xref: /openbmc/linux/drivers/md/bcache/writeback.c (revision 8fdf9062)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14 
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19 
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22 	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 		return;
25 
26 	c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28 
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32 	struct cache_set *c = dc->disk.c;
33 
34 	/*
35 	 * This is the size of the cache, minus the amount used for
36 	 * flash-only devices
37 	 */
38 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
39 				atomic_long_read(&c->flash_dev_dirty_sectors);
40 
41 	/*
42 	 * Unfortunately there is no control of global dirty data.  If the
43 	 * user states that they want 10% dirty data in the cache, and has,
44 	 * e.g., 5 backing volumes of equal size, we try and ensure each
45 	 * backing volume uses about 2% of the cache for dirty data.
46 	 */
47 	uint32_t bdev_share =
48 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 				c->cached_dev_sectors);
50 
51 	uint64_t cache_dirty_target =
52 		div_u64(cache_sectors * dc->writeback_percent, 100);
53 
54 	/* Ensure each backing dev gets at least one dirty share */
55 	if (bdev_share < 1)
56 		bdev_share = 1;
57 
58 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60 
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63 	/*
64 	 * PI controller:
65 	 * Figures out the amount that should be written per second.
66 	 *
67 	 * First, the error (number of sectors that are dirty beyond our
68 	 * target) is calculated.  The error is accumulated (numerically
69 	 * integrated).
70 	 *
71 	 * Then, the proportional value and integral value are scaled
72 	 * based on configured values.  These are stored as inverses to
73 	 * avoid fixed point math and to make configuration easy-- e.g.
74 	 * the default value of 40 for writeback_rate_p_term_inverse
75 	 * attempts to write at a rate that would retire all the dirty
76 	 * blocks in 40 seconds.
77 	 *
78 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 	 * of the error is accumulated in the integral term per second.
80 	 * This acts as a slow, long-term average that is not subject to
81 	 * variations in usage like the p term.
82 	 */
83 	int64_t target = __calc_target_rate(dc);
84 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 	int64_t error = dirty - target;
86 	int64_t proportional_scaled =
87 		div_s64(error, dc->writeback_rate_p_term_inverse);
88 	int64_t integral_scaled;
89 	uint32_t new_rate;
90 
91 	if ((error < 0 && dc->writeback_rate_integral > 0) ||
92 	    (error > 0 && time_before64(local_clock(),
93 			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
94 		/*
95 		 * Only decrease the integral term if it's more than
96 		 * zero.  Only increase the integral term if the device
97 		 * is keeping up.  (Don't wind up the integral
98 		 * ineffectively in either case).
99 		 *
100 		 * It's necessary to scale this by
101 		 * writeback_rate_update_seconds to keep the integral
102 		 * term dimensioned properly.
103 		 */
104 		dc->writeback_rate_integral += error *
105 			dc->writeback_rate_update_seconds;
106 	}
107 
108 	integral_scaled = div_s64(dc->writeback_rate_integral,
109 			dc->writeback_rate_i_term_inverse);
110 
111 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
112 			dc->writeback_rate_minimum, NSEC_PER_SEC);
113 
114 	dc->writeback_rate_proportional = proportional_scaled;
115 	dc->writeback_rate_integral_scaled = integral_scaled;
116 	dc->writeback_rate_change = new_rate -
117 			atomic_long_read(&dc->writeback_rate.rate);
118 	atomic_long_set(&dc->writeback_rate.rate, new_rate);
119 	dc->writeback_rate_target = target;
120 }
121 
122 static bool set_at_max_writeback_rate(struct cache_set *c,
123 				       struct cached_dev *dc)
124 {
125 	/*
126 	 * Idle_counter is increased everytime when update_writeback_rate() is
127 	 * called. If all backing devices attached to the same cache set have
128 	 * identical dc->writeback_rate_update_seconds values, it is about 6
129 	 * rounds of update_writeback_rate() on each backing device before
130 	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
131 	 * to each dc->writeback_rate.rate.
132 	 * In order to avoid extra locking cost for counting exact dirty cached
133 	 * devices number, c->attached_dev_nr is used to calculate the idle
134 	 * throushold. It might be bigger if not all cached device are in write-
135 	 * back mode, but it still works well with limited extra rounds of
136 	 * update_writeback_rate().
137 	 */
138 	if (atomic_inc_return(&c->idle_counter) <
139 	    atomic_read(&c->attached_dev_nr) * 6)
140 		return false;
141 
142 	if (atomic_read(&c->at_max_writeback_rate) != 1)
143 		atomic_set(&c->at_max_writeback_rate, 1);
144 
145 	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
146 
147 	/* keep writeback_rate_target as existing value */
148 	dc->writeback_rate_proportional = 0;
149 	dc->writeback_rate_integral_scaled = 0;
150 	dc->writeback_rate_change = 0;
151 
152 	/*
153 	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
154 	 * new I/O arrives during before set_at_max_writeback_rate() returns.
155 	 * Then the writeback rate is set to 1, and its new value should be
156 	 * decided via __update_writeback_rate().
157 	 */
158 	if ((atomic_read(&c->idle_counter) <
159 	     atomic_read(&c->attached_dev_nr) * 6) ||
160 	    !atomic_read(&c->at_max_writeback_rate))
161 		return false;
162 
163 	return true;
164 }
165 
166 static void update_writeback_rate(struct work_struct *work)
167 {
168 	struct cached_dev *dc = container_of(to_delayed_work(work),
169 					     struct cached_dev,
170 					     writeback_rate_update);
171 	struct cache_set *c = dc->disk.c;
172 
173 	/*
174 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
175 	 * cancel_delayed_work_sync().
176 	 */
177 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
178 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
179 	smp_mb();
180 
181 	/*
182 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
183 	 * check it here too.
184 	 */
185 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
186 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
187 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
188 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
189 		smp_mb();
190 		return;
191 	}
192 
193 	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
194 		/*
195 		 * If the whole cache set is idle, set_at_max_writeback_rate()
196 		 * will set writeback rate to a max number. Then it is
197 		 * unncessary to update writeback rate for an idle cache set
198 		 * in maximum writeback rate number(s).
199 		 */
200 		if (!set_at_max_writeback_rate(c, dc)) {
201 			down_read(&dc->writeback_lock);
202 			__update_writeback_rate(dc);
203 			update_gc_after_writeback(c);
204 			up_read(&dc->writeback_lock);
205 		}
206 	}
207 
208 
209 	/*
210 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
211 	 * check it here too.
212 	 */
213 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
214 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
215 		schedule_delayed_work(&dc->writeback_rate_update,
216 			      dc->writeback_rate_update_seconds * HZ);
217 	}
218 
219 	/*
220 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
221 	 * cancel_delayed_work_sync().
222 	 */
223 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
224 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
225 	smp_mb();
226 }
227 
228 static unsigned int writeback_delay(struct cached_dev *dc,
229 				    unsigned int sectors)
230 {
231 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
232 	    !dc->writeback_percent)
233 		return 0;
234 
235 	return bch_next_delay(&dc->writeback_rate, sectors);
236 }
237 
238 struct dirty_io {
239 	struct closure		cl;
240 	struct cached_dev	*dc;
241 	uint16_t		sequence;
242 	struct bio		bio;
243 };
244 
245 static void dirty_init(struct keybuf_key *w)
246 {
247 	struct dirty_io *io = w->private;
248 	struct bio *bio = &io->bio;
249 
250 	bio_init(bio, bio->bi_inline_vecs,
251 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
252 	if (!io->dc->writeback_percent)
253 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
254 
255 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
256 	bio->bi_private		= w;
257 	bch_bio_map(bio, NULL);
258 }
259 
260 static void dirty_io_destructor(struct closure *cl)
261 {
262 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
263 
264 	kfree(io);
265 }
266 
267 static void write_dirty_finish(struct closure *cl)
268 {
269 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
270 	struct keybuf_key *w = io->bio.bi_private;
271 	struct cached_dev *dc = io->dc;
272 
273 	bio_free_pages(&io->bio);
274 
275 	/* This is kind of a dumb way of signalling errors. */
276 	if (KEY_DIRTY(&w->key)) {
277 		int ret;
278 		unsigned int i;
279 		struct keylist keys;
280 
281 		bch_keylist_init(&keys);
282 
283 		bkey_copy(keys.top, &w->key);
284 		SET_KEY_DIRTY(keys.top, false);
285 		bch_keylist_push(&keys);
286 
287 		for (i = 0; i < KEY_PTRS(&w->key); i++)
288 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
289 
290 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
291 
292 		if (ret)
293 			trace_bcache_writeback_collision(&w->key);
294 
295 		atomic_long_inc(ret
296 				? &dc->disk.c->writeback_keys_failed
297 				: &dc->disk.c->writeback_keys_done);
298 	}
299 
300 	bch_keybuf_del(&dc->writeback_keys, w);
301 	up(&dc->in_flight);
302 
303 	closure_return_with_destructor(cl, dirty_io_destructor);
304 }
305 
306 static void dirty_endio(struct bio *bio)
307 {
308 	struct keybuf_key *w = bio->bi_private;
309 	struct dirty_io *io = w->private;
310 
311 	if (bio->bi_status) {
312 		SET_KEY_DIRTY(&w->key, false);
313 		bch_count_backing_io_errors(io->dc, bio);
314 	}
315 
316 	closure_put(&io->cl);
317 }
318 
319 static void write_dirty(struct closure *cl)
320 {
321 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
322 	struct keybuf_key *w = io->bio.bi_private;
323 	struct cached_dev *dc = io->dc;
324 
325 	uint16_t next_sequence;
326 
327 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
328 		/* Not our turn to write; wait for a write to complete */
329 		closure_wait(&dc->writeback_ordering_wait, cl);
330 
331 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
332 			/*
333 			 * Edge case-- it happened in indeterminate order
334 			 * relative to when we were added to wait list..
335 			 */
336 			closure_wake_up(&dc->writeback_ordering_wait);
337 		}
338 
339 		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
340 		return;
341 	}
342 
343 	next_sequence = io->sequence + 1;
344 
345 	/*
346 	 * IO errors are signalled using the dirty bit on the key.
347 	 * If we failed to read, we should not attempt to write to the
348 	 * backing device.  Instead, immediately go to write_dirty_finish
349 	 * to clean up.
350 	 */
351 	if (KEY_DIRTY(&w->key)) {
352 		dirty_init(w);
353 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
354 		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
355 		bio_set_dev(&io->bio, io->dc->bdev);
356 		io->bio.bi_end_io	= dirty_endio;
357 
358 		/* I/O request sent to backing device */
359 		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
360 	}
361 
362 	atomic_set(&dc->writeback_sequence_next, next_sequence);
363 	closure_wake_up(&dc->writeback_ordering_wait);
364 
365 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
366 }
367 
368 static void read_dirty_endio(struct bio *bio)
369 {
370 	struct keybuf_key *w = bio->bi_private;
371 	struct dirty_io *io = w->private;
372 
373 	/* is_read = 1 */
374 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
375 			    bio->bi_status, 1,
376 			    "reading dirty data from cache");
377 
378 	dirty_endio(bio);
379 }
380 
381 static void read_dirty_submit(struct closure *cl)
382 {
383 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
384 
385 	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
386 
387 	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
388 }
389 
390 static void read_dirty(struct cached_dev *dc)
391 {
392 	unsigned int delay = 0;
393 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
394 	size_t size;
395 	int nk, i;
396 	struct dirty_io *io;
397 	struct closure cl;
398 	uint16_t sequence = 0;
399 
400 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
401 	atomic_set(&dc->writeback_sequence_next, sequence);
402 	closure_init_stack(&cl);
403 
404 	/*
405 	 * XXX: if we error, background writeback just spins. Should use some
406 	 * mempools.
407 	 */
408 
409 	next = bch_keybuf_next(&dc->writeback_keys);
410 
411 	while (!kthread_should_stop() &&
412 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
413 	       next) {
414 		size = 0;
415 		nk = 0;
416 
417 		do {
418 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
419 
420 			/*
421 			 * Don't combine too many operations, even if they
422 			 * are all small.
423 			 */
424 			if (nk >= MAX_WRITEBACKS_IN_PASS)
425 				break;
426 
427 			/*
428 			 * If the current operation is very large, don't
429 			 * further combine operations.
430 			 */
431 			if (size >= MAX_WRITESIZE_IN_PASS)
432 				break;
433 
434 			/*
435 			 * Operations are only eligible to be combined
436 			 * if they are contiguous.
437 			 *
438 			 * TODO: add a heuristic willing to fire a
439 			 * certain amount of non-contiguous IO per pass,
440 			 * so that we can benefit from backing device
441 			 * command queueing.
442 			 */
443 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
444 						&START_KEY(&next->key)))
445 				break;
446 
447 			size += KEY_SIZE(&next->key);
448 			keys[nk++] = next;
449 		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
450 
451 		/* Now we have gathered a set of 1..5 keys to write back. */
452 		for (i = 0; i < nk; i++) {
453 			w = keys[i];
454 
455 			io = kzalloc(sizeof(struct dirty_io) +
456 				     sizeof(struct bio_vec) *
457 				     DIV_ROUND_UP(KEY_SIZE(&w->key),
458 						  PAGE_SECTORS),
459 				     GFP_KERNEL);
460 			if (!io)
461 				goto err;
462 
463 			w->private	= io;
464 			io->dc		= dc;
465 			io->sequence    = sequence++;
466 
467 			dirty_init(w);
468 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
469 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
470 			bio_set_dev(&io->bio,
471 				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
472 			io->bio.bi_end_io	= read_dirty_endio;
473 
474 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
475 				goto err_free;
476 
477 			trace_bcache_writeback(&w->key);
478 
479 			down(&dc->in_flight);
480 
481 			/*
482 			 * We've acquired a semaphore for the maximum
483 			 * simultaneous number of writebacks; from here
484 			 * everything happens asynchronously.
485 			 */
486 			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
487 		}
488 
489 		delay = writeback_delay(dc, size);
490 
491 		while (!kthread_should_stop() &&
492 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
493 		       delay) {
494 			schedule_timeout_interruptible(delay);
495 			delay = writeback_delay(dc, 0);
496 		}
497 	}
498 
499 	if (0) {
500 err_free:
501 		kfree(w->private);
502 err:
503 		bch_keybuf_del(&dc->writeback_keys, w);
504 	}
505 
506 	/*
507 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
508 	 * freed) before refilling again
509 	 */
510 	closure_sync(&cl);
511 }
512 
513 /* Scan for dirty data */
514 
515 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
516 				  uint64_t offset, int nr_sectors)
517 {
518 	struct bcache_device *d = c->devices[inode];
519 	unsigned int stripe_offset, stripe, sectors_dirty;
520 
521 	if (!d)
522 		return;
523 
524 	if (UUID_FLASH_ONLY(&c->uuids[inode]))
525 		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
526 
527 	stripe = offset_to_stripe(d, offset);
528 	stripe_offset = offset & (d->stripe_size - 1);
529 
530 	while (nr_sectors) {
531 		int s = min_t(unsigned int, abs(nr_sectors),
532 			      d->stripe_size - stripe_offset);
533 
534 		if (nr_sectors < 0)
535 			s = -s;
536 
537 		if (stripe >= d->nr_stripes)
538 			return;
539 
540 		sectors_dirty = atomic_add_return(s,
541 					d->stripe_sectors_dirty + stripe);
542 		if (sectors_dirty == d->stripe_size)
543 			set_bit(stripe, d->full_dirty_stripes);
544 		else
545 			clear_bit(stripe, d->full_dirty_stripes);
546 
547 		nr_sectors -= s;
548 		stripe_offset = 0;
549 		stripe++;
550 	}
551 }
552 
553 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
554 {
555 	struct cached_dev *dc = container_of(buf,
556 					     struct cached_dev,
557 					     writeback_keys);
558 
559 	BUG_ON(KEY_INODE(k) != dc->disk.id);
560 
561 	return KEY_DIRTY(k);
562 }
563 
564 static void refill_full_stripes(struct cached_dev *dc)
565 {
566 	struct keybuf *buf = &dc->writeback_keys;
567 	unsigned int start_stripe, stripe, next_stripe;
568 	bool wrapped = false;
569 
570 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
571 
572 	if (stripe >= dc->disk.nr_stripes)
573 		stripe = 0;
574 
575 	start_stripe = stripe;
576 
577 	while (1) {
578 		stripe = find_next_bit(dc->disk.full_dirty_stripes,
579 				       dc->disk.nr_stripes, stripe);
580 
581 		if (stripe == dc->disk.nr_stripes)
582 			goto next;
583 
584 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
585 						 dc->disk.nr_stripes, stripe);
586 
587 		buf->last_scanned = KEY(dc->disk.id,
588 					stripe * dc->disk.stripe_size, 0);
589 
590 		bch_refill_keybuf(dc->disk.c, buf,
591 				  &KEY(dc->disk.id,
592 				       next_stripe * dc->disk.stripe_size, 0),
593 				  dirty_pred);
594 
595 		if (array_freelist_empty(&buf->freelist))
596 			return;
597 
598 		stripe = next_stripe;
599 next:
600 		if (wrapped && stripe > start_stripe)
601 			return;
602 
603 		if (stripe == dc->disk.nr_stripes) {
604 			stripe = 0;
605 			wrapped = true;
606 		}
607 	}
608 }
609 
610 /*
611  * Returns true if we scanned the entire disk
612  */
613 static bool refill_dirty(struct cached_dev *dc)
614 {
615 	struct keybuf *buf = &dc->writeback_keys;
616 	struct bkey start = KEY(dc->disk.id, 0, 0);
617 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
618 	struct bkey start_pos;
619 
620 	/*
621 	 * make sure keybuf pos is inside the range for this disk - at bringup
622 	 * we might not be attached yet so this disk's inode nr isn't
623 	 * initialized then
624 	 */
625 	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
626 	    bkey_cmp(&buf->last_scanned, &end) > 0)
627 		buf->last_scanned = start;
628 
629 	if (dc->partial_stripes_expensive) {
630 		refill_full_stripes(dc);
631 		if (array_freelist_empty(&buf->freelist))
632 			return false;
633 	}
634 
635 	start_pos = buf->last_scanned;
636 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
637 
638 	if (bkey_cmp(&buf->last_scanned, &end) < 0)
639 		return false;
640 
641 	/*
642 	 * If we get to the end start scanning again from the beginning, and
643 	 * only scan up to where we initially started scanning from:
644 	 */
645 	buf->last_scanned = start;
646 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
647 
648 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
649 }
650 
651 static int bch_writeback_thread(void *arg)
652 {
653 	struct cached_dev *dc = arg;
654 	struct cache_set *c = dc->disk.c;
655 	bool searched_full_index;
656 
657 	bch_ratelimit_reset(&dc->writeback_rate);
658 
659 	while (!kthread_should_stop() &&
660 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
661 		down_write(&dc->writeback_lock);
662 		set_current_state(TASK_INTERRUPTIBLE);
663 		/*
664 		 * If the bache device is detaching, skip here and continue
665 		 * to perform writeback. Otherwise, if no dirty data on cache,
666 		 * or there is dirty data on cache but writeback is disabled,
667 		 * the writeback thread should sleep here and wait for others
668 		 * to wake up it.
669 		 */
670 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
671 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
672 			up_write(&dc->writeback_lock);
673 
674 			if (kthread_should_stop() ||
675 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
676 				set_current_state(TASK_RUNNING);
677 				break;
678 			}
679 
680 			schedule();
681 			continue;
682 		}
683 		set_current_state(TASK_RUNNING);
684 
685 		searched_full_index = refill_dirty(dc);
686 
687 		if (searched_full_index &&
688 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
689 			atomic_set(&dc->has_dirty, 0);
690 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
691 			bch_write_bdev_super(dc, NULL);
692 			/*
693 			 * If bcache device is detaching via sysfs interface,
694 			 * writeback thread should stop after there is no dirty
695 			 * data on cache. BCACHE_DEV_DETACHING flag is set in
696 			 * bch_cached_dev_detach().
697 			 */
698 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
699 				up_write(&dc->writeback_lock);
700 				break;
701 			}
702 
703 			/*
704 			 * When dirty data rate is high (e.g. 50%+), there might
705 			 * be heavy buckets fragmentation after writeback
706 			 * finished, which hurts following write performance.
707 			 * If users really care about write performance they
708 			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
709 			 * BCH_DO_AUTO_GC is set, garbage collection thread
710 			 * will be wake up here. After moving gc, the shrunk
711 			 * btree and discarded free buckets SSD space may be
712 			 * helpful for following write requests.
713 			 */
714 			if (c->gc_after_writeback ==
715 			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
716 				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
717 				force_wake_up_gc(c);
718 			}
719 		}
720 
721 		up_write(&dc->writeback_lock);
722 
723 		read_dirty(dc);
724 
725 		if (searched_full_index) {
726 			unsigned int delay = dc->writeback_delay * HZ;
727 
728 			while (delay &&
729 			       !kthread_should_stop() &&
730 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
731 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
732 				delay = schedule_timeout_interruptible(delay);
733 
734 			bch_ratelimit_reset(&dc->writeback_rate);
735 		}
736 	}
737 
738 	cached_dev_put(dc);
739 	wait_for_kthread_stop();
740 
741 	return 0;
742 }
743 
744 /* Init */
745 #define INIT_KEYS_EACH_TIME	500000
746 #define INIT_KEYS_SLEEP_MS	100
747 
748 struct sectors_dirty_init {
749 	struct btree_op	op;
750 	unsigned int	inode;
751 	size_t		count;
752 	struct bkey	start;
753 };
754 
755 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
756 				 struct bkey *k)
757 {
758 	struct sectors_dirty_init *op = container_of(_op,
759 						struct sectors_dirty_init, op);
760 	if (KEY_INODE(k) > op->inode)
761 		return MAP_DONE;
762 
763 	if (KEY_DIRTY(k))
764 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
765 					     KEY_START(k), KEY_SIZE(k));
766 
767 	op->count++;
768 	if (atomic_read(&b->c->search_inflight) &&
769 	    !(op->count % INIT_KEYS_EACH_TIME)) {
770 		bkey_copy_key(&op->start, k);
771 		return -EAGAIN;
772 	}
773 
774 	return MAP_CONTINUE;
775 }
776 
777 void bch_sectors_dirty_init(struct bcache_device *d)
778 {
779 	struct sectors_dirty_init op;
780 	int ret;
781 
782 	bch_btree_op_init(&op.op, -1);
783 	op.inode = d->id;
784 	op.count = 0;
785 	op.start = KEY(op.inode, 0, 0);
786 
787 	do {
788 		ret = bch_btree_map_keys(&op.op, d->c, &op.start,
789 					 sectors_dirty_init_fn, 0);
790 		if (ret == -EAGAIN)
791 			schedule_timeout_interruptible(
792 				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
793 		else if (ret < 0) {
794 			pr_warn("sectors dirty init failed, ret=%d!", ret);
795 			break;
796 		}
797 	} while (ret == -EAGAIN);
798 }
799 
800 void bch_cached_dev_writeback_init(struct cached_dev *dc)
801 {
802 	sema_init(&dc->in_flight, 64);
803 	init_rwsem(&dc->writeback_lock);
804 	bch_keybuf_init(&dc->writeback_keys);
805 
806 	dc->writeback_metadata		= true;
807 	dc->writeback_running		= false;
808 	dc->writeback_percent		= 10;
809 	dc->writeback_delay		= 30;
810 	atomic_long_set(&dc->writeback_rate.rate, 1024);
811 	dc->writeback_rate_minimum	= 8;
812 
813 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
814 	dc->writeback_rate_p_term_inverse = 40;
815 	dc->writeback_rate_i_term_inverse = 10000;
816 
817 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
818 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
819 }
820 
821 int bch_cached_dev_writeback_start(struct cached_dev *dc)
822 {
823 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
824 						WQ_MEM_RECLAIM, 0);
825 	if (!dc->writeback_write_wq)
826 		return -ENOMEM;
827 
828 	cached_dev_get(dc);
829 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
830 					      "bcache_writeback");
831 	if (IS_ERR(dc->writeback_thread)) {
832 		cached_dev_put(dc);
833 		return PTR_ERR(dc->writeback_thread);
834 	}
835 	dc->writeback_running = true;
836 
837 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
838 	schedule_delayed_work(&dc->writeback_rate_update,
839 			      dc->writeback_rate_update_seconds * HZ);
840 
841 	bch_writeback_queue(dc);
842 
843 	return 0;
844 }
845