xref: /openbmc/linux/drivers/md/bcache/writeback.c (revision f35e839a)
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 
13 static struct workqueue_struct *dirty_wq;
14 
15 static void read_dirty(struct closure *);
16 
17 struct dirty_io {
18 	struct closure		cl;
19 	struct cached_dev	*dc;
20 	struct bio		bio;
21 };
22 
23 /* Rate limiting */
24 
25 static void __update_writeback_rate(struct cached_dev *dc)
26 {
27 	struct cache_set *c = dc->disk.c;
28 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
29 	uint64_t cache_dirty_target =
30 		div_u64(cache_sectors * dc->writeback_percent, 100);
31 
32 	int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
33 				   c->cached_dev_sectors);
34 
35 	/* PD controller */
36 
37 	int change = 0;
38 	int64_t error;
39 	int64_t dirty = atomic_long_read(&dc->disk.sectors_dirty);
40 	int64_t derivative = dirty - dc->disk.sectors_dirty_last;
41 
42 	dc->disk.sectors_dirty_last = dirty;
43 
44 	derivative *= dc->writeback_rate_d_term;
45 	derivative = clamp(derivative, -dirty, dirty);
46 
47 	derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
48 			      dc->writeback_rate_d_smooth, 0);
49 
50 	/* Avoid divide by zero */
51 	if (!target)
52 		goto out;
53 
54 	error = div64_s64((dirty + derivative - target) << 8, target);
55 
56 	change = div_s64((dc->writeback_rate.rate * error) >> 8,
57 			 dc->writeback_rate_p_term_inverse);
58 
59 	/* Don't increase writeback rate if the device isn't keeping up */
60 	if (change > 0 &&
61 	    time_after64(local_clock(),
62 			 dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
63 		change = 0;
64 
65 	dc->writeback_rate.rate =
66 		clamp_t(int64_t, dc->writeback_rate.rate + change,
67 			1, NSEC_PER_MSEC);
68 out:
69 	dc->writeback_rate_derivative = derivative;
70 	dc->writeback_rate_change = change;
71 	dc->writeback_rate_target = target;
72 
73 	schedule_delayed_work(&dc->writeback_rate_update,
74 			      dc->writeback_rate_update_seconds * HZ);
75 }
76 
77 static void update_writeback_rate(struct work_struct *work)
78 {
79 	struct cached_dev *dc = container_of(to_delayed_work(work),
80 					     struct cached_dev,
81 					     writeback_rate_update);
82 
83 	down_read(&dc->writeback_lock);
84 
85 	if (atomic_read(&dc->has_dirty) &&
86 	    dc->writeback_percent)
87 		__update_writeback_rate(dc);
88 
89 	up_read(&dc->writeback_lock);
90 }
91 
92 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
93 {
94 	if (atomic_read(&dc->disk.detaching) ||
95 	    !dc->writeback_percent)
96 		return 0;
97 
98 	return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
99 }
100 
101 /* Background writeback */
102 
103 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
104 {
105 	return KEY_DIRTY(k);
106 }
107 
108 static void dirty_init(struct keybuf_key *w)
109 {
110 	struct dirty_io *io = w->private;
111 	struct bio *bio = &io->bio;
112 
113 	bio_init(bio);
114 	if (!io->dc->writeback_percent)
115 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
116 
117 	bio->bi_size		= KEY_SIZE(&w->key) << 9;
118 	bio->bi_max_vecs	= DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
119 	bio->bi_private		= w;
120 	bio->bi_io_vec		= bio->bi_inline_vecs;
121 	bch_bio_map(bio, NULL);
122 }
123 
124 static void refill_dirty(struct closure *cl)
125 {
126 	struct cached_dev *dc = container_of(cl, struct cached_dev,
127 					     writeback.cl);
128 	struct keybuf *buf = &dc->writeback_keys;
129 	bool searched_from_start = false;
130 	struct bkey end = MAX_KEY;
131 	SET_KEY_INODE(&end, dc->disk.id);
132 
133 	if (!atomic_read(&dc->disk.detaching) &&
134 	    !dc->writeback_running)
135 		closure_return(cl);
136 
137 	down_write(&dc->writeback_lock);
138 
139 	if (!atomic_read(&dc->has_dirty)) {
140 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
141 		bch_write_bdev_super(dc, NULL);
142 
143 		up_write(&dc->writeback_lock);
144 		closure_return(cl);
145 	}
146 
147 	if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
148 		buf->last_scanned = KEY(dc->disk.id, 0, 0);
149 		searched_from_start = true;
150 	}
151 
152 	bch_refill_keybuf(dc->disk.c, buf, &end);
153 
154 	if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
155 		/* Searched the entire btree  - delay awhile */
156 
157 		if (RB_EMPTY_ROOT(&buf->keys)) {
158 			atomic_set(&dc->has_dirty, 0);
159 			cached_dev_put(dc);
160 		}
161 
162 		if (!atomic_read(&dc->disk.detaching))
163 			closure_delay(&dc->writeback, dc->writeback_delay * HZ);
164 	}
165 
166 	up_write(&dc->writeback_lock);
167 
168 	ratelimit_reset(&dc->writeback_rate);
169 
170 	/* Punt to workqueue only so we don't recurse and blow the stack */
171 	continue_at(cl, read_dirty, dirty_wq);
172 }
173 
174 void bch_writeback_queue(struct cached_dev *dc)
175 {
176 	if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
177 		if (!atomic_read(&dc->disk.detaching))
178 			closure_delay(&dc->writeback, dc->writeback_delay * HZ);
179 
180 		continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
181 	}
182 }
183 
184 void bch_writeback_add(struct cached_dev *dc, unsigned sectors)
185 {
186 	atomic_long_add(sectors, &dc->disk.sectors_dirty);
187 
188 	if (!atomic_read(&dc->has_dirty) &&
189 	    !atomic_xchg(&dc->has_dirty, 1)) {
190 		atomic_inc(&dc->count);
191 
192 		if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
193 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
194 			/* XXX: should do this synchronously */
195 			bch_write_bdev_super(dc, NULL);
196 		}
197 
198 		bch_writeback_queue(dc);
199 
200 		if (dc->writeback_percent)
201 			schedule_delayed_work(&dc->writeback_rate_update,
202 				      dc->writeback_rate_update_seconds * HZ);
203 	}
204 }
205 
206 /* Background writeback - IO loop */
207 
208 static void dirty_io_destructor(struct closure *cl)
209 {
210 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
211 	kfree(io);
212 }
213 
214 static void write_dirty_finish(struct closure *cl)
215 {
216 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
217 	struct keybuf_key *w = io->bio.bi_private;
218 	struct cached_dev *dc = io->dc;
219 	struct bio_vec *bv = bio_iovec_idx(&io->bio, io->bio.bi_vcnt);
220 
221 	while (bv-- != io->bio.bi_io_vec)
222 		__free_page(bv->bv_page);
223 
224 	/* This is kind of a dumb way of signalling errors. */
225 	if (KEY_DIRTY(&w->key)) {
226 		unsigned i;
227 		struct btree_op op;
228 		bch_btree_op_init_stack(&op);
229 
230 		op.type = BTREE_REPLACE;
231 		bkey_copy(&op.replace, &w->key);
232 
233 		SET_KEY_DIRTY(&w->key, false);
234 		bch_keylist_add(&op.keys, &w->key);
235 
236 		for (i = 0; i < KEY_PTRS(&w->key); i++)
237 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
238 
239 		pr_debug("clearing %s", pkey(&w->key));
240 		bch_btree_insert(&op, dc->disk.c);
241 		closure_sync(&op.cl);
242 
243 		atomic_long_inc(op.insert_collision
244 				? &dc->disk.c->writeback_keys_failed
245 				: &dc->disk.c->writeback_keys_done);
246 	}
247 
248 	bch_keybuf_del(&dc->writeback_keys, w);
249 	atomic_dec_bug(&dc->in_flight);
250 
251 	closure_wake_up(&dc->writeback_wait);
252 
253 	closure_return_with_destructor(cl, dirty_io_destructor);
254 }
255 
256 static void dirty_endio(struct bio *bio, int error)
257 {
258 	struct keybuf_key *w = bio->bi_private;
259 	struct dirty_io *io = w->private;
260 
261 	if (error)
262 		SET_KEY_DIRTY(&w->key, false);
263 
264 	closure_put(&io->cl);
265 }
266 
267 static void write_dirty(struct closure *cl)
268 {
269 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
270 	struct keybuf_key *w = io->bio.bi_private;
271 
272 	dirty_init(w);
273 	io->bio.bi_rw		= WRITE;
274 	io->bio.bi_sector	= KEY_START(&w->key);
275 	io->bio.bi_bdev		= io->dc->bdev;
276 	io->bio.bi_end_io	= dirty_endio;
277 
278 	trace_bcache_write_dirty(&io->bio);
279 	closure_bio_submit(&io->bio, cl, &io->dc->disk);
280 
281 	continue_at(cl, write_dirty_finish, dirty_wq);
282 }
283 
284 static void read_dirty_endio(struct bio *bio, int error)
285 {
286 	struct keybuf_key *w = bio->bi_private;
287 	struct dirty_io *io = w->private;
288 
289 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
290 			    error, "reading dirty data from cache");
291 
292 	dirty_endio(bio, error);
293 }
294 
295 static void read_dirty_submit(struct closure *cl)
296 {
297 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
298 
299 	trace_bcache_read_dirty(&io->bio);
300 	closure_bio_submit(&io->bio, cl, &io->dc->disk);
301 
302 	continue_at(cl, write_dirty, dirty_wq);
303 }
304 
305 static void read_dirty(struct closure *cl)
306 {
307 	struct cached_dev *dc = container_of(cl, struct cached_dev,
308 					     writeback.cl);
309 	unsigned delay = writeback_delay(dc, 0);
310 	struct keybuf_key *w;
311 	struct dirty_io *io;
312 
313 	/*
314 	 * XXX: if we error, background writeback just spins. Should use some
315 	 * mempools.
316 	 */
317 
318 	while (1) {
319 		w = bch_keybuf_next(&dc->writeback_keys);
320 		if (!w)
321 			break;
322 
323 		BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
324 
325 		if (delay > 0 &&
326 		    (KEY_START(&w->key) != dc->last_read ||
327 		     jiffies_to_msecs(delay) > 50)) {
328 			w->private = NULL;
329 
330 			closure_delay(&dc->writeback, delay);
331 			continue_at(cl, read_dirty, dirty_wq);
332 		}
333 
334 		dc->last_read	= KEY_OFFSET(&w->key);
335 
336 		io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
337 			     * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
338 			     GFP_KERNEL);
339 		if (!io)
340 			goto err;
341 
342 		w->private	= io;
343 		io->dc		= dc;
344 
345 		dirty_init(w);
346 		io->bio.bi_sector	= PTR_OFFSET(&w->key, 0);
347 		io->bio.bi_bdev		= PTR_CACHE(dc->disk.c,
348 						    &w->key, 0)->bdev;
349 		io->bio.bi_rw		= READ;
350 		io->bio.bi_end_io	= read_dirty_endio;
351 
352 		if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
353 			goto err_free;
354 
355 		pr_debug("%s", pkey(&w->key));
356 
357 		closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
358 
359 		delay = writeback_delay(dc, KEY_SIZE(&w->key));
360 
361 		atomic_inc(&dc->in_flight);
362 
363 		if (!closure_wait_event(&dc->writeback_wait, cl,
364 					atomic_read(&dc->in_flight) < 64))
365 			continue_at(cl, read_dirty, dirty_wq);
366 	}
367 
368 	if (0) {
369 err_free:
370 		kfree(w->private);
371 err:
372 		bch_keybuf_del(&dc->writeback_keys, w);
373 	}
374 
375 	refill_dirty(cl);
376 }
377 
378 void bch_writeback_init_cached_dev(struct cached_dev *dc)
379 {
380 	closure_init_unlocked(&dc->writeback);
381 	init_rwsem(&dc->writeback_lock);
382 
383 	bch_keybuf_init(&dc->writeback_keys, dirty_pred);
384 
385 	dc->writeback_metadata		= true;
386 	dc->writeback_running		= true;
387 	dc->writeback_percent		= 10;
388 	dc->writeback_delay		= 30;
389 	dc->writeback_rate.rate		= 1024;
390 
391 	dc->writeback_rate_update_seconds = 30;
392 	dc->writeback_rate_d_term	= 16;
393 	dc->writeback_rate_p_term_inverse = 64;
394 	dc->writeback_rate_d_smooth	= 8;
395 
396 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
397 	schedule_delayed_work(&dc->writeback_rate_update,
398 			      dc->writeback_rate_update_seconds * HZ);
399 }
400 
401 void bch_writeback_exit(void)
402 {
403 	if (dirty_wq)
404 		destroy_workqueue(dirty_wq);
405 }
406 
407 int __init bch_writeback_init(void)
408 {
409 	dirty_wq = create_singlethread_workqueue("bcache_writeback");
410 	if (!dirty_wq)
411 		return -ENOMEM;
412 
413 	return 0;
414 }
415