1 /* SPDX-License-Identifier: GPL-2.0 */ 2 3 #ifndef _BCACHE_UTIL_H 4 #define _BCACHE_UTIL_H 5 6 #include <linux/blkdev.h> 7 #include <linux/errno.h> 8 #include <linux/kernel.h> 9 #include <linux/sched/clock.h> 10 #include <linux/llist.h> 11 #include <linux/ratelimit.h> 12 #include <linux/vmalloc.h> 13 #include <linux/workqueue.h> 14 #include <linux/crc64.h> 15 16 #include "closure.h" 17 18 struct closure; 19 20 #ifdef CONFIG_BCACHE_DEBUG 21 22 #define EBUG_ON(cond) BUG_ON(cond) 23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 25 26 #else /* DEBUG */ 27 28 #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0) 29 #define atomic_dec_bug(v) atomic_dec(v) 30 #define atomic_inc_bug(v, i) atomic_inc(v) 31 32 #endif 33 34 #define DECLARE_HEAP(type, name) \ 35 struct { \ 36 size_t size, used; \ 37 type *data; \ 38 } name 39 40 #define init_heap(heap, _size, gfp) \ 41 ({ \ 42 size_t _bytes; \ 43 (heap)->used = 0; \ 44 (heap)->size = (_size); \ 45 _bytes = (heap)->size * sizeof(*(heap)->data); \ 46 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 47 (heap)->data; \ 48 }) 49 50 #define free_heap(heap) \ 51 do { \ 52 kvfree((heap)->data); \ 53 (heap)->data = NULL; \ 54 } while (0) 55 56 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 57 58 #define heap_sift(h, i, cmp) \ 59 do { \ 60 size_t _r, _j = i; \ 61 \ 62 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 63 _r = _j * 2 + 1; \ 64 if (_r + 1 < (h)->used && \ 65 cmp((h)->data[_r], (h)->data[_r + 1])) \ 66 _r++; \ 67 \ 68 if (cmp((h)->data[_r], (h)->data[_j])) \ 69 break; \ 70 heap_swap(h, _r, _j); \ 71 } \ 72 } while (0) 73 74 #define heap_sift_down(h, i, cmp) \ 75 do { \ 76 while (i) { \ 77 size_t p = (i - 1) / 2; \ 78 if (cmp((h)->data[i], (h)->data[p])) \ 79 break; \ 80 heap_swap(h, i, p); \ 81 i = p; \ 82 } \ 83 } while (0) 84 85 #define heap_add(h, d, cmp) \ 86 ({ \ 87 bool _r = !heap_full(h); \ 88 if (_r) { \ 89 size_t _i = (h)->used++; \ 90 (h)->data[_i] = d; \ 91 \ 92 heap_sift_down(h, _i, cmp); \ 93 heap_sift(h, _i, cmp); \ 94 } \ 95 _r; \ 96 }) 97 98 #define heap_pop(h, d, cmp) \ 99 ({ \ 100 bool _r = (h)->used; \ 101 if (_r) { \ 102 (d) = (h)->data[0]; \ 103 (h)->used--; \ 104 heap_swap(h, 0, (h)->used); \ 105 heap_sift(h, 0, cmp); \ 106 } \ 107 _r; \ 108 }) 109 110 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 111 112 #define heap_full(h) ((h)->used == (h)->size) 113 114 #define DECLARE_FIFO(type, name) \ 115 struct { \ 116 size_t front, back, size, mask; \ 117 type *data; \ 118 } name 119 120 #define fifo_for_each(c, fifo, iter) \ 121 for (iter = (fifo)->front; \ 122 c = (fifo)->data[iter], iter != (fifo)->back; \ 123 iter = (iter + 1) & (fifo)->mask) 124 125 #define __init_fifo(fifo, gfp) \ 126 ({ \ 127 size_t _allocated_size, _bytes; \ 128 BUG_ON(!(fifo)->size); \ 129 \ 130 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 131 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 132 \ 133 (fifo)->mask = _allocated_size - 1; \ 134 (fifo)->front = (fifo)->back = 0; \ 135 \ 136 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \ 137 (fifo)->data; \ 138 }) 139 140 #define init_fifo_exact(fifo, _size, gfp) \ 141 ({ \ 142 (fifo)->size = (_size); \ 143 __init_fifo(fifo, gfp); \ 144 }) 145 146 #define init_fifo(fifo, _size, gfp) \ 147 ({ \ 148 (fifo)->size = (_size); \ 149 if ((fifo)->size > 4) \ 150 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 151 __init_fifo(fifo, gfp); \ 152 }) 153 154 #define free_fifo(fifo) \ 155 do { \ 156 kvfree((fifo)->data); \ 157 (fifo)->data = NULL; \ 158 } while (0) 159 160 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 161 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 162 163 #define fifo_empty(fifo) (!fifo_used(fifo)) 164 #define fifo_full(fifo) (!fifo_free(fifo)) 165 166 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 167 #define fifo_back(fifo) \ 168 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 169 170 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 171 172 #define fifo_push_back(fifo, i) \ 173 ({ \ 174 bool _r = !fifo_full((fifo)); \ 175 if (_r) { \ 176 (fifo)->data[(fifo)->back++] = (i); \ 177 (fifo)->back &= (fifo)->mask; \ 178 } \ 179 _r; \ 180 }) 181 182 #define fifo_pop_front(fifo, i) \ 183 ({ \ 184 bool _r = !fifo_empty((fifo)); \ 185 if (_r) { \ 186 (i) = (fifo)->data[(fifo)->front++]; \ 187 (fifo)->front &= (fifo)->mask; \ 188 } \ 189 _r; \ 190 }) 191 192 #define fifo_push_front(fifo, i) \ 193 ({ \ 194 bool _r = !fifo_full((fifo)); \ 195 if (_r) { \ 196 --(fifo)->front; \ 197 (fifo)->front &= (fifo)->mask; \ 198 (fifo)->data[(fifo)->front] = (i); \ 199 } \ 200 _r; \ 201 }) 202 203 #define fifo_pop_back(fifo, i) \ 204 ({ \ 205 bool _r = !fifo_empty((fifo)); \ 206 if (_r) { \ 207 --(fifo)->back; \ 208 (fifo)->back &= (fifo)->mask; \ 209 (i) = (fifo)->data[(fifo)->back] \ 210 } \ 211 _r; \ 212 }) 213 214 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 215 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 216 217 #define fifo_swap(l, r) \ 218 do { \ 219 swap((l)->front, (r)->front); \ 220 swap((l)->back, (r)->back); \ 221 swap((l)->size, (r)->size); \ 222 swap((l)->mask, (r)->mask); \ 223 swap((l)->data, (r)->data); \ 224 } while (0) 225 226 #define fifo_move(dest, src) \ 227 do { \ 228 typeof(*((dest)->data)) _t; \ 229 while (!fifo_full(dest) && \ 230 fifo_pop(src, _t)) \ 231 fifo_push(dest, _t); \ 232 } while (0) 233 234 /* 235 * Simple array based allocator - preallocates a number of elements and you can 236 * never allocate more than that, also has no locking. 237 * 238 * Handy because if you know you only need a fixed number of elements you don't 239 * have to worry about memory allocation failure, and sometimes a mempool isn't 240 * what you want. 241 * 242 * We treat the free elements as entries in a singly linked list, and the 243 * freelist as a stack - allocating and freeing push and pop off the freelist. 244 */ 245 246 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 247 struct { \ 248 type *freelist; \ 249 type data[size]; \ 250 } name 251 252 #define array_alloc(array) \ 253 ({ \ 254 typeof((array)->freelist) _ret = (array)->freelist; \ 255 \ 256 if (_ret) \ 257 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 258 \ 259 _ret; \ 260 }) 261 262 #define array_free(array, ptr) \ 263 do { \ 264 typeof((array)->freelist) _ptr = ptr; \ 265 \ 266 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 267 (array)->freelist = _ptr; \ 268 } while (0) 269 270 #define array_allocator_init(array) \ 271 do { \ 272 typeof((array)->freelist) _i; \ 273 \ 274 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 275 (array)->freelist = NULL; \ 276 \ 277 for (_i = (array)->data; \ 278 _i < (array)->data + ARRAY_SIZE((array)->data); \ 279 _i++) \ 280 array_free(array, _i); \ 281 } while (0) 282 283 #define array_freelist_empty(array) ((array)->freelist == NULL) 284 285 #define ANYSINT_MAX(t) \ 286 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 287 288 int bch_strtoint_h(const char *cp, int *res); 289 int bch_strtouint_h(const char *cp, unsigned int *res); 290 int bch_strtoll_h(const char *cp, long long *res); 291 int bch_strtoull_h(const char *cp, unsigned long long *res); 292 293 static inline int bch_strtol_h(const char *cp, long *res) 294 { 295 #if BITS_PER_LONG == 32 296 return bch_strtoint_h(cp, (int *) res); 297 #else 298 return bch_strtoll_h(cp, (long long *) res); 299 #endif 300 } 301 302 static inline int bch_strtoul_h(const char *cp, long *res) 303 { 304 #if BITS_PER_LONG == 32 305 return bch_strtouint_h(cp, (unsigned int *) res); 306 #else 307 return bch_strtoull_h(cp, (unsigned long long *) res); 308 #endif 309 } 310 311 #define strtoi_h(cp, res) \ 312 (__builtin_types_compatible_p(typeof(*res), int) \ 313 ? bch_strtoint_h(cp, (void *) res) \ 314 : __builtin_types_compatible_p(typeof(*res), long) \ 315 ? bch_strtol_h(cp, (void *) res) \ 316 : __builtin_types_compatible_p(typeof(*res), long long) \ 317 ? bch_strtoll_h(cp, (void *) res) \ 318 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 319 ? bch_strtouint_h(cp, (void *) res) \ 320 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 321 ? bch_strtoul_h(cp, (void *) res) \ 322 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 323 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 324 325 #define strtoul_safe(cp, var) \ 326 ({ \ 327 unsigned long _v; \ 328 int _r = kstrtoul(cp, 10, &_v); \ 329 if (!_r) \ 330 var = _v; \ 331 _r; \ 332 }) 333 334 #define strtoul_safe_clamp(cp, var, min, max) \ 335 ({ \ 336 unsigned long _v; \ 337 int _r = kstrtoul(cp, 10, &_v); \ 338 if (!_r) \ 339 var = clamp_t(typeof(var), _v, min, max); \ 340 _r; \ 341 }) 342 343 #define snprint(buf, size, var) \ 344 snprintf(buf, size, \ 345 __builtin_types_compatible_p(typeof(var), int) \ 346 ? "%i\n" : \ 347 __builtin_types_compatible_p(typeof(var), unsigned int) \ 348 ? "%u\n" : \ 349 __builtin_types_compatible_p(typeof(var), long) \ 350 ? "%li\n" : \ 351 __builtin_types_compatible_p(typeof(var), unsigned long)\ 352 ? "%lu\n" : \ 353 __builtin_types_compatible_p(typeof(var), int64_t) \ 354 ? "%lli\n" : \ 355 __builtin_types_compatible_p(typeof(var), uint64_t) \ 356 ? "%llu\n" : \ 357 __builtin_types_compatible_p(typeof(var), const char *) \ 358 ? "%s\n" : "%i\n", var) 359 360 ssize_t bch_hprint(char *buf, int64_t v); 361 362 bool bch_is_zero(const char *p, size_t n); 363 int bch_parse_uuid(const char *s, char *uuid); 364 365 struct time_stats { 366 spinlock_t lock; 367 /* 368 * all fields are in nanoseconds, averages are ewmas stored left shifted 369 * by 8 370 */ 371 uint64_t max_duration; 372 uint64_t average_duration; 373 uint64_t average_frequency; 374 uint64_t last; 375 }; 376 377 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 378 379 static inline unsigned int local_clock_us(void) 380 { 381 return local_clock() >> 10; 382 } 383 384 #define NSEC_PER_ns 1L 385 #define NSEC_PER_us NSEC_PER_USEC 386 #define NSEC_PER_ms NSEC_PER_MSEC 387 #define NSEC_PER_sec NSEC_PER_SEC 388 389 #define __print_time_stat(stats, name, stat, units) \ 390 sysfs_print(name ## _ ## stat ## _ ## units, \ 391 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 392 393 #define sysfs_print_time_stats(stats, name, \ 394 frequency_units, \ 395 duration_units) \ 396 do { \ 397 __print_time_stat(stats, name, \ 398 average_frequency, frequency_units); \ 399 __print_time_stat(stats, name, \ 400 average_duration, duration_units); \ 401 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 402 div_u64((stats)->max_duration, \ 403 NSEC_PER_ ## duration_units)); \ 404 \ 405 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 406 ? div_s64(local_clock() - (stats)->last, \ 407 NSEC_PER_ ## frequency_units) \ 408 : -1LL); \ 409 } while (0) 410 411 #define sysfs_time_stats_attribute(name, \ 412 frequency_units, \ 413 duration_units) \ 414 read_attribute(name ## _average_frequency_ ## frequency_units); \ 415 read_attribute(name ## _average_duration_ ## duration_units); \ 416 read_attribute(name ## _max_duration_ ## duration_units); \ 417 read_attribute(name ## _last_ ## frequency_units) 418 419 #define sysfs_time_stats_attribute_list(name, \ 420 frequency_units, \ 421 duration_units) \ 422 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 423 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 424 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 425 &sysfs_ ## name ## _last_ ## frequency_units, 426 427 #define ewma_add(ewma, val, weight, factor) \ 428 ({ \ 429 (ewma) *= (weight) - 1; \ 430 (ewma) += (val) << factor; \ 431 (ewma) /= (weight); \ 432 (ewma) >> factor; \ 433 }) 434 435 struct bch_ratelimit { 436 /* Next time we want to do some work, in nanoseconds */ 437 uint64_t next; 438 439 /* 440 * Rate at which we want to do work, in units per second 441 * The units here correspond to the units passed to bch_next_delay() 442 */ 443 atomic_long_t rate; 444 }; 445 446 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 447 { 448 d->next = local_clock(); 449 } 450 451 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 452 453 #define __DIV_SAFE(n, d, zero) \ 454 ({ \ 455 typeof(n) _n = (n); \ 456 typeof(d) _d = (d); \ 457 _d ? _n / _d : zero; \ 458 }) 459 460 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 461 462 #define container_of_or_null(ptr, type, member) \ 463 ({ \ 464 typeof(ptr) _ptr = ptr; \ 465 _ptr ? container_of(_ptr, type, member) : NULL; \ 466 }) 467 468 #define RB_INSERT(root, new, member, cmp) \ 469 ({ \ 470 __label__ dup; \ 471 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 472 typeof(new) this; \ 473 int res, ret = -1; \ 474 \ 475 while (*n) { \ 476 parent = *n; \ 477 this = container_of(*n, typeof(*(new)), member); \ 478 res = cmp(new, this); \ 479 if (!res) \ 480 goto dup; \ 481 n = res < 0 \ 482 ? &(*n)->rb_left \ 483 : &(*n)->rb_right; \ 484 } \ 485 \ 486 rb_link_node(&(new)->member, parent, n); \ 487 rb_insert_color(&(new)->member, root); \ 488 ret = 0; \ 489 dup: \ 490 ret; \ 491 }) 492 493 #define RB_SEARCH(root, search, member, cmp) \ 494 ({ \ 495 struct rb_node *n = (root)->rb_node; \ 496 typeof(&(search)) this, ret = NULL; \ 497 int res; \ 498 \ 499 while (n) { \ 500 this = container_of(n, typeof(search), member); \ 501 res = cmp(&(search), this); \ 502 if (!res) { \ 503 ret = this; \ 504 break; \ 505 } \ 506 n = res < 0 \ 507 ? n->rb_left \ 508 : n->rb_right; \ 509 } \ 510 ret; \ 511 }) 512 513 #define RB_GREATER(root, search, member, cmp) \ 514 ({ \ 515 struct rb_node *n = (root)->rb_node; \ 516 typeof(&(search)) this, ret = NULL; \ 517 int res; \ 518 \ 519 while (n) { \ 520 this = container_of(n, typeof(search), member); \ 521 res = cmp(&(search), this); \ 522 if (res < 0) { \ 523 ret = this; \ 524 n = n->rb_left; \ 525 } else \ 526 n = n->rb_right; \ 527 } \ 528 ret; \ 529 }) 530 531 #define RB_FIRST(root, type, member) \ 532 container_of_or_null(rb_first(root), type, member) 533 534 #define RB_LAST(root, type, member) \ 535 container_of_or_null(rb_last(root), type, member) 536 537 #define RB_NEXT(ptr, member) \ 538 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 539 540 #define RB_PREV(ptr, member) \ 541 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 542 543 static inline uint64_t bch_crc64(const void *p, size_t len) 544 { 545 uint64_t crc = 0xffffffffffffffffULL; 546 547 crc = crc64_be(crc, p, len); 548 return crc ^ 0xffffffffffffffffULL; 549 } 550 551 static inline uint64_t bch_crc64_update(uint64_t crc, 552 const void *p, 553 size_t len) 554 { 555 crc = crc64_be(crc, p, len); 556 return crc; 557 } 558 559 /* 560 * A stepwise-linear pseudo-exponential. This returns 1 << (x >> 561 * frac_bits), with the less-significant bits filled in by linear 562 * interpolation. 563 * 564 * This can also be interpreted as a floating-point number format, 565 * where the low frac_bits are the mantissa (with implicit leading 566 * 1 bit), and the more significant bits are the exponent. 567 * The return value is 1.mantissa * 2^exponent. 568 * 569 * The way this is used, fract_bits is 6 and the largest possible 570 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc), 571 * so the maximum output is 0x1fc00. 572 */ 573 static inline unsigned int fract_exp_two(unsigned int x, 574 unsigned int fract_bits) 575 { 576 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */ 577 578 mantissa += x & (mantissa - 1); 579 x >>= fract_bits; /* The exponent */ 580 /* Largest intermediate value 0x7f0000 */ 581 return mantissa << x >> fract_bits; 582 } 583 584 void bch_bio_map(struct bio *bio, void *base); 585 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask); 586 587 static inline sector_t bdev_sectors(struct block_device *bdev) 588 { 589 return bdev->bd_inode->i_size >> 9; 590 } 591 #endif /* _BCACHE_UTIL_H */ 592