xref: /openbmc/linux/drivers/md/bcache/writeback.c (revision 7b1002f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14 
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19 
20 static void update_gc_after_writeback(struct cache_set *c)
21 {
22 	if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) ||
23 	    c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD)
24 		return;
25 
26 	c->gc_after_writeback |= BCH_DO_AUTO_GC;
27 }
28 
29 /* Rate limiting */
30 static uint64_t __calc_target_rate(struct cached_dev *dc)
31 {
32 	struct cache_set *c = dc->disk.c;
33 
34 	/*
35 	 * This is the size of the cache, minus the amount used for
36 	 * flash-only devices
37 	 */
38 	uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size -
39 				atomic_long_read(&c->flash_dev_dirty_sectors);
40 
41 	/*
42 	 * Unfortunately there is no control of global dirty data.  If the
43 	 * user states that they want 10% dirty data in the cache, and has,
44 	 * e.g., 5 backing volumes of equal size, we try and ensure each
45 	 * backing volume uses about 2% of the cache for dirty data.
46 	 */
47 	uint32_t bdev_share =
48 		div64_u64(bdev_nr_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
49 				c->cached_dev_sectors);
50 
51 	uint64_t cache_dirty_target =
52 		div_u64(cache_sectors * dc->writeback_percent, 100);
53 
54 	/* Ensure each backing dev gets at least one dirty share */
55 	if (bdev_share < 1)
56 		bdev_share = 1;
57 
58 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
59 }
60 
61 static void __update_writeback_rate(struct cached_dev *dc)
62 {
63 	/*
64 	 * PI controller:
65 	 * Figures out the amount that should be written per second.
66 	 *
67 	 * First, the error (number of sectors that are dirty beyond our
68 	 * target) is calculated.  The error is accumulated (numerically
69 	 * integrated).
70 	 *
71 	 * Then, the proportional value and integral value are scaled
72 	 * based on configured values.  These are stored as inverses to
73 	 * avoid fixed point math and to make configuration easy-- e.g.
74 	 * the default value of 40 for writeback_rate_p_term_inverse
75 	 * attempts to write at a rate that would retire all the dirty
76 	 * blocks in 40 seconds.
77 	 *
78 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
79 	 * of the error is accumulated in the integral term per second.
80 	 * This acts as a slow, long-term average that is not subject to
81 	 * variations in usage like the p term.
82 	 */
83 	int64_t target = __calc_target_rate(dc);
84 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
85 	int64_t error = dirty - target;
86 	int64_t proportional_scaled =
87 		div_s64(error, dc->writeback_rate_p_term_inverse);
88 	int64_t integral_scaled;
89 	uint32_t new_rate;
90 
91 	/*
92 	 * We need to consider the number of dirty buckets as well
93 	 * when calculating the proportional_scaled, Otherwise we might
94 	 * have an unreasonable small writeback rate at a highly fragmented situation
95 	 * when very few dirty sectors consumed a lot dirty buckets, the
96 	 * worst case is when dirty buckets reached cutoff_writeback_sync and
97 	 * dirty data is still not even reached to writeback percent, so the rate
98 	 * still will be at the minimum value, which will cause the write
99 	 * stuck at a non-writeback mode.
100 	 */
101 	struct cache_set *c = dc->disk.c;
102 
103 	int64_t dirty_buckets = c->nbuckets - c->avail_nbuckets;
104 
105 	if (dc->writeback_consider_fragment &&
106 		c->gc_stats.in_use > BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW && dirty > 0) {
107 		int64_t fragment =
108 			div_s64((dirty_buckets *  c->cache->sb.bucket_size), dirty);
109 		int64_t fp_term;
110 		int64_t fps;
111 
112 		if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID) {
113 			fp_term = (int64_t)dc->writeback_rate_fp_term_low *
114 			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_LOW);
115 		} else if (c->gc_stats.in_use <= BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH) {
116 			fp_term = (int64_t)dc->writeback_rate_fp_term_mid *
117 			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_MID);
118 		} else {
119 			fp_term = (int64_t)dc->writeback_rate_fp_term_high *
120 			(c->gc_stats.in_use - BCH_WRITEBACK_FRAGMENT_THRESHOLD_HIGH);
121 		}
122 		fps = div_s64(dirty, dirty_buckets) * fp_term;
123 		if (fragment > 3 && fps > proportional_scaled) {
124 			/* Only overrite the p when fragment > 3 */
125 			proportional_scaled = fps;
126 		}
127 	}
128 
129 	if ((error < 0 && dc->writeback_rate_integral > 0) ||
130 	    (error > 0 && time_before64(local_clock(),
131 			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
132 		/*
133 		 * Only decrease the integral term if it's more than
134 		 * zero.  Only increase the integral term if the device
135 		 * is keeping up.  (Don't wind up the integral
136 		 * ineffectively in either case).
137 		 *
138 		 * It's necessary to scale this by
139 		 * writeback_rate_update_seconds to keep the integral
140 		 * term dimensioned properly.
141 		 */
142 		dc->writeback_rate_integral += error *
143 			dc->writeback_rate_update_seconds;
144 	}
145 
146 	integral_scaled = div_s64(dc->writeback_rate_integral,
147 			dc->writeback_rate_i_term_inverse);
148 
149 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
150 			dc->writeback_rate_minimum, NSEC_PER_SEC);
151 
152 	dc->writeback_rate_proportional = proportional_scaled;
153 	dc->writeback_rate_integral_scaled = integral_scaled;
154 	dc->writeback_rate_change = new_rate -
155 			atomic_long_read(&dc->writeback_rate.rate);
156 	atomic_long_set(&dc->writeback_rate.rate, new_rate);
157 	dc->writeback_rate_target = target;
158 }
159 
160 static bool set_at_max_writeback_rate(struct cache_set *c,
161 				       struct cached_dev *dc)
162 {
163 	/* Don't sst max writeback rate if it is disabled */
164 	if (!c->idle_max_writeback_rate_enabled)
165 		return false;
166 
167 	/* Don't set max writeback rate if gc is running */
168 	if (!c->gc_mark_valid)
169 		return false;
170 	/*
171 	 * Idle_counter is increased everytime when update_writeback_rate() is
172 	 * called. If all backing devices attached to the same cache set have
173 	 * identical dc->writeback_rate_update_seconds values, it is about 6
174 	 * rounds of update_writeback_rate() on each backing device before
175 	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
176 	 * to each dc->writeback_rate.rate.
177 	 * In order to avoid extra locking cost for counting exact dirty cached
178 	 * devices number, c->attached_dev_nr is used to calculate the idle
179 	 * throushold. It might be bigger if not all cached device are in write-
180 	 * back mode, but it still works well with limited extra rounds of
181 	 * update_writeback_rate().
182 	 */
183 	if (atomic_inc_return(&c->idle_counter) <
184 	    atomic_read(&c->attached_dev_nr) * 6)
185 		return false;
186 
187 	if (atomic_read(&c->at_max_writeback_rate) != 1)
188 		atomic_set(&c->at_max_writeback_rate, 1);
189 
190 	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
191 
192 	/* keep writeback_rate_target as existing value */
193 	dc->writeback_rate_proportional = 0;
194 	dc->writeback_rate_integral_scaled = 0;
195 	dc->writeback_rate_change = 0;
196 
197 	/*
198 	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
199 	 * new I/O arrives during before set_at_max_writeback_rate() returns.
200 	 * Then the writeback rate is set to 1, and its new value should be
201 	 * decided via __update_writeback_rate().
202 	 */
203 	if ((atomic_read(&c->idle_counter) <
204 	     atomic_read(&c->attached_dev_nr) * 6) ||
205 	    !atomic_read(&c->at_max_writeback_rate))
206 		return false;
207 
208 	return true;
209 }
210 
211 static void update_writeback_rate(struct work_struct *work)
212 {
213 	struct cached_dev *dc = container_of(to_delayed_work(work),
214 					     struct cached_dev,
215 					     writeback_rate_update);
216 	struct cache_set *c = dc->disk.c;
217 
218 	/*
219 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
220 	 * cancel_delayed_work_sync().
221 	 */
222 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
223 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
224 	smp_mb__after_atomic();
225 
226 	/*
227 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
228 	 * check it here too.
229 	 */
230 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
231 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
232 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
233 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
234 		smp_mb__after_atomic();
235 		return;
236 	}
237 
238 	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
239 		/*
240 		 * If the whole cache set is idle, set_at_max_writeback_rate()
241 		 * will set writeback rate to a max number. Then it is
242 		 * unncessary to update writeback rate for an idle cache set
243 		 * in maximum writeback rate number(s).
244 		 */
245 		if (!set_at_max_writeback_rate(c, dc)) {
246 			down_read(&dc->writeback_lock);
247 			__update_writeback_rate(dc);
248 			update_gc_after_writeback(c);
249 			up_read(&dc->writeback_lock);
250 		}
251 	}
252 
253 
254 	/*
255 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
256 	 * check it here too.
257 	 */
258 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
259 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
260 		schedule_delayed_work(&dc->writeback_rate_update,
261 			      dc->writeback_rate_update_seconds * HZ);
262 	}
263 
264 	/*
265 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
266 	 * cancel_delayed_work_sync().
267 	 */
268 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
269 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
270 	smp_mb__after_atomic();
271 }
272 
273 static unsigned int writeback_delay(struct cached_dev *dc,
274 				    unsigned int sectors)
275 {
276 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
277 	    !dc->writeback_percent)
278 		return 0;
279 
280 	return bch_next_delay(&dc->writeback_rate, sectors);
281 }
282 
283 struct dirty_io {
284 	struct closure		cl;
285 	struct cached_dev	*dc;
286 	uint16_t		sequence;
287 	struct bio		bio;
288 };
289 
290 static void dirty_init(struct keybuf_key *w)
291 {
292 	struct dirty_io *io = w->private;
293 	struct bio *bio = &io->bio;
294 
295 	bio_init(bio, NULL, bio->bi_inline_vecs,
296 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 0);
297 	if (!io->dc->writeback_percent)
298 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
299 
300 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
301 	bio->bi_private		= w;
302 	bch_bio_map(bio, NULL);
303 }
304 
305 static void dirty_io_destructor(struct closure *cl)
306 {
307 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
308 
309 	kfree(io);
310 }
311 
312 static void write_dirty_finish(struct closure *cl)
313 {
314 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
315 	struct keybuf_key *w = io->bio.bi_private;
316 	struct cached_dev *dc = io->dc;
317 
318 	bio_free_pages(&io->bio);
319 
320 	/* This is kind of a dumb way of signalling errors. */
321 	if (KEY_DIRTY(&w->key)) {
322 		int ret;
323 		unsigned int i;
324 		struct keylist keys;
325 
326 		bch_keylist_init(&keys);
327 
328 		bkey_copy(keys.top, &w->key);
329 		SET_KEY_DIRTY(keys.top, false);
330 		bch_keylist_push(&keys);
331 
332 		for (i = 0; i < KEY_PTRS(&w->key); i++)
333 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
334 
335 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
336 
337 		if (ret)
338 			trace_bcache_writeback_collision(&w->key);
339 
340 		atomic_long_inc(ret
341 				? &dc->disk.c->writeback_keys_failed
342 				: &dc->disk.c->writeback_keys_done);
343 	}
344 
345 	bch_keybuf_del(&dc->writeback_keys, w);
346 	up(&dc->in_flight);
347 
348 	closure_return_with_destructor(cl, dirty_io_destructor);
349 }
350 
351 static void dirty_endio(struct bio *bio)
352 {
353 	struct keybuf_key *w = bio->bi_private;
354 	struct dirty_io *io = w->private;
355 
356 	if (bio->bi_status) {
357 		SET_KEY_DIRTY(&w->key, false);
358 		bch_count_backing_io_errors(io->dc, bio);
359 	}
360 
361 	closure_put(&io->cl);
362 }
363 
364 static void write_dirty(struct closure *cl)
365 {
366 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
367 	struct keybuf_key *w = io->bio.bi_private;
368 	struct cached_dev *dc = io->dc;
369 
370 	uint16_t next_sequence;
371 
372 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
373 		/* Not our turn to write; wait for a write to complete */
374 		closure_wait(&dc->writeback_ordering_wait, cl);
375 
376 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
377 			/*
378 			 * Edge case-- it happened in indeterminate order
379 			 * relative to when we were added to wait list..
380 			 */
381 			closure_wake_up(&dc->writeback_ordering_wait);
382 		}
383 
384 		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
385 		return;
386 	}
387 
388 	next_sequence = io->sequence + 1;
389 
390 	/*
391 	 * IO errors are signalled using the dirty bit on the key.
392 	 * If we failed to read, we should not attempt to write to the
393 	 * backing device.  Instead, immediately go to write_dirty_finish
394 	 * to clean up.
395 	 */
396 	if (KEY_DIRTY(&w->key)) {
397 		dirty_init(w);
398 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
399 		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
400 		bio_set_dev(&io->bio, io->dc->bdev);
401 		io->bio.bi_end_io	= dirty_endio;
402 
403 		/* I/O request sent to backing device */
404 		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
405 	}
406 
407 	atomic_set(&dc->writeback_sequence_next, next_sequence);
408 	closure_wake_up(&dc->writeback_ordering_wait);
409 
410 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
411 }
412 
413 static void read_dirty_endio(struct bio *bio)
414 {
415 	struct keybuf_key *w = bio->bi_private;
416 	struct dirty_io *io = w->private;
417 
418 	/* is_read = 1 */
419 	bch_count_io_errors(io->dc->disk.c->cache,
420 			    bio->bi_status, 1,
421 			    "reading dirty data from cache");
422 
423 	dirty_endio(bio);
424 }
425 
426 static void read_dirty_submit(struct closure *cl)
427 {
428 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
429 
430 	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
431 
432 	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
433 }
434 
435 static void read_dirty(struct cached_dev *dc)
436 {
437 	unsigned int delay = 0;
438 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
439 	size_t size;
440 	int nk, i;
441 	struct dirty_io *io;
442 	struct closure cl;
443 	uint16_t sequence = 0;
444 
445 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
446 	atomic_set(&dc->writeback_sequence_next, sequence);
447 	closure_init_stack(&cl);
448 
449 	/*
450 	 * XXX: if we error, background writeback just spins. Should use some
451 	 * mempools.
452 	 */
453 
454 	next = bch_keybuf_next(&dc->writeback_keys);
455 
456 	while (!kthread_should_stop() &&
457 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
458 	       next) {
459 		size = 0;
460 		nk = 0;
461 
462 		do {
463 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
464 
465 			/*
466 			 * Don't combine too many operations, even if they
467 			 * are all small.
468 			 */
469 			if (nk >= MAX_WRITEBACKS_IN_PASS)
470 				break;
471 
472 			/*
473 			 * If the current operation is very large, don't
474 			 * further combine operations.
475 			 */
476 			if (size >= MAX_WRITESIZE_IN_PASS)
477 				break;
478 
479 			/*
480 			 * Operations are only eligible to be combined
481 			 * if they are contiguous.
482 			 *
483 			 * TODO: add a heuristic willing to fire a
484 			 * certain amount of non-contiguous IO per pass,
485 			 * so that we can benefit from backing device
486 			 * command queueing.
487 			 */
488 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
489 						&START_KEY(&next->key)))
490 				break;
491 
492 			size += KEY_SIZE(&next->key);
493 			keys[nk++] = next;
494 		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
495 
496 		/* Now we have gathered a set of 1..5 keys to write back. */
497 		for (i = 0; i < nk; i++) {
498 			w = keys[i];
499 
500 			io = kzalloc(struct_size(io, bio.bi_inline_vecs,
501 						DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)),
502 				     GFP_KERNEL);
503 			if (!io)
504 				goto err;
505 
506 			w->private	= io;
507 			io->dc		= dc;
508 			io->sequence    = sequence++;
509 
510 			dirty_init(w);
511 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
512 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
513 			bio_set_dev(&io->bio, dc->disk.c->cache->bdev);
514 			io->bio.bi_end_io	= read_dirty_endio;
515 
516 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
517 				goto err_free;
518 
519 			trace_bcache_writeback(&w->key);
520 
521 			down(&dc->in_flight);
522 
523 			/*
524 			 * We've acquired a semaphore for the maximum
525 			 * simultaneous number of writebacks; from here
526 			 * everything happens asynchronously.
527 			 */
528 			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
529 		}
530 
531 		delay = writeback_delay(dc, size);
532 
533 		while (!kthread_should_stop() &&
534 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
535 		       delay) {
536 			schedule_timeout_interruptible(delay);
537 			delay = writeback_delay(dc, 0);
538 		}
539 	}
540 
541 	if (0) {
542 err_free:
543 		kfree(w->private);
544 err:
545 		bch_keybuf_del(&dc->writeback_keys, w);
546 	}
547 
548 	/*
549 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
550 	 * freed) before refilling again
551 	 */
552 	closure_sync(&cl);
553 }
554 
555 /* Scan for dirty data */
556 
557 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
558 				  uint64_t offset, int nr_sectors)
559 {
560 	struct bcache_device *d = c->devices[inode];
561 	unsigned int stripe_offset, sectors_dirty;
562 	int stripe;
563 
564 	if (!d)
565 		return;
566 
567 	stripe = offset_to_stripe(d, offset);
568 	if (stripe < 0)
569 		return;
570 
571 	if (UUID_FLASH_ONLY(&c->uuids[inode]))
572 		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
573 
574 	stripe_offset = offset & (d->stripe_size - 1);
575 
576 	while (nr_sectors) {
577 		int s = min_t(unsigned int, abs(nr_sectors),
578 			      d->stripe_size - stripe_offset);
579 
580 		if (nr_sectors < 0)
581 			s = -s;
582 
583 		if (stripe >= d->nr_stripes)
584 			return;
585 
586 		sectors_dirty = atomic_add_return(s,
587 					d->stripe_sectors_dirty + stripe);
588 		if (sectors_dirty == d->stripe_size) {
589 			if (!test_bit(stripe, d->full_dirty_stripes))
590 				set_bit(stripe, d->full_dirty_stripes);
591 		} else {
592 			if (test_bit(stripe, d->full_dirty_stripes))
593 				clear_bit(stripe, d->full_dirty_stripes);
594 		}
595 
596 		nr_sectors -= s;
597 		stripe_offset = 0;
598 		stripe++;
599 	}
600 }
601 
602 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
603 {
604 	struct cached_dev *dc = container_of(buf,
605 					     struct cached_dev,
606 					     writeback_keys);
607 
608 	BUG_ON(KEY_INODE(k) != dc->disk.id);
609 
610 	return KEY_DIRTY(k);
611 }
612 
613 static void refill_full_stripes(struct cached_dev *dc)
614 {
615 	struct keybuf *buf = &dc->writeback_keys;
616 	unsigned int start_stripe, next_stripe;
617 	int stripe;
618 	bool wrapped = false;
619 
620 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
621 	if (stripe < 0)
622 		stripe = 0;
623 
624 	start_stripe = stripe;
625 
626 	while (1) {
627 		stripe = find_next_bit(dc->disk.full_dirty_stripes,
628 				       dc->disk.nr_stripes, stripe);
629 
630 		if (stripe == dc->disk.nr_stripes)
631 			goto next;
632 
633 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
634 						 dc->disk.nr_stripes, stripe);
635 
636 		buf->last_scanned = KEY(dc->disk.id,
637 					stripe * dc->disk.stripe_size, 0);
638 
639 		bch_refill_keybuf(dc->disk.c, buf,
640 				  &KEY(dc->disk.id,
641 				       next_stripe * dc->disk.stripe_size, 0),
642 				  dirty_pred);
643 
644 		if (array_freelist_empty(&buf->freelist))
645 			return;
646 
647 		stripe = next_stripe;
648 next:
649 		if (wrapped && stripe > start_stripe)
650 			return;
651 
652 		if (stripe == dc->disk.nr_stripes) {
653 			stripe = 0;
654 			wrapped = true;
655 		}
656 	}
657 }
658 
659 /*
660  * Returns true if we scanned the entire disk
661  */
662 static bool refill_dirty(struct cached_dev *dc)
663 {
664 	struct keybuf *buf = &dc->writeback_keys;
665 	struct bkey start = KEY(dc->disk.id, 0, 0);
666 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
667 	struct bkey start_pos;
668 
669 	/*
670 	 * make sure keybuf pos is inside the range for this disk - at bringup
671 	 * we might not be attached yet so this disk's inode nr isn't
672 	 * initialized then
673 	 */
674 	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
675 	    bkey_cmp(&buf->last_scanned, &end) > 0)
676 		buf->last_scanned = start;
677 
678 	if (dc->partial_stripes_expensive) {
679 		refill_full_stripes(dc);
680 		if (array_freelist_empty(&buf->freelist))
681 			return false;
682 	}
683 
684 	start_pos = buf->last_scanned;
685 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
686 
687 	if (bkey_cmp(&buf->last_scanned, &end) < 0)
688 		return false;
689 
690 	/*
691 	 * If we get to the end start scanning again from the beginning, and
692 	 * only scan up to where we initially started scanning from:
693 	 */
694 	buf->last_scanned = start;
695 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
696 
697 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
698 }
699 
700 static int bch_writeback_thread(void *arg)
701 {
702 	struct cached_dev *dc = arg;
703 	struct cache_set *c = dc->disk.c;
704 	bool searched_full_index;
705 
706 	bch_ratelimit_reset(&dc->writeback_rate);
707 
708 	while (!kthread_should_stop() &&
709 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
710 		down_write(&dc->writeback_lock);
711 		set_current_state(TASK_INTERRUPTIBLE);
712 		/*
713 		 * If the bache device is detaching, skip here and continue
714 		 * to perform writeback. Otherwise, if no dirty data on cache,
715 		 * or there is dirty data on cache but writeback is disabled,
716 		 * the writeback thread should sleep here and wait for others
717 		 * to wake up it.
718 		 */
719 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
720 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
721 			up_write(&dc->writeback_lock);
722 
723 			if (kthread_should_stop() ||
724 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
725 				set_current_state(TASK_RUNNING);
726 				break;
727 			}
728 
729 			schedule();
730 			continue;
731 		}
732 		set_current_state(TASK_RUNNING);
733 
734 		searched_full_index = refill_dirty(dc);
735 
736 		if (searched_full_index &&
737 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
738 			atomic_set(&dc->has_dirty, 0);
739 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
740 			bch_write_bdev_super(dc, NULL);
741 			/*
742 			 * If bcache device is detaching via sysfs interface,
743 			 * writeback thread should stop after there is no dirty
744 			 * data on cache. BCACHE_DEV_DETACHING flag is set in
745 			 * bch_cached_dev_detach().
746 			 */
747 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
748 				struct closure cl;
749 
750 				closure_init_stack(&cl);
751 				memset(&dc->sb.set_uuid, 0, 16);
752 				SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
753 
754 				bch_write_bdev_super(dc, &cl);
755 				closure_sync(&cl);
756 
757 				up_write(&dc->writeback_lock);
758 				break;
759 			}
760 
761 			/*
762 			 * When dirty data rate is high (e.g. 50%+), there might
763 			 * be heavy buckets fragmentation after writeback
764 			 * finished, which hurts following write performance.
765 			 * If users really care about write performance they
766 			 * may set BCH_ENABLE_AUTO_GC via sysfs, then when
767 			 * BCH_DO_AUTO_GC is set, garbage collection thread
768 			 * will be wake up here. After moving gc, the shrunk
769 			 * btree and discarded free buckets SSD space may be
770 			 * helpful for following write requests.
771 			 */
772 			if (c->gc_after_writeback ==
773 			    (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) {
774 				c->gc_after_writeback &= ~BCH_DO_AUTO_GC;
775 				force_wake_up_gc(c);
776 			}
777 		}
778 
779 		up_write(&dc->writeback_lock);
780 
781 		read_dirty(dc);
782 
783 		if (searched_full_index) {
784 			unsigned int delay = dc->writeback_delay * HZ;
785 
786 			while (delay &&
787 			       !kthread_should_stop() &&
788 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
789 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
790 				delay = schedule_timeout_interruptible(delay);
791 
792 			bch_ratelimit_reset(&dc->writeback_rate);
793 		}
794 	}
795 
796 	if (dc->writeback_write_wq) {
797 		flush_workqueue(dc->writeback_write_wq);
798 		destroy_workqueue(dc->writeback_write_wq);
799 	}
800 	cached_dev_put(dc);
801 	wait_for_kthread_stop();
802 
803 	return 0;
804 }
805 
806 /* Init */
807 #define INIT_KEYS_EACH_TIME	500000
808 #define INIT_KEYS_SLEEP_MS	100
809 
810 struct sectors_dirty_init {
811 	struct btree_op	op;
812 	unsigned int	inode;
813 	size_t		count;
814 	struct bkey	start;
815 };
816 
817 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
818 				 struct bkey *k)
819 {
820 	struct sectors_dirty_init *op = container_of(_op,
821 						struct sectors_dirty_init, op);
822 	if (KEY_INODE(k) > op->inode)
823 		return MAP_DONE;
824 
825 	if (KEY_DIRTY(k))
826 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
827 					     KEY_START(k), KEY_SIZE(k));
828 
829 	op->count++;
830 	if (atomic_read(&b->c->search_inflight) &&
831 	    !(op->count % INIT_KEYS_EACH_TIME)) {
832 		bkey_copy_key(&op->start, k);
833 		return -EAGAIN;
834 	}
835 
836 	return MAP_CONTINUE;
837 }
838 
839 static int bch_root_node_dirty_init(struct cache_set *c,
840 				     struct bcache_device *d,
841 				     struct bkey *k)
842 {
843 	struct sectors_dirty_init op;
844 	int ret;
845 
846 	bch_btree_op_init(&op.op, -1);
847 	op.inode = d->id;
848 	op.count = 0;
849 	op.start = KEY(op.inode, 0, 0);
850 
851 	do {
852 		ret = bcache_btree(map_keys_recurse,
853 				   k,
854 				   c->root,
855 				   &op.op,
856 				   &op.start,
857 				   sectors_dirty_init_fn,
858 				   0);
859 		if (ret == -EAGAIN)
860 			schedule_timeout_interruptible(
861 				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
862 		else if (ret < 0) {
863 			pr_warn("sectors dirty init failed, ret=%d!\n", ret);
864 			break;
865 		}
866 	} while (ret == -EAGAIN);
867 
868 	return ret;
869 }
870 
871 static int bch_dirty_init_thread(void *arg)
872 {
873 	struct dirty_init_thrd_info *info = arg;
874 	struct bch_dirty_init_state *state = info->state;
875 	struct cache_set *c = state->c;
876 	struct btree_iter iter;
877 	struct bkey *k, *p;
878 	int cur_idx, prev_idx, skip_nr;
879 
880 	k = p = NULL;
881 	cur_idx = prev_idx = 0;
882 
883 	bch_btree_iter_init(&c->root->keys, &iter, NULL);
884 	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
885 	BUG_ON(!k);
886 
887 	p = k;
888 
889 	while (k) {
890 		spin_lock(&state->idx_lock);
891 		cur_idx = state->key_idx;
892 		state->key_idx++;
893 		spin_unlock(&state->idx_lock);
894 
895 		skip_nr = cur_idx - prev_idx;
896 
897 		while (skip_nr) {
898 			k = bch_btree_iter_next_filter(&iter,
899 						       &c->root->keys,
900 						       bch_ptr_bad);
901 			if (k)
902 				p = k;
903 			else {
904 				atomic_set(&state->enough, 1);
905 				/* Update state->enough earlier */
906 				smp_mb__after_atomic();
907 				goto out;
908 			}
909 			skip_nr--;
910 			cond_resched();
911 		}
912 
913 		if (p) {
914 			if (bch_root_node_dirty_init(c, state->d, p) < 0)
915 				goto out;
916 		}
917 
918 		p = NULL;
919 		prev_idx = cur_idx;
920 		cond_resched();
921 	}
922 
923 out:
924 	/* In order to wake up state->wait in time */
925 	smp_mb__before_atomic();
926 	if (atomic_dec_and_test(&state->started))
927 		wake_up(&state->wait);
928 
929 	return 0;
930 }
931 
932 static int bch_btre_dirty_init_thread_nr(void)
933 {
934 	int n = num_online_cpus()/2;
935 
936 	if (n == 0)
937 		n = 1;
938 	else if (n > BCH_DIRTY_INIT_THRD_MAX)
939 		n = BCH_DIRTY_INIT_THRD_MAX;
940 
941 	return n;
942 }
943 
944 void bch_sectors_dirty_init(struct bcache_device *d)
945 {
946 	int i;
947 	struct bkey *k = NULL;
948 	struct btree_iter iter;
949 	struct sectors_dirty_init op;
950 	struct cache_set *c = d->c;
951 	struct bch_dirty_init_state *state;
952 	char name[32];
953 
954 	/* Just count root keys if no leaf node */
955 	if (c->root->level == 0) {
956 		bch_btree_op_init(&op.op, -1);
957 		op.inode = d->id;
958 		op.count = 0;
959 		op.start = KEY(op.inode, 0, 0);
960 
961 		for_each_key_filter(&c->root->keys,
962 				    k, &iter, bch_ptr_invalid)
963 			sectors_dirty_init_fn(&op.op, c->root, k);
964 		return;
965 	}
966 
967 	state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL);
968 	if (!state) {
969 		pr_warn("sectors dirty init failed: cannot allocate memory\n");
970 		return;
971 	}
972 
973 	state->c = c;
974 	state->d = d;
975 	state->total_threads = bch_btre_dirty_init_thread_nr();
976 	state->key_idx = 0;
977 	spin_lock_init(&state->idx_lock);
978 	atomic_set(&state->started, 0);
979 	atomic_set(&state->enough, 0);
980 	init_waitqueue_head(&state->wait);
981 
982 	for (i = 0; i < state->total_threads; i++) {
983 		/* Fetch latest state->enough earlier */
984 		smp_mb__before_atomic();
985 		if (atomic_read(&state->enough))
986 			break;
987 
988 		state->infos[i].state = state;
989 		atomic_inc(&state->started);
990 		snprintf(name, sizeof(name), "bch_dirty_init[%d]", i);
991 
992 		state->infos[i].thread =
993 			kthread_run(bch_dirty_init_thread,
994 				    &state->infos[i],
995 				    name);
996 		if (IS_ERR(state->infos[i].thread)) {
997 			pr_err("fails to run thread bch_dirty_init[%d]\n", i);
998 			for (--i; i >= 0; i--)
999 				kthread_stop(state->infos[i].thread);
1000 			goto out;
1001 		}
1002 	}
1003 
1004 	wait_event_interruptible(state->wait,
1005 		 atomic_read(&state->started) == 0 ||
1006 		 test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1007 
1008 out:
1009 	kfree(state);
1010 }
1011 
1012 void bch_cached_dev_writeback_init(struct cached_dev *dc)
1013 {
1014 	sema_init(&dc->in_flight, 64);
1015 	init_rwsem(&dc->writeback_lock);
1016 	bch_keybuf_init(&dc->writeback_keys);
1017 
1018 	dc->writeback_metadata		= true;
1019 	dc->writeback_running		= false;
1020 	dc->writeback_consider_fragment = true;
1021 	dc->writeback_percent		= 10;
1022 	dc->writeback_delay		= 30;
1023 	atomic_long_set(&dc->writeback_rate.rate, 1024);
1024 	dc->writeback_rate_minimum	= 8;
1025 
1026 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
1027 	dc->writeback_rate_p_term_inverse = 40;
1028 	dc->writeback_rate_fp_term_low = 1;
1029 	dc->writeback_rate_fp_term_mid = 10;
1030 	dc->writeback_rate_fp_term_high = 1000;
1031 	dc->writeback_rate_i_term_inverse = 10000;
1032 
1033 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1034 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
1035 }
1036 
1037 int bch_cached_dev_writeback_start(struct cached_dev *dc)
1038 {
1039 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
1040 						WQ_MEM_RECLAIM, 0);
1041 	if (!dc->writeback_write_wq)
1042 		return -ENOMEM;
1043 
1044 	cached_dev_get(dc);
1045 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
1046 					      "bcache_writeback");
1047 	if (IS_ERR(dc->writeback_thread)) {
1048 		cached_dev_put(dc);
1049 		destroy_workqueue(dc->writeback_write_wq);
1050 		return PTR_ERR(dc->writeback_thread);
1051 	}
1052 	dc->writeback_running = true;
1053 
1054 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
1055 	schedule_delayed_work(&dc->writeback_rate_update,
1056 			      dc->writeback_rate_update_seconds * HZ);
1057 
1058 	bch_writeback_queue(dc);
1059 
1060 	return 0;
1061 }
1062