1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * background writeback - scan btree for dirty data and write it to the backing 4 * device 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "writeback.h" 14 15 #include <linux/delay.h> 16 #include <linux/kthread.h> 17 #include <linux/sched/clock.h> 18 #include <trace/events/bcache.h> 19 20 /* Rate limiting */ 21 static uint64_t __calc_target_rate(struct cached_dev *dc) 22 { 23 struct cache_set *c = dc->disk.c; 24 25 /* 26 * This is the size of the cache, minus the amount used for 27 * flash-only devices 28 */ 29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - 30 bcache_flash_devs_sectors_dirty(c); 31 32 /* 33 * Unfortunately there is no control of global dirty data. If the 34 * user states that they want 10% dirty data in the cache, and has, 35 * e.g., 5 backing volumes of equal size, we try and ensure each 36 * backing volume uses about 2% of the cache for dirty data. 37 */ 38 uint32_t bdev_share = 39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, 40 c->cached_dev_sectors); 41 42 uint64_t cache_dirty_target = 43 div_u64(cache_sectors * dc->writeback_percent, 100); 44 45 /* Ensure each backing dev gets at least one dirty share */ 46 if (bdev_share < 1) 47 bdev_share = 1; 48 49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; 50 } 51 52 static void __update_writeback_rate(struct cached_dev *dc) 53 { 54 /* 55 * PI controller: 56 * Figures out the amount that should be written per second. 57 * 58 * First, the error (number of sectors that are dirty beyond our 59 * target) is calculated. The error is accumulated (numerically 60 * integrated). 61 * 62 * Then, the proportional value and integral value are scaled 63 * based on configured values. These are stored as inverses to 64 * avoid fixed point math and to make configuration easy-- e.g. 65 * the default value of 40 for writeback_rate_p_term_inverse 66 * attempts to write at a rate that would retire all the dirty 67 * blocks in 40 seconds. 68 * 69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th 70 * of the error is accumulated in the integral term per second. 71 * This acts as a slow, long-term average that is not subject to 72 * variations in usage like the p term. 73 */ 74 int64_t target = __calc_target_rate(dc); 75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); 76 int64_t error = dirty - target; 77 int64_t proportional_scaled = 78 div_s64(error, dc->writeback_rate_p_term_inverse); 79 int64_t integral_scaled; 80 uint32_t new_rate; 81 82 if ((error < 0 && dc->writeback_rate_integral > 0) || 83 (error > 0 && time_before64(local_clock(), 84 dc->writeback_rate.next + NSEC_PER_MSEC))) { 85 /* 86 * Only decrease the integral term if it's more than 87 * zero. Only increase the integral term if the device 88 * is keeping up. (Don't wind up the integral 89 * ineffectively in either case). 90 * 91 * It's necessary to scale this by 92 * writeback_rate_update_seconds to keep the integral 93 * term dimensioned properly. 94 */ 95 dc->writeback_rate_integral += error * 96 dc->writeback_rate_update_seconds; 97 } 98 99 integral_scaled = div_s64(dc->writeback_rate_integral, 100 dc->writeback_rate_i_term_inverse); 101 102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), 103 dc->writeback_rate_minimum, NSEC_PER_SEC); 104 105 dc->writeback_rate_proportional = proportional_scaled; 106 dc->writeback_rate_integral_scaled = integral_scaled; 107 dc->writeback_rate_change = new_rate - dc->writeback_rate.rate; 108 dc->writeback_rate.rate = new_rate; 109 dc->writeback_rate_target = target; 110 } 111 112 static void update_writeback_rate(struct work_struct *work) 113 { 114 struct cached_dev *dc = container_of(to_delayed_work(work), 115 struct cached_dev, 116 writeback_rate_update); 117 struct cache_set *c = dc->disk.c; 118 119 /* 120 * should check BCACHE_DEV_RATE_DW_RUNNING before calling 121 * cancel_delayed_work_sync(). 122 */ 123 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); 124 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ 125 smp_mb(); 126 127 /* 128 * CACHE_SET_IO_DISABLE might be set via sysfs interface, 129 * check it here too. 130 */ 131 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || 132 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 133 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); 134 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ 135 smp_mb(); 136 return; 137 } 138 139 down_read(&dc->writeback_lock); 140 141 if (atomic_read(&dc->has_dirty) && 142 dc->writeback_percent) 143 __update_writeback_rate(dc); 144 145 up_read(&dc->writeback_lock); 146 147 /* 148 * CACHE_SET_IO_DISABLE might be set via sysfs interface, 149 * check it here too. 150 */ 151 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && 152 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 153 schedule_delayed_work(&dc->writeback_rate_update, 154 dc->writeback_rate_update_seconds * HZ); 155 } 156 157 /* 158 * should check BCACHE_DEV_RATE_DW_RUNNING before calling 159 * cancel_delayed_work_sync(). 160 */ 161 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); 162 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ 163 smp_mb(); 164 } 165 166 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors) 167 { 168 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 169 !dc->writeback_percent) 170 return 0; 171 172 return bch_next_delay(&dc->writeback_rate, sectors); 173 } 174 175 struct dirty_io { 176 struct closure cl; 177 struct cached_dev *dc; 178 uint16_t sequence; 179 struct bio bio; 180 }; 181 182 static void dirty_init(struct keybuf_key *w) 183 { 184 struct dirty_io *io = w->private; 185 struct bio *bio = &io->bio; 186 187 bio_init(bio, bio->bi_inline_vecs, 188 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); 189 if (!io->dc->writeback_percent) 190 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); 191 192 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; 193 bio->bi_private = w; 194 bch_bio_map(bio, NULL); 195 } 196 197 static void dirty_io_destructor(struct closure *cl) 198 { 199 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 200 kfree(io); 201 } 202 203 static void write_dirty_finish(struct closure *cl) 204 { 205 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 206 struct keybuf_key *w = io->bio.bi_private; 207 struct cached_dev *dc = io->dc; 208 209 bio_free_pages(&io->bio); 210 211 /* This is kind of a dumb way of signalling errors. */ 212 if (KEY_DIRTY(&w->key)) { 213 int ret; 214 unsigned i; 215 struct keylist keys; 216 217 bch_keylist_init(&keys); 218 219 bkey_copy(keys.top, &w->key); 220 SET_KEY_DIRTY(keys.top, false); 221 bch_keylist_push(&keys); 222 223 for (i = 0; i < KEY_PTRS(&w->key); i++) 224 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); 225 226 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); 227 228 if (ret) 229 trace_bcache_writeback_collision(&w->key); 230 231 atomic_long_inc(ret 232 ? &dc->disk.c->writeback_keys_failed 233 : &dc->disk.c->writeback_keys_done); 234 } 235 236 bch_keybuf_del(&dc->writeback_keys, w); 237 up(&dc->in_flight); 238 239 closure_return_with_destructor(cl, dirty_io_destructor); 240 } 241 242 static void dirty_endio(struct bio *bio) 243 { 244 struct keybuf_key *w = bio->bi_private; 245 struct dirty_io *io = w->private; 246 247 if (bio->bi_status) { 248 SET_KEY_DIRTY(&w->key, false); 249 bch_count_backing_io_errors(io->dc, bio); 250 } 251 252 closure_put(&io->cl); 253 } 254 255 static void write_dirty(struct closure *cl) 256 { 257 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 258 struct keybuf_key *w = io->bio.bi_private; 259 struct cached_dev *dc = io->dc; 260 261 uint16_t next_sequence; 262 263 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { 264 /* Not our turn to write; wait for a write to complete */ 265 closure_wait(&dc->writeback_ordering_wait, cl); 266 267 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { 268 /* 269 * Edge case-- it happened in indeterminate order 270 * relative to when we were added to wait list.. 271 */ 272 closure_wake_up(&dc->writeback_ordering_wait); 273 } 274 275 continue_at(cl, write_dirty, io->dc->writeback_write_wq); 276 return; 277 } 278 279 next_sequence = io->sequence + 1; 280 281 /* 282 * IO errors are signalled using the dirty bit on the key. 283 * If we failed to read, we should not attempt to write to the 284 * backing device. Instead, immediately go to write_dirty_finish 285 * to clean up. 286 */ 287 if (KEY_DIRTY(&w->key)) { 288 dirty_init(w); 289 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); 290 io->bio.bi_iter.bi_sector = KEY_START(&w->key); 291 bio_set_dev(&io->bio, io->dc->bdev); 292 io->bio.bi_end_io = dirty_endio; 293 294 /* I/O request sent to backing device */ 295 closure_bio_submit(io->dc->disk.c, &io->bio, cl); 296 } 297 298 atomic_set(&dc->writeback_sequence_next, next_sequence); 299 closure_wake_up(&dc->writeback_ordering_wait); 300 301 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); 302 } 303 304 static void read_dirty_endio(struct bio *bio) 305 { 306 struct keybuf_key *w = bio->bi_private; 307 struct dirty_io *io = w->private; 308 309 /* is_read = 1 */ 310 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), 311 bio->bi_status, 1, 312 "reading dirty data from cache"); 313 314 dirty_endio(bio); 315 } 316 317 static void read_dirty_submit(struct closure *cl) 318 { 319 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 320 321 closure_bio_submit(io->dc->disk.c, &io->bio, cl); 322 323 continue_at(cl, write_dirty, io->dc->writeback_write_wq); 324 } 325 326 static void read_dirty(struct cached_dev *dc) 327 { 328 unsigned delay = 0; 329 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; 330 size_t size; 331 int nk, i; 332 struct dirty_io *io; 333 struct closure cl; 334 uint16_t sequence = 0; 335 336 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); 337 atomic_set(&dc->writeback_sequence_next, sequence); 338 closure_init_stack(&cl); 339 340 /* 341 * XXX: if we error, background writeback just spins. Should use some 342 * mempools. 343 */ 344 345 next = bch_keybuf_next(&dc->writeback_keys); 346 347 while (!kthread_should_stop() && 348 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && 349 next) { 350 size = 0; 351 nk = 0; 352 353 do { 354 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); 355 356 /* 357 * Don't combine too many operations, even if they 358 * are all small. 359 */ 360 if (nk >= MAX_WRITEBACKS_IN_PASS) 361 break; 362 363 /* 364 * If the current operation is very large, don't 365 * further combine operations. 366 */ 367 if (size >= MAX_WRITESIZE_IN_PASS) 368 break; 369 370 /* 371 * Operations are only eligible to be combined 372 * if they are contiguous. 373 * 374 * TODO: add a heuristic willing to fire a 375 * certain amount of non-contiguous IO per pass, 376 * so that we can benefit from backing device 377 * command queueing. 378 */ 379 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, 380 &START_KEY(&next->key))) 381 break; 382 383 size += KEY_SIZE(&next->key); 384 keys[nk++] = next; 385 } while ((next = bch_keybuf_next(&dc->writeback_keys))); 386 387 /* Now we have gathered a set of 1..5 keys to write back. */ 388 for (i = 0; i < nk; i++) { 389 w = keys[i]; 390 391 io = kzalloc(sizeof(struct dirty_io) + 392 sizeof(struct bio_vec) * 393 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 394 GFP_KERNEL); 395 if (!io) 396 goto err; 397 398 w->private = io; 399 io->dc = dc; 400 io->sequence = sequence++; 401 402 dirty_init(w); 403 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); 404 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); 405 bio_set_dev(&io->bio, 406 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); 407 io->bio.bi_end_io = read_dirty_endio; 408 409 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) 410 goto err_free; 411 412 trace_bcache_writeback(&w->key); 413 414 down(&dc->in_flight); 415 416 /* We've acquired a semaphore for the maximum 417 * simultaneous number of writebacks; from here 418 * everything happens asynchronously. 419 */ 420 closure_call(&io->cl, read_dirty_submit, NULL, &cl); 421 } 422 423 delay = writeback_delay(dc, size); 424 425 /* If the control system would wait for at least half a 426 * second, and there's been no reqs hitting the backing disk 427 * for awhile: use an alternate mode where we have at most 428 * one contiguous set of writebacks in flight at a time. If 429 * someone wants to do IO it will be quick, as it will only 430 * have to contend with one operation in flight, and we'll 431 * be round-tripping data to the backing disk as quickly as 432 * it can accept it. 433 */ 434 if (delay >= HZ / 2) { 435 /* 3 means at least 1.5 seconds, up to 7.5 if we 436 * have slowed way down. 437 */ 438 if (atomic_inc_return(&dc->backing_idle) >= 3) { 439 /* Wait for current I/Os to finish */ 440 closure_sync(&cl); 441 /* And immediately launch a new set. */ 442 delay = 0; 443 } 444 } 445 446 while (!kthread_should_stop() && 447 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && 448 delay) { 449 schedule_timeout_interruptible(delay); 450 delay = writeback_delay(dc, 0); 451 } 452 } 453 454 if (0) { 455 err_free: 456 kfree(w->private); 457 err: 458 bch_keybuf_del(&dc->writeback_keys, w); 459 } 460 461 /* 462 * Wait for outstanding writeback IOs to finish (and keybuf slots to be 463 * freed) before refilling again 464 */ 465 closure_sync(&cl); 466 } 467 468 /* Scan for dirty data */ 469 470 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode, 471 uint64_t offset, int nr_sectors) 472 { 473 struct bcache_device *d = c->devices[inode]; 474 unsigned stripe_offset, stripe, sectors_dirty; 475 476 if (!d) 477 return; 478 479 stripe = offset_to_stripe(d, offset); 480 stripe_offset = offset & (d->stripe_size - 1); 481 482 while (nr_sectors) { 483 int s = min_t(unsigned, abs(nr_sectors), 484 d->stripe_size - stripe_offset); 485 486 if (nr_sectors < 0) 487 s = -s; 488 489 if (stripe >= d->nr_stripes) 490 return; 491 492 sectors_dirty = atomic_add_return(s, 493 d->stripe_sectors_dirty + stripe); 494 if (sectors_dirty == d->stripe_size) 495 set_bit(stripe, d->full_dirty_stripes); 496 else 497 clear_bit(stripe, d->full_dirty_stripes); 498 499 nr_sectors -= s; 500 stripe_offset = 0; 501 stripe++; 502 } 503 } 504 505 static bool dirty_pred(struct keybuf *buf, struct bkey *k) 506 { 507 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys); 508 509 BUG_ON(KEY_INODE(k) != dc->disk.id); 510 511 return KEY_DIRTY(k); 512 } 513 514 static void refill_full_stripes(struct cached_dev *dc) 515 { 516 struct keybuf *buf = &dc->writeback_keys; 517 unsigned start_stripe, stripe, next_stripe; 518 bool wrapped = false; 519 520 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); 521 522 if (stripe >= dc->disk.nr_stripes) 523 stripe = 0; 524 525 start_stripe = stripe; 526 527 while (1) { 528 stripe = find_next_bit(dc->disk.full_dirty_stripes, 529 dc->disk.nr_stripes, stripe); 530 531 if (stripe == dc->disk.nr_stripes) 532 goto next; 533 534 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, 535 dc->disk.nr_stripes, stripe); 536 537 buf->last_scanned = KEY(dc->disk.id, 538 stripe * dc->disk.stripe_size, 0); 539 540 bch_refill_keybuf(dc->disk.c, buf, 541 &KEY(dc->disk.id, 542 next_stripe * dc->disk.stripe_size, 0), 543 dirty_pred); 544 545 if (array_freelist_empty(&buf->freelist)) 546 return; 547 548 stripe = next_stripe; 549 next: 550 if (wrapped && stripe > start_stripe) 551 return; 552 553 if (stripe == dc->disk.nr_stripes) { 554 stripe = 0; 555 wrapped = true; 556 } 557 } 558 } 559 560 /* 561 * Returns true if we scanned the entire disk 562 */ 563 static bool refill_dirty(struct cached_dev *dc) 564 { 565 struct keybuf *buf = &dc->writeback_keys; 566 struct bkey start = KEY(dc->disk.id, 0, 0); 567 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); 568 struct bkey start_pos; 569 570 /* 571 * make sure keybuf pos is inside the range for this disk - at bringup 572 * we might not be attached yet so this disk's inode nr isn't 573 * initialized then 574 */ 575 if (bkey_cmp(&buf->last_scanned, &start) < 0 || 576 bkey_cmp(&buf->last_scanned, &end) > 0) 577 buf->last_scanned = start; 578 579 if (dc->partial_stripes_expensive) { 580 refill_full_stripes(dc); 581 if (array_freelist_empty(&buf->freelist)) 582 return false; 583 } 584 585 start_pos = buf->last_scanned; 586 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); 587 588 if (bkey_cmp(&buf->last_scanned, &end) < 0) 589 return false; 590 591 /* 592 * If we get to the end start scanning again from the beginning, and 593 * only scan up to where we initially started scanning from: 594 */ 595 buf->last_scanned = start; 596 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); 597 598 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; 599 } 600 601 static int bch_writeback_thread(void *arg) 602 { 603 struct cached_dev *dc = arg; 604 struct cache_set *c = dc->disk.c; 605 bool searched_full_index; 606 607 bch_ratelimit_reset(&dc->writeback_rate); 608 609 while (!kthread_should_stop() && 610 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 611 down_write(&dc->writeback_lock); 612 set_current_state(TASK_INTERRUPTIBLE); 613 /* 614 * If the bache device is detaching, skip here and continue 615 * to perform writeback. Otherwise, if no dirty data on cache, 616 * or there is dirty data on cache but writeback is disabled, 617 * the writeback thread should sleep here and wait for others 618 * to wake up it. 619 */ 620 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && 621 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { 622 up_write(&dc->writeback_lock); 623 624 if (kthread_should_stop() || 625 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 626 set_current_state(TASK_RUNNING); 627 break; 628 } 629 630 schedule(); 631 continue; 632 } 633 set_current_state(TASK_RUNNING); 634 635 searched_full_index = refill_dirty(dc); 636 637 if (searched_full_index && 638 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { 639 atomic_set(&dc->has_dirty, 0); 640 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 641 bch_write_bdev_super(dc, NULL); 642 /* 643 * If bcache device is detaching via sysfs interface, 644 * writeback thread should stop after there is no dirty 645 * data on cache. BCACHE_DEV_DETACHING flag is set in 646 * bch_cached_dev_detach(). 647 */ 648 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 649 break; 650 } 651 652 up_write(&dc->writeback_lock); 653 654 read_dirty(dc); 655 656 if (searched_full_index) { 657 unsigned delay = dc->writeback_delay * HZ; 658 659 while (delay && 660 !kthread_should_stop() && 661 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && 662 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 663 delay = schedule_timeout_interruptible(delay); 664 665 bch_ratelimit_reset(&dc->writeback_rate); 666 } 667 } 668 669 cached_dev_put(dc); 670 wait_for_kthread_stop(); 671 672 return 0; 673 } 674 675 /* Init */ 676 677 struct sectors_dirty_init { 678 struct btree_op op; 679 unsigned inode; 680 }; 681 682 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, 683 struct bkey *k) 684 { 685 struct sectors_dirty_init *op = container_of(_op, 686 struct sectors_dirty_init, op); 687 if (KEY_INODE(k) > op->inode) 688 return MAP_DONE; 689 690 if (KEY_DIRTY(k)) 691 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), 692 KEY_START(k), KEY_SIZE(k)); 693 694 return MAP_CONTINUE; 695 } 696 697 void bch_sectors_dirty_init(struct bcache_device *d) 698 { 699 struct sectors_dirty_init op; 700 701 bch_btree_op_init(&op.op, -1); 702 op.inode = d->id; 703 704 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0), 705 sectors_dirty_init_fn, 0); 706 } 707 708 void bch_cached_dev_writeback_init(struct cached_dev *dc) 709 { 710 sema_init(&dc->in_flight, 64); 711 init_rwsem(&dc->writeback_lock); 712 bch_keybuf_init(&dc->writeback_keys); 713 714 dc->writeback_metadata = true; 715 dc->writeback_running = true; 716 dc->writeback_percent = 10; 717 dc->writeback_delay = 30; 718 dc->writeback_rate.rate = 1024; 719 dc->writeback_rate_minimum = 8; 720 721 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; 722 dc->writeback_rate_p_term_inverse = 40; 723 dc->writeback_rate_i_term_inverse = 10000; 724 725 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); 726 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); 727 } 728 729 int bch_cached_dev_writeback_start(struct cached_dev *dc) 730 { 731 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", 732 WQ_MEM_RECLAIM, 0); 733 if (!dc->writeback_write_wq) 734 return -ENOMEM; 735 736 cached_dev_get(dc); 737 dc->writeback_thread = kthread_create(bch_writeback_thread, dc, 738 "bcache_writeback"); 739 if (IS_ERR(dc->writeback_thread)) { 740 cached_dev_put(dc); 741 return PTR_ERR(dc->writeback_thread); 742 } 743 744 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); 745 schedule_delayed_work(&dc->writeback_rate_update, 746 dc->writeback_rate_update_seconds * HZ); 747 748 bch_writeback_queue(dc); 749 750 return 0; 751 } 752