; n_blocks--; block++) { 1123 int need_submit; 1124 struct dm_buffer *b; 1125 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1126 &write_list); 1127 if (unlikely(!list_empty(&write_list))) { 1128 dm_bufio_unlock(c); 1129 blk_finish_plug(&plug); 1130 __flush_write_list(&write_list); 1131 blk_start_plug(&plug); 1132 dm_bufio_lock(c); 1133 } 1134 if (unlikely(b != NULL)) { 1135 dm_bufio_unlock(c); 1136 1137 if (need_submit) 1138 submit_io(b, READ, b->block, read_endio); 1139 dm_bufio_release(b); 1140 1141 dm_bufio_cond_resched(); 1142 1143 if (!n_blocks) 1144 goto flush_plug; 1145 dm_bufio_lock(c); 1146 } 1147 } 1148 1149 dm_bufio_unlock(c); 1150 1151 flush_plug: 1152 blk_finish_plug(&plug); 1153 } 1154 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1155 1156 void dm_bufio_release(struct dm_buffer *b) 1157 { 1158 struct dm_bufio_client *c = b->c; 1159 1160 dm_bufio_lock(c); 1161 1162 BUG_ON(!b->hold_count); 1163 1164 b->hold_count--; 1165 if (!b->hold_count) { 1166 wake_up(&c->free_buffer_wait); 1167 1168 /* 1169 * If there were errors on the buffer, and the buffer is not 1170 * to be written, free the buffer. There is no point in caching 1171 * invalid buffer. 1172 */ 1173 if ((b->read_error || b->write_error) && 1174 !test_bit(B_READING, &b->state) && 1175 !test_bit(B_WRITING, &b->state) && 1176 !test_bit(B_DIRTY, &b->state)) { 1177 __unlink_buffer(b); 1178 __free_buffer_wake(b); 1179 } 1180 } 1181 1182 dm_bufio_unlock(c); 1183 } 1184 EXPORT_SYMBOL_GPL(dm_bufio_release); 1185 1186 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1187 { 1188 struct dm_bufio_client *c = b->c; 1189 1190 dm_bufio_lock(c); 1191 1192 BUG_ON(test_bit(B_READING, &b->state)); 1193 1194 if (!test_and_set_bit(B_DIRTY, &b->state)) 1195 __relink_lru(b, LIST_DIRTY); 1196 1197 dm_bufio_unlock(c); 1198 } 1199 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1200 1201 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1202 { 1203 LIST_HEAD(write_list); 1204 1205 BUG_ON(dm_bufio_in_request()); 1206 1207 dm_bufio_lock(c); 1208 __write_dirty_buffers_async(c, 0, &write_list); 1209 dm_bufio_unlock(c); 1210 __flush_write_list(&write_list); 1211 } 1212 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1213 1214 /* 1215 * For performance, it is essential that the buffers are written asynchronously 1216 * and simultaneously (so that the block layer can merge the writes) and then 1217 * waited upon. 1218 * 1219 * Finally, we flush hardware disk cache. 1220 */ 1221 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1222 { 1223 int a, f; 1224 unsigned long buffers_processed = 0; 1225 struct dm_buffer *b, *tmp; 1226 1227 LIST_HEAD(write_list); 1228 1229 dm_bufio_lock(c); 1230 __write_dirty_buffers_async(c, 0, &write_list); 1231 dm_bufio_unlock(c); 1232 __flush_write_list(&write_list); 1233 dm_bufio_lock(c); 1234 1235 again: 1236 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1237 int dropped_lock = 0; 1238 1239 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1240 buffers_processed++; 1241 1242 BUG_ON(test_bit(B_READING, &b->state)); 1243 1244 if (test_bit(B_WRITING, &b->state)) { 1245 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1246 dropped_lock = 1; 1247 b->hold_count++; 1248 dm_bufio_unlock(c); 1249 wait_on_bit_io(&b->state, B_WRITING, 1250 TASK_UNINTERRUPTIBLE); 1251 dm_bufio_lock(c); 1252 b->hold_count--; 1253 } else 1254 wait_on_bit_io(&b->state, B_WRITING, 1255 TASK_UNINTERRUPTIBLE); 1256 } 1257 1258 if (!test_bit(B_DIRTY, &b->state) && 1259 !test_bit(B_WRITING, &b->state)) 1260 __relink_lru(b, LIST_CLEAN); 1261 1262 dm_bufio_cond_resched(); 1263 1264 /* 1265 * If we dropped the lock, the list is no longer consistent, 1266 * so we must restart the search. 1267 * 1268 * In the most common case, the buffer just processed is 1269 * relinked to the clean list, so we won't loop scanning the 1270 * same buffer again and again. 1271 * 1272 * This may livelock if there is another thread simultaneously 1273 * dirtying buffers, so we count the number of buffers walked 1274 * and if it exceeds the total number of buffers, it means that 1275 * someone is doing some writes simultaneously with us. In 1276 * this case, stop, dropping the lock. 1277 */ 1278 if (dropped_lock) 1279 goto again; 1280 } 1281 wake_up(&c->free_buffer_wait); 1282 dm_bufio_unlock(c); 1283 1284 a = xchg(&c->async_write_error, 0); 1285 f = dm_bufio_issue_flush(c); 1286 if (a) 1287 return a; 1288 1289 return f; 1290 } 1291 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1292 1293 /* 1294 * Use dm-io to send and empty barrier flush the device. 1295 */ 1296 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1297 { 1298 struct dm_io_request io_req = { 1299 .bi_rw = WRITE_FLUSH, 1300 .mem.type = DM_IO_KMEM, 1301 .mem.ptr.addr = NULL, 1302 .client = c->dm_io, 1303 }; 1304 struct dm_io_region io_reg = { 1305 .bdev = c->bdev, 1306 .sector = 0, 1307 .count = 0, 1308 }; 1309 1310 BUG_ON(dm_bufio_in_request()); 1311 1312 return dm_io(&io_req, 1, &io_reg, NULL); 1313 } 1314 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1315 1316 /* 1317 * We first delete any other buffer that may be at that new location. 1318 * 1319 * Then, we write the buffer to the original location if it was dirty. 1320 * 1321 * Then, if we are the only one who is holding the buffer, relink the buffer 1322 * in the hash queue for the new location. 1323 * 1324 * If there was someone else holding the buffer, we write it to the new 1325 * location but not relink it, because that other user needs to have the buffer 1326 * at the same place. 1327 */ 1328 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1329 { 1330 struct dm_bufio_client *c = b->c; 1331 struct dm_buffer *new; 1332 1333 BUG_ON(dm_bufio_in_request()); 1334 1335 dm_bufio_lock(c); 1336 1337 retry: 1338 new = __find(c, new_block); 1339 if (new) { 1340 if (new->hold_count) { 1341 __wait_for_free_buffer(c); 1342 goto retry; 1343 } 1344 1345 /* 1346 * FIXME: Is there any point waiting for a write that's going 1347 * to be overwritten in a bit? 1348 */ 1349 __make_buffer_clean(new); 1350 __unlink_buffer(new); 1351 __free_buffer_wake(new); 1352 } 1353 1354 BUG_ON(!b->hold_count); 1355 BUG_ON(test_bit(B_READING, &b->state)); 1356 1357 __write_dirty_buffer(b, NULL); 1358 if (b->hold_count == 1) { 1359 wait_on_bit_io(&b->state, B_WRITING, 1360 TASK_UNINTERRUPTIBLE); 1361 set_bit(B_DIRTY, &b->state); 1362 __unlink_buffer(b); 1363 __link_buffer(b, new_block, LIST_DIRTY); 1364 } else { 1365 sector_t old_block; 1366 wait_on_bit_lock_io(&b->state, B_WRITING, 1367 TASK_UNINTERRUPTIBLE); 1368 /* 1369 * Relink buffer to "new_block" so that write_callback 1370 * sees "new_block" as a block number. 1371 * After the write, link the buffer back to old_block. 1372 * All this must be done in bufio lock, so that block number 1373 * change isn't visible to other threads. 1374 */ 1375 old_block = b->block; 1376 __unlink_buffer(b); 1377 __link_buffer(b, new_block, b->list_mode); 1378 submit_io(b, WRITE, new_block, write_endio); 1379 wait_on_bit_io(&b->state, B_WRITING, 1380 TASK_UNINTERRUPTIBLE); 1381 __unlink_buffer(b); 1382 __link_buffer(b, old_block, b->list_mode); 1383 } 1384 1385 dm_bufio_unlock(c); 1386 dm_bufio_release(b); 1387 } 1388 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1389 1390 /* 1391 * Free the given buffer. 1392 * 1393 * This is just a hint, if the buffer is in use or dirty, this function 1394 * does nothing. 1395 */ 1396 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1397 { 1398 struct dm_buffer *b; 1399 1400 dm_bufio_lock(c); 1401 1402 b = __find(c, block); 1403 if (b && likely(!b->hold_count) && likely(!b->state)) { 1404 __unlink_buffer(b); 1405 __free_buffer_wake(b); 1406 } 1407 1408 dm_bufio_unlock(c); 1409 } 1410 EXPORT_SYMBOL(dm_bufio_forget); 1411 1412 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1413 { 1414 c->minimum_buffers = n; 1415 } 1416 EXPORT_SYMBOL(dm_bufio_set_minimum_buffers); 1417 1418 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1419 { 1420 return c->block_size; 1421 } 1422 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1423 1424 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1425 { 1426 return i_size_read(c->bdev->bd_inode) >> 1427 (SECTOR_SHIFT + c->sectors_per_block_bits); 1428 } 1429 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1430 1431 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1432 { 1433 return b->block; 1434 } 1435 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1436 1437 void *dm_bufio_get_block_data(struct dm_buffer *b) 1438 { 1439 return b->data; 1440 } 1441 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1442 1443 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1444 { 1445 return b + 1; 1446 } 1447 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1448 1449 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1450 { 1451 return b->c; 1452 } 1453 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1454 1455 static void drop_buffers(struct dm_bufio_client *c) 1456 { 1457 struct dm_buffer *b; 1458 int i; 1459 1460 BUG_ON(dm_bufio_in_request()); 1461 1462 /* 1463 * An optimization so that the buffers are not written one-by-one. 1464 */ 1465 dm_bufio_write_dirty_buffers_async(c); 1466 1467 dm_bufio_lock(c); 1468 1469 while ((b = __get_unclaimed_buffer(c))) 1470 __free_buffer_wake(b); 1471 1472 for (i = 0; i < LIST_SIZE; i++) 1473 list_for_each_entry(b, &c->lru[i], lru_list) 1474 DMERR("leaked buffer %llx, hold count %u, list %d", 1475 (unsigned long long)b->block, b->hold_count, i); 1476 1477 for (i = 0; i < LIST_SIZE; i++) 1478 BUG_ON(!list_empty(&c->lru[i])); 1479 1480 dm_bufio_unlock(c); 1481 } 1482 1483 /* 1484 * We may not be able to evict this buffer if IO pending or the client 1485 * is still using it. Caller is expected to know buffer is too old. 1486 * 1487 * And if GFP_NOFS is used, we must not do any I/O because we hold 1488 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1489 * rerouted to different bufio client. 1490 */ 1491 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1492 { 1493 if (!(gfp & __GFP_FS)) { 1494 if (test_bit(B_READING, &b->state) || 1495 test_bit(B_WRITING, &b->state) || 1496 test_bit(B_DIRTY, &b->state)) 1497 return false; 1498 } 1499 1500 if (b->hold_count) 1501 return false; 1502 1503 __make_buffer_clean(b); 1504 __unlink_buffer(b); 1505 __free_buffer_wake(b); 1506 1507 return true; 1508 } 1509 1510 static unsigned get_retain_buffers(struct dm_bufio_client *c) 1511 { 1512 unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes); 1513 return retain_bytes / c->block_size; 1514 } 1515 1516 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1517 gfp_t gfp_mask) 1518 { 1519 int l; 1520 struct dm_buffer *b, *tmp; 1521 unsigned long freed = 0; 1522 unsigned long count = nr_to_scan; 1523 unsigned retain_target = get_retain_buffers(c); 1524 1525 for (l = 0; l < LIST_SIZE; l++) { 1526 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1527 if (__try_evict_buffer(b, gfp_mask)) 1528 freed++; 1529 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1530 return freed; 1531 dm_bufio_cond_resched(); 1532 } 1533 } 1534 return freed; 1535 } 1536 1537 static unsigned long 1538 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1539 { 1540 struct dm_bufio_client *c; 1541 unsigned long freed; 1542 1543 c = container_of(shrink, struct dm_bufio_client, shrinker); 1544 if (sc->gfp_mask & __GFP_FS) 1545 dm_bufio_lock(c); 1546 else if (!dm_bufio_trylock(c)) 1547 return SHRINK_STOP; 1548 1549 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1550 dm_bufio_unlock(c); 1551 return freed; 1552 } 1553 1554 static unsigned long 1555 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1556 { 1557 struct dm_bufio_client *c; 1558 unsigned long count; 1559 1560 c = container_of(shrink, struct dm_bufio_client, shrinker); 1561 if (sc->gfp_mask & __GFP_FS) 1562 dm_bufio_lock(c); 1563 else if (!dm_bufio_trylock(c)) 1564 return 0; 1565 1566 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1567 dm_bufio_unlock(c); 1568 return count; 1569 } 1570 1571 /* 1572 * Create the buffering interface 1573 */ 1574 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1575 unsigned reserved_buffers, unsigned aux_size, 1576 void (*alloc_callback)(struct dm_buffer *), 1577 void (*write_callback)(struct dm_buffer *)) 1578 { 1579 int r; 1580 struct dm_bufio_client *c; 1581 unsigned i; 1582 1583 BUG_ON(block_size < 1 << SECTOR_SHIFT || 1584 (block_size & (block_size - 1))); 1585 1586 c = kzalloc(sizeof(*c), GFP_KERNEL); 1587 if (!c) { 1588 r = -ENOMEM; 1589 goto bad_client; 1590 } 1591 c->buffer_tree = RB_ROOT; 1592 1593 c->bdev = bdev; 1594 c->block_size = block_size; 1595 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT; 1596 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ? 1597 ffs(block_size) - 1 - PAGE_SHIFT : 0; 1598 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ? 1599 PAGE_SHIFT - (ffs(block_size) - 1) : 0); 1600 1601 c->aux_size = aux_size; 1602 c->alloc_callback = alloc_callback; 1603 c->write_callback = write_callback; 1604 1605 for (i = 0; i < LIST_SIZE; i++) { 1606 INIT_LIST_HEAD(&c->lru[i]); 1607 c->n_buffers[i] = 0; 1608 } 1609 1610 mutex_init(&c->lock); 1611 INIT_LIST_HEAD(&c->reserved_buffers); 1612 c->need_reserved_buffers = reserved_buffers; 1613 1614 c->minimum_buffers = DM_BUFIO_MIN_BUFFERS; 1615 1616 init_waitqueue_head(&c->free_buffer_wait); 1617 c->async_write_error = 0; 1618 1619 c->dm_io = dm_io_client_create(); 1620 if (IS_ERR(c->dm_io)) { 1621 r = PTR_ERR(c->dm_io); 1622 goto bad_dm_io; 1623 } 1624 1625 mutex_lock(&dm_bufio_clients_lock); 1626 if (c->blocks_per_page_bits) { 1627 if (!DM_BUFIO_CACHE_NAME(c)) { 1628 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size); 1629 if (!DM_BUFIO_CACHE_NAME(c)) { 1630 r = -ENOMEM; 1631 mutex_unlock(&dm_bufio_clients_lock); 1632 goto bad_cache; 1633 } 1634 } 1635 1636 if (!DM_BUFIO_CACHE(c)) { 1637 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c), 1638 c->block_size, 1639 c->block_size, 0, NULL); 1640 if (!DM_BUFIO_CACHE(c)) { 1641 r = -ENOMEM; 1642 mutex_unlock(&dm_bufio_clients_lock); 1643 goto bad_cache; 1644 } 1645 } 1646 } 1647 mutex_unlock(&dm_bufio_clients_lock); 1648 1649 while (c->need_reserved_buffers) { 1650 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1651 1652 if (!b) { 1653 r = -ENOMEM; 1654 goto bad_buffer; 1655 } 1656 __free_buffer_wake(b); 1657 } 1658 1659 mutex_lock(&dm_bufio_clients_lock); 1660 dm_bufio_client_count++; 1661 list_add(&c->client_list, &dm_bufio_all_clients); 1662 __cache_size_refresh(); 1663 mutex_unlock(&dm_bufio_clients_lock); 1664 1665 c->shrinker.count_objects = dm_bufio_shrink_count; 1666 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1667 c->shrinker.seeks = 1; 1668 c->shrinker.batch = 0; 1669 register_shrinker(&c->shrinker); 1670 1671 return c; 1672 1673 bad_buffer: 1674 bad_cache: 1675 while (!list_empty(&c->reserved_buffers)) { 1676 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1677 struct dm_buffer, lru_list); 1678 list_del(&b->lru_list); 1679 free_buffer(b); 1680 } 1681 dm_io_client_destroy(c->dm_io); 1682 bad_dm_io: 1683 kfree(c); 1684 bad_client: 1685 return ERR_PTR(r); 1686 } 1687 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1688 1689 /* 1690 * Free the buffering interface. 1691 * It is required that there are no references on any buffers. 1692 */ 1693 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1694 { 1695 unsigned i; 1696 1697 drop_buffers(c); 1698 1699 unregister_shrinker(&c->shrinker); 1700 1701 mutex_lock(&dm_bufio_clients_lock); 1702 1703 list_del(&c->client_list); 1704 dm_bufio_client_count--; 1705 __cache_size_refresh(); 1706 1707 mutex_unlock(&dm_bufio_clients_lock); 1708 1709 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1710 BUG_ON(c->need_reserved_buffers); 1711 1712 while (!list_empty(&c->reserved_buffers)) { 1713 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1714 struct dm_buffer, lru_list); 1715 list_del(&b->lru_list); 1716 free_buffer(b); 1717 } 1718 1719 for (i = 0; i < LIST_SIZE; i++) 1720 if (c->n_buffers[i]) 1721 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1722 1723 for (i = 0; i < LIST_SIZE; i++) 1724 BUG_ON(c->n_buffers[i]); 1725 1726 dm_io_client_destroy(c->dm_io); 1727 kfree(c); 1728 } 1729 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1730 1731 static unsigned get_max_age_hz(void) 1732 { 1733 unsigned max_age = ACCESS_ONCE(dm_bufio_max_age); 1734 1735 if (max_age > UINT_MAX / HZ) 1736 max_age = UINT_MAX / HZ; 1737 1738 return max_age * HZ; 1739 } 1740 1741 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1742 { 1743 return time_after_eq(jiffies, b->last_accessed + age_hz); 1744 } 1745 1746 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1747 { 1748 struct dm_buffer *b, *tmp; 1749 unsigned retain_target = get_retain_buffers(c); 1750 unsigned count; 1751 1752 dm_bufio_lock(c); 1753 1754 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1755 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1756 if (count <= retain_target) 1757 break; 1758 1759 if (!older_than(b, age_hz)) 1760 break; 1761 1762 if (__try_evict_buffer(b, 0)) 1763 count--; 1764 1765 dm_bufio_cond_resched(); 1766 } 1767 1768 dm_bufio_unlock(c); 1769 } 1770 1771 static void cleanup_old_buffers(void) 1772 { 1773 unsigned long max_age_hz = get_max_age_hz(); 1774 struct dm_bufio_client *c; 1775 1776 mutex_lock(&dm_bufio_clients_lock); 1777 1778 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1779 __evict_old_buffers(c, max_age_hz); 1780 1781 mutex_unlock(&dm_bufio_clients_lock); 1782 } 1783 1784 static struct workqueue_struct *dm_bufio_wq; 1785 static struct delayed_work dm_bufio_work; 1786 1787 static void work_fn(struct work_struct *w) 1788 { 1789 cleanup_old_buffers(); 1790 1791 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1792 DM_BUFIO_WORK_TIMER_SECS * HZ); 1793 } 1794 1795 /*---------------------------------------------------------------- 1796 * Module setup 1797 *--------------------------------------------------------------*/ 1798 1799 /* 1800 * This is called only once for the whole dm_bufio module. 1801 * It initializes memory limit. 1802 */ 1803 static int __init dm_bufio_init(void) 1804 { 1805 __u64 mem; 1806 1807 dm_bufio_allocated_kmem_cache = 0; 1808 dm_bufio_allocated_get_free_pages = 0; 1809 dm_bufio_allocated_vmalloc = 0; 1810 dm_bufio_current_allocated = 0; 1811 1812 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches); 1813 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names); 1814 1815 mem = (__u64)((totalram_pages - totalhigh_pages) * 1816 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT; 1817 1818 if (mem > ULONG_MAX) 1819 mem = ULONG_MAX; 1820 1821 #ifdef CONFIG_MMU 1822 /* 1823 * Get the size of vmalloc space the same way as VMALLOC_TOTAL 1824 * in fs/proc/internal.h 1825 */ 1826 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100) 1827 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100; 1828 #endif 1829 1830 dm_bufio_default_cache_size = mem; 1831 1832 mutex_lock(&dm_bufio_clients_lock); 1833 __cache_size_refresh(); 1834 mutex_unlock(&dm_bufio_clients_lock); 1835 1836 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache"); 1837 if (!dm_bufio_wq) 1838 return -ENOMEM; 1839 1840 INIT_DELAYED_WORK(&dm_bufio_work, work_fn); 1841 queue_delayed_work(dm_bufio_wq, &dm_bufio_work, 1842 DM_BUFIO_WORK_TIMER_SECS * HZ); 1843 1844 return 0; 1845 } 1846 1847 /* 1848 * This is called once when unloading the dm_bufio module. 1849 */ 1850 static void __exit dm_bufio_exit(void) 1851 { 1852 int bug = 0; 1853 int i; 1854 1855 cancel_delayed_work_sync(&dm_bufio_work); 1856 destroy_workqueue(dm_bufio_wq); 1857 1858 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) { 1859 struct kmem_cache *kc = dm_bufio_caches[i]; 1860 1861 if (kc) 1862 kmem_cache_destroy(kc); 1863 } 1864 1865 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++) 1866 kfree(dm_bufio_cache_names[i]); 1867 1868 if (dm_bufio_client_count) { 1869 DMCRIT("%s: dm_bufio_client_count leaked: %d", 1870 __func__, dm_bufio_client_count); 1871 bug = 1; 1872 } 1873 1874 if (dm_bufio_current_allocated) { 1875 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 1876 __func__, dm_bufio_current_allocated); 1877 bug = 1; 1878 } 1879 1880 if (dm_bufio_allocated_get_free_pages) { 1881 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 1882 __func__, dm_bufio_allocated_get_free_pages); 1883 bug = 1; 1884 } 1885 1886 if (dm_bufio_allocated_vmalloc) { 1887 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 1888 __func__, dm_bufio_allocated_vmalloc); 1889 bug = 1; 1890 } 1891 1892 if (bug) 1893 BUG(); 1894 } 1895 1896 module_init(dm_bufio_init) 1897 module_exit(dm_bufio_exit) 1898 1899 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 1900 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 1901 1902 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 1903 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 1904 1905 module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR); 1906 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 1907 1908 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 1909 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 1910 1911 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 1912 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 1913 1914 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 1915 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 1916 1917 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 1918 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 1919 1920 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 1921 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 1922 1923 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 1924 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 1925 MODULE_LICENSE("GPL"); 1926