xref: /openbmc/linux/drivers/md/bcache/util.h (revision c4ee0af3)
1 
2 #ifndef _BCACHE_UTIL_H
3 #define _BCACHE_UTIL_H
4 
5 #include <linux/errno.h>
6 #include <linux/kernel.h>
7 #include <linux/llist.h>
8 #include <linux/ratelimit.h>
9 #include <linux/vmalloc.h>
10 #include <linux/workqueue.h>
11 
12 #include "closure.h"
13 
14 #define PAGE_SECTORS		(PAGE_SIZE / 512)
15 
16 struct closure;
17 
18 #ifdef CONFIG_BCACHE_DEBUG
19 
20 #define atomic_dec_bug(v)	BUG_ON(atomic_dec_return(v) < 0)
21 #define atomic_inc_bug(v, i)	BUG_ON(atomic_inc_return(v) <= i)
22 
23 #else /* DEBUG */
24 
25 #define atomic_dec_bug(v)	atomic_dec(v)
26 #define atomic_inc_bug(v, i)	atomic_inc(v)
27 
28 #endif
29 
30 #define DECLARE_HEAP(type, name)					\
31 	struct {							\
32 		size_t size, used;					\
33 		type *data;						\
34 	} name
35 
36 #define init_heap(heap, _size, gfp)					\
37 ({									\
38 	size_t _bytes;							\
39 	(heap)->used = 0;						\
40 	(heap)->size = (_size);						\
41 	_bytes = (heap)->size * sizeof(*(heap)->data);			\
42 	(heap)->data = NULL;						\
43 	if (_bytes < KMALLOC_MAX_SIZE)					\
44 		(heap)->data = kmalloc(_bytes, (gfp));			\
45 	if ((!(heap)->data) && ((gfp) & GFP_KERNEL))			\
46 		(heap)->data = vmalloc(_bytes);				\
47 	(heap)->data;							\
48 })
49 
50 #define free_heap(heap)							\
51 do {									\
52 	if (is_vmalloc_addr((heap)->data))				\
53 		vfree((heap)->data);					\
54 	else								\
55 		kfree((heap)->data);					\
56 	(heap)->data = NULL;						\
57 } while (0)
58 
59 #define heap_swap(h, i, j)	swap((h)->data[i], (h)->data[j])
60 
61 #define heap_sift(h, i, cmp)						\
62 do {									\
63 	size_t _r, _j = i;						\
64 									\
65 	for (; _j * 2 + 1 < (h)->used; _j = _r) {			\
66 		_r = _j * 2 + 1;					\
67 		if (_r + 1 < (h)->used &&				\
68 		    cmp((h)->data[_r], (h)->data[_r + 1]))		\
69 			_r++;						\
70 									\
71 		if (cmp((h)->data[_r], (h)->data[_j]))			\
72 			break;						\
73 		heap_swap(h, _r, _j);					\
74 	}								\
75 } while (0)
76 
77 #define heap_sift_down(h, i, cmp)					\
78 do {									\
79 	while (i) {							\
80 		size_t p = (i - 1) / 2;					\
81 		if (cmp((h)->data[i], (h)->data[p]))			\
82 			break;						\
83 		heap_swap(h, i, p);					\
84 		i = p;							\
85 	}								\
86 } while (0)
87 
88 #define heap_add(h, d, cmp)						\
89 ({									\
90 	bool _r = !heap_full(h);					\
91 	if (_r) {							\
92 		size_t _i = (h)->used++;				\
93 		(h)->data[_i] = d;					\
94 									\
95 		heap_sift_down(h, _i, cmp);				\
96 		heap_sift(h, _i, cmp);					\
97 	}								\
98 	_r;								\
99 })
100 
101 #define heap_pop(h, d, cmp)						\
102 ({									\
103 	bool _r = (h)->used;						\
104 	if (_r) {							\
105 		(d) = (h)->data[0];					\
106 		(h)->used--;						\
107 		heap_swap(h, 0, (h)->used);				\
108 		heap_sift(h, 0, cmp);					\
109 	}								\
110 	_r;								\
111 })
112 
113 #define heap_peek(h)	((h)->used ? (h)->data[0] : NULL)
114 
115 #define heap_full(h)	((h)->used == (h)->size)
116 
117 #define DECLARE_FIFO(type, name)					\
118 	struct {							\
119 		size_t front, back, size, mask;				\
120 		type *data;						\
121 	} name
122 
123 #define fifo_for_each(c, fifo, iter)					\
124 	for (iter = (fifo)->front;					\
125 	     c = (fifo)->data[iter], iter != (fifo)->back;		\
126 	     iter = (iter + 1) & (fifo)->mask)
127 
128 #define __init_fifo(fifo, gfp)						\
129 ({									\
130 	size_t _allocated_size, _bytes;					\
131 	BUG_ON(!(fifo)->size);						\
132 									\
133 	_allocated_size = roundup_pow_of_two((fifo)->size + 1);		\
134 	_bytes = _allocated_size * sizeof(*(fifo)->data);		\
135 									\
136 	(fifo)->mask = _allocated_size - 1;				\
137 	(fifo)->front = (fifo)->back = 0;				\
138 	(fifo)->data = NULL;						\
139 									\
140 	if (_bytes < KMALLOC_MAX_SIZE)					\
141 		(fifo)->data = kmalloc(_bytes, (gfp));			\
142 	if ((!(fifo)->data) && ((gfp) & GFP_KERNEL))			\
143 		(fifo)->data = vmalloc(_bytes);				\
144 	(fifo)->data;							\
145 })
146 
147 #define init_fifo_exact(fifo, _size, gfp)				\
148 ({									\
149 	(fifo)->size = (_size);						\
150 	__init_fifo(fifo, gfp);						\
151 })
152 
153 #define init_fifo(fifo, _size, gfp)					\
154 ({									\
155 	(fifo)->size = (_size);						\
156 	if ((fifo)->size > 4)						\
157 		(fifo)->size = roundup_pow_of_two((fifo)->size) - 1;	\
158 	__init_fifo(fifo, gfp);						\
159 })
160 
161 #define free_fifo(fifo)							\
162 do {									\
163 	if (is_vmalloc_addr((fifo)->data))				\
164 		vfree((fifo)->data);					\
165 	else								\
166 		kfree((fifo)->data);					\
167 	(fifo)->data = NULL;						\
168 } while (0)
169 
170 #define fifo_used(fifo)		(((fifo)->back - (fifo)->front) & (fifo)->mask)
171 #define fifo_free(fifo)		((fifo)->size - fifo_used(fifo))
172 
173 #define fifo_empty(fifo)	(!fifo_used(fifo))
174 #define fifo_full(fifo)		(!fifo_free(fifo))
175 
176 #define fifo_front(fifo)	((fifo)->data[(fifo)->front])
177 #define fifo_back(fifo)							\
178 	((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
179 
180 #define fifo_idx(fifo, p)	(((p) - &fifo_front(fifo)) & (fifo)->mask)
181 
182 #define fifo_push_back(fifo, i)						\
183 ({									\
184 	bool _r = !fifo_full((fifo));					\
185 	if (_r) {							\
186 		(fifo)->data[(fifo)->back++] = (i);			\
187 		(fifo)->back &= (fifo)->mask;				\
188 	}								\
189 	_r;								\
190 })
191 
192 #define fifo_pop_front(fifo, i)						\
193 ({									\
194 	bool _r = !fifo_empty((fifo));					\
195 	if (_r) {							\
196 		(i) = (fifo)->data[(fifo)->front++];			\
197 		(fifo)->front &= (fifo)->mask;				\
198 	}								\
199 	_r;								\
200 })
201 
202 #define fifo_push_front(fifo, i)					\
203 ({									\
204 	bool _r = !fifo_full((fifo));					\
205 	if (_r) {							\
206 		--(fifo)->front;					\
207 		(fifo)->front &= (fifo)->mask;				\
208 		(fifo)->data[(fifo)->front] = (i);			\
209 	}								\
210 	_r;								\
211 })
212 
213 #define fifo_pop_back(fifo, i)						\
214 ({									\
215 	bool _r = !fifo_empty((fifo));					\
216 	if (_r) {							\
217 		--(fifo)->back;						\
218 		(fifo)->back &= (fifo)->mask;				\
219 		(i) = (fifo)->data[(fifo)->back]			\
220 	}								\
221 	_r;								\
222 })
223 
224 #define fifo_push(fifo, i)	fifo_push_back(fifo, (i))
225 #define fifo_pop(fifo, i)	fifo_pop_front(fifo, (i))
226 
227 #define fifo_swap(l, r)							\
228 do {									\
229 	swap((l)->front, (r)->front);					\
230 	swap((l)->back, (r)->back);					\
231 	swap((l)->size, (r)->size);					\
232 	swap((l)->mask, (r)->mask);					\
233 	swap((l)->data, (r)->data);					\
234 } while (0)
235 
236 #define fifo_move(dest, src)						\
237 do {									\
238 	typeof(*((dest)->data)) _t;					\
239 	while (!fifo_full(dest) &&					\
240 	       fifo_pop(src, _t))					\
241 		fifo_push(dest, _t);					\
242 } while (0)
243 
244 /*
245  * Simple array based allocator - preallocates a number of elements and you can
246  * never allocate more than that, also has no locking.
247  *
248  * Handy because if you know you only need a fixed number of elements you don't
249  * have to worry about memory allocation failure, and sometimes a mempool isn't
250  * what you want.
251  *
252  * We treat the free elements as entries in a singly linked list, and the
253  * freelist as a stack - allocating and freeing push and pop off the freelist.
254  */
255 
256 #define DECLARE_ARRAY_ALLOCATOR(type, name, size)			\
257 	struct {							\
258 		type	*freelist;					\
259 		type	data[size];					\
260 	} name
261 
262 #define array_alloc(array)						\
263 ({									\
264 	typeof((array)->freelist) _ret = (array)->freelist;		\
265 									\
266 	if (_ret)							\
267 		(array)->freelist = *((typeof((array)->freelist) *) _ret);\
268 									\
269 	_ret;								\
270 })
271 
272 #define array_free(array, ptr)						\
273 do {									\
274 	typeof((array)->freelist) _ptr = ptr;				\
275 									\
276 	*((typeof((array)->freelist) *) _ptr) = (array)->freelist;	\
277 	(array)->freelist = _ptr;					\
278 } while (0)
279 
280 #define array_allocator_init(array)					\
281 do {									\
282 	typeof((array)->freelist) _i;					\
283 									\
284 	BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *));	\
285 	(array)->freelist = NULL;					\
286 									\
287 	for (_i = (array)->data;					\
288 	     _i < (array)->data + ARRAY_SIZE((array)->data);		\
289 	     _i++)							\
290 		array_free(array, _i);					\
291 } while (0)
292 
293 #define array_freelist_empty(array)	((array)->freelist == NULL)
294 
295 #define ANYSINT_MAX(t)							\
296 	((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
297 
298 int bch_strtoint_h(const char *, int *);
299 int bch_strtouint_h(const char *, unsigned int *);
300 int bch_strtoll_h(const char *, long long *);
301 int bch_strtoull_h(const char *, unsigned long long *);
302 
303 static inline int bch_strtol_h(const char *cp, long *res)
304 {
305 #if BITS_PER_LONG == 32
306 	return bch_strtoint_h(cp, (int *) res);
307 #else
308 	return bch_strtoll_h(cp, (long long *) res);
309 #endif
310 }
311 
312 static inline int bch_strtoul_h(const char *cp, long *res)
313 {
314 #if BITS_PER_LONG == 32
315 	return bch_strtouint_h(cp, (unsigned int *) res);
316 #else
317 	return bch_strtoull_h(cp, (unsigned long long *) res);
318 #endif
319 }
320 
321 #define strtoi_h(cp, res)						\
322 	(__builtin_types_compatible_p(typeof(*res), int)		\
323 	? bch_strtoint_h(cp, (void *) res)				\
324 	: __builtin_types_compatible_p(typeof(*res), long)		\
325 	? bch_strtol_h(cp, (void *) res)				\
326 	: __builtin_types_compatible_p(typeof(*res), long long)		\
327 	? bch_strtoll_h(cp, (void *) res)				\
328 	: __builtin_types_compatible_p(typeof(*res), unsigned int)	\
329 	? bch_strtouint_h(cp, (void *) res)				\
330 	: __builtin_types_compatible_p(typeof(*res), unsigned long)	\
331 	? bch_strtoul_h(cp, (void *) res)				\
332 	: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
333 	? bch_strtoull_h(cp, (void *) res) : -EINVAL)
334 
335 #define strtoul_safe(cp, var)						\
336 ({									\
337 	unsigned long _v;						\
338 	int _r = kstrtoul(cp, 10, &_v);					\
339 	if (!_r)							\
340 		var = _v;						\
341 	_r;								\
342 })
343 
344 #define strtoul_safe_clamp(cp, var, min, max)				\
345 ({									\
346 	unsigned long _v;						\
347 	int _r = kstrtoul(cp, 10, &_v);					\
348 	if (!_r)							\
349 		var = clamp_t(typeof(var), _v, min, max);		\
350 	_r;								\
351 })
352 
353 #define snprint(buf, size, var)						\
354 	snprintf(buf, size,						\
355 		__builtin_types_compatible_p(typeof(var), int)		\
356 		     ? "%i\n" :						\
357 		__builtin_types_compatible_p(typeof(var), unsigned)	\
358 		     ? "%u\n" :						\
359 		__builtin_types_compatible_p(typeof(var), long)		\
360 		     ? "%li\n" :					\
361 		__builtin_types_compatible_p(typeof(var), unsigned long)\
362 		     ? "%lu\n" :					\
363 		__builtin_types_compatible_p(typeof(var), int64_t)	\
364 		     ? "%lli\n" :					\
365 		__builtin_types_compatible_p(typeof(var), uint64_t)	\
366 		     ? "%llu\n" :					\
367 		__builtin_types_compatible_p(typeof(var), const char *)	\
368 		     ? "%s\n" : "%i\n", var)
369 
370 ssize_t bch_hprint(char *buf, int64_t v);
371 
372 bool bch_is_zero(const char *p, size_t n);
373 int bch_parse_uuid(const char *s, char *uuid);
374 
375 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[],
376 			    size_t selected);
377 
378 ssize_t bch_read_string_list(const char *buf, const char * const list[]);
379 
380 struct time_stats {
381 	spinlock_t	lock;
382 	/*
383 	 * all fields are in nanoseconds, averages are ewmas stored left shifted
384 	 * by 8
385 	 */
386 	uint64_t	max_duration;
387 	uint64_t	average_duration;
388 	uint64_t	average_frequency;
389 	uint64_t	last;
390 };
391 
392 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
393 
394 #define NSEC_PER_ns			1L
395 #define NSEC_PER_us			NSEC_PER_USEC
396 #define NSEC_PER_ms			NSEC_PER_MSEC
397 #define NSEC_PER_sec			NSEC_PER_SEC
398 
399 #define __print_time_stat(stats, name, stat, units)			\
400 	sysfs_print(name ## _ ## stat ## _ ## units,			\
401 		    div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
402 
403 #define sysfs_print_time_stats(stats, name,				\
404 			       frequency_units,				\
405 			       duration_units)				\
406 do {									\
407 	__print_time_stat(stats, name,					\
408 			  average_frequency,	frequency_units);	\
409 	__print_time_stat(stats, name,					\
410 			  average_duration,	duration_units);	\
411 	__print_time_stat(stats, name,					\
412 			  max_duration,		duration_units);	\
413 									\
414 	sysfs_print(name ## _last_ ## frequency_units, (stats)->last	\
415 		    ? div_s64(local_clock() - (stats)->last,		\
416 			      NSEC_PER_ ## frequency_units)		\
417 		    : -1LL);						\
418 } while (0)
419 
420 #define sysfs_time_stats_attribute(name,				\
421 				   frequency_units,			\
422 				   duration_units)			\
423 read_attribute(name ## _average_frequency_ ## frequency_units);		\
424 read_attribute(name ## _average_duration_ ## duration_units);		\
425 read_attribute(name ## _max_duration_ ## duration_units);		\
426 read_attribute(name ## _last_ ## frequency_units)
427 
428 #define sysfs_time_stats_attribute_list(name,				\
429 					frequency_units,		\
430 					duration_units)			\
431 &sysfs_ ## name ## _average_frequency_ ## frequency_units,		\
432 &sysfs_ ## name ## _average_duration_ ## duration_units,		\
433 &sysfs_ ## name ## _max_duration_ ## duration_units,			\
434 &sysfs_ ## name ## _last_ ## frequency_units,
435 
436 #define ewma_add(ewma, val, weight, factor)				\
437 ({									\
438 	(ewma) *= (weight) - 1;						\
439 	(ewma) += (val) << factor;					\
440 	(ewma) /= (weight);						\
441 	(ewma) >> factor;						\
442 })
443 
444 struct bch_ratelimit {
445 	/* Next time we want to do some work, in nanoseconds */
446 	uint64_t		next;
447 
448 	/*
449 	 * Rate at which we want to do work, in units per nanosecond
450 	 * The units here correspond to the units passed to bch_next_delay()
451 	 */
452 	unsigned		rate;
453 };
454 
455 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
456 {
457 	d->next = local_clock();
458 }
459 
460 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
461 
462 #define __DIV_SAFE(n, d, zero)						\
463 ({									\
464 	typeof(n) _n = (n);						\
465 	typeof(d) _d = (d);						\
466 	_d ? _n / _d : zero;						\
467 })
468 
469 #define DIV_SAFE(n, d)	__DIV_SAFE(n, d, 0)
470 
471 #define container_of_or_null(ptr, type, member)				\
472 ({									\
473 	typeof(ptr) _ptr = ptr;						\
474 	_ptr ? container_of(_ptr, type, member) : NULL;			\
475 })
476 
477 #define RB_INSERT(root, new, member, cmp)				\
478 ({									\
479 	__label__ dup;							\
480 	struct rb_node **n = &(root)->rb_node, *parent = NULL;		\
481 	typeof(new) this;						\
482 	int res, ret = -1;						\
483 									\
484 	while (*n) {							\
485 		parent = *n;						\
486 		this = container_of(*n, typeof(*(new)), member);	\
487 		res = cmp(new, this);					\
488 		if (!res)						\
489 			goto dup;					\
490 		n = res < 0						\
491 			? &(*n)->rb_left				\
492 			: &(*n)->rb_right;				\
493 	}								\
494 									\
495 	rb_link_node(&(new)->member, parent, n);			\
496 	rb_insert_color(&(new)->member, root);				\
497 	ret = 0;							\
498 dup:									\
499 	ret;								\
500 })
501 
502 #define RB_SEARCH(root, search, member, cmp)				\
503 ({									\
504 	struct rb_node *n = (root)->rb_node;				\
505 	typeof(&(search)) this, ret = NULL;				\
506 	int res;							\
507 									\
508 	while (n) {							\
509 		this = container_of(n, typeof(search), member);		\
510 		res = cmp(&(search), this);				\
511 		if (!res) {						\
512 			ret = this;					\
513 			break;						\
514 		}							\
515 		n = res < 0						\
516 			? n->rb_left					\
517 			: n->rb_right;					\
518 	}								\
519 	ret;								\
520 })
521 
522 #define RB_GREATER(root, search, member, cmp)				\
523 ({									\
524 	struct rb_node *n = (root)->rb_node;				\
525 	typeof(&(search)) this, ret = NULL;				\
526 	int res;							\
527 									\
528 	while (n) {							\
529 		this = container_of(n, typeof(search), member);		\
530 		res = cmp(&(search), this);				\
531 		if (res < 0) {						\
532 			ret = this;					\
533 			n = n->rb_left;					\
534 		} else							\
535 			n = n->rb_right;				\
536 	}								\
537 	ret;								\
538 })
539 
540 #define RB_FIRST(root, type, member)					\
541 	container_of_or_null(rb_first(root), type, member)
542 
543 #define RB_LAST(root, type, member)					\
544 	container_of_or_null(rb_last(root), type, member)
545 
546 #define RB_NEXT(ptr, member)						\
547 	container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
548 
549 #define RB_PREV(ptr, member)						\
550 	container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
551 
552 /* Does linear interpolation between powers of two */
553 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits)
554 {
555 	unsigned fract = x & ~(~0 << fract_bits);
556 
557 	x >>= fract_bits;
558 	x   = 1 << x;
559 	x  += (x * fract) >> fract_bits;
560 
561 	return x;
562 }
563 
564 void bch_bio_map(struct bio *bio, void *base);
565 
566 static inline sector_t bdev_sectors(struct block_device *bdev)
567 {
568 	return bdev->bd_inode->i_size >> 9;
569 }
570 
571 #define closure_bio_submit(bio, cl, dev)				\
572 do {									\
573 	closure_get(cl);						\
574 	bch_generic_make_request(bio, &(dev)->bio_split_hook);		\
575 } while (0)
576 
577 uint64_t bch_crc64_update(uint64_t, const void *, size_t);
578 uint64_t bch_crc64(const void *, size_t);
579 
580 #endif /* _BCACHE_UTIL_H */
581