xref: /openbmc/linux/drivers/md/bcache/writeback.c (revision c7685190)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14 
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19 
20 /* Rate limiting */
21 static uint64_t __calc_target_rate(struct cached_dev *dc)
22 {
23 	struct cache_set *c = dc->disk.c;
24 
25 	/*
26 	 * This is the size of the cache, minus the amount used for
27 	 * flash-only devices
28 	 */
29 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 				bcache_flash_devs_sectors_dirty(c);
31 
32 	/*
33 	 * Unfortunately there is no control of global dirty data.  If the
34 	 * user states that they want 10% dirty data in the cache, and has,
35 	 * e.g., 5 backing volumes of equal size, we try and ensure each
36 	 * backing volume uses about 2% of the cache for dirty data.
37 	 */
38 	uint32_t bdev_share =
39 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 				c->cached_dev_sectors);
41 
42 	uint64_t cache_dirty_target =
43 		div_u64(cache_sectors * dc->writeback_percent, 100);
44 
45 	/* Ensure each backing dev gets at least one dirty share */
46 	if (bdev_share < 1)
47 		bdev_share = 1;
48 
49 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
50 }
51 
52 static void __update_writeback_rate(struct cached_dev *dc)
53 {
54 	/*
55 	 * PI controller:
56 	 * Figures out the amount that should be written per second.
57 	 *
58 	 * First, the error (number of sectors that are dirty beyond our
59 	 * target) is calculated.  The error is accumulated (numerically
60 	 * integrated).
61 	 *
62 	 * Then, the proportional value and integral value are scaled
63 	 * based on configured values.  These are stored as inverses to
64 	 * avoid fixed point math and to make configuration easy-- e.g.
65 	 * the default value of 40 for writeback_rate_p_term_inverse
66 	 * attempts to write at a rate that would retire all the dirty
67 	 * blocks in 40 seconds.
68 	 *
69 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 	 * of the error is accumulated in the integral term per second.
71 	 * This acts as a slow, long-term average that is not subject to
72 	 * variations in usage like the p term.
73 	 */
74 	int64_t target = __calc_target_rate(dc);
75 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 	int64_t error = dirty - target;
77 	int64_t proportional_scaled =
78 		div_s64(error, dc->writeback_rate_p_term_inverse);
79 	int64_t integral_scaled;
80 	uint32_t new_rate;
81 
82 	if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 	    (error > 0 && time_before64(local_clock(),
84 			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
85 		/*
86 		 * Only decrease the integral term if it's more than
87 		 * zero.  Only increase the integral term if the device
88 		 * is keeping up.  (Don't wind up the integral
89 		 * ineffectively in either case).
90 		 *
91 		 * It's necessary to scale this by
92 		 * writeback_rate_update_seconds to keep the integral
93 		 * term dimensioned properly.
94 		 */
95 		dc->writeback_rate_integral += error *
96 			dc->writeback_rate_update_seconds;
97 	}
98 
99 	integral_scaled = div_s64(dc->writeback_rate_integral,
100 			dc->writeback_rate_i_term_inverse);
101 
102 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 			dc->writeback_rate_minimum, NSEC_PER_SEC);
104 
105 	dc->writeback_rate_proportional = proportional_scaled;
106 	dc->writeback_rate_integral_scaled = integral_scaled;
107 	dc->writeback_rate_change = new_rate - dc->writeback_rate.rate;
108 	dc->writeback_rate.rate = new_rate;
109 	dc->writeback_rate_target = target;
110 }
111 
112 static void update_writeback_rate(struct work_struct *work)
113 {
114 	struct cached_dev *dc = container_of(to_delayed_work(work),
115 					     struct cached_dev,
116 					     writeback_rate_update);
117 
118 	down_read(&dc->writeback_lock);
119 
120 	if (atomic_read(&dc->has_dirty) &&
121 	    dc->writeback_percent)
122 		__update_writeback_rate(dc);
123 
124 	up_read(&dc->writeback_lock);
125 
126 	schedule_delayed_work(&dc->writeback_rate_update,
127 			      dc->writeback_rate_update_seconds * HZ);
128 }
129 
130 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
131 {
132 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
133 	    !dc->writeback_percent)
134 		return 0;
135 
136 	return bch_next_delay(&dc->writeback_rate, sectors);
137 }
138 
139 struct dirty_io {
140 	struct closure		cl;
141 	struct cached_dev	*dc;
142 	uint16_t		sequence;
143 	struct bio		bio;
144 };
145 
146 static void dirty_init(struct keybuf_key *w)
147 {
148 	struct dirty_io *io = w->private;
149 	struct bio *bio = &io->bio;
150 
151 	bio_init(bio, bio->bi_inline_vecs,
152 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
153 	if (!io->dc->writeback_percent)
154 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
155 
156 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
157 	bio->bi_private		= w;
158 	bch_bio_map(bio, NULL);
159 }
160 
161 static void dirty_io_destructor(struct closure *cl)
162 {
163 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
164 	kfree(io);
165 }
166 
167 static void write_dirty_finish(struct closure *cl)
168 {
169 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
170 	struct keybuf_key *w = io->bio.bi_private;
171 	struct cached_dev *dc = io->dc;
172 
173 	bio_free_pages(&io->bio);
174 
175 	/* This is kind of a dumb way of signalling errors. */
176 	if (KEY_DIRTY(&w->key)) {
177 		int ret;
178 		unsigned i;
179 		struct keylist keys;
180 
181 		bch_keylist_init(&keys);
182 
183 		bkey_copy(keys.top, &w->key);
184 		SET_KEY_DIRTY(keys.top, false);
185 		bch_keylist_push(&keys);
186 
187 		for (i = 0; i < KEY_PTRS(&w->key); i++)
188 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
189 
190 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
191 
192 		if (ret)
193 			trace_bcache_writeback_collision(&w->key);
194 
195 		atomic_long_inc(ret
196 				? &dc->disk.c->writeback_keys_failed
197 				: &dc->disk.c->writeback_keys_done);
198 	}
199 
200 	bch_keybuf_del(&dc->writeback_keys, w);
201 	up(&dc->in_flight);
202 
203 	closure_return_with_destructor(cl, dirty_io_destructor);
204 }
205 
206 static void dirty_endio(struct bio *bio)
207 {
208 	struct keybuf_key *w = bio->bi_private;
209 	struct dirty_io *io = w->private;
210 
211 	if (bio->bi_status)
212 		SET_KEY_DIRTY(&w->key, false);
213 
214 	closure_put(&io->cl);
215 }
216 
217 static void write_dirty(struct closure *cl)
218 {
219 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
220 	struct keybuf_key *w = io->bio.bi_private;
221 	struct cached_dev *dc = io->dc;
222 
223 	uint16_t next_sequence;
224 
225 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
226 		/* Not our turn to write; wait for a write to complete */
227 		closure_wait(&dc->writeback_ordering_wait, cl);
228 
229 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
230 			/*
231 			 * Edge case-- it happened in indeterminate order
232 			 * relative to when we were added to wait list..
233 			 */
234 			closure_wake_up(&dc->writeback_ordering_wait);
235 		}
236 
237 		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
238 		return;
239 	}
240 
241 	next_sequence = io->sequence + 1;
242 
243 	/*
244 	 * IO errors are signalled using the dirty bit on the key.
245 	 * If we failed to read, we should not attempt to write to the
246 	 * backing device.  Instead, immediately go to write_dirty_finish
247 	 * to clean up.
248 	 */
249 	if (KEY_DIRTY(&w->key)) {
250 		dirty_init(w);
251 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
252 		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
253 		bio_set_dev(&io->bio, io->dc->bdev);
254 		io->bio.bi_end_io	= dirty_endio;
255 
256 		closure_bio_submit(&io->bio, cl);
257 	}
258 
259 	atomic_set(&dc->writeback_sequence_next, next_sequence);
260 	closure_wake_up(&dc->writeback_ordering_wait);
261 
262 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
263 }
264 
265 static void read_dirty_endio(struct bio *bio)
266 {
267 	struct keybuf_key *w = bio->bi_private;
268 	struct dirty_io *io = w->private;
269 
270 	/* is_read = 1 */
271 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
272 			    bio->bi_status, 1,
273 			    "reading dirty data from cache");
274 
275 	dirty_endio(bio);
276 }
277 
278 static void read_dirty_submit(struct closure *cl)
279 {
280 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
281 
282 	closure_bio_submit(&io->bio, cl);
283 
284 	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
285 }
286 
287 static void read_dirty(struct cached_dev *dc)
288 {
289 	unsigned delay = 0;
290 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
291 	size_t size;
292 	int nk, i;
293 	struct dirty_io *io;
294 	struct closure cl;
295 	uint16_t sequence = 0;
296 
297 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
298 	atomic_set(&dc->writeback_sequence_next, sequence);
299 	closure_init_stack(&cl);
300 
301 	/*
302 	 * XXX: if we error, background writeback just spins. Should use some
303 	 * mempools.
304 	 */
305 
306 	next = bch_keybuf_next(&dc->writeback_keys);
307 
308 	while (!kthread_should_stop() && next) {
309 		size = 0;
310 		nk = 0;
311 
312 		do {
313 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
314 
315 			/*
316 			 * Don't combine too many operations, even if they
317 			 * are all small.
318 			 */
319 			if (nk >= MAX_WRITEBACKS_IN_PASS)
320 				break;
321 
322 			/*
323 			 * If the current operation is very large, don't
324 			 * further combine operations.
325 			 */
326 			if (size >= MAX_WRITESIZE_IN_PASS)
327 				break;
328 
329 			/*
330 			 * Operations are only eligible to be combined
331 			 * if they are contiguous.
332 			 *
333 			 * TODO: add a heuristic willing to fire a
334 			 * certain amount of non-contiguous IO per pass,
335 			 * so that we can benefit from backing device
336 			 * command queueing.
337 			 */
338 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
339 						&START_KEY(&next->key)))
340 				break;
341 
342 			size += KEY_SIZE(&next->key);
343 			keys[nk++] = next;
344 		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
345 
346 		/* Now we have gathered a set of 1..5 keys to write back. */
347 		for (i = 0; i < nk; i++) {
348 			w = keys[i];
349 
350 			io = kzalloc(sizeof(struct dirty_io) +
351 				     sizeof(struct bio_vec) *
352 				     DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
353 				     GFP_KERNEL);
354 			if (!io)
355 				goto err;
356 
357 			w->private	= io;
358 			io->dc		= dc;
359 			io->sequence    = sequence++;
360 
361 			dirty_init(w);
362 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
363 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
364 			bio_set_dev(&io->bio,
365 				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
366 			io->bio.bi_end_io	= read_dirty_endio;
367 
368 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
369 				goto err_free;
370 
371 			trace_bcache_writeback(&w->key);
372 
373 			down(&dc->in_flight);
374 
375 			/* We've acquired a semaphore for the maximum
376 			 * simultaneous number of writebacks; from here
377 			 * everything happens asynchronously.
378 			 */
379 			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
380 		}
381 
382 		delay = writeback_delay(dc, size);
383 
384 		/* If the control system would wait for at least half a
385 		 * second, and there's been no reqs hitting the backing disk
386 		 * for awhile: use an alternate mode where we have at most
387 		 * one contiguous set of writebacks in flight at a time.  If
388 		 * someone wants to do IO it will be quick, as it will only
389 		 * have to contend with one operation in flight, and we'll
390 		 * be round-tripping data to the backing disk as quickly as
391 		 * it can accept it.
392 		 */
393 		if (delay >= HZ / 2) {
394 			/* 3 means at least 1.5 seconds, up to 7.5 if we
395 			 * have slowed way down.
396 			 */
397 			if (atomic_inc_return(&dc->backing_idle) >= 3) {
398 				/* Wait for current I/Os to finish */
399 				closure_sync(&cl);
400 				/* And immediately launch a new set. */
401 				delay = 0;
402 			}
403 		}
404 
405 		while (!kthread_should_stop() && delay) {
406 			schedule_timeout_interruptible(delay);
407 			delay = writeback_delay(dc, 0);
408 		}
409 	}
410 
411 	if (0) {
412 err_free:
413 		kfree(w->private);
414 err:
415 		bch_keybuf_del(&dc->writeback_keys, w);
416 	}
417 
418 	/*
419 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
420 	 * freed) before refilling again
421 	 */
422 	closure_sync(&cl);
423 }
424 
425 /* Scan for dirty data */
426 
427 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
428 				  uint64_t offset, int nr_sectors)
429 {
430 	struct bcache_device *d = c->devices[inode];
431 	unsigned stripe_offset, stripe, sectors_dirty;
432 
433 	if (!d)
434 		return;
435 
436 	stripe = offset_to_stripe(d, offset);
437 	stripe_offset = offset & (d->stripe_size - 1);
438 
439 	while (nr_sectors) {
440 		int s = min_t(unsigned, abs(nr_sectors),
441 			      d->stripe_size - stripe_offset);
442 
443 		if (nr_sectors < 0)
444 			s = -s;
445 
446 		if (stripe >= d->nr_stripes)
447 			return;
448 
449 		sectors_dirty = atomic_add_return(s,
450 					d->stripe_sectors_dirty + stripe);
451 		if (sectors_dirty == d->stripe_size)
452 			set_bit(stripe, d->full_dirty_stripes);
453 		else
454 			clear_bit(stripe, d->full_dirty_stripes);
455 
456 		nr_sectors -= s;
457 		stripe_offset = 0;
458 		stripe++;
459 	}
460 }
461 
462 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
463 {
464 	struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
465 
466 	BUG_ON(KEY_INODE(k) != dc->disk.id);
467 
468 	return KEY_DIRTY(k);
469 }
470 
471 static void refill_full_stripes(struct cached_dev *dc)
472 {
473 	struct keybuf *buf = &dc->writeback_keys;
474 	unsigned start_stripe, stripe, next_stripe;
475 	bool wrapped = false;
476 
477 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
478 
479 	if (stripe >= dc->disk.nr_stripes)
480 		stripe = 0;
481 
482 	start_stripe = stripe;
483 
484 	while (1) {
485 		stripe = find_next_bit(dc->disk.full_dirty_stripes,
486 				       dc->disk.nr_stripes, stripe);
487 
488 		if (stripe == dc->disk.nr_stripes)
489 			goto next;
490 
491 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
492 						 dc->disk.nr_stripes, stripe);
493 
494 		buf->last_scanned = KEY(dc->disk.id,
495 					stripe * dc->disk.stripe_size, 0);
496 
497 		bch_refill_keybuf(dc->disk.c, buf,
498 				  &KEY(dc->disk.id,
499 				       next_stripe * dc->disk.stripe_size, 0),
500 				  dirty_pred);
501 
502 		if (array_freelist_empty(&buf->freelist))
503 			return;
504 
505 		stripe = next_stripe;
506 next:
507 		if (wrapped && stripe > start_stripe)
508 			return;
509 
510 		if (stripe == dc->disk.nr_stripes) {
511 			stripe = 0;
512 			wrapped = true;
513 		}
514 	}
515 }
516 
517 /*
518  * Returns true if we scanned the entire disk
519  */
520 static bool refill_dirty(struct cached_dev *dc)
521 {
522 	struct keybuf *buf = &dc->writeback_keys;
523 	struct bkey start = KEY(dc->disk.id, 0, 0);
524 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
525 	struct bkey start_pos;
526 
527 	/*
528 	 * make sure keybuf pos is inside the range for this disk - at bringup
529 	 * we might not be attached yet so this disk's inode nr isn't
530 	 * initialized then
531 	 */
532 	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
533 	    bkey_cmp(&buf->last_scanned, &end) > 0)
534 		buf->last_scanned = start;
535 
536 	if (dc->partial_stripes_expensive) {
537 		refill_full_stripes(dc);
538 		if (array_freelist_empty(&buf->freelist))
539 			return false;
540 	}
541 
542 	start_pos = buf->last_scanned;
543 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
544 
545 	if (bkey_cmp(&buf->last_scanned, &end) < 0)
546 		return false;
547 
548 	/*
549 	 * If we get to the end start scanning again from the beginning, and
550 	 * only scan up to where we initially started scanning from:
551 	 */
552 	buf->last_scanned = start;
553 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
554 
555 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
556 }
557 
558 static int bch_writeback_thread(void *arg)
559 {
560 	struct cached_dev *dc = arg;
561 	bool searched_full_index;
562 
563 	bch_ratelimit_reset(&dc->writeback_rate);
564 
565 	while (!kthread_should_stop()) {
566 		down_write(&dc->writeback_lock);
567 		set_current_state(TASK_INTERRUPTIBLE);
568 		if (!atomic_read(&dc->has_dirty) ||
569 		    (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
570 		     !dc->writeback_running)) {
571 			up_write(&dc->writeback_lock);
572 
573 			if (kthread_should_stop()) {
574 				set_current_state(TASK_RUNNING);
575 				return 0;
576 			}
577 
578 			schedule();
579 			continue;
580 		}
581 		set_current_state(TASK_RUNNING);
582 
583 		searched_full_index = refill_dirty(dc);
584 
585 		if (searched_full_index &&
586 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
587 			atomic_set(&dc->has_dirty, 0);
588 			cached_dev_put(dc);
589 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
590 			bch_write_bdev_super(dc, NULL);
591 		}
592 
593 		up_write(&dc->writeback_lock);
594 
595 		read_dirty(dc);
596 
597 		if (searched_full_index) {
598 			unsigned delay = dc->writeback_delay * HZ;
599 
600 			while (delay &&
601 			       !kthread_should_stop() &&
602 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
603 				delay = schedule_timeout_interruptible(delay);
604 
605 			bch_ratelimit_reset(&dc->writeback_rate);
606 		}
607 	}
608 
609 	return 0;
610 }
611 
612 /* Init */
613 
614 struct sectors_dirty_init {
615 	struct btree_op	op;
616 	unsigned	inode;
617 };
618 
619 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
620 				 struct bkey *k)
621 {
622 	struct sectors_dirty_init *op = container_of(_op,
623 						struct sectors_dirty_init, op);
624 	if (KEY_INODE(k) > op->inode)
625 		return MAP_DONE;
626 
627 	if (KEY_DIRTY(k))
628 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
629 					     KEY_START(k), KEY_SIZE(k));
630 
631 	return MAP_CONTINUE;
632 }
633 
634 void bch_sectors_dirty_init(struct bcache_device *d)
635 {
636 	struct sectors_dirty_init op;
637 
638 	bch_btree_op_init(&op.op, -1);
639 	op.inode = d->id;
640 
641 	bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0),
642 			   sectors_dirty_init_fn, 0);
643 }
644 
645 void bch_cached_dev_writeback_init(struct cached_dev *dc)
646 {
647 	sema_init(&dc->in_flight, 64);
648 	init_rwsem(&dc->writeback_lock);
649 	bch_keybuf_init(&dc->writeback_keys);
650 
651 	dc->writeback_metadata		= true;
652 	dc->writeback_running		= true;
653 	dc->writeback_percent		= 10;
654 	dc->writeback_delay		= 30;
655 	dc->writeback_rate.rate		= 1024;
656 	dc->writeback_rate_minimum	= 8;
657 
658 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
659 	dc->writeback_rate_p_term_inverse = 40;
660 	dc->writeback_rate_i_term_inverse = 10000;
661 
662 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
663 }
664 
665 int bch_cached_dev_writeback_start(struct cached_dev *dc)
666 {
667 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
668 						WQ_MEM_RECLAIM, 0);
669 	if (!dc->writeback_write_wq)
670 		return -ENOMEM;
671 
672 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
673 					      "bcache_writeback");
674 	if (IS_ERR(dc->writeback_thread))
675 		return PTR_ERR(dc->writeback_thread);
676 
677 	schedule_delayed_work(&dc->writeback_rate_update,
678 			      dc->writeback_rate_update_seconds * HZ);
679 
680 	bch_writeback_queue(dc);
681 
682 	return 0;
683 }
684