1 2 #ifndef _BCACHE_UTIL_H 3 #define _BCACHE_UTIL_H 4 5 #include <linux/blkdev.h> 6 #include <linux/errno.h> 7 #include <linux/blkdev.h> 8 #include <linux/kernel.h> 9 #include <linux/sched/clock.h> 10 #include <linux/llist.h> 11 #include <linux/ratelimit.h> 12 #include <linux/vmalloc.h> 13 #include <linux/workqueue.h> 14 15 #include "closure.h" 16 17 #define PAGE_SECTORS (PAGE_SIZE / 512) 18 19 struct closure; 20 21 #ifdef CONFIG_BCACHE_DEBUG 22 23 #define EBUG_ON(cond) BUG_ON(cond) 24 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 25 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 26 27 #else /* DEBUG */ 28 29 #define EBUG_ON(cond) do { if (cond); } while (0) 30 #define atomic_dec_bug(v) atomic_dec(v) 31 #define atomic_inc_bug(v, i) atomic_inc(v) 32 33 #endif 34 35 #define DECLARE_HEAP(type, name) \ 36 struct { \ 37 size_t size, used; \ 38 type *data; \ 39 } name 40 41 #define init_heap(heap, _size, gfp) \ 42 ({ \ 43 size_t _bytes; \ 44 (heap)->used = 0; \ 45 (heap)->size = (_size); \ 46 _bytes = (heap)->size * sizeof(*(heap)->data); \ 47 (heap)->data = NULL; \ 48 if (_bytes < KMALLOC_MAX_SIZE) \ 49 (heap)->data = kmalloc(_bytes, (gfp)); \ 50 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \ 51 (heap)->data = vmalloc(_bytes); \ 52 (heap)->data; \ 53 }) 54 55 #define free_heap(heap) \ 56 do { \ 57 kvfree((heap)->data); \ 58 (heap)->data = NULL; \ 59 } while (0) 60 61 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 62 63 #define heap_sift(h, i, cmp) \ 64 do { \ 65 size_t _r, _j = i; \ 66 \ 67 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 68 _r = _j * 2 + 1; \ 69 if (_r + 1 < (h)->used && \ 70 cmp((h)->data[_r], (h)->data[_r + 1])) \ 71 _r++; \ 72 \ 73 if (cmp((h)->data[_r], (h)->data[_j])) \ 74 break; \ 75 heap_swap(h, _r, _j); \ 76 } \ 77 } while (0) 78 79 #define heap_sift_down(h, i, cmp) \ 80 do { \ 81 while (i) { \ 82 size_t p = (i - 1) / 2; \ 83 if (cmp((h)->data[i], (h)->data[p])) \ 84 break; \ 85 heap_swap(h, i, p); \ 86 i = p; \ 87 } \ 88 } while (0) 89 90 #define heap_add(h, d, cmp) \ 91 ({ \ 92 bool _r = !heap_full(h); \ 93 if (_r) { \ 94 size_t _i = (h)->used++; \ 95 (h)->data[_i] = d; \ 96 \ 97 heap_sift_down(h, _i, cmp); \ 98 heap_sift(h, _i, cmp); \ 99 } \ 100 _r; \ 101 }) 102 103 #define heap_pop(h, d, cmp) \ 104 ({ \ 105 bool _r = (h)->used; \ 106 if (_r) { \ 107 (d) = (h)->data[0]; \ 108 (h)->used--; \ 109 heap_swap(h, 0, (h)->used); \ 110 heap_sift(h, 0, cmp); \ 111 } \ 112 _r; \ 113 }) 114 115 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 116 117 #define heap_full(h) ((h)->used == (h)->size) 118 119 #define DECLARE_FIFO(type, name) \ 120 struct { \ 121 size_t front, back, size, mask; \ 122 type *data; \ 123 } name 124 125 #define fifo_for_each(c, fifo, iter) \ 126 for (iter = (fifo)->front; \ 127 c = (fifo)->data[iter], iter != (fifo)->back; \ 128 iter = (iter + 1) & (fifo)->mask) 129 130 #define __init_fifo(fifo, gfp) \ 131 ({ \ 132 size_t _allocated_size, _bytes; \ 133 BUG_ON(!(fifo)->size); \ 134 \ 135 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 136 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 137 \ 138 (fifo)->mask = _allocated_size - 1; \ 139 (fifo)->front = (fifo)->back = 0; \ 140 (fifo)->data = NULL; \ 141 \ 142 if (_bytes < KMALLOC_MAX_SIZE) \ 143 (fifo)->data = kmalloc(_bytes, (gfp)); \ 144 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \ 145 (fifo)->data = vmalloc(_bytes); \ 146 (fifo)->data; \ 147 }) 148 149 #define init_fifo_exact(fifo, _size, gfp) \ 150 ({ \ 151 (fifo)->size = (_size); \ 152 __init_fifo(fifo, gfp); \ 153 }) 154 155 #define init_fifo(fifo, _size, gfp) \ 156 ({ \ 157 (fifo)->size = (_size); \ 158 if ((fifo)->size > 4) \ 159 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 160 __init_fifo(fifo, gfp); \ 161 }) 162 163 #define free_fifo(fifo) \ 164 do { \ 165 kvfree((fifo)->data); \ 166 (fifo)->data = NULL; \ 167 } while (0) 168 169 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 170 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 171 172 #define fifo_empty(fifo) (!fifo_used(fifo)) 173 #define fifo_full(fifo) (!fifo_free(fifo)) 174 175 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 176 #define fifo_back(fifo) \ 177 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 178 179 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 180 181 #define fifo_push_back(fifo, i) \ 182 ({ \ 183 bool _r = !fifo_full((fifo)); \ 184 if (_r) { \ 185 (fifo)->data[(fifo)->back++] = (i); \ 186 (fifo)->back &= (fifo)->mask; \ 187 } \ 188 _r; \ 189 }) 190 191 #define fifo_pop_front(fifo, i) \ 192 ({ \ 193 bool _r = !fifo_empty((fifo)); \ 194 if (_r) { \ 195 (i) = (fifo)->data[(fifo)->front++]; \ 196 (fifo)->front &= (fifo)->mask; \ 197 } \ 198 _r; \ 199 }) 200 201 #define fifo_push_front(fifo, i) \ 202 ({ \ 203 bool _r = !fifo_full((fifo)); \ 204 if (_r) { \ 205 --(fifo)->front; \ 206 (fifo)->front &= (fifo)->mask; \ 207 (fifo)->data[(fifo)->front] = (i); \ 208 } \ 209 _r; \ 210 }) 211 212 #define fifo_pop_back(fifo, i) \ 213 ({ \ 214 bool _r = !fifo_empty((fifo)); \ 215 if (_r) { \ 216 --(fifo)->back; \ 217 (fifo)->back &= (fifo)->mask; \ 218 (i) = (fifo)->data[(fifo)->back] \ 219 } \ 220 _r; \ 221 }) 222 223 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 224 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 225 226 #define fifo_swap(l, r) \ 227 do { \ 228 swap((l)->front, (r)->front); \ 229 swap((l)->back, (r)->back); \ 230 swap((l)->size, (r)->size); \ 231 swap((l)->mask, (r)->mask); \ 232 swap((l)->data, (r)->data); \ 233 } while (0) 234 235 #define fifo_move(dest, src) \ 236 do { \ 237 typeof(*((dest)->data)) _t; \ 238 while (!fifo_full(dest) && \ 239 fifo_pop(src, _t)) \ 240 fifo_push(dest, _t); \ 241 } while (0) 242 243 /* 244 * Simple array based allocator - preallocates a number of elements and you can 245 * never allocate more than that, also has no locking. 246 * 247 * Handy because if you know you only need a fixed number of elements you don't 248 * have to worry about memory allocation failure, and sometimes a mempool isn't 249 * what you want. 250 * 251 * We treat the free elements as entries in a singly linked list, and the 252 * freelist as a stack - allocating and freeing push and pop off the freelist. 253 */ 254 255 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 256 struct { \ 257 type *freelist; \ 258 type data[size]; \ 259 } name 260 261 #define array_alloc(array) \ 262 ({ \ 263 typeof((array)->freelist) _ret = (array)->freelist; \ 264 \ 265 if (_ret) \ 266 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 267 \ 268 _ret; \ 269 }) 270 271 #define array_free(array, ptr) \ 272 do { \ 273 typeof((array)->freelist) _ptr = ptr; \ 274 \ 275 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 276 (array)->freelist = _ptr; \ 277 } while (0) 278 279 #define array_allocator_init(array) \ 280 do { \ 281 typeof((array)->freelist) _i; \ 282 \ 283 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 284 (array)->freelist = NULL; \ 285 \ 286 for (_i = (array)->data; \ 287 _i < (array)->data + ARRAY_SIZE((array)->data); \ 288 _i++) \ 289 array_free(array, _i); \ 290 } while (0) 291 292 #define array_freelist_empty(array) ((array)->freelist == NULL) 293 294 #define ANYSINT_MAX(t) \ 295 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 296 297 int bch_strtoint_h(const char *, int *); 298 int bch_strtouint_h(const char *, unsigned int *); 299 int bch_strtoll_h(const char *, long long *); 300 int bch_strtoull_h(const char *, unsigned long long *); 301 302 static inline int bch_strtol_h(const char *cp, long *res) 303 { 304 #if BITS_PER_LONG == 32 305 return bch_strtoint_h(cp, (int *) res); 306 #else 307 return bch_strtoll_h(cp, (long long *) res); 308 #endif 309 } 310 311 static inline int bch_strtoul_h(const char *cp, long *res) 312 { 313 #if BITS_PER_LONG == 32 314 return bch_strtouint_h(cp, (unsigned int *) res); 315 #else 316 return bch_strtoull_h(cp, (unsigned long long *) res); 317 #endif 318 } 319 320 #define strtoi_h(cp, res) \ 321 (__builtin_types_compatible_p(typeof(*res), int) \ 322 ? bch_strtoint_h(cp, (void *) res) \ 323 : __builtin_types_compatible_p(typeof(*res), long) \ 324 ? bch_strtol_h(cp, (void *) res) \ 325 : __builtin_types_compatible_p(typeof(*res), long long) \ 326 ? bch_strtoll_h(cp, (void *) res) \ 327 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 328 ? bch_strtouint_h(cp, (void *) res) \ 329 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 330 ? bch_strtoul_h(cp, (void *) res) \ 331 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 332 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 333 334 #define strtoul_safe(cp, var) \ 335 ({ \ 336 unsigned long _v; \ 337 int _r = kstrtoul(cp, 10, &_v); \ 338 if (!_r) \ 339 var = _v; \ 340 _r; \ 341 }) 342 343 #define strtoul_safe_clamp(cp, var, min, max) \ 344 ({ \ 345 unsigned long _v; \ 346 int _r = kstrtoul(cp, 10, &_v); \ 347 if (!_r) \ 348 var = clamp_t(typeof(var), _v, min, max); \ 349 _r; \ 350 }) 351 352 #define snprint(buf, size, var) \ 353 snprintf(buf, size, \ 354 __builtin_types_compatible_p(typeof(var), int) \ 355 ? "%i\n" : \ 356 __builtin_types_compatible_p(typeof(var), unsigned) \ 357 ? "%u\n" : \ 358 __builtin_types_compatible_p(typeof(var), long) \ 359 ? "%li\n" : \ 360 __builtin_types_compatible_p(typeof(var), unsigned long)\ 361 ? "%lu\n" : \ 362 __builtin_types_compatible_p(typeof(var), int64_t) \ 363 ? "%lli\n" : \ 364 __builtin_types_compatible_p(typeof(var), uint64_t) \ 365 ? "%llu\n" : \ 366 __builtin_types_compatible_p(typeof(var), const char *) \ 367 ? "%s\n" : "%i\n", var) 368 369 ssize_t bch_hprint(char *buf, int64_t v); 370 371 bool bch_is_zero(const char *p, size_t n); 372 int bch_parse_uuid(const char *s, char *uuid); 373 374 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], 375 size_t selected); 376 377 ssize_t bch_read_string_list(const char *buf, const char * const list[]); 378 379 struct time_stats { 380 spinlock_t lock; 381 /* 382 * all fields are in nanoseconds, averages are ewmas stored left shifted 383 * by 8 384 */ 385 uint64_t max_duration; 386 uint64_t average_duration; 387 uint64_t average_frequency; 388 uint64_t last; 389 }; 390 391 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 392 393 static inline unsigned local_clock_us(void) 394 { 395 return local_clock() >> 10; 396 } 397 398 #define NSEC_PER_ns 1L 399 #define NSEC_PER_us NSEC_PER_USEC 400 #define NSEC_PER_ms NSEC_PER_MSEC 401 #define NSEC_PER_sec NSEC_PER_SEC 402 403 #define __print_time_stat(stats, name, stat, units) \ 404 sysfs_print(name ## _ ## stat ## _ ## units, \ 405 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 406 407 #define sysfs_print_time_stats(stats, name, \ 408 frequency_units, \ 409 duration_units) \ 410 do { \ 411 __print_time_stat(stats, name, \ 412 average_frequency, frequency_units); \ 413 __print_time_stat(stats, name, \ 414 average_duration, duration_units); \ 415 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 416 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\ 417 \ 418 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 419 ? div_s64(local_clock() - (stats)->last, \ 420 NSEC_PER_ ## frequency_units) \ 421 : -1LL); \ 422 } while (0) 423 424 #define sysfs_time_stats_attribute(name, \ 425 frequency_units, \ 426 duration_units) \ 427 read_attribute(name ## _average_frequency_ ## frequency_units); \ 428 read_attribute(name ## _average_duration_ ## duration_units); \ 429 read_attribute(name ## _max_duration_ ## duration_units); \ 430 read_attribute(name ## _last_ ## frequency_units) 431 432 #define sysfs_time_stats_attribute_list(name, \ 433 frequency_units, \ 434 duration_units) \ 435 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 436 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 437 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 438 &sysfs_ ## name ## _last_ ## frequency_units, 439 440 #define ewma_add(ewma, val, weight, factor) \ 441 ({ \ 442 (ewma) *= (weight) - 1; \ 443 (ewma) += (val) << factor; \ 444 (ewma) /= (weight); \ 445 (ewma) >> factor; \ 446 }) 447 448 struct bch_ratelimit { 449 /* Next time we want to do some work, in nanoseconds */ 450 uint64_t next; 451 452 /* 453 * Rate at which we want to do work, in units per nanosecond 454 * The units here correspond to the units passed to bch_next_delay() 455 */ 456 unsigned rate; 457 }; 458 459 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 460 { 461 d->next = local_clock(); 462 } 463 464 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 465 466 #define __DIV_SAFE(n, d, zero) \ 467 ({ \ 468 typeof(n) _n = (n); \ 469 typeof(d) _d = (d); \ 470 _d ? _n / _d : zero; \ 471 }) 472 473 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 474 475 #define container_of_or_null(ptr, type, member) \ 476 ({ \ 477 typeof(ptr) _ptr = ptr; \ 478 _ptr ? container_of(_ptr, type, member) : NULL; \ 479 }) 480 481 #define RB_INSERT(root, new, member, cmp) \ 482 ({ \ 483 __label__ dup; \ 484 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 485 typeof(new) this; \ 486 int res, ret = -1; \ 487 \ 488 while (*n) { \ 489 parent = *n; \ 490 this = container_of(*n, typeof(*(new)), member); \ 491 res = cmp(new, this); \ 492 if (!res) \ 493 goto dup; \ 494 n = res < 0 \ 495 ? &(*n)->rb_left \ 496 : &(*n)->rb_right; \ 497 } \ 498 \ 499 rb_link_node(&(new)->member, parent, n); \ 500 rb_insert_color(&(new)->member, root); \ 501 ret = 0; \ 502 dup: \ 503 ret; \ 504 }) 505 506 #define RB_SEARCH(root, search, member, cmp) \ 507 ({ \ 508 struct rb_node *n = (root)->rb_node; \ 509 typeof(&(search)) this, ret = NULL; \ 510 int res; \ 511 \ 512 while (n) { \ 513 this = container_of(n, typeof(search), member); \ 514 res = cmp(&(search), this); \ 515 if (!res) { \ 516 ret = this; \ 517 break; \ 518 } \ 519 n = res < 0 \ 520 ? n->rb_left \ 521 : n->rb_right; \ 522 } \ 523 ret; \ 524 }) 525 526 #define RB_GREATER(root, search, member, cmp) \ 527 ({ \ 528 struct rb_node *n = (root)->rb_node; \ 529 typeof(&(search)) this, ret = NULL; \ 530 int res; \ 531 \ 532 while (n) { \ 533 this = container_of(n, typeof(search), member); \ 534 res = cmp(&(search), this); \ 535 if (res < 0) { \ 536 ret = this; \ 537 n = n->rb_left; \ 538 } else \ 539 n = n->rb_right; \ 540 } \ 541 ret; \ 542 }) 543 544 #define RB_FIRST(root, type, member) \ 545 container_of_or_null(rb_first(root), type, member) 546 547 #define RB_LAST(root, type, member) \ 548 container_of_or_null(rb_last(root), type, member) 549 550 #define RB_NEXT(ptr, member) \ 551 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 552 553 #define RB_PREV(ptr, member) \ 554 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 555 556 /* Does linear interpolation between powers of two */ 557 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 558 { 559 unsigned fract = x & ~(~0 << fract_bits); 560 561 x >>= fract_bits; 562 x = 1 << x; 563 x += (x * fract) >> fract_bits; 564 565 return x; 566 } 567 568 void bch_bio_map(struct bio *bio, void *base); 569 570 static inline sector_t bdev_sectors(struct block_device *bdev) 571 { 572 return bdev->bd_inode->i_size >> 9; 573 } 574 575 #define closure_bio_submit(bio, cl) \ 576 do { \ 577 closure_get(cl); \ 578 generic_make_request(bio); \ 579 } while (0) 580 581 uint64_t bch_crc64_update(uint64_t, const void *, size_t); 582 uint64_t bch_crc64(const void *, size_t); 583 584 #endif /* _BCACHE_UTIL_H */ 585