1 2 #ifndef _BCACHE_UTIL_H 3 #define _BCACHE_UTIL_H 4 5 #include <linux/blkdev.h> 6 #include <linux/errno.h> 7 #include <linux/kernel.h> 8 #include <linux/sched/clock.h> 9 #include <linux/llist.h> 10 #include <linux/ratelimit.h> 11 #include <linux/vmalloc.h> 12 #include <linux/workqueue.h> 13 14 #include "closure.h" 15 16 #define PAGE_SECTORS (PAGE_SIZE / 512) 17 18 struct closure; 19 20 #ifdef CONFIG_BCACHE_DEBUG 21 22 #define EBUG_ON(cond) BUG_ON(cond) 23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0) 24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i) 25 26 #else /* DEBUG */ 27 28 #define EBUG_ON(cond) do { if (cond); } while (0) 29 #define atomic_dec_bug(v) atomic_dec(v) 30 #define atomic_inc_bug(v, i) atomic_inc(v) 31 32 #endif 33 34 #define DECLARE_HEAP(type, name) \ 35 struct { \ 36 size_t size, used; \ 37 type *data; \ 38 } name 39 40 #define init_heap(heap, _size, gfp) \ 41 ({ \ 42 size_t _bytes; \ 43 (heap)->used = 0; \ 44 (heap)->size = (_size); \ 45 _bytes = (heap)->size * sizeof(*(heap)->data); \ 46 (heap)->data = NULL; \ 47 if (_bytes < KMALLOC_MAX_SIZE) \ 48 (heap)->data = kmalloc(_bytes, (gfp)); \ 49 if ((!(heap)->data) && ((gfp) & GFP_KERNEL)) \ 50 (heap)->data = vmalloc(_bytes); \ 51 (heap)->data; \ 52 }) 53 54 #define free_heap(heap) \ 55 do { \ 56 kvfree((heap)->data); \ 57 (heap)->data = NULL; \ 58 } while (0) 59 60 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j]) 61 62 #define heap_sift(h, i, cmp) \ 63 do { \ 64 size_t _r, _j = i; \ 65 \ 66 for (; _j * 2 + 1 < (h)->used; _j = _r) { \ 67 _r = _j * 2 + 1; \ 68 if (_r + 1 < (h)->used && \ 69 cmp((h)->data[_r], (h)->data[_r + 1])) \ 70 _r++; \ 71 \ 72 if (cmp((h)->data[_r], (h)->data[_j])) \ 73 break; \ 74 heap_swap(h, _r, _j); \ 75 } \ 76 } while (0) 77 78 #define heap_sift_down(h, i, cmp) \ 79 do { \ 80 while (i) { \ 81 size_t p = (i - 1) / 2; \ 82 if (cmp((h)->data[i], (h)->data[p])) \ 83 break; \ 84 heap_swap(h, i, p); \ 85 i = p; \ 86 } \ 87 } while (0) 88 89 #define heap_add(h, d, cmp) \ 90 ({ \ 91 bool _r = !heap_full(h); \ 92 if (_r) { \ 93 size_t _i = (h)->used++; \ 94 (h)->data[_i] = d; \ 95 \ 96 heap_sift_down(h, _i, cmp); \ 97 heap_sift(h, _i, cmp); \ 98 } \ 99 _r; \ 100 }) 101 102 #define heap_pop(h, d, cmp) \ 103 ({ \ 104 bool _r = (h)->used; \ 105 if (_r) { \ 106 (d) = (h)->data[0]; \ 107 (h)->used--; \ 108 heap_swap(h, 0, (h)->used); \ 109 heap_sift(h, 0, cmp); \ 110 } \ 111 _r; \ 112 }) 113 114 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL) 115 116 #define heap_full(h) ((h)->used == (h)->size) 117 118 #define DECLARE_FIFO(type, name) \ 119 struct { \ 120 size_t front, back, size, mask; \ 121 type *data; \ 122 } name 123 124 #define fifo_for_each(c, fifo, iter) \ 125 for (iter = (fifo)->front; \ 126 c = (fifo)->data[iter], iter != (fifo)->back; \ 127 iter = (iter + 1) & (fifo)->mask) 128 129 #define __init_fifo(fifo, gfp) \ 130 ({ \ 131 size_t _allocated_size, _bytes; \ 132 BUG_ON(!(fifo)->size); \ 133 \ 134 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \ 135 _bytes = _allocated_size * sizeof(*(fifo)->data); \ 136 \ 137 (fifo)->mask = _allocated_size - 1; \ 138 (fifo)->front = (fifo)->back = 0; \ 139 (fifo)->data = NULL; \ 140 \ 141 if (_bytes < KMALLOC_MAX_SIZE) \ 142 (fifo)->data = kmalloc(_bytes, (gfp)); \ 143 if ((!(fifo)->data) && ((gfp) & GFP_KERNEL)) \ 144 (fifo)->data = vmalloc(_bytes); \ 145 (fifo)->data; \ 146 }) 147 148 #define init_fifo_exact(fifo, _size, gfp) \ 149 ({ \ 150 (fifo)->size = (_size); \ 151 __init_fifo(fifo, gfp); \ 152 }) 153 154 #define init_fifo(fifo, _size, gfp) \ 155 ({ \ 156 (fifo)->size = (_size); \ 157 if ((fifo)->size > 4) \ 158 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \ 159 __init_fifo(fifo, gfp); \ 160 }) 161 162 #define free_fifo(fifo) \ 163 do { \ 164 kvfree((fifo)->data); \ 165 (fifo)->data = NULL; \ 166 } while (0) 167 168 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask) 169 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) 170 171 #define fifo_empty(fifo) (!fifo_used(fifo)) 172 #define fifo_full(fifo) (!fifo_free(fifo)) 173 174 #define fifo_front(fifo) ((fifo)->data[(fifo)->front]) 175 #define fifo_back(fifo) \ 176 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) 177 178 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask) 179 180 #define fifo_push_back(fifo, i) \ 181 ({ \ 182 bool _r = !fifo_full((fifo)); \ 183 if (_r) { \ 184 (fifo)->data[(fifo)->back++] = (i); \ 185 (fifo)->back &= (fifo)->mask; \ 186 } \ 187 _r; \ 188 }) 189 190 #define fifo_pop_front(fifo, i) \ 191 ({ \ 192 bool _r = !fifo_empty((fifo)); \ 193 if (_r) { \ 194 (i) = (fifo)->data[(fifo)->front++]; \ 195 (fifo)->front &= (fifo)->mask; \ 196 } \ 197 _r; \ 198 }) 199 200 #define fifo_push_front(fifo, i) \ 201 ({ \ 202 bool _r = !fifo_full((fifo)); \ 203 if (_r) { \ 204 --(fifo)->front; \ 205 (fifo)->front &= (fifo)->mask; \ 206 (fifo)->data[(fifo)->front] = (i); \ 207 } \ 208 _r; \ 209 }) 210 211 #define fifo_pop_back(fifo, i) \ 212 ({ \ 213 bool _r = !fifo_empty((fifo)); \ 214 if (_r) { \ 215 --(fifo)->back; \ 216 (fifo)->back &= (fifo)->mask; \ 217 (i) = (fifo)->data[(fifo)->back] \ 218 } \ 219 _r; \ 220 }) 221 222 #define fifo_push(fifo, i) fifo_push_back(fifo, (i)) 223 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) 224 225 #define fifo_swap(l, r) \ 226 do { \ 227 swap((l)->front, (r)->front); \ 228 swap((l)->back, (r)->back); \ 229 swap((l)->size, (r)->size); \ 230 swap((l)->mask, (r)->mask); \ 231 swap((l)->data, (r)->data); \ 232 } while (0) 233 234 #define fifo_move(dest, src) \ 235 do { \ 236 typeof(*((dest)->data)) _t; \ 237 while (!fifo_full(dest) && \ 238 fifo_pop(src, _t)) \ 239 fifo_push(dest, _t); \ 240 } while (0) 241 242 /* 243 * Simple array based allocator - preallocates a number of elements and you can 244 * never allocate more than that, also has no locking. 245 * 246 * Handy because if you know you only need a fixed number of elements you don't 247 * have to worry about memory allocation failure, and sometimes a mempool isn't 248 * what you want. 249 * 250 * We treat the free elements as entries in a singly linked list, and the 251 * freelist as a stack - allocating and freeing push and pop off the freelist. 252 */ 253 254 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \ 255 struct { \ 256 type *freelist; \ 257 type data[size]; \ 258 } name 259 260 #define array_alloc(array) \ 261 ({ \ 262 typeof((array)->freelist) _ret = (array)->freelist; \ 263 \ 264 if (_ret) \ 265 (array)->freelist = *((typeof((array)->freelist) *) _ret);\ 266 \ 267 _ret; \ 268 }) 269 270 #define array_free(array, ptr) \ 271 do { \ 272 typeof((array)->freelist) _ptr = ptr; \ 273 \ 274 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \ 275 (array)->freelist = _ptr; \ 276 } while (0) 277 278 #define array_allocator_init(array) \ 279 do { \ 280 typeof((array)->freelist) _i; \ 281 \ 282 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \ 283 (array)->freelist = NULL; \ 284 \ 285 for (_i = (array)->data; \ 286 _i < (array)->data + ARRAY_SIZE((array)->data); \ 287 _i++) \ 288 array_free(array, _i); \ 289 } while (0) 290 291 #define array_freelist_empty(array) ((array)->freelist == NULL) 292 293 #define ANYSINT_MAX(t) \ 294 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) 295 296 int bch_strtoint_h(const char *, int *); 297 int bch_strtouint_h(const char *, unsigned int *); 298 int bch_strtoll_h(const char *, long long *); 299 int bch_strtoull_h(const char *, unsigned long long *); 300 301 static inline int bch_strtol_h(const char *cp, long *res) 302 { 303 #if BITS_PER_LONG == 32 304 return bch_strtoint_h(cp, (int *) res); 305 #else 306 return bch_strtoll_h(cp, (long long *) res); 307 #endif 308 } 309 310 static inline int bch_strtoul_h(const char *cp, long *res) 311 { 312 #if BITS_PER_LONG == 32 313 return bch_strtouint_h(cp, (unsigned int *) res); 314 #else 315 return bch_strtoull_h(cp, (unsigned long long *) res); 316 #endif 317 } 318 319 #define strtoi_h(cp, res) \ 320 (__builtin_types_compatible_p(typeof(*res), int) \ 321 ? bch_strtoint_h(cp, (void *) res) \ 322 : __builtin_types_compatible_p(typeof(*res), long) \ 323 ? bch_strtol_h(cp, (void *) res) \ 324 : __builtin_types_compatible_p(typeof(*res), long long) \ 325 ? bch_strtoll_h(cp, (void *) res) \ 326 : __builtin_types_compatible_p(typeof(*res), unsigned int) \ 327 ? bch_strtouint_h(cp, (void *) res) \ 328 : __builtin_types_compatible_p(typeof(*res), unsigned long) \ 329 ? bch_strtoul_h(cp, (void *) res) \ 330 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\ 331 ? bch_strtoull_h(cp, (void *) res) : -EINVAL) 332 333 #define strtoul_safe(cp, var) \ 334 ({ \ 335 unsigned long _v; \ 336 int _r = kstrtoul(cp, 10, &_v); \ 337 if (!_r) \ 338 var = _v; \ 339 _r; \ 340 }) 341 342 #define strtoul_safe_clamp(cp, var, min, max) \ 343 ({ \ 344 unsigned long _v; \ 345 int _r = kstrtoul(cp, 10, &_v); \ 346 if (!_r) \ 347 var = clamp_t(typeof(var), _v, min, max); \ 348 _r; \ 349 }) 350 351 #define snprint(buf, size, var) \ 352 snprintf(buf, size, \ 353 __builtin_types_compatible_p(typeof(var), int) \ 354 ? "%i\n" : \ 355 __builtin_types_compatible_p(typeof(var), unsigned) \ 356 ? "%u\n" : \ 357 __builtin_types_compatible_p(typeof(var), long) \ 358 ? "%li\n" : \ 359 __builtin_types_compatible_p(typeof(var), unsigned long)\ 360 ? "%lu\n" : \ 361 __builtin_types_compatible_p(typeof(var), int64_t) \ 362 ? "%lli\n" : \ 363 __builtin_types_compatible_p(typeof(var), uint64_t) \ 364 ? "%llu\n" : \ 365 __builtin_types_compatible_p(typeof(var), const char *) \ 366 ? "%s\n" : "%i\n", var) 367 368 ssize_t bch_hprint(char *buf, int64_t v); 369 370 bool bch_is_zero(const char *p, size_t n); 371 int bch_parse_uuid(const char *s, char *uuid); 372 373 ssize_t bch_snprint_string_list(char *buf, size_t size, const char * const list[], 374 size_t selected); 375 376 ssize_t bch_read_string_list(const char *buf, const char * const list[]); 377 378 struct time_stats { 379 spinlock_t lock; 380 /* 381 * all fields are in nanoseconds, averages are ewmas stored left shifted 382 * by 8 383 */ 384 uint64_t max_duration; 385 uint64_t average_duration; 386 uint64_t average_frequency; 387 uint64_t last; 388 }; 389 390 void bch_time_stats_update(struct time_stats *stats, uint64_t time); 391 392 static inline unsigned local_clock_us(void) 393 { 394 return local_clock() >> 10; 395 } 396 397 #define NSEC_PER_ns 1L 398 #define NSEC_PER_us NSEC_PER_USEC 399 #define NSEC_PER_ms NSEC_PER_MSEC 400 #define NSEC_PER_sec NSEC_PER_SEC 401 402 #define __print_time_stat(stats, name, stat, units) \ 403 sysfs_print(name ## _ ## stat ## _ ## units, \ 404 div_u64((stats)->stat >> 8, NSEC_PER_ ## units)) 405 406 #define sysfs_print_time_stats(stats, name, \ 407 frequency_units, \ 408 duration_units) \ 409 do { \ 410 __print_time_stat(stats, name, \ 411 average_frequency, frequency_units); \ 412 __print_time_stat(stats, name, \ 413 average_duration, duration_units); \ 414 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \ 415 div_u64((stats)->max_duration, NSEC_PER_ ## duration_units));\ 416 \ 417 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \ 418 ? div_s64(local_clock() - (stats)->last, \ 419 NSEC_PER_ ## frequency_units) \ 420 : -1LL); \ 421 } while (0) 422 423 #define sysfs_time_stats_attribute(name, \ 424 frequency_units, \ 425 duration_units) \ 426 read_attribute(name ## _average_frequency_ ## frequency_units); \ 427 read_attribute(name ## _average_duration_ ## duration_units); \ 428 read_attribute(name ## _max_duration_ ## duration_units); \ 429 read_attribute(name ## _last_ ## frequency_units) 430 431 #define sysfs_time_stats_attribute_list(name, \ 432 frequency_units, \ 433 duration_units) \ 434 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \ 435 &sysfs_ ## name ## _average_duration_ ## duration_units, \ 436 &sysfs_ ## name ## _max_duration_ ## duration_units, \ 437 &sysfs_ ## name ## _last_ ## frequency_units, 438 439 #define ewma_add(ewma, val, weight, factor) \ 440 ({ \ 441 (ewma) *= (weight) - 1; \ 442 (ewma) += (val) << factor; \ 443 (ewma) /= (weight); \ 444 (ewma) >> factor; \ 445 }) 446 447 struct bch_ratelimit { 448 /* Next time we want to do some work, in nanoseconds */ 449 uint64_t next; 450 451 /* 452 * Rate at which we want to do work, in units per nanosecond 453 * The units here correspond to the units passed to bch_next_delay() 454 */ 455 unsigned rate; 456 }; 457 458 static inline void bch_ratelimit_reset(struct bch_ratelimit *d) 459 { 460 d->next = local_clock(); 461 } 462 463 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done); 464 465 #define __DIV_SAFE(n, d, zero) \ 466 ({ \ 467 typeof(n) _n = (n); \ 468 typeof(d) _d = (d); \ 469 _d ? _n / _d : zero; \ 470 }) 471 472 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0) 473 474 #define container_of_or_null(ptr, type, member) \ 475 ({ \ 476 typeof(ptr) _ptr = ptr; \ 477 _ptr ? container_of(_ptr, type, member) : NULL; \ 478 }) 479 480 #define RB_INSERT(root, new, member, cmp) \ 481 ({ \ 482 __label__ dup; \ 483 struct rb_node **n = &(root)->rb_node, *parent = NULL; \ 484 typeof(new) this; \ 485 int res, ret = -1; \ 486 \ 487 while (*n) { \ 488 parent = *n; \ 489 this = container_of(*n, typeof(*(new)), member); \ 490 res = cmp(new, this); \ 491 if (!res) \ 492 goto dup; \ 493 n = res < 0 \ 494 ? &(*n)->rb_left \ 495 : &(*n)->rb_right; \ 496 } \ 497 \ 498 rb_link_node(&(new)->member, parent, n); \ 499 rb_insert_color(&(new)->member, root); \ 500 ret = 0; \ 501 dup: \ 502 ret; \ 503 }) 504 505 #define RB_SEARCH(root, search, member, cmp) \ 506 ({ \ 507 struct rb_node *n = (root)->rb_node; \ 508 typeof(&(search)) this, ret = NULL; \ 509 int res; \ 510 \ 511 while (n) { \ 512 this = container_of(n, typeof(search), member); \ 513 res = cmp(&(search), this); \ 514 if (!res) { \ 515 ret = this; \ 516 break; \ 517 } \ 518 n = res < 0 \ 519 ? n->rb_left \ 520 : n->rb_right; \ 521 } \ 522 ret; \ 523 }) 524 525 #define RB_GREATER(root, search, member, cmp) \ 526 ({ \ 527 struct rb_node *n = (root)->rb_node; \ 528 typeof(&(search)) this, ret = NULL; \ 529 int res; \ 530 \ 531 while (n) { \ 532 this = container_of(n, typeof(search), member); \ 533 res = cmp(&(search), this); \ 534 if (res < 0) { \ 535 ret = this; \ 536 n = n->rb_left; \ 537 } else \ 538 n = n->rb_right; \ 539 } \ 540 ret; \ 541 }) 542 543 #define RB_FIRST(root, type, member) \ 544 container_of_or_null(rb_first(root), type, member) 545 546 #define RB_LAST(root, type, member) \ 547 container_of_or_null(rb_last(root), type, member) 548 549 #define RB_NEXT(ptr, member) \ 550 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member) 551 552 #define RB_PREV(ptr, member) \ 553 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member) 554 555 /* Does linear interpolation between powers of two */ 556 static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) 557 { 558 unsigned fract = x & ~(~0 << fract_bits); 559 560 x >>= fract_bits; 561 x = 1 << x; 562 x += (x * fract) >> fract_bits; 563 564 return x; 565 } 566 567 void bch_bio_map(struct bio *bio, void *base); 568 569 static inline sector_t bdev_sectors(struct block_device *bdev) 570 { 571 return bdev->bd_inode->i_size >> 9; 572 } 573 574 #define closure_bio_submit(bio, cl) \ 575 do { \ 576 closure_get(cl); \ 577 generic_make_request(bio); \ 578 } while (0) 579 580 uint64_t bch_crc64_update(uint64_t, const void *, size_t); 581 uint64_t bch_crc64(const void *, size_t); 582 583 #endif /* _BCACHE_UTIL_H */ 584