1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * background writeback - scan btree for dirty data and write it to the backing 4 * device 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "writeback.h" 14 15 #include <linux/delay.h> 16 #include <linux/kthread.h> 17 #include <linux/sched/clock.h> 18 #include <trace/events/bcache.h> 19 20 /* Rate limiting */ 21 static uint64_t __calc_target_rate(struct cached_dev *dc) 22 { 23 struct cache_set *c = dc->disk.c; 24 25 /* 26 * This is the size of the cache, minus the amount used for 27 * flash-only devices 28 */ 29 uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - 30 bcache_flash_devs_sectors_dirty(c); 31 32 /* 33 * Unfortunately there is no control of global dirty data. If the 34 * user states that they want 10% dirty data in the cache, and has, 35 * e.g., 5 backing volumes of equal size, we try and ensure each 36 * backing volume uses about 2% of the cache for dirty data. 37 */ 38 uint32_t bdev_share = 39 div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, 40 c->cached_dev_sectors); 41 42 uint64_t cache_dirty_target = 43 div_u64(cache_sectors * dc->writeback_percent, 100); 44 45 /* Ensure each backing dev gets at least one dirty share */ 46 if (bdev_share < 1) 47 bdev_share = 1; 48 49 return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; 50 } 51 52 static void __update_writeback_rate(struct cached_dev *dc) 53 { 54 /* 55 * PI controller: 56 * Figures out the amount that should be written per second. 57 * 58 * First, the error (number of sectors that are dirty beyond our 59 * target) is calculated. The error is accumulated (numerically 60 * integrated). 61 * 62 * Then, the proportional value and integral value are scaled 63 * based on configured values. These are stored as inverses to 64 * avoid fixed point math and to make configuration easy-- e.g. 65 * the default value of 40 for writeback_rate_p_term_inverse 66 * attempts to write at a rate that would retire all the dirty 67 * blocks in 40 seconds. 68 * 69 * The writeback_rate_i_inverse value of 10000 means that 1/10000th 70 * of the error is accumulated in the integral term per second. 71 * This acts as a slow, long-term average that is not subject to 72 * variations in usage like the p term. 73 */ 74 int64_t target = __calc_target_rate(dc); 75 int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); 76 int64_t error = dirty - target; 77 int64_t proportional_scaled = 78 div_s64(error, dc->writeback_rate_p_term_inverse); 79 int64_t integral_scaled; 80 uint32_t new_rate; 81 82 if ((error < 0 && dc->writeback_rate_integral > 0) || 83 (error > 0 && time_before64(local_clock(), 84 dc->writeback_rate.next + NSEC_PER_MSEC))) { 85 /* 86 * Only decrease the integral term if it's more than 87 * zero. Only increase the integral term if the device 88 * is keeping up. (Don't wind up the integral 89 * ineffectively in either case). 90 * 91 * It's necessary to scale this by 92 * writeback_rate_update_seconds to keep the integral 93 * term dimensioned properly. 94 */ 95 dc->writeback_rate_integral += error * 96 dc->writeback_rate_update_seconds; 97 } 98 99 integral_scaled = div_s64(dc->writeback_rate_integral, 100 dc->writeback_rate_i_term_inverse); 101 102 new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), 103 dc->writeback_rate_minimum, NSEC_PER_SEC); 104 105 dc->writeback_rate_proportional = proportional_scaled; 106 dc->writeback_rate_integral_scaled = integral_scaled; 107 dc->writeback_rate_change = new_rate - dc->writeback_rate.rate; 108 dc->writeback_rate.rate = new_rate; 109 dc->writeback_rate_target = target; 110 } 111 112 static void update_writeback_rate(struct work_struct *work) 113 { 114 struct cached_dev *dc = container_of(to_delayed_work(work), 115 struct cached_dev, 116 writeback_rate_update); 117 struct cache_set *c = dc->disk.c; 118 119 /* 120 * should check BCACHE_DEV_RATE_DW_RUNNING before calling 121 * cancel_delayed_work_sync(). 122 */ 123 set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); 124 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ 125 smp_mb(); 126 127 /* 128 * CACHE_SET_IO_DISABLE might be set via sysfs interface, 129 * check it here too. 130 */ 131 if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || 132 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 133 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); 134 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ 135 smp_mb(); 136 return; 137 } 138 139 down_read(&dc->writeback_lock); 140 141 if (atomic_read(&dc->has_dirty) && 142 dc->writeback_percent) 143 __update_writeback_rate(dc); 144 145 up_read(&dc->writeback_lock); 146 147 /* 148 * CACHE_SET_IO_DISABLE might be set via sysfs interface, 149 * check it here too. 150 */ 151 if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && 152 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 153 schedule_delayed_work(&dc->writeback_rate_update, 154 dc->writeback_rate_update_seconds * HZ); 155 } 156 157 /* 158 * should check BCACHE_DEV_RATE_DW_RUNNING before calling 159 * cancel_delayed_work_sync(). 160 */ 161 clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); 162 /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ 163 smp_mb(); 164 } 165 166 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors) 167 { 168 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 169 !dc->writeback_percent) 170 return 0; 171 172 return bch_next_delay(&dc->writeback_rate, sectors); 173 } 174 175 struct dirty_io { 176 struct closure cl; 177 struct cached_dev *dc; 178 uint16_t sequence; 179 struct bio bio; 180 }; 181 182 static void dirty_init(struct keybuf_key *w) 183 { 184 struct dirty_io *io = w->private; 185 struct bio *bio = &io->bio; 186 187 bio_init(bio, bio->bi_inline_vecs, 188 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); 189 if (!io->dc->writeback_percent) 190 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); 191 192 bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; 193 bio->bi_private = w; 194 bch_bio_map(bio, NULL); 195 } 196 197 static void dirty_io_destructor(struct closure *cl) 198 { 199 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 200 kfree(io); 201 } 202 203 static void write_dirty_finish(struct closure *cl) 204 { 205 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 206 struct keybuf_key *w = io->bio.bi_private; 207 struct cached_dev *dc = io->dc; 208 209 bio_free_pages(&io->bio); 210 211 /* This is kind of a dumb way of signalling errors. */ 212 if (KEY_DIRTY(&w->key)) { 213 int ret; 214 unsigned i; 215 struct keylist keys; 216 217 bch_keylist_init(&keys); 218 219 bkey_copy(keys.top, &w->key); 220 SET_KEY_DIRTY(keys.top, false); 221 bch_keylist_push(&keys); 222 223 for (i = 0; i < KEY_PTRS(&w->key); i++) 224 atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); 225 226 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); 227 228 if (ret) 229 trace_bcache_writeback_collision(&w->key); 230 231 atomic_long_inc(ret 232 ? &dc->disk.c->writeback_keys_failed 233 : &dc->disk.c->writeback_keys_done); 234 } 235 236 bch_keybuf_del(&dc->writeback_keys, w); 237 up(&dc->in_flight); 238 239 closure_return_with_destructor(cl, dirty_io_destructor); 240 } 241 242 static void dirty_endio(struct bio *bio) 243 { 244 struct keybuf_key *w = bio->bi_private; 245 struct dirty_io *io = w->private; 246 247 if (bio->bi_status) 248 SET_KEY_DIRTY(&w->key, false); 249 250 closure_put(&io->cl); 251 } 252 253 static void write_dirty(struct closure *cl) 254 { 255 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 256 struct keybuf_key *w = io->bio.bi_private; 257 struct cached_dev *dc = io->dc; 258 259 uint16_t next_sequence; 260 261 if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { 262 /* Not our turn to write; wait for a write to complete */ 263 closure_wait(&dc->writeback_ordering_wait, cl); 264 265 if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { 266 /* 267 * Edge case-- it happened in indeterminate order 268 * relative to when we were added to wait list.. 269 */ 270 closure_wake_up(&dc->writeback_ordering_wait); 271 } 272 273 continue_at(cl, write_dirty, io->dc->writeback_write_wq); 274 return; 275 } 276 277 next_sequence = io->sequence + 1; 278 279 /* 280 * IO errors are signalled using the dirty bit on the key. 281 * If we failed to read, we should not attempt to write to the 282 * backing device. Instead, immediately go to write_dirty_finish 283 * to clean up. 284 */ 285 if (KEY_DIRTY(&w->key)) { 286 dirty_init(w); 287 bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); 288 io->bio.bi_iter.bi_sector = KEY_START(&w->key); 289 bio_set_dev(&io->bio, io->dc->bdev); 290 io->bio.bi_end_io = dirty_endio; 291 292 /* I/O request sent to backing device */ 293 closure_bio_submit(io->dc->disk.c, &io->bio, cl); 294 } 295 296 atomic_set(&dc->writeback_sequence_next, next_sequence); 297 closure_wake_up(&dc->writeback_ordering_wait); 298 299 continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); 300 } 301 302 static void read_dirty_endio(struct bio *bio) 303 { 304 struct keybuf_key *w = bio->bi_private; 305 struct dirty_io *io = w->private; 306 307 /* is_read = 1 */ 308 bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), 309 bio->bi_status, 1, 310 "reading dirty data from cache"); 311 312 dirty_endio(bio); 313 } 314 315 static void read_dirty_submit(struct closure *cl) 316 { 317 struct dirty_io *io = container_of(cl, struct dirty_io, cl); 318 319 closure_bio_submit(io->dc->disk.c, &io->bio, cl); 320 321 continue_at(cl, write_dirty, io->dc->writeback_write_wq); 322 } 323 324 static void read_dirty(struct cached_dev *dc) 325 { 326 unsigned delay = 0; 327 struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; 328 size_t size; 329 int nk, i; 330 struct dirty_io *io; 331 struct closure cl; 332 uint16_t sequence = 0; 333 334 BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); 335 atomic_set(&dc->writeback_sequence_next, sequence); 336 closure_init_stack(&cl); 337 338 /* 339 * XXX: if we error, background writeback just spins. Should use some 340 * mempools. 341 */ 342 343 next = bch_keybuf_next(&dc->writeback_keys); 344 345 while (!kthread_should_stop() && 346 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && 347 next) { 348 size = 0; 349 nk = 0; 350 351 do { 352 BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); 353 354 /* 355 * Don't combine too many operations, even if they 356 * are all small. 357 */ 358 if (nk >= MAX_WRITEBACKS_IN_PASS) 359 break; 360 361 /* 362 * If the current operation is very large, don't 363 * further combine operations. 364 */ 365 if (size >= MAX_WRITESIZE_IN_PASS) 366 break; 367 368 /* 369 * Operations are only eligible to be combined 370 * if they are contiguous. 371 * 372 * TODO: add a heuristic willing to fire a 373 * certain amount of non-contiguous IO per pass, 374 * so that we can benefit from backing device 375 * command queueing. 376 */ 377 if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, 378 &START_KEY(&next->key))) 379 break; 380 381 size += KEY_SIZE(&next->key); 382 keys[nk++] = next; 383 } while ((next = bch_keybuf_next(&dc->writeback_keys))); 384 385 /* Now we have gathered a set of 1..5 keys to write back. */ 386 for (i = 0; i < nk; i++) { 387 w = keys[i]; 388 389 io = kzalloc(sizeof(struct dirty_io) + 390 sizeof(struct bio_vec) * 391 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS), 392 GFP_KERNEL); 393 if (!io) 394 goto err; 395 396 w->private = io; 397 io->dc = dc; 398 io->sequence = sequence++; 399 400 dirty_init(w); 401 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); 402 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); 403 bio_set_dev(&io->bio, 404 PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); 405 io->bio.bi_end_io = read_dirty_endio; 406 407 if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) 408 goto err_free; 409 410 trace_bcache_writeback(&w->key); 411 412 down(&dc->in_flight); 413 414 /* We've acquired a semaphore for the maximum 415 * simultaneous number of writebacks; from here 416 * everything happens asynchronously. 417 */ 418 closure_call(&io->cl, read_dirty_submit, NULL, &cl); 419 } 420 421 delay = writeback_delay(dc, size); 422 423 /* If the control system would wait for at least half a 424 * second, and there's been no reqs hitting the backing disk 425 * for awhile: use an alternate mode where we have at most 426 * one contiguous set of writebacks in flight at a time. If 427 * someone wants to do IO it will be quick, as it will only 428 * have to contend with one operation in flight, and we'll 429 * be round-tripping data to the backing disk as quickly as 430 * it can accept it. 431 */ 432 if (delay >= HZ / 2) { 433 /* 3 means at least 1.5 seconds, up to 7.5 if we 434 * have slowed way down. 435 */ 436 if (atomic_inc_return(&dc->backing_idle) >= 3) { 437 /* Wait for current I/Os to finish */ 438 closure_sync(&cl); 439 /* And immediately launch a new set. */ 440 delay = 0; 441 } 442 } 443 444 while (!kthread_should_stop() && 445 !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && 446 delay) { 447 schedule_timeout_interruptible(delay); 448 delay = writeback_delay(dc, 0); 449 } 450 } 451 452 if (0) { 453 err_free: 454 kfree(w->private); 455 err: 456 bch_keybuf_del(&dc->writeback_keys, w); 457 } 458 459 /* 460 * Wait for outstanding writeback IOs to finish (and keybuf slots to be 461 * freed) before refilling again 462 */ 463 closure_sync(&cl); 464 } 465 466 /* Scan for dirty data */ 467 468 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode, 469 uint64_t offset, int nr_sectors) 470 { 471 struct bcache_device *d = c->devices[inode]; 472 unsigned stripe_offset, stripe, sectors_dirty; 473 474 if (!d) 475 return; 476 477 stripe = offset_to_stripe(d, offset); 478 stripe_offset = offset & (d->stripe_size - 1); 479 480 while (nr_sectors) { 481 int s = min_t(unsigned, abs(nr_sectors), 482 d->stripe_size - stripe_offset); 483 484 if (nr_sectors < 0) 485 s = -s; 486 487 if (stripe >= d->nr_stripes) 488 return; 489 490 sectors_dirty = atomic_add_return(s, 491 d->stripe_sectors_dirty + stripe); 492 if (sectors_dirty == d->stripe_size) 493 set_bit(stripe, d->full_dirty_stripes); 494 else 495 clear_bit(stripe, d->full_dirty_stripes); 496 497 nr_sectors -= s; 498 stripe_offset = 0; 499 stripe++; 500 } 501 } 502 503 static bool dirty_pred(struct keybuf *buf, struct bkey *k) 504 { 505 struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys); 506 507 BUG_ON(KEY_INODE(k) != dc->disk.id); 508 509 return KEY_DIRTY(k); 510 } 511 512 static void refill_full_stripes(struct cached_dev *dc) 513 { 514 struct keybuf *buf = &dc->writeback_keys; 515 unsigned start_stripe, stripe, next_stripe; 516 bool wrapped = false; 517 518 stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); 519 520 if (stripe >= dc->disk.nr_stripes) 521 stripe = 0; 522 523 start_stripe = stripe; 524 525 while (1) { 526 stripe = find_next_bit(dc->disk.full_dirty_stripes, 527 dc->disk.nr_stripes, stripe); 528 529 if (stripe == dc->disk.nr_stripes) 530 goto next; 531 532 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, 533 dc->disk.nr_stripes, stripe); 534 535 buf->last_scanned = KEY(dc->disk.id, 536 stripe * dc->disk.stripe_size, 0); 537 538 bch_refill_keybuf(dc->disk.c, buf, 539 &KEY(dc->disk.id, 540 next_stripe * dc->disk.stripe_size, 0), 541 dirty_pred); 542 543 if (array_freelist_empty(&buf->freelist)) 544 return; 545 546 stripe = next_stripe; 547 next: 548 if (wrapped && stripe > start_stripe) 549 return; 550 551 if (stripe == dc->disk.nr_stripes) { 552 stripe = 0; 553 wrapped = true; 554 } 555 } 556 } 557 558 /* 559 * Returns true if we scanned the entire disk 560 */ 561 static bool refill_dirty(struct cached_dev *dc) 562 { 563 struct keybuf *buf = &dc->writeback_keys; 564 struct bkey start = KEY(dc->disk.id, 0, 0); 565 struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); 566 struct bkey start_pos; 567 568 /* 569 * make sure keybuf pos is inside the range for this disk - at bringup 570 * we might not be attached yet so this disk's inode nr isn't 571 * initialized then 572 */ 573 if (bkey_cmp(&buf->last_scanned, &start) < 0 || 574 bkey_cmp(&buf->last_scanned, &end) > 0) 575 buf->last_scanned = start; 576 577 if (dc->partial_stripes_expensive) { 578 refill_full_stripes(dc); 579 if (array_freelist_empty(&buf->freelist)) 580 return false; 581 } 582 583 start_pos = buf->last_scanned; 584 bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); 585 586 if (bkey_cmp(&buf->last_scanned, &end) < 0) 587 return false; 588 589 /* 590 * If we get to the end start scanning again from the beginning, and 591 * only scan up to where we initially started scanning from: 592 */ 593 buf->last_scanned = start; 594 bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); 595 596 return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; 597 } 598 599 static int bch_writeback_thread(void *arg) 600 { 601 struct cached_dev *dc = arg; 602 struct cache_set *c = dc->disk.c; 603 bool searched_full_index; 604 605 bch_ratelimit_reset(&dc->writeback_rate); 606 607 while (!kthread_should_stop() && 608 !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 609 down_write(&dc->writeback_lock); 610 set_current_state(TASK_INTERRUPTIBLE); 611 /* 612 * If the bache device is detaching, skip here and continue 613 * to perform writeback. Otherwise, if no dirty data on cache, 614 * or there is dirty data on cache but writeback is disabled, 615 * the writeback thread should sleep here and wait for others 616 * to wake up it. 617 */ 618 if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && 619 (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { 620 up_write(&dc->writeback_lock); 621 622 if (kthread_should_stop() || 623 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { 624 set_current_state(TASK_RUNNING); 625 break; 626 } 627 628 schedule(); 629 continue; 630 } 631 set_current_state(TASK_RUNNING); 632 633 searched_full_index = refill_dirty(dc); 634 635 if (searched_full_index && 636 RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { 637 atomic_set(&dc->has_dirty, 0); 638 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 639 bch_write_bdev_super(dc, NULL); 640 /* 641 * If bcache device is detaching via sysfs interface, 642 * writeback thread should stop after there is no dirty 643 * data on cache. BCACHE_DEV_DETACHING flag is set in 644 * bch_cached_dev_detach(). 645 */ 646 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 647 break; 648 } 649 650 up_write(&dc->writeback_lock); 651 652 read_dirty(dc); 653 654 if (searched_full_index) { 655 unsigned delay = dc->writeback_delay * HZ; 656 657 while (delay && 658 !kthread_should_stop() && 659 !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && 660 !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 661 delay = schedule_timeout_interruptible(delay); 662 663 bch_ratelimit_reset(&dc->writeback_rate); 664 } 665 } 666 667 cached_dev_put(dc); 668 wait_for_kthread_stop(); 669 670 return 0; 671 } 672 673 /* Init */ 674 675 struct sectors_dirty_init { 676 struct btree_op op; 677 unsigned inode; 678 }; 679 680 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, 681 struct bkey *k) 682 { 683 struct sectors_dirty_init *op = container_of(_op, 684 struct sectors_dirty_init, op); 685 if (KEY_INODE(k) > op->inode) 686 return MAP_DONE; 687 688 if (KEY_DIRTY(k)) 689 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), 690 KEY_START(k), KEY_SIZE(k)); 691 692 return MAP_CONTINUE; 693 } 694 695 void bch_sectors_dirty_init(struct bcache_device *d) 696 { 697 struct sectors_dirty_init op; 698 699 bch_btree_op_init(&op.op, -1); 700 op.inode = d->id; 701 702 bch_btree_map_keys(&op.op, d->c, &KEY(op.inode, 0, 0), 703 sectors_dirty_init_fn, 0); 704 } 705 706 void bch_cached_dev_writeback_init(struct cached_dev *dc) 707 { 708 sema_init(&dc->in_flight, 64); 709 init_rwsem(&dc->writeback_lock); 710 bch_keybuf_init(&dc->writeback_keys); 711 712 dc->writeback_metadata = true; 713 dc->writeback_running = true; 714 dc->writeback_percent = 10; 715 dc->writeback_delay = 30; 716 dc->writeback_rate.rate = 1024; 717 dc->writeback_rate_minimum = 8; 718 719 dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; 720 dc->writeback_rate_p_term_inverse = 40; 721 dc->writeback_rate_i_term_inverse = 10000; 722 723 WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); 724 INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); 725 } 726 727 int bch_cached_dev_writeback_start(struct cached_dev *dc) 728 { 729 dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", 730 WQ_MEM_RECLAIM, 0); 731 if (!dc->writeback_write_wq) 732 return -ENOMEM; 733 734 cached_dev_get(dc); 735 dc->writeback_thread = kthread_create(bch_writeback_thread, dc, 736 "bcache_writeback"); 737 if (IS_ERR(dc->writeback_thread)) { 738 cached_dev_put(dc); 739 return PTR_ERR(dc->writeback_thread); 740 } 741 742 WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); 743 schedule_delayed_work(&dc->writeback_rate_update, 744 dc->writeback_rate_update_seconds * HZ); 745 746 bch_writeback_queue(dc); 747 748 return 0; 749 } 750