1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef _BCACHE_UTIL_H 4 #define _BCACHE_UTIL_H 5 6 #include <linux/blkdev.h> 7 #include <linux/errno.h> 8 #include <linux/kernel.h> 9 #include <linux/sched/clock.h> 10 #include <linux/llist.h> 11 #include <linux/ratelimit.h> 12 #include <linux/vmalloc.h> 13 #include <linux/workqueue.h> 14 #include <linux/crc64.h> 15 16 #include "closure.h" 17 18 #define PAGE_SECTORS (PAGE_SIZE / 512) 19 20 struct closure; 21 22 #ifdef CONFIG_BCACHE_DEBUG 23 24 #define EBUG_ON(cond) BUG_ON(cond) 25 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 26 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 27 28 #else /* DEBUG */ 29 30 #define EBUG_ON(cond) do { if (cond); } while (0) 31 #define atomic_dec_bug(v) atomic_dec(v) 32 #define atomic_inc_bug(v, i) atomic_inc(v) 33 34 #endif 35 36 #define DECLARE_HEAP(type, name) \ 37 struct { \ 38 size_t size, used; \ 39 type *data; \ 40 } name 41 42 #define init_heap(heap, _size, gfp) \ 43 ({ \ 44 size_t _bytes; \ 45 (heap)->used = 0; \ 46 (heap)->size = (_size); \ 47 _bytes = (heap)->size * sizeof(*(heap)->data); \ 48 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 49 (heap)->data; \ 50 }) 51 52 #define free_heap(heap) \ 53 do { \ 54 kvfree((heap)->data); \ 55 (heap)->data = NULL; \ 56 } while (0) 57 58 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 59 60 #define heap_sift(h, i, cmp) \ 61 do { \ 62 size_t _r, _j = i; \ 63 \ 64 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 65 _r = _j * 2 + 1; \ 66 if (_r + 1 < (h)->used && \ 67 cmp((h)->data[_r], (h)->data[_r + 1])) \ 68 _r++; \ 69 \ 70 if (cmp((h)->data[_r], (h)->data[_j])) \ 71 break; \ 72 heap_swap(h, _r, _j); \ 73 } \ 74 } while (0) 75 76 #define heap_sift_down(h, i, cmp) \ 77 do { \ 78 while (i) { \ 79 size_t p = (i - 1) / 2; \ 80 if (cmp((h)->data[i], (h)->data[p])) \ 81 break; \ 82 heap_swap(h, i, p); \ 83 i = p; \ 84 } \ 85 } while (0) 86 87 #define heap_add(h, d, cmp) \ 88 ({ \ 89 bool _r = !heap_full(h); \ 90 if (_r) { \ 91 size_t _i = (h)->used++; \ 92 (h)->data[_i] = d; \ 93 \ 94 heap_sift_down(h, _i, cmp); \ 95 heap_sift(h, _i, cmp); \ 96 } \ 97 _r; \ 98 }) 99 100 #define heap_pop(h, d, cmp) \ 101 ({ \ 102 bool _r = (h)->used; \ 103 if (_r) { \ 104 (d) = (h)->data[0]; \ 105 (h)->used--; \ 106 heap_swap(h, 0, (h)->used); \ 107 heap_sift(h, 0, cmp); \ 108 } \ 109 _r; \ 110 }) 111 112 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 113 114 #define heap_full(h) ((h)->used == (h)->size) 115 116 #define heap_empty(h) ((h)->used == 0) 117 118 #define DECLARE_FIFO(type, name) \ 119 struct { \ 120 size_t front, back, size, mask; \ 121 type *data; \ 122 } name 123 124 #define fifo_for_each(c, fifo, iter) \ 125 for (iter = (fifo)->front; \ 126 c = (fifo)->data[iter], iter != (fifo)->back; \ 127 iter = (iter + 1) & (fifo)->mask) 128 129 #define __init_fifo(fifo, gfp) \ 130 ({ \ 131 size_t _allocated_size, _bytes; \ 132 BUG_ON(!(fifo)->size); \ 133 \ 134 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 135 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 136 \ 137 (fifo)->mask = _allocated_size - 1; \ 138 (fifo)->front = (fifo)->back = 0; \ 139 \ 140 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 141 (fifo)->data; \ 142 }) 143 144 #define init_fifo_exact(fifo, _size, gfp) \ 145 ({ \ 146 (fifo)->size = (_size); \ 147 __init_fifo(fifo, gfp); \ 148 }) 149 150 #define init_fifo(fifo, _size, gfp) \ 151 ({ \ 152 (fifo)->size = (_size); \ 153 if ((fifo)->size > 4) \ 154 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 155 __init_fifo(fifo, gfp); \ 156 }) 157 158 #define free_fifo(fifo) \ 159 do { \ 160 kvfree((fifo)->data); \ 161 (fifo)->data = NULL; \ 162 } while (0) 163 164 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 165 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 166 167 #define fifo_empty(fifo) (!fifo_used(fifo)) 168 #define fifo_full(fifo) (!fifo_free(fifo)) 169 170 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 171 #define fifo_back(fifo) \ 172 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 173 174 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 175 176 #define fifo_push_back(fifo, i) \ 177 ({ \ 178 bool _r = !fifo_full((fifo)); \ 179 if (_r) { \ 180 (fifo)->data[(fifo)->back++] = (i); \ 181 (fifo)->back &= (fifo)->mask; \ 182 } \ 183 _r; \ 184 }) 185 186 #define fifo_pop_front(fifo, i) \ 187 ({ \ 188 bool _r = !fifo_empty((fifo)); \ 189 if (_r) { \ 190 (i) = (fifo)->data[(fifo)->front++]; \ 191 (fifo)->front &= (fifo)->mask; \ 192 } \ 193 _r; \ 194 }) 195 196 #define fifo_push_front(fifo, i) \ 197 ({ \ 198 bool _r = !fifo_full((fifo)); \ 199 if (_r) { \ 200 --(fifo)->front; \ 201 (fifo)->front &= (fifo)->mask; \ 202 (fifo)->data[(fifo)->front] = (i); \ 203 } \ 204 _r; \ 205 }) 206 207 #define fifo_pop_back(fifo, i) \ 208 ({ \ 209 bool _r = !fifo_empty((fifo)); \ 210 if (_r) { \ 211 --(fifo)->back; \ 212 (fifo)->back &= (fifo)->mask; \ 213 (i) = (fifo)->data[(fifo)->back] \ 214 } \ 215 _r; \ 216 }) 217 218 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 219 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 220 221 #define fifo_swap(l, r) \ 222 do { \ 223 swap((l)->front, (r)->front); \ 224 swap((l)->back, (r)->back); \ 225 swap((l)->size, (r)->size); \ 226 swap((l)->mask, (r)->mask); \ 227 swap((l)->data, (r)->data); \ 228 } while (0) 229 230 #define fifo_move(dest, src) \ 231 do { \ 232 typeof(*((dest)->data)) _t; \ 233 while (!fifo_full(dest) && \ 234 fifo_pop(src, _t)) \ 235 fifo_push(dest, _t); \ 236 } while (0) 237 238 /* 239 * Simple array based allocator - preallocates a number of elements and you can 240 * never allocate more than that, also has no locking. 241 * 242 * Handy because if you know you only need a fixed number of elements you don't 243 * have to worry about memory allocation failure, and sometimes a mempool isn't 244 * what you want. 245 * 246 * We treat the free elements as entries in a singly linked list, and the 247 * freelist as a stack - allocating and freeing push and pop off the freelist. 248 */ 249 250 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 251 struct { \ 252 type *freelist; \ 253 type data[size]; \ 254 } name 255 256 #define array_alloc(array) \ 257 ({ \ 258 typeof((array)->freelist) _ret = (array)->freelist; \ 259 \ 260 if (_ret) \ 261 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 262 \ 263 _ret; \ 264 }) 265 266 #define array_free(array, ptr) \ 267 do { \ 268 typeof((array)->freelist) _ptr = ptr; \ 269 \ 270 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 271 (array)->freelist = _ptr; \ 272 } while (0) 273 274 #define array_allocator_init(array) \ 275 do { \ 276 typeof((array)->freelist) _i; \ 277 \ 278 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 279 (array)->freelist = NULL; \ 280 \ 281 for (_i = (array)->data; \ 282 _i < (array)->data + ARRAY_SIZE((array)->data); \ 283 _i++) \ 284 array_free(array, _i); \ 285 } while (0) 286 287 #define array_freelist_empty(array) ((array)->freelist == NULL) 288 289 #define ANYSINT_MAX(t) \ 290 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 291 292 int bch_strtoint_h(const char *cp, int *res); 293 int bch_strtouint_h(const char *cp, unsigned int *res); 294 int bch_strtoll_h(const char *cp, long long *res); 295 int bch_strtoull_h(const char *cp, unsigned long long *res); 296 297 static inline int bch_strtol_h(const char *cp, long *res) 298 { 299 #if BITS_PER_LONG == 32 300 return bch_strtoint_h(cp, (int *) res); 301 #else 302 return bch_strtoll_h(cp, (long long *) res); 303 #endif 304 } 305 306 static inline int bch_strtoul_h(const char *cp, long *res) 307 { 308 #if BITS_PER_LONG == 32 309 return bch_strtouint_h(cp, (unsigned int *) res); 310 #else 311 return bch_strtoull_h(cp, (unsigned long long *) res); 312 #endif 313 } 314 315 #define strtoi_h(cp, res) \ 316 (__builtin_types_compatible_p(typeof(*res), int) \ 317 ? bch_strtoint_h(cp, (void *) res) \ 318 : __builtin_types_compatible_p(typeof(*res), long) \ 319 ? bch_strtol_h(cp, (void *) res) \ 320 : __builtin_types_compatible_p(typeof(*res), long long) \ 321 ? bch_strtoll_h(cp, (void *) res) \ 322 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 323 ? bch_strtouint_h(cp, (void *) res) \ 324 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 325 ? bch_strtoul_h(cp, (void *) res) \ 326 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 327 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 328 329 #define strtoul_safe(cp, var) \ 330 ({ \ 331 unsigned long _v; \ 332 int _r = kstrtoul(cp, 10, &_v); \ 333 if (!_r) \ 334 var = _v; \ 335 _r; \ 336 }) 337 338 #define strtoul_safe_clamp(cp, var, min, max) \ 339 ({ \ 340 unsigned long _v; \ 341 int _r = kstrtoul(cp, 10, &_v); \ 342 if (!_r) \ 343 var = clamp_t(typeof(var), _v, min, max); \ 344 _r; \ 345 }) 346 347 #define snprint(buf, size, var) \ 348 snprintf(buf, size, \ 349 __builtin_types_compatible_p(typeof(var), int) \ 350 ? "%i\n" : \ 351 __builtin_types_compatible_p(typeof(var), unsigned int) \ 352 ? "%u\n" : \ 353 __builtin_types_compatible_p(typeof(var), long) \ 354 ? "%li\n" : \ 355 __builtin_types_compatible_p(typeof(var), unsigned long)\ 356 ? "%lu\n" : \ 357 __builtin_types_compatible_p(typeof(var), int64_t) \ 358 ? "%lli\n" : \ 359 __builtin_types_compatible_p(typeof(var), uint64_t) \ 360 ? "%llu\n" : \ 361 __builtin_types_compatible_p(typeof(var), const char *) \ 362 ? "%s\n" : "%i\n", var) 363 364 ssize_t bch_hprint(char *buf, int64_t v); 365 366 bool bch_is_zero(const char *p, size_t n); 367 int bch_parse_uuid(const char *s, char *uuid); 368 369 struct time_stats { 370 spinlock_t lock; 371 /* 372 * all fields are in nanoseconds, averages are ewmas stored left shifted 373 * by 8 374 */ 375 uint64_t max_duration; 376 uint64_t average_duration; 377 uint64_t average_frequency; 378 uint64_t last; 379 }; 380 381 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 382 383 static inline unsigned int local_clock_us(void) 384 { 385 return local_clock() >> 10; 386 } 387 388 #define NSEC_PER_ns 1L 389 #define NSEC_PER_us NSEC_PER_USEC 390 #define NSEC_PER_ms NSEC_PER_MSEC 391 #define NSEC_PER_sec NSEC_PER_SEC 392 393 #define __print_time_stat(stats, name, stat, units) \ 394 sysfs_print(name ## _ ## stat ## _ ## units, \ 395 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 396 397 #define sysfs_print_time_stats(stats, name, \ 398 frequency_units, \ 399 duration_units) \ 400 do { \ 401 __print_time_stat(stats, name, \ 402 average_frequency, frequency_units); \ 403 __print_time_stat(stats, name, \ 404 average_duration, duration_units); \ 405 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 406 div_u64((stats)->max_duration, \ 407 NSEC_PER_ ## duration_units)); \ 408 \ 409 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 410 ? div_s64(local_clock() - (stats)->last, \ 411 NSEC_PER_ ## frequency_units) \ 412 : -1LL); \ 413 } while (0) 414 415 #define sysfs_time_stats_attribute(name, \ 416 frequency_units, \ 417 duration_units) \ 418 read_attribute(name ## _average_frequency_ ## frequency_units); \ 419 read_attribute(name ## _average_duration_ ## duration_units); \ 420 read_attribute(name ## _max_duration_ ## duration_units); \ 421 read_attribute(name ## _last_ ## frequency_units) 422 423 #define sysfs_time_stats_attribute_list(name, \ 424 frequency_units, \ 425 duration_units) \ 426 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 427 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 428 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 429 &sysfs_ ## name ## _last_ ## frequency_units, 430 431 #define ewma_add(ewma, val, weight, factor) \ 432 ({ \ 433 (ewma) *= (weight) - 1; \ 434 (ewma) += (val) << factor; \ 435 (ewma) /= (weight); \ 436 (ewma) >> factor; \ 437 }) 438 439 struct bch_ratelimit { 440 /* Next time we want to do some work, in nanoseconds */ 441 uint64_t next; 442 443 /* 444 * Rate at which we want to do work, in units per second 445 * The units here correspond to the units passed to bch_next_delay() 446 */ 447 atomic_long_t rate; 448 }; 449 450 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 451 { 452 d->next = local_clock(); 453 } 454 455 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 456 457 #define __DIV_SAFE(n, d, zero) \ 458 ({ \ 459 typeof(n) _n = (n); \ 460 typeof(d) _d = (d); \ 461 _d ? _n / _d : zero; \ 462 }) 463 464 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 465 466 #define container_of_or_null(ptr, type, member) \ 467 ({ \ 468 typeof(ptr) _ptr = ptr; \ 469 _ptr ? container_of(_ptr, type, member) : NULL; \ 470 }) 471 472 #define RB_INSERT(root, new, member, cmp) \ 473 ({ \ 474 __label__ dup; \ 475 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 476 typeof(new) this; \ 477 int res, ret = -1; \ 478 \ 479 while (*n) { \ 480 parent = *n; \ 481 this = container_of(*n, typeof(*(new)), member); \ 482 res = cmp(new, this); \ 483 if (!res) \ 484 goto dup; \ 485 n = res < 0 \ 486 ? &(*n)->rb_left \ 487 : &(*n)->rb_right; \ 488 } \ 489 \ 490 rb_link_node(&(new)->member, parent, n); \ 491 rb_insert_color(&(new)->member, root); \ 492 ret = 0; \ 493 dup: \ 494 ret; \ 495 }) 496 497 #define RB_SEARCH(root, search, member, cmp) \ 498 ({ \ 499 struct rb_node *n = (root)->rb_node; \ 500 typeof(&(search)) this, ret = NULL; \ 501 int res; \ 502 \ 503 while (n) { \ 504 this = container_of(n, typeof(search), member); \ 505 res = cmp(&(search), this); \ 506 if (!res) { \ 507 ret = this; \ 508 break; \ 509 } \ 510 n = res < 0 \ 511 ? n->rb_left \ 512 : n->rb_right; \ 513 } \ 514 ret; \ 515 }) 516 517 #define RB_GREATER(root, search, member, cmp) \ 518 ({ \ 519 struct rb_node *n = (root)->rb_node; \ 520 typeof(&(search)) this, ret = NULL; \ 521 int res; \ 522 \ 523 while (n) { \ 524 this = container_of(n, typeof(search), member); \ 525 res = cmp(&(search), this); \ 526 if (res < 0) { \ 527 ret = this; \ 528 n = n->rb_left; \ 529 } else \ 530 n = n->rb_right; \ 531 } \ 532 ret; \ 533 }) 534 535 #define RB_FIRST(root, type, member) \ 536 container_of_or_null(rb_first(root), type, member) 537 538 #define RB_LAST(root, type, member) \ 539 container_of_or_null(rb_last(root), type, member) 540 541 #define RB_NEXT(ptr, member) \ 542 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 543 544 #define RB_PREV(ptr, member) \ 545 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 546 547 static inline uint64_t bch_crc64(const void *p, size_t len) 548 { 549 uint64_t crc = 0xffffffffffffffffULL; 550 551 crc = crc64_be(crc, p, len); 552 return crc ^ 0xffffffffffffffffULL; 553 } 554 555 static inline uint64_t bch_crc64_update(uint64_t crc, 556 const void *p, 557 size_t len) 558 { 559 crc = crc64_be(crc, p, len); 560 return crc; 561 } 562 563 /* 564 * A stepwise-linear pseudo-exponential. This returns 1 << (x >> 565 * frac_bits), with the less-significant bits filled in by linear 566 * interpolation. 567 * 568 * This can also be interpreted as a floating-point number format, 569 * where the low frac_bits are the mantissa (with implicit leading 570 * 1 bit), and the more significant bits are the exponent. 571 * The return value is 1.mantissa * 2^exponent. 572 * 573 * The way this is used, fract_bits is 6 and the largest possible 574 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), 575 * so the maximum output is 0x1fc00. 576 */ 577 static inline unsigned int fract_exp_two(unsigned int x, 578 unsigned int fract_bits) 579 { 580 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ 581 582 mantissa += x & (mantissa - 1); 583 x >>= fract_bits; /* The exponent */ 584 /* Largest intermediate value 0x7f0000 */ 585 return mantissa << x >> fract_bits; 586 } 587 588 void bch_bio_map(struct bio *bio, void *base); 589 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); 590 591 static inline sector_t bdev_sectors(struct block_device *bdev) 592 { 593 return bdev->bd_inode->i_size >> 9; 594 } 595 #endif /* _BCACHE_UTIL_H */ 596