1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * background writeback - scan btree for dirty data and write it to the backing 4 * device 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "writeback.h" 14 15 #include <linux/delay.h> 16 #include <linux/kthread.h> 17 #include <linux/sched/clock.h> 18 #include <trace/events/bcache.h> 19 20 /* Rate limiting */ 21 static uint64_t __calc_target_rate(struct cached_dev *dc) 22 { 23 struct cache_set *c = dc->disk.c; 24 25 /* 26 * This is the size of the cache, minus the amount used for 27 * flash-only devices 28 */ 29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - 30 bcache_flash_devs_sectors_dirty(c); 31 32 /* 33 * Unfortunately there is no control of global dirty data. If the 34 * user states that they want 10% dirty data in the cache, and has, 35 * e.g., 5 backing volumes of equal size, we try and ensure each 36 * backing volume uses about 2% of the cache for dirty data. 37 */ 38 uint32_t bdev_share = 39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, 40 c->cached_dev_sectors); 41 42 uint64_t cache_dirty_target = 43 div_u64(cache_sectors * dc->writeback_percent, 100); 44 45 /* Ensure each backing dev gets at least one dirty share */ 46 if (bdev_share < 1) 47 bdev_share = 1; 48 49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; 50 } 51 52 static void __update_writeback_rate(struct cached_dev *dc) 53 { 54 /* 55 * PI controller: 56 * Figures out the amount that should be written per second. 57 * 58 * First, the error (number of sectors that are dirty beyond our 59 * target) is calculated. The error is accumulated (numerically 60 * integrated). 61 * 62 * Then, the proportional value and integral value are scaled 63 * based on configured values. These are stored as inverses to 64 * avoid fixed point math and to make configuration easy-- e.g. 65 * the default value of 40 for writeback_rate_p_term_inverse 66 * attempts to write at a rate that would retire all the dirty 67 * blocks in 40 seconds. 68 * 69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th 70 * of the error is accumulated in the integral term per second. 71 * This acts as a slow, long-term average that is not subject to 72 * variations in usage like the p term. 73 */ 74 int64_t target = __calc_target_rate(dc); 75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); 76 int64_t error = dirty - target; 77 int64_t proportional_scaled = 78 div_s64(error, dc->writeback_rate_p_term_inverse); 79 int64_t integral_scaled; 80 uint32_t new_rate; 81 82 if ((error < 0 && dc->writeback_rate_integral > 0) || 83 (error > 0 && time_before64(local_clock(), 84 dc->writeback_rate.next + NSEC_PER_MSEC))) { 85 /* 86 * Only decrease the integral term if it's more than 87 * zero. Only increase the integral term if the device 88 * is keeping up. (Don't wind up the integral 89 * ineffectively in either case). 90 * 91 * It's necessary to scale this by 92 * writeback_rate_update_seconds to keep the integral 93 * term dimensioned properly. 94 */ 95 dc->writeback_rate_integral += error * 96 dc->writeback_rate_update_seconds; 97 } 98 99 integral_scaled = div_s64(dc->writeback_rate_integral, 100 dc->writeback_rate_i_term_inverse); 101 102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), 103 dc->writeback_rate_minimum, NSEC_PER_SEC); 104 105 dc->writeback_rate_proportional = proportional_scaled; 106 dc->writeback_rate_integral_scaled = integral_scaled; 107 dc->writeback_rate_change = new_rate - dc->writeback_rate.rate; 108 dc->writeback_rate.rate = new_rate; 109 dc->writeback_rate_target = target; 110 } 111 112 static void update_writeback_rate(struct work_struct *work) 113 { 114 struct cached_dev *dc = container_of(to_delayed_work(work), 115 struct cached_dev, 116 writeback_rate_update); 117 118 down_read(&dc->writeback_lock); 119 120 if (atomic_read(&dc->has_dirty) && 121 dc->writeback_percent) 122 __update_writeback_rate(dc); 123 124 up_read(&dc->writeback_lock); 125 126 schedule_delayed_work(&dc->writeback_rate_update, 127 dc->writeback_rate_update_seconds * HZ); 128 } 129 130 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors) 131 { 132 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 133 !dc->writeback_percent) 134 return 0; 135 136 return bch_next_delay(&dc->writeback_rate, sectors); 137 } 138 139 struct dirty_io { 140 struct closure cl; 141 struct cached_dev *dc; 142 uint16_t sequence; 143 struct bio bio; 144 }; 145 146 static void dirty_init(struct keybuf_key *w) 147 { 148 struct dirty_io *io = w->private; 149 struct bio *bio = &io->bio; 150 151 bio_init(bio, bio->bi_inline_vecs, 152 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); 153 if (!io->dc->writeback_percent) 154 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); 155 156 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; 157 bio->bi_private = w; 158 bch_bio_map(bio, NULL); 159 } 160 161 static void dirty_io_destructor(struct closure *cl) 162 { 163 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 164 kfree(io); 165 } 166 167 static void write_dirty_finish(struct closure *cl) 168 { 169 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 170 struct keybuf_key *w = io->bio.bi_private; 171 struct cached_dev *dc = io->dc; 172 173 bio_free_pages(&io->bio); 174 175 /* This is kind of a dumb way of signalling errors. */ 176 if (KEY_DIRTY(&w->key)) { 177 int ret; 178 unsigned i; 179 struct keylist keys; 180 181 bch_keylist_init(&keys); 182 183 bkey_copy(keys.top, &w->key); 184 SET_KEY_DIRTY(keys.top, false); 185 bch_keylist_push(&keys); 186 187 for (i = 0; i < KEY_PTRS(&w->key); i++) 188 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); 189 190 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); 191 192 if (ret) 193 trace_bcache_writeback_collision(&w->key); 194 195 atomic_long_inc(ret 196 ? &dc->disk.c->writeback_keys_failed 197 : &dc->disk.c->writeback_keys_done); 198 } 199 200 bch_keybuf_del(&dc->writeback_keys, w); 201 up(&dc->in_flight); 202 203 closure_return_with_destructor(cl, dirty_io_destructor); 204 } 205 206 static void dirty_endio(struct bio *bio) 207 { 208 struct keybuf_key *w = bio->bi_private; 209 struct dirty_io *io = w->private; 210 211 if (bio->bi_status) 212 SET_KEY_DIRTY(&w->key, false); 213 214 closure_put(&io->cl); 215 } 216 217 static void write_dirty(struct closure *cl) 218 { 219 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 220 struct keybuf_key *w = io->bio.bi_private; 221 struct cached_dev *dc = io->dc; 222 223 uint16_t next_sequence; 224 225 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { 226 /* Not our turn to write; wait for a write to complete */ 227 closure_wait(&dc->writeback_ordering_wait, cl); 228 229 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { 230 /* 231 * Edge case-- it happened in indeterminate order 232 * relative to when we were added to wait list.. 233 */ 234 closure_wake_up(&dc->writeback_ordering_wait); 235 } 236 237 continue_at(cl, write_dirty, io->dc->writeback_write_wq); 238 return; 239 } 240 241 next_sequence = io->sequence + 1; 242 243 /* 244 * IO errors are signalled using the dirty bit on the key. 245 * If we failed to read, we should not attempt to write to the 246 * backing device. Instead, immediately go to write_dirty_finish 247 * to clean up. 248 */ 249 if (KEY_DIRTY(&w->key)) { 250 dirty_init(w); 251 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); 252 io->bio.bi_iter.bi_sector = KEY_START(&w->key); 253 bio_set_dev(&io->bio, io->dc->bdev); 254 io->bio.bi_end_io = dirty_endio; 255 256 closure_bio_submit(&io->bio, cl); 257 } 258 259 atomic_set(&dc->writeback_sequence_next, next_sequence); 260 closure_wake_up(&dc->writeback_ordering_wait); 261 262 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); 263 } 264 265 static void read_dirty_endio(struct bio *bio) 266 { 267 struct keybuf_key *w = bio->bi_private; 268 struct dirty_io *io = w->private; 269 270 /* is_read = 1 */ 271 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), 272 bio->bi_status, 1, 273 "reading dirty data from cache"); 274 275 dirty_endio(bio); 276 } 277 278 static void read_dirty_submit(struct closure *cl) 279 { 280 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 281 282 closure_bio_submit(&io->bio, cl); 283 284 continue_at(cl, write_dirty, io->dc->writeback_write_wq); 285 } 286 287 static void read_dirty(struct cached_dev *dc) 288 { 289 unsigned delay = 0; 290 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; 291 size_t size; 292 int nk, i; 293 struct dirty_io *io; 294 struct closure cl; 295 uint16_t sequence = 0; 296 297 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); 298 atomic_set(&dc->writeback_sequence_next, sequence); 299 closure_init_stack(&cl); 300 301 /* 302 * XXX: if we error, background writeback just spins. Should use some 303 * mempools. 304 */ 305 306 next = bch_keybuf_next(&dc->writeback_keys); 307 308 while (!kthread_should_stop() && next) { 309 size = 0; 310 nk = 0; 311 312 do { 313 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); 314 315 /* 316 * Don't combine too many operations, even if they 317 * are all small. 318 */ 319 if (nk >= MAX_WRITEBACKS_IN_PASS) 320 break; 321 322 /* 323 * If the current operation is very large, don't 324 * further combine operations. 325 */ 326 if (size >= MAX_WRITESIZE_IN_PASS) 327 break; 328 329 /* 330 * Operations are only eligible to be combined 331 * if they are contiguous. 332 * 333 * TODO: add a heuristic willing to fire a 334 * certain amount of non-contiguous IO per pass, 335 * so that we can benefit from backing device 336 * command queueing. 337 */ 338 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, 339 &START_KEY(&next->key))) 340 break; 341 342 size += KEY_SIZE(&next->key); 343 keys[nk++] = next; 344 } while ((next = bch_keybuf_next(&dc->writeback_keys))); 345 346 /* Now we have gathered a set of 1..5 keys to write back. */ 347 for (i = 0; i < nk; i++) { 348 w = keys[i]; 349 350 io = kzalloc(sizeof(struct dirty_io) + 351 sizeof(struct bio_vec) * 352 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 353 GFP_KERNEL); 354 if (!io) 355 goto err; 356 357 w->private = io; 358 io->dc = dc; 359 io->sequence = sequence++; 360 361 dirty_init(w); 362 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); 363 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); 364 bio_set_dev(&io->bio, 365 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); 366 io->bio.bi_end_io = read_dirty_endio; 367 368 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) 369 goto err_free; 370 371 trace_bcache_writeback(&w->key); 372 373 down(&dc->in_flight); 374 375 /* We've acquired a semaphore for the maximum 376 * simultaneous number of writebacks; from here 377 * everything happens asynchronously. 378 */ 379 closure_call(&io->cl, read_dirty_submit, NULL, &cl); 380 } 381 382 delay = writeback_delay(dc, size); 383 384 /* If the control system would wait for at least half a 385 * second, and there's been no reqs hitting the backing disk 386 * for awhile: use an alternate mode where we have at most 387 * one contiguous set of writebacks in flight at a time. If 388 * someone wants to do IO it will be quick, as it will only 389 * have to contend with one operation in flight, and we'll 390 * be round-tripping data to the backing disk as quickly as 391 * it can accept it. 392 */ 393 if (delay >= HZ / 2) { 394 /* 3 means at least 1.5 seconds, up to 7.5 if we 395 * have slowed way down. 396 */ 397 if (atomic_inc_return(&dc->backing_idle) >= 3) { 398 /* Wait for current I/Os to finish */ 399 closure_sync(&cl); 400 /* And immediately launch a new set. */ 401 delay = 0; 402 } 403 } 404 405 while (!kthread_should_stop() && delay) { 406 schedule_timeout_interruptible(delay); 407 delay = writeback_delay(dc, 0); 408 } 409 } 410 411 if (0) { 412 err_free: 413 kfree(w->private); 414 err: 415 bch_keybuf_del(&dc->writeback_keys, w); 416 } 417 418 /* 419 * Wait for outstanding writeback IOs to finish (and keybuf slots to be 420 * freed) before refilling again 421 */ 422 closure_sync(&cl); 423 } 424 425 /* Scan for dirty data */ 426 427 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode, 428 uint64_t offset, int nr_sectors) 429 { 430 struct bcache_device *d = c->devices[inode]; 431 unsigned stripe_offset, stripe, sectors_dirty; 432 433 if (!d) 434 return; 435 436 stripe = offset_to_stripe(d, offset); 437 stripe_offset = offset & (d->stripe_size - 1); 438 439 while (nr_sectors) { 440 int s = min_t(unsigned, abs(nr_sectors), 441 d->stripe_size - stripe_offset); 442 443 if (nr_sectors < 0) 444 s = -s; 445 446 if (stripe >= d->nr_stripes) 447 return; 448 449 sectors_dirty = atomic_add_return(s, 450 d->stripe_sectors_dirty + stripe); 451 if (sectors_dirty == d->stripe_size) 452 set_bit(stripe, d->full_dirty_stripes); 453 else 454 clear_bit(stripe, d->full_dirty_stripes); 455 456 nr_sectors -= s; 457 stripe_offset = 0; 458 stripe++; 459 } 460 } 461 462 static bool dirty_pred(struct keybuf *buf, struct bkey *k) 463 { 464 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys); 465 466 BUG_ON(KEY_INODE(k) != dc->disk.id); 467 468 return KEY_DIRTY(k); 469 } 470 471 static void refill_full_stripes(struct cached_dev *dc) 472 { 473 struct keybuf *buf = &dc->writeback_keys; 474 unsigned start_stripe, stripe, next_stripe; 475 bool wrapped = false; 476 477 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); 478 479 if (stripe >= dc->disk.nr_stripes) 480 stripe = 0; 481 482 start_stripe = stripe; 483 484 while (1) { 485 stripe = find_next_bit(dc->disk.full_dirty_stripes, 486 dc->disk.nr_stripes, stripe); 487 488 if (stripe == dc->disk.nr_stripes) 489 goto next; 490 491 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, 492 dc->disk.nr_stripes, stripe); 493 494 buf->last_scanned = KEY(dc->disk.id, 495 stripe * dc->disk.stripe_size, 0); 496 497 bch_refill_keybuf(dc->disk.c, buf, 498 &KEY(dc->disk.id, 499 next_stripe * dc->disk.stripe_size, 0), 500 dirty_pred); 501 502 if (array_freelist_empty(&buf->freelist)) 503 return; 504 505 stripe = next_stripe; 506 next: 507 if (wrapped && stripe > start_stripe) 508 return; 509 510 if (stripe == dc->disk.nr_stripes) { 511 stripe = 0; 512 wrapped = true; 513 } 514 } 515 } 516 517 /* 518 * Returns true if we scanned the entire disk 519 */ 520 static bool refill_dirty(struct cached_dev *dc) 521 { 522 struct keybuf *buf = &dc->writeback_keys; 523 struct bkey start = KEY(dc->disk.id, 0, 0); 524 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); 525 struct bkey start_pos; 526 527 /* 528 * make sure keybuf pos is inside the range for this disk - at bringup 529 * we might not be attached yet so this disk's inode nr isn't 530 * initialized then 531 */ 532 if (bkey_cmp(&buf->last_scanned, &start) < 0 || 533 bkey_cmp(&buf->last_scanned, &end) > 0) 534 buf->last_scanned = start; 535 536 if (dc->partial_stripes_expensive) { 537 refill_full_stripes(dc); 538 if (array_freelist_empty(&buf->freelist)) 539 return false; 540 } 541 542 start_pos = buf->last_scanned; 543 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); 544 545 if (bkey_cmp(&buf->last_scanned, &end) < 0) 546 return false; 547 548 /* 549 * If we get to the end start scanning again from the beginning, and 550 * only scan up to where we initially started scanning from: 551 */ 552 buf->last_scanned = start; 553 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); 554 555 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; 556 } 557 558 static int bch_writeback_thread(void *arg) 559 { 560 struct cached_dev *dc = arg; 561 bool searched_full_index; 562 563 bch_ratelimit_reset(&dc->writeback_rate); 564 565 while (!kthread_should_stop()) { 566 down_write(&dc->writeback_lock); 567 set_current_state(TASK_INTERRUPTIBLE); 568 if (!atomic_read(&dc->has_dirty) || 569 (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && 570 !dc->writeback_running)) { 571 up_write(&dc->writeback_lock); 572 573 if (kthread_should_stop()) { 574 set_current_state(TASK_RUNNING); 575 return 0; 576 } 577 578 schedule(); 579 continue; 580 } 581 set_current_state(TASK_RUNNING); 582 583 searched_full_index = refill_dirty(dc); 584 585 if (searched_full_index && 586 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { 587 atomic_set(&dc->has_dirty, 0); 588 cached_dev_put(dc); 589 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 590 bch_write_bdev_super(dc, NULL); 591 } 592 593 up_write(&dc->writeback_lock); 594 595 read_dirty(dc); 596 597 if (searched_full_index) { 598 unsigned delay = dc->writeback_delay * HZ; 599 600 while (delay && 601 !kthread_should_stop() && 602 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 603 delay = schedule_timeout_interruptible(delay); 604 605 bch_ratelimit_reset(&dc->writeback_rate); 606 } 607 } 608 609 return 0; 610 } 611 612 /* Init */ 613 614 struct sectors_dirty_init { 615 struct btree_op op; 616 unsigned inode; 617 }; 618 619 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, 620 struct bkey *k) 621 { 622 struct sectors_dirty_init *op = container_of(_op, 623 struct sectors_dirty_init, op); 624 if (KEY_INODE(k) > op->inode) 625 return MAP_DONE; 626 627 if (KEY_DIRTY(k)) 628 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), 629 KEY_START(k), KEY_SIZE(k)); 630 631 return MAP_CONTINUE; 632 } 633 634 void bch_sectors_dirty_init(struct bcache_device *d) 635 { 636 struct sectors_dirty_init op; 637 638 bch_btree_op_init(&op.op, -1); 639 op.inode = d->id; 640 641 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0), 642 sectors_dirty_init_fn, 0); 643 } 644 645 void bch_cached_dev_writeback_init(struct cached_dev *dc) 646 { 647 sema_init(&dc->in_flight, 64); 648 init_rwsem(&dc->writeback_lock); 649 bch_keybuf_init(&dc->writeback_keys); 650 651 dc->writeback_metadata = true; 652 dc->writeback_running = true; 653 dc->writeback_percent = 10; 654 dc->writeback_delay = 30; 655 dc->writeback_rate.rate = 1024; 656 dc->writeback_rate_minimum = 8; 657 658 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; 659 dc->writeback_rate_p_term_inverse = 40; 660 dc->writeback_rate_i_term_inverse = 10000; 661 662 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); 663 } 664 665 int bch_cached_dev_writeback_start(struct cached_dev *dc) 666 { 667 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", 668 WQ_MEM_RECLAIM, 0); 669 if (!dc->writeback_write_wq) 670 return -ENOMEM; 671 672 dc->writeback_thread = kthread_create(bch_writeback_thread, dc, 673 "bcache_writeback"); 674 if (IS_ERR(dc->writeback_thread)) 675 return PTR_ERR(dc->writeback_thread); 676 677 schedule_delayed_work(&dc->writeback_rate_update, 678 dc->writeback_rate_update_seconds * HZ); 679 680 bch_writeback_queue(dc); 681 682 return 0; 683 } 684