1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef _BCACHE_UTIL_H
4 #define _BCACHE_UTIL_H
5
6 #include <linux/blkdev.h>
7 #include <linux/errno.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/clock.h>
10 #include <linux/llist.h>
11 #include <linux/ratelimit.h>
12 #include <linux/vmalloc.h>
13 #include <linux/workqueue.h>
14 #include <linux/crc64.h>
15
16 #include "closure.h"
17
18 struct closure;
19
20 #ifdef CONFIG_BCACHE_DEBUG
21
22 #define EBUG_ON(cond) BUG_ON(cond)
23 #define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
24 #define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
25
26 #else /* DEBUG */
27
28 #define EBUG_ON(cond) do { if (cond) do {} while (0); } while (0)
29 #define atomic_dec_bug(v) atomic_dec(v)
30 #define atomic_inc_bug(v, i) atomic_inc(v)
31
32 #endif
33
34 #define DECLARE_HEAP(type, name) \
35 struct { \
36 size_t size, used; \
37 type *data; \
38 } name
39
40 #define init_heap(heap, _size, gfp) \
41 ({ \
42 size_t _bytes; \
43 (heap)->used = 0; \
44 (heap)->size = (_size); \
45 _bytes = (heap)->size * sizeof(*(heap)->data); \
46 (heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
47 (heap)->data; \
48 })
49
50 #define free_heap(heap) \
51 do { \
52 kvfree((heap)->data); \
53 (heap)->data = NULL; \
54 } while (0)
55
56 #define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
57
58 #define heap_sift(h, i, cmp) \
59 do { \
60 size_t _r, _j = i; \
61 \
62 for (; _j * 2 + 1 < (h)->used; _j = _r) { \
63 _r = _j * 2 + 1; \
64 if (_r + 1 < (h)->used && \
65 cmp((h)->data[_r], (h)->data[_r + 1])) \
66 _r++; \
67 \
68 if (cmp((h)->data[_r], (h)->data[_j])) \
69 break; \
70 heap_swap(h, _r, _j); \
71 } \
72 } while (0)
73
74 #define heap_sift_down(h, i, cmp) \
75 do { \
76 while (i) { \
77 size_t p = (i - 1) / 2; \
78 if (cmp((h)->data[i], (h)->data[p])) \
79 break; \
80 heap_swap(h, i, p); \
81 i = p; \
82 } \
83 } while (0)
84
85 #define heap_add(h, d, cmp) \
86 ({ \
87 bool _r = !heap_full(h); \
88 if (_r) { \
89 size_t _i = (h)->used++; \
90 (h)->data[_i] = d; \
91 \
92 heap_sift_down(h, _i, cmp); \
93 heap_sift(h, _i, cmp); \
94 } \
95 _r; \
96 })
97
98 #define heap_pop(h, d, cmp) \
99 ({ \
100 bool _r = (h)->used; \
101 if (_r) { \
102 (d) = (h)->data[0]; \
103 (h)->used--; \
104 heap_swap(h, 0, (h)->used); \
105 heap_sift(h, 0, cmp); \
106 } \
107 _r; \
108 })
109
110 #define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
111
112 #define heap_full(h) ((h)->used == (h)->size)
113
114 #define DECLARE_FIFO(type, name) \
115 struct { \
116 size_t front, back, size, mask; \
117 type *data; \
118 } name
119
120 #define fifo_for_each(c, fifo, iter) \
121 for (iter = (fifo)->front; \
122 c = (fifo)->data[iter], iter != (fifo)->back; \
123 iter = (iter + 1) & (fifo)->mask)
124
125 #define __init_fifo(fifo, gfp) \
126 ({ \
127 size_t _allocated_size, _bytes; \
128 BUG_ON(!(fifo)->size); \
129 \
130 _allocated_size = roundup_pow_of_two((fifo)->size + 1); \
131 _bytes = _allocated_size * sizeof(*(fifo)->data); \
132 \
133 (fifo)->mask = _allocated_size - 1; \
134 (fifo)->front = (fifo)->back = 0; \
135 \
136 (fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
137 (fifo)->data; \
138 })
139
140 #define init_fifo_exact(fifo, _size, gfp) \
141 ({ \
142 (fifo)->size = (_size); \
143 __init_fifo(fifo, gfp); \
144 })
145
146 #define init_fifo(fifo, _size, gfp) \
147 ({ \
148 (fifo)->size = (_size); \
149 if ((fifo)->size > 4) \
150 (fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
151 __init_fifo(fifo, gfp); \
152 })
153
154 #define free_fifo(fifo) \
155 do { \
156 kvfree((fifo)->data); \
157 (fifo)->data = NULL; \
158 } while (0)
159
160 #define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
161 #define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
162
163 #define fifo_empty(fifo) (!fifo_used(fifo))
164 #define fifo_full(fifo) (!fifo_free(fifo))
165
166 #define fifo_front(fifo) ((fifo)->data[(fifo)->front])
167 #define fifo_back(fifo) \
168 ((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
169
170 #define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
171
172 #define fifo_push_back(fifo, i) \
173 ({ \
174 bool _r = !fifo_full((fifo)); \
175 if (_r) { \
176 (fifo)->data[(fifo)->back++] = (i); \
177 (fifo)->back &= (fifo)->mask; \
178 } \
179 _r; \
180 })
181
182 #define fifo_pop_front(fifo, i) \
183 ({ \
184 bool _r = !fifo_empty((fifo)); \
185 if (_r) { \
186 (i) = (fifo)->data[(fifo)->front++]; \
187 (fifo)->front &= (fifo)->mask; \
188 } \
189 _r; \
190 })
191
192 #define fifo_push_front(fifo, i) \
193 ({ \
194 bool _r = !fifo_full((fifo)); \
195 if (_r) { \
196 --(fifo)->front; \
197 (fifo)->front &= (fifo)->mask; \
198 (fifo)->data[(fifo)->front] = (i); \
199 } \
200 _r; \
201 })
202
203 #define fifo_pop_back(fifo, i) \
204 ({ \
205 bool _r = !fifo_empty((fifo)); \
206 if (_r) { \
207 --(fifo)->back; \
208 (fifo)->back &= (fifo)->mask; \
209 (i) = (fifo)->data[(fifo)->back] \
210 } \
211 _r; \
212 })
213
214 #define fifo_push(fifo, i) fifo_push_back(fifo, (i))
215 #define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
216
217 #define fifo_swap(l, r) \
218 do { \
219 swap((l)->front, (r)->front); \
220 swap((l)->back, (r)->back); \
221 swap((l)->size, (r)->size); \
222 swap((l)->mask, (r)->mask); \
223 swap((l)->data, (r)->data); \
224 } while (0)
225
226 #define fifo_move(dest, src) \
227 do { \
228 typeof(*((dest)->data)) _t; \
229 while (!fifo_full(dest) && \
230 fifo_pop(src, _t)) \
231 fifo_push(dest, _t); \
232 } while (0)
233
234 /*
235 * Simple array based allocator - preallocates a number of elements and you can
236 * never allocate more than that, also has no locking.
237 *
238 * Handy because if you know you only need a fixed number of elements you don't
239 * have to worry about memory allocation failure, and sometimes a mempool isn't
240 * what you want.
241 *
242 * We treat the free elements as entries in a singly linked list, and the
243 * freelist as a stack - allocating and freeing push and pop off the freelist.
244 */
245
246 #define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
247 struct { \
248 type *freelist; \
249 type data[size]; \
250 } name
251
252 #define array_alloc(array) \
253 ({ \
254 typeof((array)->freelist) _ret = (array)->freelist; \
255 \
256 if (_ret) \
257 (array)->freelist = *((typeof((array)->freelist) *) _ret);\
258 \
259 _ret; \
260 })
261
262 #define array_free(array, ptr) \
263 do { \
264 typeof((array)->freelist) _ptr = ptr; \
265 \
266 *((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
267 (array)->freelist = _ptr; \
268 } while (0)
269
270 #define array_allocator_init(array) \
271 do { \
272 typeof((array)->freelist) _i; \
273 \
274 BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
275 (array)->freelist = NULL; \
276 \
277 for (_i = (array)->data; \
278 _i < (array)->data + ARRAY_SIZE((array)->data); \
279 _i++) \
280 array_free(array, _i); \
281 } while (0)
282
283 #define array_freelist_empty(array) ((array)->freelist == NULL)
284
285 #define ANYSINT_MAX(t) \
286 ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
287
288 int bch_strtoint_h(const char *cp, int *res);
289 int bch_strtouint_h(const char *cp, unsigned int *res);
290 int bch_strtoll_h(const char *cp, long long *res);
291 int bch_strtoull_h(const char *cp, unsigned long long *res);
292
bch_strtol_h(const char * cp,long * res)293 static inline int bch_strtol_h(const char *cp, long *res)
294 {
295 #if BITS_PER_LONG == 32
296 return bch_strtoint_h(cp, (int *) res);
297 #else
298 return bch_strtoll_h(cp, (long long *) res);
299 #endif
300 }
301
bch_strtoul_h(const char * cp,long * res)302 static inline int bch_strtoul_h(const char *cp, long *res)
303 {
304 #if BITS_PER_LONG == 32
305 return bch_strtouint_h(cp, (unsigned int *) res);
306 #else
307 return bch_strtoull_h(cp, (unsigned long long *) res);
308 #endif
309 }
310
311 #define strtoi_h(cp, res) \
312 (__builtin_types_compatible_p(typeof(*res), int) \
313 ? bch_strtoint_h(cp, (void *) res) \
314 : __builtin_types_compatible_p(typeof(*res), long) \
315 ? bch_strtol_h(cp, (void *) res) \
316 : __builtin_types_compatible_p(typeof(*res), long long) \
317 ? bch_strtoll_h(cp, (void *) res) \
318 : __builtin_types_compatible_p(typeof(*res), unsigned int) \
319 ? bch_strtouint_h(cp, (void *) res) \
320 : __builtin_types_compatible_p(typeof(*res), unsigned long) \
321 ? bch_strtoul_h(cp, (void *) res) \
322 : __builtin_types_compatible_p(typeof(*res), unsigned long long)\
323 ? bch_strtoull_h(cp, (void *) res) : -EINVAL)
324
325 #define strtoul_safe(cp, var) \
326 ({ \
327 unsigned long _v; \
328 int _r = kstrtoul(cp, 10, &_v); \
329 if (!_r) \
330 var = _v; \
331 _r; \
332 })
333
334 #define strtoul_safe_clamp(cp, var, min, max) \
335 ({ \
336 unsigned long _v; \
337 int _r = kstrtoul(cp, 10, &_v); \
338 if (!_r) \
339 var = clamp_t(typeof(var), _v, min, max); \
340 _r; \
341 })
342
343 ssize_t bch_hprint(char *buf, int64_t v);
344
345 bool bch_is_zero(const char *p, size_t n);
346 int bch_parse_uuid(const char *s, char *uuid);
347
348 struct time_stats {
349 spinlock_t lock;
350 /*
351 * all fields are in nanoseconds, averages are ewmas stored left shifted
352 * by 8
353 */
354 uint64_t max_duration;
355 uint64_t average_duration;
356 uint64_t average_frequency;
357 uint64_t last;
358 };
359
360 void bch_time_stats_update(struct time_stats *stats, uint64_t time);
361
local_clock_us(void)362 static inline unsigned int local_clock_us(void)
363 {
364 return local_clock() >> 10;
365 }
366
367 #define NSEC_PER_ns 1L
368 #define NSEC_PER_us NSEC_PER_USEC
369 #define NSEC_PER_ms NSEC_PER_MSEC
370 #define NSEC_PER_sec NSEC_PER_SEC
371
372 #define __print_time_stat(stats, name, stat, units) \
373 sysfs_print(name ## _ ## stat ## _ ## units, \
374 div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
375
376 #define sysfs_print_time_stats(stats, name, \
377 frequency_units, \
378 duration_units) \
379 do { \
380 __print_time_stat(stats, name, \
381 average_frequency, frequency_units); \
382 __print_time_stat(stats, name, \
383 average_duration, duration_units); \
384 sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
385 div_u64((stats)->max_duration, \
386 NSEC_PER_ ## duration_units)); \
387 \
388 sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
389 ? div_s64(local_clock() - (stats)->last, \
390 NSEC_PER_ ## frequency_units) \
391 : -1LL); \
392 } while (0)
393
394 #define sysfs_time_stats_attribute(name, \
395 frequency_units, \
396 duration_units) \
397 read_attribute(name ## _average_frequency_ ## frequency_units); \
398 read_attribute(name ## _average_duration_ ## duration_units); \
399 read_attribute(name ## _max_duration_ ## duration_units); \
400 read_attribute(name ## _last_ ## frequency_units)
401
402 #define sysfs_time_stats_attribute_list(name, \
403 frequency_units, \
404 duration_units) \
405 &sysfs_ ## name ## _average_frequency_ ## frequency_units, \
406 &sysfs_ ## name ## _average_duration_ ## duration_units, \
407 &sysfs_ ## name ## _max_duration_ ## duration_units, \
408 &sysfs_ ## name ## _last_ ## frequency_units,
409
410 #define ewma_add(ewma, val, weight, factor) \
411 ({ \
412 (ewma) *= (weight) - 1; \
413 (ewma) += (val) << factor; \
414 (ewma) /= (weight); \
415 (ewma) >> factor; \
416 })
417
418 struct bch_ratelimit {
419 /* Next time we want to do some work, in nanoseconds */
420 uint64_t next;
421
422 /*
423 * Rate at which we want to do work, in units per second
424 * The units here correspond to the units passed to bch_next_delay()
425 */
426 atomic_long_t rate;
427 };
428
bch_ratelimit_reset(struct bch_ratelimit * d)429 static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
430 {
431 d->next = local_clock();
432 }
433
434 uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
435
436 #define __DIV_SAFE(n, d, zero) \
437 ({ \
438 typeof(n) _n = (n); \
439 typeof(d) _d = (d); \
440 _d ? _n / _d : zero; \
441 })
442
443 #define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
444
445 #define container_of_or_null(ptr, type, member) \
446 ({ \
447 typeof(ptr) _ptr = ptr; \
448 _ptr ? container_of(_ptr, type, member) : NULL; \
449 })
450
451 #define RB_INSERT(root, new, member, cmp) \
452 ({ \
453 __label__ dup; \
454 struct rb_node **n = &(root)->rb_node, *parent = NULL; \
455 typeof(new) this; \
456 int res, ret = -1; \
457 \
458 while (*n) { \
459 parent = *n; \
460 this = container_of(*n, typeof(*(new)), member); \
461 res = cmp(new, this); \
462 if (!res) \
463 goto dup; \
464 n = res < 0 \
465 ? &(*n)->rb_left \
466 : &(*n)->rb_right; \
467 } \
468 \
469 rb_link_node(&(new)->member, parent, n); \
470 rb_insert_color(&(new)->member, root); \
471 ret = 0; \
472 dup: \
473 ret; \
474 })
475
476 #define RB_SEARCH(root, search, member, cmp) \
477 ({ \
478 struct rb_node *n = (root)->rb_node; \
479 typeof(&(search)) this, ret = NULL; \
480 int res; \
481 \
482 while (n) { \
483 this = container_of(n, typeof(search), member); \
484 res = cmp(&(search), this); \
485 if (!res) { \
486 ret = this; \
487 break; \
488 } \
489 n = res < 0 \
490 ? n->rb_left \
491 : n->rb_right; \
492 } \
493 ret; \
494 })
495
496 #define RB_GREATER(root, search, member, cmp) \
497 ({ \
498 struct rb_node *n = (root)->rb_node; \
499 typeof(&(search)) this, ret = NULL; \
500 int res; \
501 \
502 while (n) { \
503 this = container_of(n, typeof(search), member); \
504 res = cmp(&(search), this); \
505 if (res < 0) { \
506 ret = this; \
507 n = n->rb_left; \
508 } else \
509 n = n->rb_right; \
510 } \
511 ret; \
512 })
513
514 #define RB_FIRST(root, type, member) \
515 container_of_or_null(rb_first(root), type, member)
516
517 #define RB_LAST(root, type, member) \
518 container_of_or_null(rb_last(root), type, member)
519
520 #define RB_NEXT(ptr, member) \
521 container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
522
523 #define RB_PREV(ptr, member) \
524 container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
525
bch_crc64(const void * p,size_t len)526 static inline uint64_t bch_crc64(const void *p, size_t len)
527 {
528 uint64_t crc = 0xffffffffffffffffULL;
529
530 crc = crc64_be(crc, p, len);
531 return crc ^ 0xffffffffffffffffULL;
532 }
533
534 /*
535 * A stepwise-linear pseudo-exponential. This returns 1 << (x >>
536 * frac_bits), with the less-significant bits filled in by linear
537 * interpolation.
538 *
539 * This can also be interpreted as a floating-point number format,
540 * where the low frac_bits are the mantissa (with implicit leading
541 * 1 bit), and the more significant bits are the exponent.
542 * The return value is 1.mantissa * 2^exponent.
543 *
544 * The way this is used, fract_bits is 6 and the largest possible
545 * input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
546 * so the maximum output is 0x1fc00.
547 */
fract_exp_two(unsigned int x,unsigned int fract_bits)548 static inline unsigned int fract_exp_two(unsigned int x,
549 unsigned int fract_bits)
550 {
551 unsigned int mantissa = 1 << fract_bits; /* Implicit bit */
552
553 mantissa += x & (mantissa - 1);
554 x >>= fract_bits; /* The exponent */
555 /* Largest intermediate value 0x7f0000 */
556 return mantissa << x >> fract_bits;
557 }
558
559 void bch_bio_map(struct bio *bio, void *base);
560 int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
561
562 #endif /* _BCACHE_UTIL_H */
563