1 /* 2 * Copyright (C) 2009-2011 Red Hat, Inc. 3 * 4 * Author: Mikulas Patocka <mpatocka@redhat.com> 5 * 6 * This file is released under the GPL. 7 */ 8 9 #include <linux/dm-bufio.h> 10 11 #include <linux/device-mapper.h> 12 #include <linux/dm-io.h> 13 #include <linux/slab.h> 14 #include <linux/sched/mm.h> 15 #include <linux/jiffies.h> 16 #include <linux/vmalloc.h> 17 #include <linux/shrinker.h> 18 #include <linux/module.h> 19 #include <linux/rbtree.h> 20 #include <linux/stacktrace.h> 21 22 #define DM_MSG_PREFIX "bufio" 23 24 /* 25 * Memory management policy: 26 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory 27 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower). 28 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers. 29 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT 30 * dirty buffers. 31 */ 32 #define DM_BUFIO_MIN_BUFFERS 8 33 34 #define DM_BUFIO_MEMORY_PERCENT 2 35 #define DM_BUFIO_VMALLOC_PERCENT 25 36 #define DM_BUFIO_WRITEBACK_RATIO 3 37 #define DM_BUFIO_LOW_WATERMARK_RATIO 16 38 39 /* 40 * Check buffer ages in this interval (seconds) 41 */ 42 #define DM_BUFIO_WORK_TIMER_SECS 30 43 44 /* 45 * Free buffers when they are older than this (seconds) 46 */ 47 #define DM_BUFIO_DEFAULT_AGE_SECS 300 48 49 /* 50 * The nr of bytes of cached data to keep around. 51 */ 52 #define DM_BUFIO_DEFAULT_RETAIN_BYTES (256 * 1024) 53 54 /* 55 * Align buffer writes to this boundary. 56 * Tests show that SSDs have the highest IOPS when using 4k writes. 57 */ 58 #define DM_BUFIO_WRITE_ALIGN 4096 59 60 /* 61 * dm_buffer->list_mode 62 */ 63 #define LIST_CLEAN 0 64 #define LIST_DIRTY 1 65 #define LIST_SIZE 2 66 67 /* 68 * Linking of buffers: 69 * All buffers are linked to buffer_tree with their node field. 70 * 71 * Clean buffers that are not being written (B_WRITING not set) 72 * are linked to lru[LIST_CLEAN] with their lru_list field. 73 * 74 * Dirty and clean buffers that are being written are linked to 75 * lru[LIST_DIRTY] with their lru_list field. When the write 76 * finishes, the buffer cannot be relinked immediately (because we 77 * are in an interrupt context and relinking requires process 78 * context), so some clean-not-writing buffers can be held on 79 * dirty_lru too. They are later added to lru in the process 80 * context. 81 */ 82 struct dm_bufio_client { 83 struct mutex lock; 84 85 struct list_head lru[LIST_SIZE]; 86 unsigned long n_buffers[LIST_SIZE]; 87 88 struct block_device *bdev; 89 unsigned block_size; 90 s8 sectors_per_block_bits; 91 void (*alloc_callback)(struct dm_buffer *); 92 void (*write_callback)(struct dm_buffer *); 93 94 struct kmem_cache *slab_buffer; 95 struct kmem_cache *slab_cache; 96 struct dm_io_client *dm_io; 97 98 struct list_head reserved_buffers; 99 unsigned need_reserved_buffers; 100 101 unsigned minimum_buffers; 102 103 struct rb_root buffer_tree; 104 wait_queue_head_t free_buffer_wait; 105 106 sector_t start; 107 108 int async_write_error; 109 110 struct list_head client_list; 111 struct shrinker shrinker; 112 }; 113 114 /* 115 * Buffer state bits. 116 */ 117 #define B_READING 0 118 #define B_WRITING 1 119 #define B_DIRTY 2 120 121 /* 122 * Describes how the block was allocated: 123 * kmem_cache_alloc(), __get_free_pages() or vmalloc(). 124 * See the comment at alloc_buffer_data. 125 */ 126 enum data_mode { 127 DATA_MODE_SLAB = 0, 128 DATA_MODE_GET_FREE_PAGES = 1, 129 DATA_MODE_VMALLOC = 2, 130 DATA_MODE_LIMIT = 3 131 }; 132 133 struct dm_buffer { 134 struct rb_node node; 135 struct list_head lru_list; 136 struct list_head global_list; 137 sector_t block; 138 void *data; 139 unsigned char data_mode; /* DATA_MODE_* */ 140 unsigned char list_mode; /* LIST_* */ 141 blk_status_t read_error; 142 blk_status_t write_error; 143 unsigned accessed; 144 unsigned hold_count; 145 unsigned long state; 146 unsigned long last_accessed; 147 unsigned dirty_start; 148 unsigned dirty_end; 149 unsigned write_start; 150 unsigned write_end; 151 struct dm_bufio_client *c; 152 struct list_head write_list; 153 void (*end_io)(struct dm_buffer *, blk_status_t); 154 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 155 #define MAX_STACK 10 156 unsigned int stack_len; 157 unsigned long stack_entries[MAX_STACK]; 158 #endif 159 }; 160 161 /*----------------------------------------------------------------*/ 162 163 #define dm_bufio_in_request() (!!current->bio_list) 164 165 static void dm_bufio_lock(struct dm_bufio_client *c) 166 { 167 mutex_lock_nested(&c->lock, dm_bufio_in_request()); 168 } 169 170 static int dm_bufio_trylock(struct dm_bufio_client *c) 171 { 172 return mutex_trylock(&c->lock); 173 } 174 175 static void dm_bufio_unlock(struct dm_bufio_client *c) 176 { 177 mutex_unlock(&c->lock); 178 } 179 180 /*----------------------------------------------------------------*/ 181 182 /* 183 * Default cache size: available memory divided by the ratio. 184 */ 185 static unsigned long dm_bufio_default_cache_size; 186 187 /* 188 * Total cache size set by the user. 189 */ 190 static unsigned long dm_bufio_cache_size; 191 192 /* 193 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change 194 * at any time. If it disagrees, the user has changed cache size. 195 */ 196 static unsigned long dm_bufio_cache_size_latch; 197 198 static DEFINE_SPINLOCK(global_spinlock); 199 200 static LIST_HEAD(global_queue); 201 202 static unsigned long global_num = 0; 203 204 /* 205 * Buffers are freed after this timeout 206 */ 207 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS; 208 static unsigned long dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES; 209 210 static unsigned long dm_bufio_peak_allocated; 211 static unsigned long dm_bufio_allocated_kmem_cache; 212 static unsigned long dm_bufio_allocated_get_free_pages; 213 static unsigned long dm_bufio_allocated_vmalloc; 214 static unsigned long dm_bufio_current_allocated; 215 216 /*----------------------------------------------------------------*/ 217 218 /* 219 * The current number of clients. 220 */ 221 static int dm_bufio_client_count; 222 223 /* 224 * The list of all clients. 225 */ 226 static LIST_HEAD(dm_bufio_all_clients); 227 228 /* 229 * This mutex protects dm_bufio_cache_size_latch and dm_bufio_client_count 230 */ 231 static DEFINE_MUTEX(dm_bufio_clients_lock); 232 233 static struct workqueue_struct *dm_bufio_wq; 234 static struct delayed_work dm_bufio_cleanup_old_work; 235 static struct work_struct dm_bufio_replacement_work; 236 237 238 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 239 static void buffer_record_stack(struct dm_buffer *b) 240 { 241 b->stack_len = stack_trace_save(b->stack_entries, MAX_STACK, 2); 242 } 243 #endif 244 245 /*---------------------------------------------------------------- 246 * A red/black tree acts as an index for all the buffers. 247 *--------------------------------------------------------------*/ 248 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block) 249 { 250 struct rb_node *n = c->buffer_tree.rb_node; 251 struct dm_buffer *b; 252 253 while (n) { 254 b = container_of(n, struct dm_buffer, node); 255 256 if (b->block == block) 257 return b; 258 259 n = block < b->block ? n->rb_left : n->rb_right; 260 } 261 262 return NULL; 263 } 264 265 static struct dm_buffer *__find_next(struct dm_bufio_client *c, sector_t block) 266 { 267 struct rb_node *n = c->buffer_tree.rb_node; 268 struct dm_buffer *b; 269 struct dm_buffer *best = NULL; 270 271 while (n) { 272 b = container_of(n, struct dm_buffer, node); 273 274 if (b->block == block) 275 return b; 276 277 if (block <= b->block) { 278 n = n->rb_left; 279 best = b; 280 } else { 281 n = n->rb_right; 282 } 283 } 284 285 return best; 286 } 287 288 static void __insert(struct dm_bufio_client *c, struct dm_buffer *b) 289 { 290 struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL; 291 struct dm_buffer *found; 292 293 while (*new) { 294 found = container_of(*new, struct dm_buffer, node); 295 296 if (found->block == b->block) { 297 BUG_ON(found != b); 298 return; 299 } 300 301 parent = *new; 302 new = b->block < found->block ? 303 &found->node.rb_left : &found->node.rb_right; 304 } 305 306 rb_link_node(&b->node, parent, new); 307 rb_insert_color(&b->node, &c->buffer_tree); 308 } 309 310 static void __remove(struct dm_bufio_client *c, struct dm_buffer *b) 311 { 312 rb_erase(&b->node, &c->buffer_tree); 313 } 314 315 /*----------------------------------------------------------------*/ 316 317 static void adjust_total_allocated(struct dm_buffer *b, bool unlink) 318 { 319 unsigned char data_mode; 320 long diff; 321 322 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = { 323 &dm_bufio_allocated_kmem_cache, 324 &dm_bufio_allocated_get_free_pages, 325 &dm_bufio_allocated_vmalloc, 326 }; 327 328 data_mode = b->data_mode; 329 diff = (long)b->c->block_size; 330 if (unlink) 331 diff = -diff; 332 333 spin_lock(&global_spinlock); 334 335 *class_ptr[data_mode] += diff; 336 337 dm_bufio_current_allocated += diff; 338 339 if (dm_bufio_current_allocated > dm_bufio_peak_allocated) 340 dm_bufio_peak_allocated = dm_bufio_current_allocated; 341 342 b->accessed = 1; 343 344 if (!unlink) { 345 list_add(&b->global_list, &global_queue); 346 global_num++; 347 if (dm_bufio_current_allocated > dm_bufio_cache_size) 348 queue_work(dm_bufio_wq, &dm_bufio_replacement_work); 349 } else { 350 list_del(&b->global_list); 351 global_num--; 352 } 353 354 spin_unlock(&global_spinlock); 355 } 356 357 /* 358 * Change the number of clients and recalculate per-client limit. 359 */ 360 static void __cache_size_refresh(void) 361 { 362 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock)); 363 BUG_ON(dm_bufio_client_count < 0); 364 365 dm_bufio_cache_size_latch = READ_ONCE(dm_bufio_cache_size); 366 367 /* 368 * Use default if set to 0 and report the actual cache size used. 369 */ 370 if (!dm_bufio_cache_size_latch) { 371 (void)cmpxchg(&dm_bufio_cache_size, 0, 372 dm_bufio_default_cache_size); 373 dm_bufio_cache_size_latch = dm_bufio_default_cache_size; 374 } 375 } 376 377 /* 378 * Allocating buffer data. 379 * 380 * Small buffers are allocated with kmem_cache, to use space optimally. 381 * 382 * For large buffers, we choose between get_free_pages and vmalloc. 383 * Each has advantages and disadvantages. 384 * 385 * __get_free_pages can randomly fail if the memory is fragmented. 386 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be 387 * as low as 128M) so using it for caching is not appropriate. 388 * 389 * If the allocation may fail we use __get_free_pages. Memory fragmentation 390 * won't have a fatal effect here, but it just causes flushes of some other 391 * buffers and more I/O will be performed. Don't use __get_free_pages if it 392 * always fails (i.e. order >= MAX_ORDER). 393 * 394 * If the allocation shouldn't fail we use __vmalloc. This is only for the 395 * initial reserve allocation, so there's no risk of wasting all vmalloc 396 * space. 397 */ 398 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask, 399 unsigned char *data_mode) 400 { 401 if (unlikely(c->slab_cache != NULL)) { 402 *data_mode = DATA_MODE_SLAB; 403 return kmem_cache_alloc(c->slab_cache, gfp_mask); 404 } 405 406 if (c->block_size <= KMALLOC_MAX_SIZE && 407 gfp_mask & __GFP_NORETRY) { 408 *data_mode = DATA_MODE_GET_FREE_PAGES; 409 return (void *)__get_free_pages(gfp_mask, 410 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 411 } 412 413 *data_mode = DATA_MODE_VMALLOC; 414 415 /* 416 * __vmalloc allocates the data pages and auxiliary structures with 417 * gfp_flags that were specified, but pagetables are always allocated 418 * with GFP_KERNEL, no matter what was specified as gfp_mask. 419 * 420 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that 421 * all allocations done by this process (including pagetables) are done 422 * as if GFP_NOIO was specified. 423 */ 424 if (gfp_mask & __GFP_NORETRY) { 425 unsigned noio_flag = memalloc_noio_save(); 426 void *ptr = __vmalloc(c->block_size, gfp_mask); 427 428 memalloc_noio_restore(noio_flag); 429 return ptr; 430 } 431 432 return __vmalloc(c->block_size, gfp_mask); 433 } 434 435 /* 436 * Free buffer's data. 437 */ 438 static void free_buffer_data(struct dm_bufio_client *c, 439 void *data, unsigned char data_mode) 440 { 441 switch (data_mode) { 442 case DATA_MODE_SLAB: 443 kmem_cache_free(c->slab_cache, data); 444 break; 445 446 case DATA_MODE_GET_FREE_PAGES: 447 free_pages((unsigned long)data, 448 c->sectors_per_block_bits - (PAGE_SHIFT - SECTOR_SHIFT)); 449 break; 450 451 case DATA_MODE_VMALLOC: 452 vfree(data); 453 break; 454 455 default: 456 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d", 457 data_mode); 458 BUG(); 459 } 460 } 461 462 /* 463 * Allocate buffer and its data. 464 */ 465 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask) 466 { 467 struct dm_buffer *b = kmem_cache_alloc(c->slab_buffer, gfp_mask); 468 469 if (!b) 470 return NULL; 471 472 b->c = c; 473 474 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode); 475 if (!b->data) { 476 kmem_cache_free(c->slab_buffer, b); 477 return NULL; 478 } 479 480 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 481 b->stack_len = 0; 482 #endif 483 return b; 484 } 485 486 /* 487 * Free buffer and its data. 488 */ 489 static void free_buffer(struct dm_buffer *b) 490 { 491 struct dm_bufio_client *c = b->c; 492 493 free_buffer_data(c, b->data, b->data_mode); 494 kmem_cache_free(c->slab_buffer, b); 495 } 496 497 /* 498 * Link buffer to the buffer tree and clean or dirty queue. 499 */ 500 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty) 501 { 502 struct dm_bufio_client *c = b->c; 503 504 c->n_buffers[dirty]++; 505 b->block = block; 506 b->list_mode = dirty; 507 list_add(&b->lru_list, &c->lru[dirty]); 508 __insert(b->c, b); 509 b->last_accessed = jiffies; 510 511 adjust_total_allocated(b, false); 512 } 513 514 /* 515 * Unlink buffer from the buffer tree and dirty or clean queue. 516 */ 517 static void __unlink_buffer(struct dm_buffer *b) 518 { 519 struct dm_bufio_client *c = b->c; 520 521 BUG_ON(!c->n_buffers[b->list_mode]); 522 523 c->n_buffers[b->list_mode]--; 524 __remove(b->c, b); 525 list_del(&b->lru_list); 526 527 adjust_total_allocated(b, true); 528 } 529 530 /* 531 * Place the buffer to the head of dirty or clean LRU queue. 532 */ 533 static void __relink_lru(struct dm_buffer *b, int dirty) 534 { 535 struct dm_bufio_client *c = b->c; 536 537 b->accessed = 1; 538 539 BUG_ON(!c->n_buffers[b->list_mode]); 540 541 c->n_buffers[b->list_mode]--; 542 c->n_buffers[dirty]++; 543 b->list_mode = dirty; 544 list_move(&b->lru_list, &c->lru[dirty]); 545 b->last_accessed = jiffies; 546 } 547 548 /*---------------------------------------------------------------- 549 * Submit I/O on the buffer. 550 * 551 * Bio interface is faster but it has some problems: 552 * the vector list is limited (increasing this limit increases 553 * memory-consumption per buffer, so it is not viable); 554 * 555 * the memory must be direct-mapped, not vmalloced; 556 * 557 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and 558 * it is not vmalloced, try using the bio interface. 559 * 560 * If the buffer is big, if it is vmalloced or if the underlying device 561 * rejects the bio because it is too large, use dm-io layer to do the I/O. 562 * The dm-io layer splits the I/O into multiple requests, avoiding the above 563 * shortcomings. 564 *--------------------------------------------------------------*/ 565 566 /* 567 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending 568 * that the request was handled directly with bio interface. 569 */ 570 static void dmio_complete(unsigned long error, void *context) 571 { 572 struct dm_buffer *b = context; 573 574 b->end_io(b, unlikely(error != 0) ? BLK_STS_IOERR : 0); 575 } 576 577 static void use_dmio(struct dm_buffer *b, int rw, sector_t sector, 578 unsigned n_sectors, unsigned offset) 579 { 580 int r; 581 struct dm_io_request io_req = { 582 .bi_op = rw, 583 .bi_op_flags = 0, 584 .notify.fn = dmio_complete, 585 .notify.context = b, 586 .client = b->c->dm_io, 587 }; 588 struct dm_io_region region = { 589 .bdev = b->c->bdev, 590 .sector = sector, 591 .count = n_sectors, 592 }; 593 594 if (b->data_mode != DATA_MODE_VMALLOC) { 595 io_req.mem.type = DM_IO_KMEM; 596 io_req.mem.ptr.addr = (char *)b->data + offset; 597 } else { 598 io_req.mem.type = DM_IO_VMA; 599 io_req.mem.ptr.vma = (char *)b->data + offset; 600 } 601 602 r = dm_io(&io_req, 1, ®ion, NULL); 603 if (unlikely(r)) 604 b->end_io(b, errno_to_blk_status(r)); 605 } 606 607 static void bio_complete(struct bio *bio) 608 { 609 struct dm_buffer *b = bio->bi_private; 610 blk_status_t status = bio->bi_status; 611 bio_put(bio); 612 b->end_io(b, status); 613 } 614 615 static void use_bio(struct dm_buffer *b, int rw, sector_t sector, 616 unsigned n_sectors, unsigned offset) 617 { 618 struct bio *bio; 619 char *ptr; 620 unsigned vec_size, len; 621 622 vec_size = b->c->block_size >> PAGE_SHIFT; 623 if (unlikely(b->c->sectors_per_block_bits < PAGE_SHIFT - SECTOR_SHIFT)) 624 vec_size += 2; 625 626 bio = bio_kmalloc(GFP_NOWAIT | __GFP_NORETRY | __GFP_NOWARN, vec_size); 627 if (!bio) { 628 dmio: 629 use_dmio(b, rw, sector, n_sectors, offset); 630 return; 631 } 632 633 bio->bi_iter.bi_sector = sector; 634 bio_set_dev(bio, b->c->bdev); 635 bio_set_op_attrs(bio, rw, 0); 636 bio->bi_end_io = bio_complete; 637 bio->bi_private = b; 638 639 ptr = (char *)b->data + offset; 640 len = n_sectors << SECTOR_SHIFT; 641 642 do { 643 unsigned this_step = min((unsigned)(PAGE_SIZE - offset_in_page(ptr)), len); 644 if (!bio_add_page(bio, virt_to_page(ptr), this_step, 645 offset_in_page(ptr))) { 646 bio_put(bio); 647 goto dmio; 648 } 649 650 len -= this_step; 651 ptr += this_step; 652 } while (len > 0); 653 654 submit_bio(bio); 655 } 656 657 static inline sector_t block_to_sector(struct dm_bufio_client *c, sector_t block) 658 { 659 sector_t sector; 660 661 if (likely(c->sectors_per_block_bits >= 0)) 662 sector = block << c->sectors_per_block_bits; 663 else 664 sector = block * (c->block_size >> SECTOR_SHIFT); 665 sector += c->start; 666 667 return sector; 668 } 669 670 static void submit_io(struct dm_buffer *b, int rw, void (*end_io)(struct dm_buffer *, blk_status_t)) 671 { 672 unsigned n_sectors; 673 sector_t sector; 674 unsigned offset, end; 675 676 b->end_io = end_io; 677 678 sector = block_to_sector(b->c, b->block); 679 680 if (rw != REQ_OP_WRITE) { 681 n_sectors = b->c->block_size >> SECTOR_SHIFT; 682 offset = 0; 683 } else { 684 if (b->c->write_callback) 685 b->c->write_callback(b); 686 offset = b->write_start; 687 end = b->write_end; 688 offset &= -DM_BUFIO_WRITE_ALIGN; 689 end += DM_BUFIO_WRITE_ALIGN - 1; 690 end &= -DM_BUFIO_WRITE_ALIGN; 691 if (unlikely(end > b->c->block_size)) 692 end = b->c->block_size; 693 694 sector += offset >> SECTOR_SHIFT; 695 n_sectors = (end - offset) >> SECTOR_SHIFT; 696 } 697 698 if (b->data_mode != DATA_MODE_VMALLOC) 699 use_bio(b, rw, sector, n_sectors, offset); 700 else 701 use_dmio(b, rw, sector, n_sectors, offset); 702 } 703 704 /*---------------------------------------------------------------- 705 * Writing dirty buffers 706 *--------------------------------------------------------------*/ 707 708 /* 709 * The endio routine for write. 710 * 711 * Set the error, clear B_WRITING bit and wake anyone who was waiting on 712 * it. 713 */ 714 static void write_endio(struct dm_buffer *b, blk_status_t status) 715 { 716 b->write_error = status; 717 if (unlikely(status)) { 718 struct dm_bufio_client *c = b->c; 719 720 (void)cmpxchg(&c->async_write_error, 0, 721 blk_status_to_errno(status)); 722 } 723 724 BUG_ON(!test_bit(B_WRITING, &b->state)); 725 726 smp_mb__before_atomic(); 727 clear_bit(B_WRITING, &b->state); 728 smp_mb__after_atomic(); 729 730 wake_up_bit(&b->state, B_WRITING); 731 } 732 733 /* 734 * Initiate a write on a dirty buffer, but don't wait for it. 735 * 736 * - If the buffer is not dirty, exit. 737 * - If there some previous write going on, wait for it to finish (we can't 738 * have two writes on the same buffer simultaneously). 739 * - Submit our write and don't wait on it. We set B_WRITING indicating 740 * that there is a write in progress. 741 */ 742 static void __write_dirty_buffer(struct dm_buffer *b, 743 struct list_head *write_list) 744 { 745 if (!test_bit(B_DIRTY, &b->state)) 746 return; 747 748 clear_bit(B_DIRTY, &b->state); 749 wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 750 751 b->write_start = b->dirty_start; 752 b->write_end = b->dirty_end; 753 754 if (!write_list) 755 submit_io(b, REQ_OP_WRITE, write_endio); 756 else 757 list_add_tail(&b->write_list, write_list); 758 } 759 760 static void __flush_write_list(struct list_head *write_list) 761 { 762 struct blk_plug plug; 763 blk_start_plug(&plug); 764 while (!list_empty(write_list)) { 765 struct dm_buffer *b = 766 list_entry(write_list->next, struct dm_buffer, write_list); 767 list_del(&b->write_list); 768 submit_io(b, REQ_OP_WRITE, write_endio); 769 cond_resched(); 770 } 771 blk_finish_plug(&plug); 772 } 773 774 /* 775 * Wait until any activity on the buffer finishes. Possibly write the 776 * buffer if it is dirty. When this function finishes, there is no I/O 777 * running on the buffer and the buffer is not dirty. 778 */ 779 static void __make_buffer_clean(struct dm_buffer *b) 780 { 781 BUG_ON(b->hold_count); 782 783 if (!b->state) /* fast case */ 784 return; 785 786 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 787 __write_dirty_buffer(b, NULL); 788 wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE); 789 } 790 791 /* 792 * Find some buffer that is not held by anybody, clean it, unlink it and 793 * return it. 794 */ 795 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c) 796 { 797 struct dm_buffer *b; 798 799 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) { 800 BUG_ON(test_bit(B_WRITING, &b->state)); 801 BUG_ON(test_bit(B_DIRTY, &b->state)); 802 803 if (!b->hold_count) { 804 __make_buffer_clean(b); 805 __unlink_buffer(b); 806 return b; 807 } 808 cond_resched(); 809 } 810 811 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) { 812 BUG_ON(test_bit(B_READING, &b->state)); 813 814 if (!b->hold_count) { 815 __make_buffer_clean(b); 816 __unlink_buffer(b); 817 return b; 818 } 819 cond_resched(); 820 } 821 822 return NULL; 823 } 824 825 /* 826 * Wait until some other threads free some buffer or release hold count on 827 * some buffer. 828 * 829 * This function is entered with c->lock held, drops it and regains it 830 * before exiting. 831 */ 832 static void __wait_for_free_buffer(struct dm_bufio_client *c) 833 { 834 DECLARE_WAITQUEUE(wait, current); 835 836 add_wait_queue(&c->free_buffer_wait, &wait); 837 set_current_state(TASK_UNINTERRUPTIBLE); 838 dm_bufio_unlock(c); 839 840 io_schedule(); 841 842 remove_wait_queue(&c->free_buffer_wait, &wait); 843 844 dm_bufio_lock(c); 845 } 846 847 enum new_flag { 848 NF_FRESH = 0, 849 NF_READ = 1, 850 NF_GET = 2, 851 NF_PREFETCH = 3 852 }; 853 854 /* 855 * Allocate a new buffer. If the allocation is not possible, wait until 856 * some other thread frees a buffer. 857 * 858 * May drop the lock and regain it. 859 */ 860 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf) 861 { 862 struct dm_buffer *b; 863 bool tried_noio_alloc = false; 864 865 /* 866 * dm-bufio is resistant to allocation failures (it just keeps 867 * one buffer reserved in cases all the allocations fail). 868 * So set flags to not try too hard: 869 * GFP_NOWAIT: don't wait; if we need to sleep we'll release our 870 * mutex and wait ourselves. 871 * __GFP_NORETRY: don't retry and rather return failure 872 * __GFP_NOMEMALLOC: don't use emergency reserves 873 * __GFP_NOWARN: don't print a warning in case of failure 874 * 875 * For debugging, if we set the cache size to 1, no new buffers will 876 * be allocated. 877 */ 878 while (1) { 879 if (dm_bufio_cache_size_latch != 1) { 880 b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 881 if (b) 882 return b; 883 } 884 885 if (nf == NF_PREFETCH) 886 return NULL; 887 888 if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) { 889 dm_bufio_unlock(c); 890 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 891 dm_bufio_lock(c); 892 if (b) 893 return b; 894 tried_noio_alloc = true; 895 } 896 897 if (!list_empty(&c->reserved_buffers)) { 898 b = list_entry(c->reserved_buffers.next, 899 struct dm_buffer, lru_list); 900 list_del(&b->lru_list); 901 c->need_reserved_buffers++; 902 903 return b; 904 } 905 906 b = __get_unclaimed_buffer(c); 907 if (b) 908 return b; 909 910 __wait_for_free_buffer(c); 911 } 912 } 913 914 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf) 915 { 916 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf); 917 918 if (!b) 919 return NULL; 920 921 if (c->alloc_callback) 922 c->alloc_callback(b); 923 924 return b; 925 } 926 927 /* 928 * Free a buffer and wake other threads waiting for free buffers. 929 */ 930 static void __free_buffer_wake(struct dm_buffer *b) 931 { 932 struct dm_bufio_client *c = b->c; 933 934 if (!c->need_reserved_buffers) 935 free_buffer(b); 936 else { 937 list_add(&b->lru_list, &c->reserved_buffers); 938 c->need_reserved_buffers--; 939 } 940 941 wake_up(&c->free_buffer_wait); 942 } 943 944 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait, 945 struct list_head *write_list) 946 { 947 struct dm_buffer *b, *tmp; 948 949 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 950 BUG_ON(test_bit(B_READING, &b->state)); 951 952 if (!test_bit(B_DIRTY, &b->state) && 953 !test_bit(B_WRITING, &b->state)) { 954 __relink_lru(b, LIST_CLEAN); 955 continue; 956 } 957 958 if (no_wait && test_bit(B_WRITING, &b->state)) 959 return; 960 961 __write_dirty_buffer(b, write_list); 962 cond_resched(); 963 } 964 } 965 966 /* 967 * Check if we're over watermark. 968 * If we are over threshold_buffers, start freeing buffers. 969 * If we're over "limit_buffers", block until we get under the limit. 970 */ 971 static void __check_watermark(struct dm_bufio_client *c, 972 struct list_head *write_list) 973 { 974 if (c->n_buffers[LIST_DIRTY] > c->n_buffers[LIST_CLEAN] * DM_BUFIO_WRITEBACK_RATIO) 975 __write_dirty_buffers_async(c, 1, write_list); 976 } 977 978 /*---------------------------------------------------------------- 979 * Getting a buffer 980 *--------------------------------------------------------------*/ 981 982 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block, 983 enum new_flag nf, int *need_submit, 984 struct list_head *write_list) 985 { 986 struct dm_buffer *b, *new_b = NULL; 987 988 *need_submit = 0; 989 990 b = __find(c, block); 991 if (b) 992 goto found_buffer; 993 994 if (nf == NF_GET) 995 return NULL; 996 997 new_b = __alloc_buffer_wait(c, nf); 998 if (!new_b) 999 return NULL; 1000 1001 /* 1002 * We've had a period where the mutex was unlocked, so need to 1003 * recheck the buffer tree. 1004 */ 1005 b = __find(c, block); 1006 if (b) { 1007 __free_buffer_wake(new_b); 1008 goto found_buffer; 1009 } 1010 1011 __check_watermark(c, write_list); 1012 1013 b = new_b; 1014 b->hold_count = 1; 1015 b->read_error = 0; 1016 b->write_error = 0; 1017 __link_buffer(b, block, LIST_CLEAN); 1018 1019 if (nf == NF_FRESH) { 1020 b->state = 0; 1021 return b; 1022 } 1023 1024 b->state = 1 << B_READING; 1025 *need_submit = 1; 1026 1027 return b; 1028 1029 found_buffer: 1030 if (nf == NF_PREFETCH) 1031 return NULL; 1032 /* 1033 * Note: it is essential that we don't wait for the buffer to be 1034 * read if dm_bufio_get function is used. Both dm_bufio_get and 1035 * dm_bufio_prefetch can be used in the driver request routine. 1036 * If the user called both dm_bufio_prefetch and dm_bufio_get on 1037 * the same buffer, it would deadlock if we waited. 1038 */ 1039 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state))) 1040 return NULL; 1041 1042 b->hold_count++; 1043 __relink_lru(b, test_bit(B_DIRTY, &b->state) || 1044 test_bit(B_WRITING, &b->state)); 1045 return b; 1046 } 1047 1048 /* 1049 * The endio routine for reading: set the error, clear the bit and wake up 1050 * anyone waiting on the buffer. 1051 */ 1052 static void read_endio(struct dm_buffer *b, blk_status_t status) 1053 { 1054 b->read_error = status; 1055 1056 BUG_ON(!test_bit(B_READING, &b->state)); 1057 1058 smp_mb__before_atomic(); 1059 clear_bit(B_READING, &b->state); 1060 smp_mb__after_atomic(); 1061 1062 wake_up_bit(&b->state, B_READING); 1063 } 1064 1065 /* 1066 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these 1067 * functions is similar except that dm_bufio_new doesn't read the 1068 * buffer from the disk (assuming that the caller overwrites all the data 1069 * and uses dm_bufio_mark_buffer_dirty to write new data back). 1070 */ 1071 static void *new_read(struct dm_bufio_client *c, sector_t block, 1072 enum new_flag nf, struct dm_buffer **bp) 1073 { 1074 int need_submit; 1075 struct dm_buffer *b; 1076 1077 LIST_HEAD(write_list); 1078 1079 dm_bufio_lock(c); 1080 b = __bufio_new(c, block, nf, &need_submit, &write_list); 1081 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1082 if (b && b->hold_count == 1) 1083 buffer_record_stack(b); 1084 #endif 1085 dm_bufio_unlock(c); 1086 1087 __flush_write_list(&write_list); 1088 1089 if (!b) 1090 return NULL; 1091 1092 if (need_submit) 1093 submit_io(b, REQ_OP_READ, read_endio); 1094 1095 wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE); 1096 1097 if (b->read_error) { 1098 int error = blk_status_to_errno(b->read_error); 1099 1100 dm_bufio_release(b); 1101 1102 return ERR_PTR(error); 1103 } 1104 1105 *bp = b; 1106 1107 return b->data; 1108 } 1109 1110 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block, 1111 struct dm_buffer **bp) 1112 { 1113 return new_read(c, block, NF_GET, bp); 1114 } 1115 EXPORT_SYMBOL_GPL(dm_bufio_get); 1116 1117 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block, 1118 struct dm_buffer **bp) 1119 { 1120 BUG_ON(dm_bufio_in_request()); 1121 1122 return new_read(c, block, NF_READ, bp); 1123 } 1124 EXPORT_SYMBOL_GPL(dm_bufio_read); 1125 1126 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block, 1127 struct dm_buffer **bp) 1128 { 1129 BUG_ON(dm_bufio_in_request()); 1130 1131 return new_read(c, block, NF_FRESH, bp); 1132 } 1133 EXPORT_SYMBOL_GPL(dm_bufio_new); 1134 1135 void dm_bufio_prefetch(struct dm_bufio_client *c, 1136 sector_t block, unsigned n_blocks) 1137 { 1138 struct blk_plug plug; 1139 1140 LIST_HEAD(write_list); 1141 1142 BUG_ON(dm_bufio_in_request()); 1143 1144 blk_start_plug(&plug); 1145 dm_bufio_lock(c); 1146 1147 for (; n_blocks--; block++) { 1148 int need_submit; 1149 struct dm_buffer *b; 1150 b = __bufio_new(c, block, NF_PREFETCH, &need_submit, 1151 &write_list); 1152 if (unlikely(!list_empty(&write_list))) { 1153 dm_bufio_unlock(c); 1154 blk_finish_plug(&plug); 1155 __flush_write_list(&write_list); 1156 blk_start_plug(&plug); 1157 dm_bufio_lock(c); 1158 } 1159 if (unlikely(b != NULL)) { 1160 dm_bufio_unlock(c); 1161 1162 if (need_submit) 1163 submit_io(b, REQ_OP_READ, read_endio); 1164 dm_bufio_release(b); 1165 1166 cond_resched(); 1167 1168 if (!n_blocks) 1169 goto flush_plug; 1170 dm_bufio_lock(c); 1171 } 1172 } 1173 1174 dm_bufio_unlock(c); 1175 1176 flush_plug: 1177 blk_finish_plug(&plug); 1178 } 1179 EXPORT_SYMBOL_GPL(dm_bufio_prefetch); 1180 1181 void dm_bufio_release(struct dm_buffer *b) 1182 { 1183 struct dm_bufio_client *c = b->c; 1184 1185 dm_bufio_lock(c); 1186 1187 BUG_ON(!b->hold_count); 1188 1189 b->hold_count--; 1190 if (!b->hold_count) { 1191 wake_up(&c->free_buffer_wait); 1192 1193 /* 1194 * If there were errors on the buffer, and the buffer is not 1195 * to be written, free the buffer. There is no point in caching 1196 * invalid buffer. 1197 */ 1198 if ((b->read_error || b->write_error) && 1199 !test_bit(B_READING, &b->state) && 1200 !test_bit(B_WRITING, &b->state) && 1201 !test_bit(B_DIRTY, &b->state)) { 1202 __unlink_buffer(b); 1203 __free_buffer_wake(b); 1204 } 1205 } 1206 1207 dm_bufio_unlock(c); 1208 } 1209 EXPORT_SYMBOL_GPL(dm_bufio_release); 1210 1211 void dm_bufio_mark_partial_buffer_dirty(struct dm_buffer *b, 1212 unsigned start, unsigned end) 1213 { 1214 struct dm_bufio_client *c = b->c; 1215 1216 BUG_ON(start >= end); 1217 BUG_ON(end > b->c->block_size); 1218 1219 dm_bufio_lock(c); 1220 1221 BUG_ON(test_bit(B_READING, &b->state)); 1222 1223 if (!test_and_set_bit(B_DIRTY, &b->state)) { 1224 b->dirty_start = start; 1225 b->dirty_end = end; 1226 __relink_lru(b, LIST_DIRTY); 1227 } else { 1228 if (start < b->dirty_start) 1229 b->dirty_start = start; 1230 if (end > b->dirty_end) 1231 b->dirty_end = end; 1232 } 1233 1234 dm_bufio_unlock(c); 1235 } 1236 EXPORT_SYMBOL_GPL(dm_bufio_mark_partial_buffer_dirty); 1237 1238 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b) 1239 { 1240 dm_bufio_mark_partial_buffer_dirty(b, 0, b->c->block_size); 1241 } 1242 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty); 1243 1244 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c) 1245 { 1246 LIST_HEAD(write_list); 1247 1248 BUG_ON(dm_bufio_in_request()); 1249 1250 dm_bufio_lock(c); 1251 __write_dirty_buffers_async(c, 0, &write_list); 1252 dm_bufio_unlock(c); 1253 __flush_write_list(&write_list); 1254 } 1255 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async); 1256 1257 /* 1258 * For performance, it is essential that the buffers are written asynchronously 1259 * and simultaneously (so that the block layer can merge the writes) and then 1260 * waited upon. 1261 * 1262 * Finally, we flush hardware disk cache. 1263 */ 1264 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c) 1265 { 1266 int a, f; 1267 unsigned long buffers_processed = 0; 1268 struct dm_buffer *b, *tmp; 1269 1270 LIST_HEAD(write_list); 1271 1272 dm_bufio_lock(c); 1273 __write_dirty_buffers_async(c, 0, &write_list); 1274 dm_bufio_unlock(c); 1275 __flush_write_list(&write_list); 1276 dm_bufio_lock(c); 1277 1278 again: 1279 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) { 1280 int dropped_lock = 0; 1281 1282 if (buffers_processed < c->n_buffers[LIST_DIRTY]) 1283 buffers_processed++; 1284 1285 BUG_ON(test_bit(B_READING, &b->state)); 1286 1287 if (test_bit(B_WRITING, &b->state)) { 1288 if (buffers_processed < c->n_buffers[LIST_DIRTY]) { 1289 dropped_lock = 1; 1290 b->hold_count++; 1291 dm_bufio_unlock(c); 1292 wait_on_bit_io(&b->state, B_WRITING, 1293 TASK_UNINTERRUPTIBLE); 1294 dm_bufio_lock(c); 1295 b->hold_count--; 1296 } else 1297 wait_on_bit_io(&b->state, B_WRITING, 1298 TASK_UNINTERRUPTIBLE); 1299 } 1300 1301 if (!test_bit(B_DIRTY, &b->state) && 1302 !test_bit(B_WRITING, &b->state)) 1303 __relink_lru(b, LIST_CLEAN); 1304 1305 cond_resched(); 1306 1307 /* 1308 * If we dropped the lock, the list is no longer consistent, 1309 * so we must restart the search. 1310 * 1311 * In the most common case, the buffer just processed is 1312 * relinked to the clean list, so we won't loop scanning the 1313 * same buffer again and again. 1314 * 1315 * This may livelock if there is another thread simultaneously 1316 * dirtying buffers, so we count the number of buffers walked 1317 * and if it exceeds the total number of buffers, it means that 1318 * someone is doing some writes simultaneously with us. In 1319 * this case, stop, dropping the lock. 1320 */ 1321 if (dropped_lock) 1322 goto again; 1323 } 1324 wake_up(&c->free_buffer_wait); 1325 dm_bufio_unlock(c); 1326 1327 a = xchg(&c->async_write_error, 0); 1328 f = dm_bufio_issue_flush(c); 1329 if (a) 1330 return a; 1331 1332 return f; 1333 } 1334 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers); 1335 1336 /* 1337 * Use dm-io to send an empty barrier to flush the device. 1338 */ 1339 int dm_bufio_issue_flush(struct dm_bufio_client *c) 1340 { 1341 struct dm_io_request io_req = { 1342 .bi_op = REQ_OP_WRITE, 1343 .bi_op_flags = REQ_PREFLUSH | REQ_SYNC, 1344 .mem.type = DM_IO_KMEM, 1345 .mem.ptr.addr = NULL, 1346 .client = c->dm_io, 1347 }; 1348 struct dm_io_region io_reg = { 1349 .bdev = c->bdev, 1350 .sector = 0, 1351 .count = 0, 1352 }; 1353 1354 BUG_ON(dm_bufio_in_request()); 1355 1356 return dm_io(&io_req, 1, &io_reg, NULL); 1357 } 1358 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush); 1359 1360 /* 1361 * Use dm-io to send a discard request to flush the device. 1362 */ 1363 int dm_bufio_issue_discard(struct dm_bufio_client *c, sector_t block, sector_t count) 1364 { 1365 struct dm_io_request io_req = { 1366 .bi_op = REQ_OP_DISCARD, 1367 .bi_op_flags = REQ_SYNC, 1368 .mem.type = DM_IO_KMEM, 1369 .mem.ptr.addr = NULL, 1370 .client = c->dm_io, 1371 }; 1372 struct dm_io_region io_reg = { 1373 .bdev = c->bdev, 1374 .sector = block_to_sector(c, block), 1375 .count = block_to_sector(c, count), 1376 }; 1377 1378 BUG_ON(dm_bufio_in_request()); 1379 1380 return dm_io(&io_req, 1, &io_reg, NULL); 1381 } 1382 EXPORT_SYMBOL_GPL(dm_bufio_issue_discard); 1383 1384 /* 1385 * We first delete any other buffer that may be at that new location. 1386 * 1387 * Then, we write the buffer to the original location if it was dirty. 1388 * 1389 * Then, if we are the only one who is holding the buffer, relink the buffer 1390 * in the buffer tree for the new location. 1391 * 1392 * If there was someone else holding the buffer, we write it to the new 1393 * location but not relink it, because that other user needs to have the buffer 1394 * at the same place. 1395 */ 1396 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block) 1397 { 1398 struct dm_bufio_client *c = b->c; 1399 struct dm_buffer *new; 1400 1401 BUG_ON(dm_bufio_in_request()); 1402 1403 dm_bufio_lock(c); 1404 1405 retry: 1406 new = __find(c, new_block); 1407 if (new) { 1408 if (new->hold_count) { 1409 __wait_for_free_buffer(c); 1410 goto retry; 1411 } 1412 1413 /* 1414 * FIXME: Is there any point waiting for a write that's going 1415 * to be overwritten in a bit? 1416 */ 1417 __make_buffer_clean(new); 1418 __unlink_buffer(new); 1419 __free_buffer_wake(new); 1420 } 1421 1422 BUG_ON(!b->hold_count); 1423 BUG_ON(test_bit(B_READING, &b->state)); 1424 1425 __write_dirty_buffer(b, NULL); 1426 if (b->hold_count == 1) { 1427 wait_on_bit_io(&b->state, B_WRITING, 1428 TASK_UNINTERRUPTIBLE); 1429 set_bit(B_DIRTY, &b->state); 1430 b->dirty_start = 0; 1431 b->dirty_end = c->block_size; 1432 __unlink_buffer(b); 1433 __link_buffer(b, new_block, LIST_DIRTY); 1434 } else { 1435 sector_t old_block; 1436 wait_on_bit_lock_io(&b->state, B_WRITING, 1437 TASK_UNINTERRUPTIBLE); 1438 /* 1439 * Relink buffer to "new_block" so that write_callback 1440 * sees "new_block" as a block number. 1441 * After the write, link the buffer back to old_block. 1442 * All this must be done in bufio lock, so that block number 1443 * change isn't visible to other threads. 1444 */ 1445 old_block = b->block; 1446 __unlink_buffer(b); 1447 __link_buffer(b, new_block, b->list_mode); 1448 submit_io(b, REQ_OP_WRITE, write_endio); 1449 wait_on_bit_io(&b->state, B_WRITING, 1450 TASK_UNINTERRUPTIBLE); 1451 __unlink_buffer(b); 1452 __link_buffer(b, old_block, b->list_mode); 1453 } 1454 1455 dm_bufio_unlock(c); 1456 dm_bufio_release(b); 1457 } 1458 EXPORT_SYMBOL_GPL(dm_bufio_release_move); 1459 1460 static void forget_buffer_locked(struct dm_buffer *b) 1461 { 1462 if (likely(!b->hold_count) && likely(!b->state)) { 1463 __unlink_buffer(b); 1464 __free_buffer_wake(b); 1465 } 1466 } 1467 1468 /* 1469 * Free the given buffer. 1470 * 1471 * This is just a hint, if the buffer is in use or dirty, this function 1472 * does nothing. 1473 */ 1474 void dm_bufio_forget(struct dm_bufio_client *c, sector_t block) 1475 { 1476 struct dm_buffer *b; 1477 1478 dm_bufio_lock(c); 1479 1480 b = __find(c, block); 1481 if (b) 1482 forget_buffer_locked(b); 1483 1484 dm_bufio_unlock(c); 1485 } 1486 EXPORT_SYMBOL_GPL(dm_bufio_forget); 1487 1488 void dm_bufio_forget_buffers(struct dm_bufio_client *c, sector_t block, sector_t n_blocks) 1489 { 1490 struct dm_buffer *b; 1491 sector_t end_block = block + n_blocks; 1492 1493 while (block < end_block) { 1494 dm_bufio_lock(c); 1495 1496 b = __find_next(c, block); 1497 if (b) { 1498 block = b->block + 1; 1499 forget_buffer_locked(b); 1500 } 1501 1502 dm_bufio_unlock(c); 1503 1504 if (!b) 1505 break; 1506 } 1507 1508 } 1509 EXPORT_SYMBOL_GPL(dm_bufio_forget_buffers); 1510 1511 void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n) 1512 { 1513 c->minimum_buffers = n; 1514 } 1515 EXPORT_SYMBOL_GPL(dm_bufio_set_minimum_buffers); 1516 1517 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c) 1518 { 1519 return c->block_size; 1520 } 1521 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size); 1522 1523 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c) 1524 { 1525 sector_t s = i_size_read(c->bdev->bd_inode) >> SECTOR_SHIFT; 1526 if (likely(c->sectors_per_block_bits >= 0)) 1527 s >>= c->sectors_per_block_bits; 1528 else 1529 sector_div(s, c->block_size >> SECTOR_SHIFT); 1530 return s; 1531 } 1532 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size); 1533 1534 sector_t dm_bufio_get_block_number(struct dm_buffer *b) 1535 { 1536 return b->block; 1537 } 1538 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number); 1539 1540 void *dm_bufio_get_block_data(struct dm_buffer *b) 1541 { 1542 return b->data; 1543 } 1544 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data); 1545 1546 void *dm_bufio_get_aux_data(struct dm_buffer *b) 1547 { 1548 return b + 1; 1549 } 1550 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data); 1551 1552 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b) 1553 { 1554 return b->c; 1555 } 1556 EXPORT_SYMBOL_GPL(dm_bufio_get_client); 1557 1558 static void drop_buffers(struct dm_bufio_client *c) 1559 { 1560 struct dm_buffer *b; 1561 int i; 1562 bool warned = false; 1563 1564 BUG_ON(dm_bufio_in_request()); 1565 1566 /* 1567 * An optimization so that the buffers are not written one-by-one. 1568 */ 1569 dm_bufio_write_dirty_buffers_async(c); 1570 1571 dm_bufio_lock(c); 1572 1573 while ((b = __get_unclaimed_buffer(c))) 1574 __free_buffer_wake(b); 1575 1576 for (i = 0; i < LIST_SIZE; i++) 1577 list_for_each_entry(b, &c->lru[i], lru_list) { 1578 WARN_ON(!warned); 1579 warned = true; 1580 DMERR("leaked buffer %llx, hold count %u, list %d", 1581 (unsigned long long)b->block, b->hold_count, i); 1582 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1583 stack_trace_print(b->stack_entries, b->stack_len, 1); 1584 /* mark unclaimed to avoid BUG_ON below */ 1585 b->hold_count = 0; 1586 #endif 1587 } 1588 1589 #ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING 1590 while ((b = __get_unclaimed_buffer(c))) 1591 __free_buffer_wake(b); 1592 #endif 1593 1594 for (i = 0; i < LIST_SIZE; i++) 1595 BUG_ON(!list_empty(&c->lru[i])); 1596 1597 dm_bufio_unlock(c); 1598 } 1599 1600 /* 1601 * We may not be able to evict this buffer if IO pending or the client 1602 * is still using it. Caller is expected to know buffer is too old. 1603 * 1604 * And if GFP_NOFS is used, we must not do any I/O because we hold 1605 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets 1606 * rerouted to different bufio client. 1607 */ 1608 static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp) 1609 { 1610 if (!(gfp & __GFP_FS)) { 1611 if (test_bit(B_READING, &b->state) || 1612 test_bit(B_WRITING, &b->state) || 1613 test_bit(B_DIRTY, &b->state)) 1614 return false; 1615 } 1616 1617 if (b->hold_count) 1618 return false; 1619 1620 __make_buffer_clean(b); 1621 __unlink_buffer(b); 1622 __free_buffer_wake(b); 1623 1624 return true; 1625 } 1626 1627 static unsigned long get_retain_buffers(struct dm_bufio_client *c) 1628 { 1629 unsigned long retain_bytes = READ_ONCE(dm_bufio_retain_bytes); 1630 if (likely(c->sectors_per_block_bits >= 0)) 1631 retain_bytes >>= c->sectors_per_block_bits + SECTOR_SHIFT; 1632 else 1633 retain_bytes /= c->block_size; 1634 return retain_bytes; 1635 } 1636 1637 static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan, 1638 gfp_t gfp_mask) 1639 { 1640 int l; 1641 struct dm_buffer *b, *tmp; 1642 unsigned long freed = 0; 1643 unsigned long count = c->n_buffers[LIST_CLEAN] + 1644 c->n_buffers[LIST_DIRTY]; 1645 unsigned long retain_target = get_retain_buffers(c); 1646 1647 for (l = 0; l < LIST_SIZE; l++) { 1648 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) { 1649 if (__try_evict_buffer(b, gfp_mask)) 1650 freed++; 1651 if (!--nr_to_scan || ((count - freed) <= retain_target)) 1652 return freed; 1653 cond_resched(); 1654 } 1655 } 1656 return freed; 1657 } 1658 1659 static unsigned long 1660 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 1661 { 1662 struct dm_bufio_client *c; 1663 unsigned long freed; 1664 1665 c = container_of(shrink, struct dm_bufio_client, shrinker); 1666 if (sc->gfp_mask & __GFP_FS) 1667 dm_bufio_lock(c); 1668 else if (!dm_bufio_trylock(c)) 1669 return SHRINK_STOP; 1670 1671 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask); 1672 dm_bufio_unlock(c); 1673 return freed; 1674 } 1675 1676 static unsigned long 1677 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 1678 { 1679 struct dm_bufio_client *c = container_of(shrink, struct dm_bufio_client, shrinker); 1680 unsigned long count = READ_ONCE(c->n_buffers[LIST_CLEAN]) + 1681 READ_ONCE(c->n_buffers[LIST_DIRTY]); 1682 unsigned long retain_target = get_retain_buffers(c); 1683 1684 return (count < retain_target) ? 0 : (count - retain_target); 1685 } 1686 1687 /* 1688 * Create the buffering interface 1689 */ 1690 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size, 1691 unsigned reserved_buffers, unsigned aux_size, 1692 void (*alloc_callback)(struct dm_buffer *), 1693 void (*write_callback)(struct dm_buffer *)) 1694 { 1695 int r; 1696 struct dm_bufio_client *c; 1697 unsigned i; 1698 char slab_name[27]; 1699 1700 if (!block_size || block_size & ((1 << SECTOR_SHIFT) - 1)) { 1701 DMERR("%s: block size not specified or is not multiple of 512b", __func__); 1702 r = -EINVAL; 1703 goto bad_client; 1704 } 1705 1706 c = kzalloc(sizeof(*c), GFP_KERNEL); 1707 if (!c) { 1708 r = -ENOMEM; 1709 goto bad_client; 1710 } 1711 c->buffer_tree = RB_ROOT; 1712 1713 c->bdev = bdev; 1714 c->block_size = block_size; 1715 if (is_power_of_2(block_size)) 1716 c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT; 1717 else 1718 c->sectors_per_block_bits = -1; 1719 1720 c->alloc_callback = alloc_callback; 1721 c->write_callback = write_callback; 1722 1723 for (i = 0; i < LIST_SIZE; i++) { 1724 INIT_LIST_HEAD(&c->lru[i]); 1725 c->n_buffers[i] = 0; 1726 } 1727 1728 mutex_init(&c->lock); 1729 INIT_LIST_HEAD(&c->reserved_buffers); 1730 c->need_reserved_buffers = reserved_buffers; 1731 1732 dm_bufio_set_minimum_buffers(c, DM_BUFIO_MIN_BUFFERS); 1733 1734 init_waitqueue_head(&c->free_buffer_wait); 1735 c->async_write_error = 0; 1736 1737 c->dm_io = dm_io_client_create(); 1738 if (IS_ERR(c->dm_io)) { 1739 r = PTR_ERR(c->dm_io); 1740 goto bad_dm_io; 1741 } 1742 1743 if (block_size <= KMALLOC_MAX_SIZE && 1744 (block_size < PAGE_SIZE || !is_power_of_2(block_size))) { 1745 unsigned align = min(1U << __ffs(block_size), (unsigned)PAGE_SIZE); 1746 snprintf(slab_name, sizeof slab_name, "dm_bufio_cache-%u", block_size); 1747 c->slab_cache = kmem_cache_create(slab_name, block_size, align, 1748 SLAB_RECLAIM_ACCOUNT, NULL); 1749 if (!c->slab_cache) { 1750 r = -ENOMEM; 1751 goto bad; 1752 } 1753 } 1754 if (aux_size) 1755 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer-%u", aux_size); 1756 else 1757 snprintf(slab_name, sizeof slab_name, "dm_bufio_buffer"); 1758 c->slab_buffer = kmem_cache_create(slab_name, sizeof(struct dm_buffer) + aux_size, 1759 0, SLAB_RECLAIM_ACCOUNT, NULL); 1760 if (!c->slab_buffer) { 1761 r = -ENOMEM; 1762 goto bad; 1763 } 1764 1765 while (c->need_reserved_buffers) { 1766 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL); 1767 1768 if (!b) { 1769 r = -ENOMEM; 1770 goto bad; 1771 } 1772 __free_buffer_wake(b); 1773 } 1774 1775 c->shrinker.count_objects = dm_bufio_shrink_count; 1776 c->shrinker.scan_objects = dm_bufio_shrink_scan; 1777 c->shrinker.seeks = 1; 1778 c->shrinker.batch = 0; 1779 r = register_shrinker(&c->shrinker); 1780 if (r) 1781 goto bad; 1782 1783 mutex_lock(&dm_bufio_clients_lock); 1784 dm_bufio_client_count++; 1785 list_add(&c->client_list, &dm_bufio_all_clients); 1786 __cache_size_refresh(); 1787 mutex_unlock(&dm_bufio_clients_lock); 1788 1789 return c; 1790 1791 bad: 1792 while (!list_empty(&c->reserved_buffers)) { 1793 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1794 struct dm_buffer, lru_list); 1795 list_del(&b->lru_list); 1796 free_buffer(b); 1797 } 1798 kmem_cache_destroy(c->slab_cache); 1799 kmem_cache_destroy(c->slab_buffer); 1800 dm_io_client_destroy(c->dm_io); 1801 bad_dm_io: 1802 mutex_destroy(&c->lock); 1803 kfree(c); 1804 bad_client: 1805 return ERR_PTR(r); 1806 } 1807 EXPORT_SYMBOL_GPL(dm_bufio_client_create); 1808 1809 /* 1810 * Free the buffering interface. 1811 * It is required that there are no references on any buffers. 1812 */ 1813 void dm_bufio_client_destroy(struct dm_bufio_client *c) 1814 { 1815 unsigned i; 1816 1817 drop_buffers(c); 1818 1819 unregister_shrinker(&c->shrinker); 1820 1821 mutex_lock(&dm_bufio_clients_lock); 1822 1823 list_del(&c->client_list); 1824 dm_bufio_client_count--; 1825 __cache_size_refresh(); 1826 1827 mutex_unlock(&dm_bufio_clients_lock); 1828 1829 BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree)); 1830 BUG_ON(c->need_reserved_buffers); 1831 1832 while (!list_empty(&c->reserved_buffers)) { 1833 struct dm_buffer *b = list_entry(c->reserved_buffers.next, 1834 struct dm_buffer, lru_list); 1835 list_del(&b->lru_list); 1836 free_buffer(b); 1837 } 1838 1839 for (i = 0; i < LIST_SIZE; i++) 1840 if (c->n_buffers[i]) 1841 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]); 1842 1843 for (i = 0; i < LIST_SIZE; i++) 1844 BUG_ON(c->n_buffers[i]); 1845 1846 kmem_cache_destroy(c->slab_cache); 1847 kmem_cache_destroy(c->slab_buffer); 1848 dm_io_client_destroy(c->dm_io); 1849 mutex_destroy(&c->lock); 1850 kfree(c); 1851 } 1852 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy); 1853 1854 void dm_bufio_set_sector_offset(struct dm_bufio_client *c, sector_t start) 1855 { 1856 c->start = start; 1857 } 1858 EXPORT_SYMBOL_GPL(dm_bufio_set_sector_offset); 1859 1860 static unsigned get_max_age_hz(void) 1861 { 1862 unsigned max_age = READ_ONCE(dm_bufio_max_age); 1863 1864 if (max_age > UINT_MAX / HZ) 1865 max_age = UINT_MAX / HZ; 1866 1867 return max_age * HZ; 1868 } 1869 1870 static bool older_than(struct dm_buffer *b, unsigned long age_hz) 1871 { 1872 return time_after_eq(jiffies, b->last_accessed + age_hz); 1873 } 1874 1875 static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz) 1876 { 1877 struct dm_buffer *b, *tmp; 1878 unsigned long retain_target = get_retain_buffers(c); 1879 unsigned long count; 1880 LIST_HEAD(write_list); 1881 1882 dm_bufio_lock(c); 1883 1884 __check_watermark(c, &write_list); 1885 if (unlikely(!list_empty(&write_list))) { 1886 dm_bufio_unlock(c); 1887 __flush_write_list(&write_list); 1888 dm_bufio_lock(c); 1889 } 1890 1891 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY]; 1892 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) { 1893 if (count <= retain_target) 1894 break; 1895 1896 if (!older_than(b, age_hz)) 1897 break; 1898 1899 if (__try_evict_buffer(b, 0)) 1900 count--; 1901 1902 cond_resched(); 1903 } 1904 1905 dm_bufio_unlock(c); 1906 } 1907 1908 static void do_global_cleanup(struct work_struct *w) 1909 { 1910 struct dm_bufio_client *locked_client = NULL; 1911 struct dm_bufio_client *current_client; 1912 struct dm_buffer *b; 1913 unsigned spinlock_hold_count; 1914 unsigned long threshold = dm_bufio_cache_size - 1915 dm_bufio_cache_size / DM_BUFIO_LOW_WATERMARK_RATIO; 1916 unsigned long loops = global_num * 2; 1917 1918 mutex_lock(&dm_bufio_clients_lock); 1919 1920 while (1) { 1921 cond_resched(); 1922 1923 spin_lock(&global_spinlock); 1924 if (unlikely(dm_bufio_current_allocated <= threshold)) 1925 break; 1926 1927 spinlock_hold_count = 0; 1928 get_next: 1929 if (!loops--) 1930 break; 1931 if (unlikely(list_empty(&global_queue))) 1932 break; 1933 b = list_entry(global_queue.prev, struct dm_buffer, global_list); 1934 1935 if (b->accessed) { 1936 b->accessed = 0; 1937 list_move(&b->global_list, &global_queue); 1938 if (likely(++spinlock_hold_count < 16)) 1939 goto get_next; 1940 spin_unlock(&global_spinlock); 1941 continue; 1942 } 1943 1944 current_client = b->c; 1945 if (unlikely(current_client != locked_client)) { 1946 if (locked_client) 1947 dm_bufio_unlock(locked_client); 1948 1949 if (!dm_bufio_trylock(current_client)) { 1950 spin_unlock(&global_spinlock); 1951 dm_bufio_lock(current_client); 1952 locked_client = current_client; 1953 continue; 1954 } 1955 1956 locked_client = current_client; 1957 } 1958 1959 spin_unlock(&global_spinlock); 1960 1961 if (unlikely(!__try_evict_buffer(b, GFP_KERNEL))) { 1962 spin_lock(&global_spinlock); 1963 list_move(&b->global_list, &global_queue); 1964 spin_unlock(&global_spinlock); 1965 } 1966 } 1967 1968 spin_unlock(&global_spinlock); 1969 1970 if (locked_client) 1971 dm_bufio_unlock(locked_client); 1972 1973 mutex_unlock(&dm_bufio_clients_lock); 1974 } 1975 1976 static void cleanup_old_buffers(void) 1977 { 1978 unsigned long max_age_hz = get_max_age_hz(); 1979 struct dm_bufio_client *c; 1980 1981 mutex_lock(&dm_bufio_clients_lock); 1982 1983 __cache_size_refresh(); 1984 1985 list_for_each_entry(c, &dm_bufio_all_clients, client_list) 1986 __evict_old_buffers(c, max_age_hz); 1987 1988 mutex_unlock(&dm_bufio_clients_lock); 1989 } 1990 1991 static void work_fn(struct work_struct *w) 1992 { 1993 cleanup_old_buffers(); 1994 1995 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 1996 DM_BUFIO_WORK_TIMER_SECS * HZ); 1997 } 1998 1999 /*---------------------------------------------------------------- 2000 * Module setup 2001 *--------------------------------------------------------------*/ 2002 2003 /* 2004 * This is called only once for the whole dm_bufio module. 2005 * It initializes memory limit. 2006 */ 2007 static int __init dm_bufio_init(void) 2008 { 2009 __u64 mem; 2010 2011 dm_bufio_allocated_kmem_cache = 0; 2012 dm_bufio_allocated_get_free_pages = 0; 2013 dm_bufio_allocated_vmalloc = 0; 2014 dm_bufio_current_allocated = 0; 2015 2016 mem = (__u64)mult_frac(totalram_pages() - totalhigh_pages(), 2017 DM_BUFIO_MEMORY_PERCENT, 100) << PAGE_SHIFT; 2018 2019 if (mem > ULONG_MAX) 2020 mem = ULONG_MAX; 2021 2022 #ifdef CONFIG_MMU 2023 if (mem > mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100)) 2024 mem = mult_frac(VMALLOC_TOTAL, DM_BUFIO_VMALLOC_PERCENT, 100); 2025 #endif 2026 2027 dm_bufio_default_cache_size = mem; 2028 2029 mutex_lock(&dm_bufio_clients_lock); 2030 __cache_size_refresh(); 2031 mutex_unlock(&dm_bufio_clients_lock); 2032 2033 dm_bufio_wq = alloc_workqueue("dm_bufio_cache", WQ_MEM_RECLAIM, 0); 2034 if (!dm_bufio_wq) 2035 return -ENOMEM; 2036 2037 INIT_DELAYED_WORK(&dm_bufio_cleanup_old_work, work_fn); 2038 INIT_WORK(&dm_bufio_replacement_work, do_global_cleanup); 2039 queue_delayed_work(dm_bufio_wq, &dm_bufio_cleanup_old_work, 2040 DM_BUFIO_WORK_TIMER_SECS * HZ); 2041 2042 return 0; 2043 } 2044 2045 /* 2046 * This is called once when unloading the dm_bufio module. 2047 */ 2048 static void __exit dm_bufio_exit(void) 2049 { 2050 int bug = 0; 2051 2052 cancel_delayed_work_sync(&dm_bufio_cleanup_old_work); 2053 flush_workqueue(dm_bufio_wq); 2054 destroy_workqueue(dm_bufio_wq); 2055 2056 if (dm_bufio_client_count) { 2057 DMCRIT("%s: dm_bufio_client_count leaked: %d", 2058 __func__, dm_bufio_client_count); 2059 bug = 1; 2060 } 2061 2062 if (dm_bufio_current_allocated) { 2063 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu", 2064 __func__, dm_bufio_current_allocated); 2065 bug = 1; 2066 } 2067 2068 if (dm_bufio_allocated_get_free_pages) { 2069 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu", 2070 __func__, dm_bufio_allocated_get_free_pages); 2071 bug = 1; 2072 } 2073 2074 if (dm_bufio_allocated_vmalloc) { 2075 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu", 2076 __func__, dm_bufio_allocated_vmalloc); 2077 bug = 1; 2078 } 2079 2080 BUG_ON(bug); 2081 } 2082 2083 module_init(dm_bufio_init) 2084 module_exit(dm_bufio_exit) 2085 2086 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR); 2087 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache"); 2088 2089 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR); 2090 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds"); 2091 2092 module_param_named(retain_bytes, dm_bufio_retain_bytes, ulong, S_IRUGO | S_IWUSR); 2093 MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory"); 2094 2095 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR); 2096 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory"); 2097 2098 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO); 2099 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc"); 2100 2101 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO); 2102 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages"); 2103 2104 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO); 2105 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc"); 2106 2107 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO); 2108 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache"); 2109 2110 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); 2111 MODULE_DESCRIPTION(DM_NAME " buffered I/O library"); 2112 MODULE_LICENSE("GPL"); 2113