xref: /openbmc/linux/drivers/md/bcache/super.c (revision ffa47032)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_journal_wq;
53 
54 
55 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
56 /* limitation of partitions number on single bcache device */
57 #define BCACHE_MINORS		128
58 /* limitation of bcache devices number on single system */
59 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
60 
61 /* Superblock */
62 
63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
64 {
65 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
66 
67 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES &&
68 	     bch_has_feature_large_bucket(sb))
69 		bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16;
70 
71 	return bucket_size;
72 }
73 
74 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
75 				     struct cache_sb_disk *s)
76 {
77 	const char *err;
78 	unsigned int i;
79 
80 	sb->first_bucket= le16_to_cpu(s->first_bucket);
81 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
82 	sb->bucket_size	= get_bucket_size(sb, s);
83 
84 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
85 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
86 
87 	err = "Too many journal buckets";
88 	if (sb->keys > SB_JOURNAL_BUCKETS)
89 		goto err;
90 
91 	err = "Too many buckets";
92 	if (sb->nbuckets > LONG_MAX)
93 		goto err;
94 
95 	err = "Not enough buckets";
96 	if (sb->nbuckets < 1 << 7)
97 		goto err;
98 
99 	err = "Bad block size (not power of 2)";
100 	if (!is_power_of_2(sb->block_size))
101 		goto err;
102 
103 	err = "Bad block size (larger than page size)";
104 	if (sb->block_size > PAGE_SECTORS)
105 		goto err;
106 
107 	err = "Bad bucket size (not power of 2)";
108 	if (!is_power_of_2(sb->bucket_size))
109 		goto err;
110 
111 	err = "Bad bucket size (smaller than page size)";
112 	if (sb->bucket_size < PAGE_SECTORS)
113 		goto err;
114 
115 	err = "Invalid superblock: device too small";
116 	if (get_capacity(bdev->bd_disk) <
117 	    sb->bucket_size * sb->nbuckets)
118 		goto err;
119 
120 	err = "Bad UUID";
121 	if (bch_is_zero(sb->set_uuid, 16))
122 		goto err;
123 
124 	err = "Bad cache device number in set";
125 	if (!sb->nr_in_set ||
126 	    sb->nr_in_set <= sb->nr_this_dev ||
127 	    sb->nr_in_set > MAX_CACHES_PER_SET)
128 		goto err;
129 
130 	err = "Journal buckets not sequential";
131 	for (i = 0; i < sb->keys; i++)
132 		if (sb->d[i] != sb->first_bucket + i)
133 			goto err;
134 
135 	err = "Too many journal buckets";
136 	if (sb->first_bucket + sb->keys > sb->nbuckets)
137 		goto err;
138 
139 	err = "Invalid superblock: first bucket comes before end of super";
140 	if (sb->first_bucket * sb->bucket_size < 16)
141 		goto err;
142 
143 	err = NULL;
144 err:
145 	return err;
146 }
147 
148 
149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
150 			      struct cache_sb_disk **res)
151 {
152 	const char *err;
153 	struct cache_sb_disk *s;
154 	struct page *page;
155 	unsigned int i;
156 
157 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
158 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
159 	if (IS_ERR(page))
160 		return "IO error";
161 	s = page_address(page) + offset_in_page(SB_OFFSET);
162 
163 	sb->offset		= le64_to_cpu(s->offset);
164 	sb->version		= le64_to_cpu(s->version);
165 
166 	memcpy(sb->magic,	s->magic, 16);
167 	memcpy(sb->uuid,	s->uuid, 16);
168 	memcpy(sb->set_uuid,	s->set_uuid, 16);
169 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
170 
171 	sb->flags		= le64_to_cpu(s->flags);
172 	sb->seq			= le64_to_cpu(s->seq);
173 	sb->last_mount		= le32_to_cpu(s->last_mount);
174 	sb->keys		= le16_to_cpu(s->keys);
175 
176 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
177 		sb->d[i] = le64_to_cpu(s->d[i]);
178 
179 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
180 		 sb->version, sb->flags, sb->seq, sb->keys);
181 
182 	err = "Not a bcache superblock (bad offset)";
183 	if (sb->offset != SB_SECTOR)
184 		goto err;
185 
186 	err = "Not a bcache superblock (bad magic)";
187 	if (memcmp(sb->magic, bcache_magic, 16))
188 		goto err;
189 
190 	err = "Bad checksum";
191 	if (s->csum != csum_set(s))
192 		goto err;
193 
194 	err = "Bad UUID";
195 	if (bch_is_zero(sb->uuid, 16))
196 		goto err;
197 
198 	sb->block_size	= le16_to_cpu(s->block_size);
199 
200 	err = "Superblock block size smaller than device block size";
201 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
202 		goto err;
203 
204 	switch (sb->version) {
205 	case BCACHE_SB_VERSION_BDEV:
206 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
207 		break;
208 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
209 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
210 		sb->data_offset	= le64_to_cpu(s->data_offset);
211 
212 		err = "Bad data offset";
213 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
214 			goto err;
215 
216 		break;
217 	case BCACHE_SB_VERSION_CDEV:
218 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
219 		err = read_super_common(sb, bdev, s);
220 		if (err)
221 			goto err;
222 		break;
223 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
224 		/*
225 		 * Feature bits are needed in read_super_common(),
226 		 * convert them firstly.
227 		 */
228 		sb->feature_compat = le64_to_cpu(s->feature_compat);
229 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
230 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
231 		err = read_super_common(sb, bdev, s);
232 		if (err)
233 			goto err;
234 		break;
235 	default:
236 		err = "Unsupported superblock version";
237 		goto err;
238 	}
239 
240 	sb->last_mount = (u32)ktime_get_real_seconds();
241 	*res = s;
242 	return NULL;
243 err:
244 	put_page(page);
245 	return err;
246 }
247 
248 static void write_bdev_super_endio(struct bio *bio)
249 {
250 	struct cached_dev *dc = bio->bi_private;
251 
252 	if (bio->bi_status)
253 		bch_count_backing_io_errors(dc, bio);
254 
255 	closure_put(&dc->sb_write);
256 }
257 
258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
259 		struct bio *bio)
260 {
261 	unsigned int i;
262 
263 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
264 	bio->bi_iter.bi_sector	= SB_SECTOR;
265 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
266 			offset_in_page(out));
267 
268 	out->offset		= cpu_to_le64(sb->offset);
269 
270 	memcpy(out->uuid,	sb->uuid, 16);
271 	memcpy(out->set_uuid,	sb->set_uuid, 16);
272 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
273 
274 	out->flags		= cpu_to_le64(sb->flags);
275 	out->seq		= cpu_to_le64(sb->seq);
276 
277 	out->last_mount		= cpu_to_le32(sb->last_mount);
278 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
279 	out->keys		= cpu_to_le16(sb->keys);
280 
281 	for (i = 0; i < sb->keys; i++)
282 		out->d[i] = cpu_to_le64(sb->d[i]);
283 
284 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
285 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
286 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
287 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
288 	}
289 
290 	out->version		= cpu_to_le64(sb->version);
291 	out->csum = csum_set(out);
292 
293 	pr_debug("ver %llu, flags %llu, seq %llu\n",
294 		 sb->version, sb->flags, sb->seq);
295 
296 	submit_bio(bio);
297 }
298 
299 static void bch_write_bdev_super_unlock(struct closure *cl)
300 {
301 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
302 
303 	up(&dc->sb_write_mutex);
304 }
305 
306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
307 {
308 	struct closure *cl = &dc->sb_write;
309 	struct bio *bio = &dc->sb_bio;
310 
311 	down(&dc->sb_write_mutex);
312 	closure_init(cl, parent);
313 
314 	bio_init(bio, dc->sb_bv, 1);
315 	bio_set_dev(bio, dc->bdev);
316 	bio->bi_end_io	= write_bdev_super_endio;
317 	bio->bi_private = dc;
318 
319 	closure_get(cl);
320 	/* I/O request sent to backing device */
321 	__write_super(&dc->sb, dc->sb_disk, bio);
322 
323 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
324 }
325 
326 static void write_super_endio(struct bio *bio)
327 {
328 	struct cache *ca = bio->bi_private;
329 
330 	/* is_read = 0 */
331 	bch_count_io_errors(ca, bio->bi_status, 0,
332 			    "writing superblock");
333 	closure_put(&ca->set->sb_write);
334 }
335 
336 static void bcache_write_super_unlock(struct closure *cl)
337 {
338 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
339 
340 	up(&c->sb_write_mutex);
341 }
342 
343 void bcache_write_super(struct cache_set *c)
344 {
345 	struct closure *cl = &c->sb_write;
346 	struct cache *ca;
347 	unsigned int i, version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
348 
349 	down(&c->sb_write_mutex);
350 	closure_init(cl, &c->cl);
351 
352 	c->sb.seq++;
353 
354 	if (c->sb.version > version)
355 		version = c->sb.version;
356 
357 	for_each_cache(ca, c, i) {
358 		struct bio *bio = &ca->sb_bio;
359 
360 		ca->sb.version		= version;
361 		ca->sb.seq		= c->sb.seq;
362 		ca->sb.last_mount	= c->sb.last_mount;
363 
364 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
365 
366 		bio_init(bio, ca->sb_bv, 1);
367 		bio_set_dev(bio, ca->bdev);
368 		bio->bi_end_io	= write_super_endio;
369 		bio->bi_private = ca;
370 
371 		closure_get(cl);
372 		__write_super(&ca->sb, ca->sb_disk, bio);
373 	}
374 
375 	closure_return_with_destructor(cl, bcache_write_super_unlock);
376 }
377 
378 /* UUID io */
379 
380 static void uuid_endio(struct bio *bio)
381 {
382 	struct closure *cl = bio->bi_private;
383 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
384 
385 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
386 	bch_bbio_free(bio, c);
387 	closure_put(cl);
388 }
389 
390 static void uuid_io_unlock(struct closure *cl)
391 {
392 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
393 
394 	up(&c->uuid_write_mutex);
395 }
396 
397 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
398 		    struct bkey *k, struct closure *parent)
399 {
400 	struct closure *cl = &c->uuid_write;
401 	struct uuid_entry *u;
402 	unsigned int i;
403 	char buf[80];
404 
405 	BUG_ON(!parent);
406 	down(&c->uuid_write_mutex);
407 	closure_init(cl, parent);
408 
409 	for (i = 0; i < KEY_PTRS(k); i++) {
410 		struct bio *bio = bch_bbio_alloc(c);
411 
412 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
413 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
414 
415 		bio->bi_end_io	= uuid_endio;
416 		bio->bi_private = cl;
417 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
418 		bch_bio_map(bio, c->uuids);
419 
420 		bch_submit_bbio(bio, c, k, i);
421 
422 		if (op != REQ_OP_WRITE)
423 			break;
424 	}
425 
426 	bch_extent_to_text(buf, sizeof(buf), k);
427 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
428 
429 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
430 		if (!bch_is_zero(u->uuid, 16))
431 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
432 				 u - c->uuids, u->uuid, u->label,
433 				 u->first_reg, u->last_reg, u->invalidated);
434 
435 	closure_return_with_destructor(cl, uuid_io_unlock);
436 }
437 
438 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
439 {
440 	struct bkey *k = &j->uuid_bucket;
441 
442 	if (__bch_btree_ptr_invalid(c, k))
443 		return "bad uuid pointer";
444 
445 	bkey_copy(&c->uuid_bucket, k);
446 	uuid_io(c, REQ_OP_READ, 0, k, cl);
447 
448 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
449 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
450 		struct uuid_entry	*u1 = (void *) c->uuids;
451 		int i;
452 
453 		closure_sync(cl);
454 
455 		/*
456 		 * Since the new uuid entry is bigger than the old, we have to
457 		 * convert starting at the highest memory address and work down
458 		 * in order to do it in place
459 		 */
460 
461 		for (i = c->nr_uuids - 1;
462 		     i >= 0;
463 		     --i) {
464 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
465 			memcpy(u1[i].label,	u0[i].label, 32);
466 
467 			u1[i].first_reg		= u0[i].first_reg;
468 			u1[i].last_reg		= u0[i].last_reg;
469 			u1[i].invalidated	= u0[i].invalidated;
470 
471 			u1[i].flags	= 0;
472 			u1[i].sectors	= 0;
473 		}
474 	}
475 
476 	return NULL;
477 }
478 
479 static int __uuid_write(struct cache_set *c)
480 {
481 	BKEY_PADDED(key) k;
482 	struct closure cl;
483 	struct cache *ca;
484 	unsigned int size;
485 
486 	closure_init_stack(&cl);
487 	lockdep_assert_held(&bch_register_lock);
488 
489 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
490 		return 1;
491 
492 	size =  meta_bucket_pages(&c->sb) * PAGE_SECTORS;
493 	SET_KEY_SIZE(&k.key, size);
494 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
495 	closure_sync(&cl);
496 
497 	/* Only one bucket used for uuid write */
498 	ca = PTR_CACHE(c, &k.key, 0);
499 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
500 
501 	bkey_copy(&c->uuid_bucket, &k.key);
502 	bkey_put(c, &k.key);
503 	return 0;
504 }
505 
506 int bch_uuid_write(struct cache_set *c)
507 {
508 	int ret = __uuid_write(c);
509 
510 	if (!ret)
511 		bch_journal_meta(c, NULL);
512 
513 	return ret;
514 }
515 
516 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
517 {
518 	struct uuid_entry *u;
519 
520 	for (u = c->uuids;
521 	     u < c->uuids + c->nr_uuids; u++)
522 		if (!memcmp(u->uuid, uuid, 16))
523 			return u;
524 
525 	return NULL;
526 }
527 
528 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
529 {
530 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
531 
532 	return uuid_find(c, zero_uuid);
533 }
534 
535 /*
536  * Bucket priorities/gens:
537  *
538  * For each bucket, we store on disk its
539  *   8 bit gen
540  *  16 bit priority
541  *
542  * See alloc.c for an explanation of the gen. The priority is used to implement
543  * lru (and in the future other) cache replacement policies; for most purposes
544  * it's just an opaque integer.
545  *
546  * The gens and the priorities don't have a whole lot to do with each other, and
547  * it's actually the gens that must be written out at specific times - it's no
548  * big deal if the priorities don't get written, if we lose them we just reuse
549  * buckets in suboptimal order.
550  *
551  * On disk they're stored in a packed array, and in as many buckets are required
552  * to fit them all. The buckets we use to store them form a list; the journal
553  * header points to the first bucket, the first bucket points to the second
554  * bucket, et cetera.
555  *
556  * This code is used by the allocation code; periodically (whenever it runs out
557  * of buckets to allocate from) the allocation code will invalidate some
558  * buckets, but it can't use those buckets until their new gens are safely on
559  * disk.
560  */
561 
562 static void prio_endio(struct bio *bio)
563 {
564 	struct cache *ca = bio->bi_private;
565 
566 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
567 	bch_bbio_free(bio, ca->set);
568 	closure_put(&ca->prio);
569 }
570 
571 static void prio_io(struct cache *ca, uint64_t bucket, int op,
572 		    unsigned long op_flags)
573 {
574 	struct closure *cl = &ca->prio;
575 	struct bio *bio = bch_bbio_alloc(ca->set);
576 
577 	closure_init_stack(cl);
578 
579 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
580 	bio_set_dev(bio, ca->bdev);
581 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
582 
583 	bio->bi_end_io	= prio_endio;
584 	bio->bi_private = ca;
585 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
586 	bch_bio_map(bio, ca->disk_buckets);
587 
588 	closure_bio_submit(ca->set, bio, &ca->prio);
589 	closure_sync(cl);
590 }
591 
592 int bch_prio_write(struct cache *ca, bool wait)
593 {
594 	int i;
595 	struct bucket *b;
596 	struct closure cl;
597 
598 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
599 		 fifo_used(&ca->free[RESERVE_PRIO]),
600 		 fifo_used(&ca->free[RESERVE_NONE]),
601 		 fifo_used(&ca->free_inc));
602 
603 	/*
604 	 * Pre-check if there are enough free buckets. In the non-blocking
605 	 * scenario it's better to fail early rather than starting to allocate
606 	 * buckets and do a cleanup later in case of failure.
607 	 */
608 	if (!wait) {
609 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
610 			       fifo_used(&ca->free[RESERVE_NONE]);
611 		if (prio_buckets(ca) > avail)
612 			return -ENOMEM;
613 	}
614 
615 	closure_init_stack(&cl);
616 
617 	lockdep_assert_held(&ca->set->bucket_lock);
618 
619 	ca->disk_buckets->seq++;
620 
621 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
622 			&ca->meta_sectors_written);
623 
624 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
625 		long bucket;
626 		struct prio_set *p = ca->disk_buckets;
627 		struct bucket_disk *d = p->data;
628 		struct bucket_disk *end = d + prios_per_bucket(ca);
629 
630 		for (b = ca->buckets + i * prios_per_bucket(ca);
631 		     b < ca->buckets + ca->sb.nbuckets && d < end;
632 		     b++, d++) {
633 			d->prio = cpu_to_le16(b->prio);
634 			d->gen = b->gen;
635 		}
636 
637 		p->next_bucket	= ca->prio_buckets[i + 1];
638 		p->magic	= pset_magic(&ca->sb);
639 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
640 
641 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
642 		BUG_ON(bucket == -1);
643 
644 		mutex_unlock(&ca->set->bucket_lock);
645 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
646 		mutex_lock(&ca->set->bucket_lock);
647 
648 		ca->prio_buckets[i] = bucket;
649 		atomic_dec_bug(&ca->buckets[bucket].pin);
650 	}
651 
652 	mutex_unlock(&ca->set->bucket_lock);
653 
654 	bch_journal_meta(ca->set, &cl);
655 	closure_sync(&cl);
656 
657 	mutex_lock(&ca->set->bucket_lock);
658 
659 	/*
660 	 * Don't want the old priorities to get garbage collected until after we
661 	 * finish writing the new ones, and they're journalled
662 	 */
663 	for (i = 0; i < prio_buckets(ca); i++) {
664 		if (ca->prio_last_buckets[i])
665 			__bch_bucket_free(ca,
666 				&ca->buckets[ca->prio_last_buckets[i]]);
667 
668 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
669 	}
670 	return 0;
671 }
672 
673 static int prio_read(struct cache *ca, uint64_t bucket)
674 {
675 	struct prio_set *p = ca->disk_buckets;
676 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
677 	struct bucket *b;
678 	unsigned int bucket_nr = 0;
679 	int ret = -EIO;
680 
681 	for (b = ca->buckets;
682 	     b < ca->buckets + ca->sb.nbuckets;
683 	     b++, d++) {
684 		if (d == end) {
685 			ca->prio_buckets[bucket_nr] = bucket;
686 			ca->prio_last_buckets[bucket_nr] = bucket;
687 			bucket_nr++;
688 
689 			prio_io(ca, bucket, REQ_OP_READ, 0);
690 
691 			if (p->csum !=
692 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
693 				pr_warn("bad csum reading priorities\n");
694 				goto out;
695 			}
696 
697 			if (p->magic != pset_magic(&ca->sb)) {
698 				pr_warn("bad magic reading priorities\n");
699 				goto out;
700 			}
701 
702 			bucket = p->next_bucket;
703 			d = p->data;
704 		}
705 
706 		b->prio = le16_to_cpu(d->prio);
707 		b->gen = b->last_gc = d->gen;
708 	}
709 
710 	ret = 0;
711 out:
712 	return ret;
713 }
714 
715 /* Bcache device */
716 
717 static int open_dev(struct block_device *b, fmode_t mode)
718 {
719 	struct bcache_device *d = b->bd_disk->private_data;
720 
721 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
722 		return -ENXIO;
723 
724 	closure_get(&d->cl);
725 	return 0;
726 }
727 
728 static void release_dev(struct gendisk *b, fmode_t mode)
729 {
730 	struct bcache_device *d = b->private_data;
731 
732 	closure_put(&d->cl);
733 }
734 
735 static int ioctl_dev(struct block_device *b, fmode_t mode,
736 		     unsigned int cmd, unsigned long arg)
737 {
738 	struct bcache_device *d = b->bd_disk->private_data;
739 
740 	return d->ioctl(d, mode, cmd, arg);
741 }
742 
743 static const struct block_device_operations bcache_cached_ops = {
744 	.submit_bio	= cached_dev_submit_bio,
745 	.open		= open_dev,
746 	.release	= release_dev,
747 	.ioctl		= ioctl_dev,
748 	.owner		= THIS_MODULE,
749 };
750 
751 static const struct block_device_operations bcache_flash_ops = {
752 	.submit_bio	= flash_dev_submit_bio,
753 	.open		= open_dev,
754 	.release	= release_dev,
755 	.ioctl		= ioctl_dev,
756 	.owner		= THIS_MODULE,
757 };
758 
759 void bcache_device_stop(struct bcache_device *d)
760 {
761 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
762 		/*
763 		 * closure_fn set to
764 		 * - cached device: cached_dev_flush()
765 		 * - flash dev: flash_dev_flush()
766 		 */
767 		closure_queue(&d->cl);
768 }
769 
770 static void bcache_device_unlink(struct bcache_device *d)
771 {
772 	lockdep_assert_held(&bch_register_lock);
773 
774 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
775 		unsigned int i;
776 		struct cache *ca;
777 
778 		sysfs_remove_link(&d->c->kobj, d->name);
779 		sysfs_remove_link(&d->kobj, "cache");
780 
781 		for_each_cache(ca, d->c, i)
782 			bd_unlink_disk_holder(ca->bdev, d->disk);
783 	}
784 }
785 
786 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
787 			       const char *name)
788 {
789 	unsigned int i;
790 	struct cache *ca;
791 	int ret;
792 
793 	for_each_cache(ca, d->c, i)
794 		bd_link_disk_holder(ca->bdev, d->disk);
795 
796 	snprintf(d->name, BCACHEDEVNAME_SIZE,
797 		 "%s%u", name, d->id);
798 
799 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
800 	if (ret < 0)
801 		pr_err("Couldn't create device -> cache set symlink\n");
802 
803 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
804 	if (ret < 0)
805 		pr_err("Couldn't create cache set -> device symlink\n");
806 
807 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
808 }
809 
810 static void bcache_device_detach(struct bcache_device *d)
811 {
812 	lockdep_assert_held(&bch_register_lock);
813 
814 	atomic_dec(&d->c->attached_dev_nr);
815 
816 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
817 		struct uuid_entry *u = d->c->uuids + d->id;
818 
819 		SET_UUID_FLASH_ONLY(u, 0);
820 		memcpy(u->uuid, invalid_uuid, 16);
821 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
822 		bch_uuid_write(d->c);
823 	}
824 
825 	bcache_device_unlink(d);
826 
827 	d->c->devices[d->id] = NULL;
828 	closure_put(&d->c->caching);
829 	d->c = NULL;
830 }
831 
832 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
833 				 unsigned int id)
834 {
835 	d->id = id;
836 	d->c = c;
837 	c->devices[id] = d;
838 
839 	if (id >= c->devices_max_used)
840 		c->devices_max_used = id + 1;
841 
842 	closure_get(&c->caching);
843 }
844 
845 static inline int first_minor_to_idx(int first_minor)
846 {
847 	return (first_minor/BCACHE_MINORS);
848 }
849 
850 static inline int idx_to_first_minor(int idx)
851 {
852 	return (idx * BCACHE_MINORS);
853 }
854 
855 static void bcache_device_free(struct bcache_device *d)
856 {
857 	struct gendisk *disk = d->disk;
858 
859 	lockdep_assert_held(&bch_register_lock);
860 
861 	if (disk)
862 		pr_info("%s stopped\n", disk->disk_name);
863 	else
864 		pr_err("bcache device (NULL gendisk) stopped\n");
865 
866 	if (d->c)
867 		bcache_device_detach(d);
868 
869 	if (disk) {
870 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
871 
872 		if (disk_added)
873 			del_gendisk(disk);
874 
875 		if (disk->queue)
876 			blk_cleanup_queue(disk->queue);
877 
878 		ida_simple_remove(&bcache_device_idx,
879 				  first_minor_to_idx(disk->first_minor));
880 		if (disk_added)
881 			put_disk(disk);
882 	}
883 
884 	bioset_exit(&d->bio_split);
885 	kvfree(d->full_dirty_stripes);
886 	kvfree(d->stripe_sectors_dirty);
887 
888 	closure_debug_destroy(&d->cl);
889 }
890 
891 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
892 		sector_t sectors, struct block_device *cached_bdev,
893 		const struct block_device_operations *ops)
894 {
895 	struct request_queue *q;
896 	const size_t max_stripes = min_t(size_t, INT_MAX,
897 					 SIZE_MAX / sizeof(atomic_t));
898 	uint64_t n;
899 	int idx;
900 
901 	if (!d->stripe_size)
902 		d->stripe_size = 1 << 31;
903 
904 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
905 	if (!n || n > max_stripes) {
906 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
907 			n);
908 		return -ENOMEM;
909 	}
910 	d->nr_stripes = n;
911 
912 	n = d->nr_stripes * sizeof(atomic_t);
913 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
914 	if (!d->stripe_sectors_dirty)
915 		return -ENOMEM;
916 
917 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
918 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
919 	if (!d->full_dirty_stripes)
920 		return -ENOMEM;
921 
922 	idx = ida_simple_get(&bcache_device_idx, 0,
923 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
924 	if (idx < 0)
925 		return idx;
926 
927 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
928 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
929 		goto err;
930 
931 	d->disk = alloc_disk(BCACHE_MINORS);
932 	if (!d->disk)
933 		goto err;
934 
935 	set_capacity(d->disk, sectors);
936 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
937 
938 	d->disk->major		= bcache_major;
939 	d->disk->first_minor	= idx_to_first_minor(idx);
940 	d->disk->fops		= ops;
941 	d->disk->private_data	= d;
942 
943 	q = blk_alloc_queue(NUMA_NO_NODE);
944 	if (!q)
945 		return -ENOMEM;
946 
947 	d->disk->queue			= q;
948 	q->backing_dev_info->congested_data = d;
949 	q->limits.max_hw_sectors	= UINT_MAX;
950 	q->limits.max_sectors		= UINT_MAX;
951 	q->limits.max_segment_size	= UINT_MAX;
952 	q->limits.max_segments		= BIO_MAX_PAGES;
953 	blk_queue_max_discard_sectors(q, UINT_MAX);
954 	q->limits.discard_granularity	= 512;
955 	q->limits.io_min		= block_size;
956 	q->limits.logical_block_size	= block_size;
957 	q->limits.physical_block_size	= block_size;
958 
959 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
960 		/*
961 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
962 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
963 		 */
964 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
965 			d->disk->disk_name, q->limits.logical_block_size,
966 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
967 
968 		/* This also adjusts physical block size/min io size if needed */
969 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
970 	}
971 
972 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
973 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
974 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
975 
976 	blk_queue_write_cache(q, true, true);
977 
978 	return 0;
979 
980 err:
981 	ida_simple_remove(&bcache_device_idx, idx);
982 	return -ENOMEM;
983 
984 }
985 
986 /* Cached device */
987 
988 static void calc_cached_dev_sectors(struct cache_set *c)
989 {
990 	uint64_t sectors = 0;
991 	struct cached_dev *dc;
992 
993 	list_for_each_entry(dc, &c->cached_devs, list)
994 		sectors += bdev_sectors(dc->bdev);
995 
996 	c->cached_dev_sectors = sectors;
997 }
998 
999 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1000 static int cached_dev_status_update(void *arg)
1001 {
1002 	struct cached_dev *dc = arg;
1003 	struct request_queue *q;
1004 
1005 	/*
1006 	 * If this delayed worker is stopping outside, directly quit here.
1007 	 * dc->io_disable might be set via sysfs interface, so check it
1008 	 * here too.
1009 	 */
1010 	while (!kthread_should_stop() && !dc->io_disable) {
1011 		q = bdev_get_queue(dc->bdev);
1012 		if (blk_queue_dying(q))
1013 			dc->offline_seconds++;
1014 		else
1015 			dc->offline_seconds = 0;
1016 
1017 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1018 			pr_err("%s: device offline for %d seconds\n",
1019 			       dc->backing_dev_name,
1020 			       BACKING_DEV_OFFLINE_TIMEOUT);
1021 			pr_err("%s: disable I/O request due to backing device offline\n",
1022 			       dc->disk.name);
1023 			dc->io_disable = true;
1024 			/* let others know earlier that io_disable is true */
1025 			smp_mb();
1026 			bcache_device_stop(&dc->disk);
1027 			break;
1028 		}
1029 		schedule_timeout_interruptible(HZ);
1030 	}
1031 
1032 	wait_for_kthread_stop();
1033 	return 0;
1034 }
1035 
1036 
1037 int bch_cached_dev_run(struct cached_dev *dc)
1038 {
1039 	struct bcache_device *d = &dc->disk;
1040 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1041 	char *env[] = {
1042 		"DRIVER=bcache",
1043 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1044 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1045 		NULL,
1046 	};
1047 
1048 	if (dc->io_disable) {
1049 		pr_err("I/O disabled on cached dev %s\n",
1050 		       dc->backing_dev_name);
1051 		kfree(env[1]);
1052 		kfree(env[2]);
1053 		kfree(buf);
1054 		return -EIO;
1055 	}
1056 
1057 	if (atomic_xchg(&dc->running, 1)) {
1058 		kfree(env[1]);
1059 		kfree(env[2]);
1060 		kfree(buf);
1061 		pr_info("cached dev %s is running already\n",
1062 		       dc->backing_dev_name);
1063 		return -EBUSY;
1064 	}
1065 
1066 	if (!d->c &&
1067 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1068 		struct closure cl;
1069 
1070 		closure_init_stack(&cl);
1071 
1072 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1073 		bch_write_bdev_super(dc, &cl);
1074 		closure_sync(&cl);
1075 	}
1076 
1077 	add_disk(d->disk);
1078 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1079 	/*
1080 	 * won't show up in the uevent file, use udevadm monitor -e instead
1081 	 * only class / kset properties are persistent
1082 	 */
1083 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1084 	kfree(env[1]);
1085 	kfree(env[2]);
1086 	kfree(buf);
1087 
1088 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1089 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1090 			      &d->kobj, "bcache")) {
1091 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1092 		return -ENOMEM;
1093 	}
1094 
1095 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1096 					       dc, "bcache_status_update");
1097 	if (IS_ERR(dc->status_update_thread)) {
1098 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 /*
1105  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1106  * work dc->writeback_rate_update is running. Wait until the routine
1107  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1108  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1109  * seconds, give up waiting here and continue to cancel it too.
1110  */
1111 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1112 {
1113 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1114 
1115 	do {
1116 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1117 			      &dc->disk.flags))
1118 			break;
1119 		time_out--;
1120 		schedule_timeout_interruptible(1);
1121 	} while (time_out > 0);
1122 
1123 	if (time_out == 0)
1124 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1125 
1126 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1127 }
1128 
1129 static void cached_dev_detach_finish(struct work_struct *w)
1130 {
1131 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1132 	struct closure cl;
1133 
1134 	closure_init_stack(&cl);
1135 
1136 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1137 	BUG_ON(refcount_read(&dc->count));
1138 
1139 
1140 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1141 		cancel_writeback_rate_update_dwork(dc);
1142 
1143 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1144 		kthread_stop(dc->writeback_thread);
1145 		dc->writeback_thread = NULL;
1146 	}
1147 
1148 	memset(&dc->sb.set_uuid, 0, 16);
1149 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1150 
1151 	bch_write_bdev_super(dc, &cl);
1152 	closure_sync(&cl);
1153 
1154 	mutex_lock(&bch_register_lock);
1155 
1156 	calc_cached_dev_sectors(dc->disk.c);
1157 	bcache_device_detach(&dc->disk);
1158 	list_move(&dc->list, &uncached_devices);
1159 
1160 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1161 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1162 
1163 	mutex_unlock(&bch_register_lock);
1164 
1165 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1166 
1167 	/* Drop ref we took in cached_dev_detach() */
1168 	closure_put(&dc->disk.cl);
1169 }
1170 
1171 void bch_cached_dev_detach(struct cached_dev *dc)
1172 {
1173 	lockdep_assert_held(&bch_register_lock);
1174 
1175 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1176 		return;
1177 
1178 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1179 		return;
1180 
1181 	/*
1182 	 * Block the device from being closed and freed until we're finished
1183 	 * detaching
1184 	 */
1185 	closure_get(&dc->disk.cl);
1186 
1187 	bch_writeback_queue(dc);
1188 
1189 	cached_dev_put(dc);
1190 }
1191 
1192 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1193 			  uint8_t *set_uuid)
1194 {
1195 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1196 	struct uuid_entry *u;
1197 	struct cached_dev *exist_dc, *t;
1198 	int ret = 0;
1199 
1200 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1201 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1202 		return -ENOENT;
1203 
1204 	if (dc->disk.c) {
1205 		pr_err("Can't attach %s: already attached\n",
1206 		       dc->backing_dev_name);
1207 		return -EINVAL;
1208 	}
1209 
1210 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1211 		pr_err("Can't attach %s: shutting down\n",
1212 		       dc->backing_dev_name);
1213 		return -EINVAL;
1214 	}
1215 
1216 	if (dc->sb.block_size < c->sb.block_size) {
1217 		/* Will die */
1218 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1219 		       dc->backing_dev_name);
1220 		return -EINVAL;
1221 	}
1222 
1223 	/* Check whether already attached */
1224 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1225 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1226 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1227 				dc->backing_dev_name);
1228 
1229 			return -EINVAL;
1230 		}
1231 	}
1232 
1233 	u = uuid_find(c, dc->sb.uuid);
1234 
1235 	if (u &&
1236 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1237 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1238 		memcpy(u->uuid, invalid_uuid, 16);
1239 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1240 		u = NULL;
1241 	}
1242 
1243 	if (!u) {
1244 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1245 			pr_err("Couldn't find uuid for %s in set\n",
1246 			       dc->backing_dev_name);
1247 			return -ENOENT;
1248 		}
1249 
1250 		u = uuid_find_empty(c);
1251 		if (!u) {
1252 			pr_err("Not caching %s, no room for UUID\n",
1253 			       dc->backing_dev_name);
1254 			return -EINVAL;
1255 		}
1256 	}
1257 
1258 	/*
1259 	 * Deadlocks since we're called via sysfs...
1260 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1261 	 */
1262 
1263 	if (bch_is_zero(u->uuid, 16)) {
1264 		struct closure cl;
1265 
1266 		closure_init_stack(&cl);
1267 
1268 		memcpy(u->uuid, dc->sb.uuid, 16);
1269 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1270 		u->first_reg = u->last_reg = rtime;
1271 		bch_uuid_write(c);
1272 
1273 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1274 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1275 
1276 		bch_write_bdev_super(dc, &cl);
1277 		closure_sync(&cl);
1278 	} else {
1279 		u->last_reg = rtime;
1280 		bch_uuid_write(c);
1281 	}
1282 
1283 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1284 	list_move(&dc->list, &c->cached_devs);
1285 	calc_cached_dev_sectors(c);
1286 
1287 	/*
1288 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1289 	 * cached_dev_get()
1290 	 */
1291 	smp_wmb();
1292 	refcount_set(&dc->count, 1);
1293 
1294 	/* Block writeback thread, but spawn it */
1295 	down_write(&dc->writeback_lock);
1296 	if (bch_cached_dev_writeback_start(dc)) {
1297 		up_write(&dc->writeback_lock);
1298 		pr_err("Couldn't start writeback facilities for %s\n",
1299 		       dc->disk.disk->disk_name);
1300 		return -ENOMEM;
1301 	}
1302 
1303 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1304 		atomic_set(&dc->has_dirty, 1);
1305 		bch_writeback_queue(dc);
1306 	}
1307 
1308 	bch_sectors_dirty_init(&dc->disk);
1309 
1310 	ret = bch_cached_dev_run(dc);
1311 	if (ret && (ret != -EBUSY)) {
1312 		up_write(&dc->writeback_lock);
1313 		/*
1314 		 * bch_register_lock is held, bcache_device_stop() is not
1315 		 * able to be directly called. The kthread and kworker
1316 		 * created previously in bch_cached_dev_writeback_start()
1317 		 * have to be stopped manually here.
1318 		 */
1319 		kthread_stop(dc->writeback_thread);
1320 		cancel_writeback_rate_update_dwork(dc);
1321 		pr_err("Couldn't run cached device %s\n",
1322 		       dc->backing_dev_name);
1323 		return ret;
1324 	}
1325 
1326 	bcache_device_link(&dc->disk, c, "bdev");
1327 	atomic_inc(&c->attached_dev_nr);
1328 
1329 	/* Allow the writeback thread to proceed */
1330 	up_write(&dc->writeback_lock);
1331 
1332 	pr_info("Caching %s as %s on set %pU\n",
1333 		dc->backing_dev_name,
1334 		dc->disk.disk->disk_name,
1335 		dc->disk.c->sb.set_uuid);
1336 	return 0;
1337 }
1338 
1339 /* when dc->disk.kobj released */
1340 void bch_cached_dev_release(struct kobject *kobj)
1341 {
1342 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1343 					     disk.kobj);
1344 	kfree(dc);
1345 	module_put(THIS_MODULE);
1346 }
1347 
1348 static void cached_dev_free(struct closure *cl)
1349 {
1350 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1351 
1352 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1353 		cancel_writeback_rate_update_dwork(dc);
1354 
1355 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1356 		kthread_stop(dc->writeback_thread);
1357 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1358 		kthread_stop(dc->status_update_thread);
1359 
1360 	mutex_lock(&bch_register_lock);
1361 
1362 	if (atomic_read(&dc->running))
1363 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1364 	bcache_device_free(&dc->disk);
1365 	list_del(&dc->list);
1366 
1367 	mutex_unlock(&bch_register_lock);
1368 
1369 	if (dc->sb_disk)
1370 		put_page(virt_to_page(dc->sb_disk));
1371 
1372 	if (!IS_ERR_OR_NULL(dc->bdev))
1373 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1374 
1375 	wake_up(&unregister_wait);
1376 
1377 	kobject_put(&dc->disk.kobj);
1378 }
1379 
1380 static void cached_dev_flush(struct closure *cl)
1381 {
1382 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1383 	struct bcache_device *d = &dc->disk;
1384 
1385 	mutex_lock(&bch_register_lock);
1386 	bcache_device_unlink(d);
1387 	mutex_unlock(&bch_register_lock);
1388 
1389 	bch_cache_accounting_destroy(&dc->accounting);
1390 	kobject_del(&d->kobj);
1391 
1392 	continue_at(cl, cached_dev_free, system_wq);
1393 }
1394 
1395 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1396 {
1397 	int ret;
1398 	struct io *io;
1399 	struct request_queue *q = bdev_get_queue(dc->bdev);
1400 
1401 	__module_get(THIS_MODULE);
1402 	INIT_LIST_HEAD(&dc->list);
1403 	closure_init(&dc->disk.cl, NULL);
1404 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1405 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1406 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1407 	sema_init(&dc->sb_write_mutex, 1);
1408 	INIT_LIST_HEAD(&dc->io_lru);
1409 	spin_lock_init(&dc->io_lock);
1410 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1411 
1412 	dc->sequential_cutoff		= 4 << 20;
1413 
1414 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1415 		list_add(&io->lru, &dc->io_lru);
1416 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1417 	}
1418 
1419 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1420 
1421 	if (dc->disk.stripe_size)
1422 		dc->partial_stripes_expensive =
1423 			q->limits.raid_partial_stripes_expensive;
1424 
1425 	ret = bcache_device_init(&dc->disk, block_size,
1426 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1427 			 dc->bdev, &bcache_cached_ops);
1428 	if (ret)
1429 		return ret;
1430 
1431 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1432 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1433 		    q->backing_dev_info->ra_pages);
1434 
1435 	atomic_set(&dc->io_errors, 0);
1436 	dc->io_disable = false;
1437 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1438 	/* default to auto */
1439 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1440 
1441 	bch_cached_dev_request_init(dc);
1442 	bch_cached_dev_writeback_init(dc);
1443 	return 0;
1444 }
1445 
1446 /* Cached device - bcache superblock */
1447 
1448 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1449 				 struct block_device *bdev,
1450 				 struct cached_dev *dc)
1451 {
1452 	const char *err = "cannot allocate memory";
1453 	struct cache_set *c;
1454 	int ret = -ENOMEM;
1455 
1456 	bdevname(bdev, dc->backing_dev_name);
1457 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1458 	dc->bdev = bdev;
1459 	dc->bdev->bd_holder = dc;
1460 	dc->sb_disk = sb_disk;
1461 
1462 	if (cached_dev_init(dc, sb->block_size << 9))
1463 		goto err;
1464 
1465 	err = "error creating kobject";
1466 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1467 			"bcache"))
1468 		goto err;
1469 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1470 		goto err;
1471 
1472 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1473 
1474 	list_add(&dc->list, &uncached_devices);
1475 	/* attach to a matched cache set if it exists */
1476 	list_for_each_entry(c, &bch_cache_sets, list)
1477 		bch_cached_dev_attach(dc, c, NULL);
1478 
1479 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1480 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1481 		err = "failed to run cached device";
1482 		ret = bch_cached_dev_run(dc);
1483 		if (ret)
1484 			goto err;
1485 	}
1486 
1487 	return 0;
1488 err:
1489 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1490 	bcache_device_stop(&dc->disk);
1491 	return ret;
1492 }
1493 
1494 /* Flash only volumes */
1495 
1496 /* When d->kobj released */
1497 void bch_flash_dev_release(struct kobject *kobj)
1498 {
1499 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1500 					       kobj);
1501 	kfree(d);
1502 }
1503 
1504 static void flash_dev_free(struct closure *cl)
1505 {
1506 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1507 
1508 	mutex_lock(&bch_register_lock);
1509 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1510 			&d->c->flash_dev_dirty_sectors);
1511 	bcache_device_free(d);
1512 	mutex_unlock(&bch_register_lock);
1513 	kobject_put(&d->kobj);
1514 }
1515 
1516 static void flash_dev_flush(struct closure *cl)
1517 {
1518 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1519 
1520 	mutex_lock(&bch_register_lock);
1521 	bcache_device_unlink(d);
1522 	mutex_unlock(&bch_register_lock);
1523 	kobject_del(&d->kobj);
1524 	continue_at(cl, flash_dev_free, system_wq);
1525 }
1526 
1527 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1528 {
1529 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1530 					  GFP_KERNEL);
1531 	if (!d)
1532 		return -ENOMEM;
1533 
1534 	closure_init(&d->cl, NULL);
1535 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1536 
1537 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1538 
1539 	if (bcache_device_init(d, block_bytes(c), u->sectors,
1540 			NULL, &bcache_flash_ops))
1541 		goto err;
1542 
1543 	bcache_device_attach(d, c, u - c->uuids);
1544 	bch_sectors_dirty_init(d);
1545 	bch_flash_dev_request_init(d);
1546 	add_disk(d->disk);
1547 
1548 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1549 		goto err;
1550 
1551 	bcache_device_link(d, c, "volume");
1552 
1553 	return 0;
1554 err:
1555 	kobject_put(&d->kobj);
1556 	return -ENOMEM;
1557 }
1558 
1559 static int flash_devs_run(struct cache_set *c)
1560 {
1561 	int ret = 0;
1562 	struct uuid_entry *u;
1563 
1564 	for (u = c->uuids;
1565 	     u < c->uuids + c->nr_uuids && !ret;
1566 	     u++)
1567 		if (UUID_FLASH_ONLY(u))
1568 			ret = flash_dev_run(c, u);
1569 
1570 	return ret;
1571 }
1572 
1573 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1574 {
1575 	struct uuid_entry *u;
1576 
1577 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1578 		return -EINTR;
1579 
1580 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1581 		return -EPERM;
1582 
1583 	u = uuid_find_empty(c);
1584 	if (!u) {
1585 		pr_err("Can't create volume, no room for UUID\n");
1586 		return -EINVAL;
1587 	}
1588 
1589 	get_random_bytes(u->uuid, 16);
1590 	memset(u->label, 0, 32);
1591 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1592 
1593 	SET_UUID_FLASH_ONLY(u, 1);
1594 	u->sectors = size >> 9;
1595 
1596 	bch_uuid_write(c);
1597 
1598 	return flash_dev_run(c, u);
1599 }
1600 
1601 bool bch_cached_dev_error(struct cached_dev *dc)
1602 {
1603 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1604 		return false;
1605 
1606 	dc->io_disable = true;
1607 	/* make others know io_disable is true earlier */
1608 	smp_mb();
1609 
1610 	pr_err("stop %s: too many IO errors on backing device %s\n",
1611 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1612 
1613 	bcache_device_stop(&dc->disk);
1614 	return true;
1615 }
1616 
1617 /* Cache set */
1618 
1619 __printf(2, 3)
1620 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1621 {
1622 	struct va_format vaf;
1623 	va_list args;
1624 
1625 	if (c->on_error != ON_ERROR_PANIC &&
1626 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1627 		return false;
1628 
1629 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1630 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1631 
1632 	/*
1633 	 * XXX: we can be called from atomic context
1634 	 * acquire_console_sem();
1635 	 */
1636 
1637 	va_start(args, fmt);
1638 
1639 	vaf.fmt = fmt;
1640 	vaf.va = &args;
1641 
1642 	pr_err("error on %pU: %pV, disabling caching\n",
1643 	       c->sb.set_uuid, &vaf);
1644 
1645 	va_end(args);
1646 
1647 	if (c->on_error == ON_ERROR_PANIC)
1648 		panic("panic forced after error\n");
1649 
1650 	bch_cache_set_unregister(c);
1651 	return true;
1652 }
1653 
1654 /* When c->kobj released */
1655 void bch_cache_set_release(struct kobject *kobj)
1656 {
1657 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1658 
1659 	kfree(c);
1660 	module_put(THIS_MODULE);
1661 }
1662 
1663 static void cache_set_free(struct closure *cl)
1664 {
1665 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1666 	struct cache *ca;
1667 	unsigned int i;
1668 
1669 	debugfs_remove(c->debug);
1670 
1671 	bch_open_buckets_free(c);
1672 	bch_btree_cache_free(c);
1673 	bch_journal_free(c);
1674 
1675 	mutex_lock(&bch_register_lock);
1676 	for_each_cache(ca, c, i)
1677 		if (ca) {
1678 			ca->set = NULL;
1679 			c->cache[ca->sb.nr_this_dev] = NULL;
1680 			kobject_put(&ca->kobj);
1681 		}
1682 
1683 	bch_bset_sort_state_free(&c->sort);
1684 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->sb)));
1685 
1686 	if (c->moving_gc_wq)
1687 		destroy_workqueue(c->moving_gc_wq);
1688 	bioset_exit(&c->bio_split);
1689 	mempool_exit(&c->fill_iter);
1690 	mempool_exit(&c->bio_meta);
1691 	mempool_exit(&c->search);
1692 	kfree(c->devices);
1693 
1694 	list_del(&c->list);
1695 	mutex_unlock(&bch_register_lock);
1696 
1697 	pr_info("Cache set %pU unregistered\n", c->sb.set_uuid);
1698 	wake_up(&unregister_wait);
1699 
1700 	closure_debug_destroy(&c->cl);
1701 	kobject_put(&c->kobj);
1702 }
1703 
1704 static void cache_set_flush(struct closure *cl)
1705 {
1706 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1707 	struct cache *ca;
1708 	struct btree *b;
1709 	unsigned int i;
1710 
1711 	bch_cache_accounting_destroy(&c->accounting);
1712 
1713 	kobject_put(&c->internal);
1714 	kobject_del(&c->kobj);
1715 
1716 	if (!IS_ERR_OR_NULL(c->gc_thread))
1717 		kthread_stop(c->gc_thread);
1718 
1719 	if (!IS_ERR_OR_NULL(c->root))
1720 		list_add(&c->root->list, &c->btree_cache);
1721 
1722 	/*
1723 	 * Avoid flushing cached nodes if cache set is retiring
1724 	 * due to too many I/O errors detected.
1725 	 */
1726 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1727 		list_for_each_entry(b, &c->btree_cache, list) {
1728 			mutex_lock(&b->write_lock);
1729 			if (btree_node_dirty(b))
1730 				__bch_btree_node_write(b, NULL);
1731 			mutex_unlock(&b->write_lock);
1732 		}
1733 
1734 	for_each_cache(ca, c, i)
1735 		if (ca->alloc_thread)
1736 			kthread_stop(ca->alloc_thread);
1737 
1738 	if (c->journal.cur) {
1739 		cancel_delayed_work_sync(&c->journal.work);
1740 		/* flush last journal entry if needed */
1741 		c->journal.work.work.func(&c->journal.work.work);
1742 	}
1743 
1744 	closure_return(cl);
1745 }
1746 
1747 /*
1748  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1749  * cache set is unregistering due to too many I/O errors. In this condition,
1750  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1751  * value and whether the broken cache has dirty data:
1752  *
1753  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1754  *  BCH_CACHED_STOP_AUTO               0               NO
1755  *  BCH_CACHED_STOP_AUTO               1               YES
1756  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1757  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1758  *
1759  * The expected behavior is, if stop_when_cache_set_failed is configured to
1760  * "auto" via sysfs interface, the bcache device will not be stopped if the
1761  * backing device is clean on the broken cache device.
1762  */
1763 static void conditional_stop_bcache_device(struct cache_set *c,
1764 					   struct bcache_device *d,
1765 					   struct cached_dev *dc)
1766 {
1767 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1768 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1769 			d->disk->disk_name, c->sb.set_uuid);
1770 		bcache_device_stop(d);
1771 	} else if (atomic_read(&dc->has_dirty)) {
1772 		/*
1773 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1774 		 * and dc->has_dirty == 1
1775 		 */
1776 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1777 			d->disk->disk_name);
1778 		/*
1779 		 * There might be a small time gap that cache set is
1780 		 * released but bcache device is not. Inside this time
1781 		 * gap, regular I/O requests will directly go into
1782 		 * backing device as no cache set attached to. This
1783 		 * behavior may also introduce potential inconsistence
1784 		 * data in writeback mode while cache is dirty.
1785 		 * Therefore before calling bcache_device_stop() due
1786 		 * to a broken cache device, dc->io_disable should be
1787 		 * explicitly set to true.
1788 		 */
1789 		dc->io_disable = true;
1790 		/* make others know io_disable is true earlier */
1791 		smp_mb();
1792 		bcache_device_stop(d);
1793 	} else {
1794 		/*
1795 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1796 		 * and dc->has_dirty == 0
1797 		 */
1798 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1799 			d->disk->disk_name);
1800 	}
1801 }
1802 
1803 static void __cache_set_unregister(struct closure *cl)
1804 {
1805 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1806 	struct cached_dev *dc;
1807 	struct bcache_device *d;
1808 	size_t i;
1809 
1810 	mutex_lock(&bch_register_lock);
1811 
1812 	for (i = 0; i < c->devices_max_used; i++) {
1813 		d = c->devices[i];
1814 		if (!d)
1815 			continue;
1816 
1817 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1818 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1819 			dc = container_of(d, struct cached_dev, disk);
1820 			bch_cached_dev_detach(dc);
1821 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1822 				conditional_stop_bcache_device(c, d, dc);
1823 		} else {
1824 			bcache_device_stop(d);
1825 		}
1826 	}
1827 
1828 	mutex_unlock(&bch_register_lock);
1829 
1830 	continue_at(cl, cache_set_flush, system_wq);
1831 }
1832 
1833 void bch_cache_set_stop(struct cache_set *c)
1834 {
1835 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1836 		/* closure_fn set to __cache_set_unregister() */
1837 		closure_queue(&c->caching);
1838 }
1839 
1840 void bch_cache_set_unregister(struct cache_set *c)
1841 {
1842 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1843 	bch_cache_set_stop(c);
1844 }
1845 
1846 #define alloc_bucket_pages(gfp, c)			\
1847 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(bucket_pages(c))))
1848 
1849 #define alloc_meta_bucket_pages(gfp, sb)		\
1850 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1851 
1852 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1853 {
1854 	int iter_size;
1855 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1856 
1857 	if (!c)
1858 		return NULL;
1859 
1860 	__module_get(THIS_MODULE);
1861 	closure_init(&c->cl, NULL);
1862 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1863 
1864 	closure_init(&c->caching, &c->cl);
1865 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1866 
1867 	/* Maybe create continue_at_noreturn() and use it here? */
1868 	closure_set_stopped(&c->cl);
1869 	closure_put(&c->cl);
1870 
1871 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1872 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1873 
1874 	bch_cache_accounting_init(&c->accounting, &c->cl);
1875 
1876 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1877 	c->sb.block_size	= sb->block_size;
1878 	c->sb.bucket_size	= sb->bucket_size;
1879 	c->sb.nr_in_set		= sb->nr_in_set;
1880 	c->sb.last_mount	= sb->last_mount;
1881 	c->sb.version		= sb->version;
1882 	if (c->sb.version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
1883 		c->sb.feature_compat = sb->feature_compat;
1884 		c->sb.feature_ro_compat = sb->feature_ro_compat;
1885 		c->sb.feature_incompat = sb->feature_incompat;
1886 	}
1887 
1888 	c->bucket_bits		= ilog2(sb->bucket_size);
1889 	c->block_bits		= ilog2(sb->block_size);
1890 	c->nr_uuids		= meta_bucket_bytes(&c->sb) / sizeof(struct uuid_entry);
1891 	c->devices_max_used	= 0;
1892 	atomic_set(&c->attached_dev_nr, 0);
1893 	c->btree_pages		= meta_bucket_pages(&c->sb);
1894 	if (c->btree_pages > BTREE_MAX_PAGES)
1895 		c->btree_pages = max_t(int, c->btree_pages / 4,
1896 				       BTREE_MAX_PAGES);
1897 
1898 	sema_init(&c->sb_write_mutex, 1);
1899 	mutex_init(&c->bucket_lock);
1900 	init_waitqueue_head(&c->btree_cache_wait);
1901 	spin_lock_init(&c->btree_cannibalize_lock);
1902 	init_waitqueue_head(&c->bucket_wait);
1903 	init_waitqueue_head(&c->gc_wait);
1904 	sema_init(&c->uuid_write_mutex, 1);
1905 
1906 	spin_lock_init(&c->btree_gc_time.lock);
1907 	spin_lock_init(&c->btree_split_time.lock);
1908 	spin_lock_init(&c->btree_read_time.lock);
1909 
1910 	bch_moving_init_cache_set(c);
1911 
1912 	INIT_LIST_HEAD(&c->list);
1913 	INIT_LIST_HEAD(&c->cached_devs);
1914 	INIT_LIST_HEAD(&c->btree_cache);
1915 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1916 	INIT_LIST_HEAD(&c->btree_cache_freed);
1917 	INIT_LIST_HEAD(&c->data_buckets);
1918 
1919 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1920 		sizeof(struct btree_iter_set);
1921 
1922 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1923 	if (!c->devices)
1924 		goto err;
1925 
1926 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1927 		goto err;
1928 
1929 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1930 			sizeof(struct bbio) +
1931 			sizeof(struct bio_vec) * bucket_pages(c)))
1932 		goto err;
1933 
1934 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1935 		goto err;
1936 
1937 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1938 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
1939 		goto err;
1940 
1941 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, &c->sb);
1942 	if (!c->uuids)
1943 		goto err;
1944 
1945 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1946 	if (!c->moving_gc_wq)
1947 		goto err;
1948 
1949 	if (bch_journal_alloc(c))
1950 		goto err;
1951 
1952 	if (bch_btree_cache_alloc(c))
1953 		goto err;
1954 
1955 	if (bch_open_buckets_alloc(c))
1956 		goto err;
1957 
1958 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1959 		goto err;
1960 
1961 	c->congested_read_threshold_us	= 2000;
1962 	c->congested_write_threshold_us	= 20000;
1963 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1964 	c->idle_max_writeback_rate_enabled = 1;
1965 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1966 
1967 	return c;
1968 err:
1969 	bch_cache_set_unregister(c);
1970 	return NULL;
1971 }
1972 
1973 static int run_cache_set(struct cache_set *c)
1974 {
1975 	const char *err = "cannot allocate memory";
1976 	struct cached_dev *dc, *t;
1977 	struct cache *ca;
1978 	struct closure cl;
1979 	unsigned int i;
1980 	LIST_HEAD(journal);
1981 	struct journal_replay *l;
1982 
1983 	closure_init_stack(&cl);
1984 
1985 	for_each_cache(ca, c, i)
1986 		c->nbuckets += ca->sb.nbuckets;
1987 	set_gc_sectors(c);
1988 
1989 	if (CACHE_SYNC(&c->sb)) {
1990 		struct bkey *k;
1991 		struct jset *j;
1992 
1993 		err = "cannot allocate memory for journal";
1994 		if (bch_journal_read(c, &journal))
1995 			goto err;
1996 
1997 		pr_debug("btree_journal_read() done\n");
1998 
1999 		err = "no journal entries found";
2000 		if (list_empty(&journal))
2001 			goto err;
2002 
2003 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
2004 
2005 		err = "IO error reading priorities";
2006 		for_each_cache(ca, c, i) {
2007 			if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2008 				goto err;
2009 		}
2010 
2011 		/*
2012 		 * If prio_read() fails it'll call cache_set_error and we'll
2013 		 * tear everything down right away, but if we perhaps checked
2014 		 * sooner we could avoid journal replay.
2015 		 */
2016 
2017 		k = &j->btree_root;
2018 
2019 		err = "bad btree root";
2020 		if (__bch_btree_ptr_invalid(c, k))
2021 			goto err;
2022 
2023 		err = "error reading btree root";
2024 		c->root = bch_btree_node_get(c, NULL, k,
2025 					     j->btree_level,
2026 					     true, NULL);
2027 		if (IS_ERR_OR_NULL(c->root))
2028 			goto err;
2029 
2030 		list_del_init(&c->root->list);
2031 		rw_unlock(true, c->root);
2032 
2033 		err = uuid_read(c, j, &cl);
2034 		if (err)
2035 			goto err;
2036 
2037 		err = "error in recovery";
2038 		if (bch_btree_check(c))
2039 			goto err;
2040 
2041 		bch_journal_mark(c, &journal);
2042 		bch_initial_gc_finish(c);
2043 		pr_debug("btree_check() done\n");
2044 
2045 		/*
2046 		 * bcache_journal_next() can't happen sooner, or
2047 		 * btree_gc_finish() will give spurious errors about last_gc >
2048 		 * gc_gen - this is a hack but oh well.
2049 		 */
2050 		bch_journal_next(&c->journal);
2051 
2052 		err = "error starting allocator thread";
2053 		for_each_cache(ca, c, i)
2054 			if (bch_cache_allocator_start(ca))
2055 				goto err;
2056 
2057 		/*
2058 		 * First place it's safe to allocate: btree_check() and
2059 		 * btree_gc_finish() have to run before we have buckets to
2060 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2061 		 * entry to be written so bcache_journal_next() has to be called
2062 		 * first.
2063 		 *
2064 		 * If the uuids were in the old format we have to rewrite them
2065 		 * before the next journal entry is written:
2066 		 */
2067 		if (j->version < BCACHE_JSET_VERSION_UUID)
2068 			__uuid_write(c);
2069 
2070 		err = "bcache: replay journal failed";
2071 		if (bch_journal_replay(c, &journal))
2072 			goto err;
2073 	} else {
2074 		pr_notice("invalidating existing data\n");
2075 
2076 		for_each_cache(ca, c, i) {
2077 			unsigned int j;
2078 
2079 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2080 					      2, SB_JOURNAL_BUCKETS);
2081 
2082 			for (j = 0; j < ca->sb.keys; j++)
2083 				ca->sb.d[j] = ca->sb.first_bucket + j;
2084 		}
2085 
2086 		bch_initial_gc_finish(c);
2087 
2088 		err = "error starting allocator thread";
2089 		for_each_cache(ca, c, i)
2090 			if (bch_cache_allocator_start(ca))
2091 				goto err;
2092 
2093 		mutex_lock(&c->bucket_lock);
2094 		for_each_cache(ca, c, i)
2095 			bch_prio_write(ca, true);
2096 		mutex_unlock(&c->bucket_lock);
2097 
2098 		err = "cannot allocate new UUID bucket";
2099 		if (__uuid_write(c))
2100 			goto err;
2101 
2102 		err = "cannot allocate new btree root";
2103 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2104 		if (IS_ERR_OR_NULL(c->root))
2105 			goto err;
2106 
2107 		mutex_lock(&c->root->write_lock);
2108 		bkey_copy_key(&c->root->key, &MAX_KEY);
2109 		bch_btree_node_write(c->root, &cl);
2110 		mutex_unlock(&c->root->write_lock);
2111 
2112 		bch_btree_set_root(c->root);
2113 		rw_unlock(true, c->root);
2114 
2115 		/*
2116 		 * We don't want to write the first journal entry until
2117 		 * everything is set up - fortunately journal entries won't be
2118 		 * written until the SET_CACHE_SYNC() here:
2119 		 */
2120 		SET_CACHE_SYNC(&c->sb, true);
2121 
2122 		bch_journal_next(&c->journal);
2123 		bch_journal_meta(c, &cl);
2124 	}
2125 
2126 	err = "error starting gc thread";
2127 	if (bch_gc_thread_start(c))
2128 		goto err;
2129 
2130 	closure_sync(&cl);
2131 	c->sb.last_mount = (u32)ktime_get_real_seconds();
2132 	bcache_write_super(c);
2133 
2134 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2135 		bch_cached_dev_attach(dc, c, NULL);
2136 
2137 	flash_devs_run(c);
2138 
2139 	set_bit(CACHE_SET_RUNNING, &c->flags);
2140 	return 0;
2141 err:
2142 	while (!list_empty(&journal)) {
2143 		l = list_first_entry(&journal, struct journal_replay, list);
2144 		list_del(&l->list);
2145 		kfree(l);
2146 	}
2147 
2148 	closure_sync(&cl);
2149 
2150 	bch_cache_set_error(c, "%s", err);
2151 
2152 	return -EIO;
2153 }
2154 
2155 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2156 {
2157 	return ca->sb.block_size	== c->sb.block_size &&
2158 		ca->sb.bucket_size	== c->sb.bucket_size &&
2159 		ca->sb.nr_in_set	== c->sb.nr_in_set;
2160 }
2161 
2162 static const char *register_cache_set(struct cache *ca)
2163 {
2164 	char buf[12];
2165 	const char *err = "cannot allocate memory";
2166 	struct cache_set *c;
2167 
2168 	list_for_each_entry(c, &bch_cache_sets, list)
2169 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2170 			if (c->cache[ca->sb.nr_this_dev])
2171 				return "duplicate cache set member";
2172 
2173 			if (!can_attach_cache(ca, c))
2174 				return "cache sb does not match set";
2175 
2176 			if (!CACHE_SYNC(&ca->sb))
2177 				SET_CACHE_SYNC(&c->sb, false);
2178 
2179 			goto found;
2180 		}
2181 
2182 	c = bch_cache_set_alloc(&ca->sb);
2183 	if (!c)
2184 		return err;
2185 
2186 	err = "error creating kobject";
2187 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2188 	    kobject_add(&c->internal, &c->kobj, "internal"))
2189 		goto err;
2190 
2191 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2192 		goto err;
2193 
2194 	bch_debug_init_cache_set(c);
2195 
2196 	list_add(&c->list, &bch_cache_sets);
2197 found:
2198 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2199 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2200 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2201 		goto err;
2202 
2203 	/*
2204 	 * A special case is both ca->sb.seq and c->sb.seq are 0,
2205 	 * such condition happens on a new created cache device whose
2206 	 * super block is never flushed yet. In this case c->sb.version
2207 	 * and other members should be updated too, otherwise we will
2208 	 * have a mistaken super block version in cache set.
2209 	 */
2210 	if (ca->sb.seq > c->sb.seq || c->sb.seq == 0) {
2211 		c->sb.version		= ca->sb.version;
2212 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2213 		c->sb.flags             = ca->sb.flags;
2214 		c->sb.seq		= ca->sb.seq;
2215 		pr_debug("set version = %llu\n", c->sb.version);
2216 	}
2217 
2218 	kobject_get(&ca->kobj);
2219 	ca->set = c;
2220 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2221 	c->cache_by_alloc[c->caches_loaded++] = ca;
2222 
2223 	if (c->caches_loaded == c->sb.nr_in_set) {
2224 		err = "failed to run cache set";
2225 		if (run_cache_set(c) < 0)
2226 			goto err;
2227 	}
2228 
2229 	return NULL;
2230 err:
2231 	bch_cache_set_unregister(c);
2232 	return err;
2233 }
2234 
2235 /* Cache device */
2236 
2237 /* When ca->kobj released */
2238 void bch_cache_release(struct kobject *kobj)
2239 {
2240 	struct cache *ca = container_of(kobj, struct cache, kobj);
2241 	unsigned int i;
2242 
2243 	if (ca->set) {
2244 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2245 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2246 	}
2247 
2248 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2249 	kfree(ca->prio_buckets);
2250 	vfree(ca->buckets);
2251 
2252 	free_heap(&ca->heap);
2253 	free_fifo(&ca->free_inc);
2254 
2255 	for (i = 0; i < RESERVE_NR; i++)
2256 		free_fifo(&ca->free[i]);
2257 
2258 	if (ca->sb_disk)
2259 		put_page(virt_to_page(ca->sb_disk));
2260 
2261 	if (!IS_ERR_OR_NULL(ca->bdev))
2262 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2263 
2264 	kfree(ca);
2265 	module_put(THIS_MODULE);
2266 }
2267 
2268 static int cache_alloc(struct cache *ca)
2269 {
2270 	size_t free;
2271 	size_t btree_buckets;
2272 	struct bucket *b;
2273 	int ret = -ENOMEM;
2274 	const char *err = NULL;
2275 
2276 	__module_get(THIS_MODULE);
2277 	kobject_init(&ca->kobj, &bch_cache_ktype);
2278 
2279 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2280 
2281 	/*
2282 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2283 	 * and in bch_journal_replay(), tree node may split,
2284 	 * so bucket of RESERVE_BTREE type is needed,
2285 	 * the worst situation is all journal buckets are valid journal,
2286 	 * and all the keys need to replay,
2287 	 * so the number of  RESERVE_BTREE type buckets should be as much
2288 	 * as journal buckets
2289 	 */
2290 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2291 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2292 	if (!free) {
2293 		ret = -EPERM;
2294 		err = "ca->sb.nbuckets is too small";
2295 		goto err_free;
2296 	}
2297 
2298 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2299 						GFP_KERNEL)) {
2300 		err = "ca->free[RESERVE_BTREE] alloc failed";
2301 		goto err_btree_alloc;
2302 	}
2303 
2304 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2305 							GFP_KERNEL)) {
2306 		err = "ca->free[RESERVE_PRIO] alloc failed";
2307 		goto err_prio_alloc;
2308 	}
2309 
2310 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2311 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2312 		goto err_movinggc_alloc;
2313 	}
2314 
2315 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2316 		err = "ca->free[RESERVE_NONE] alloc failed";
2317 		goto err_none_alloc;
2318 	}
2319 
2320 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2321 		err = "ca->free_inc alloc failed";
2322 		goto err_free_inc_alloc;
2323 	}
2324 
2325 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2326 		err = "ca->heap alloc failed";
2327 		goto err_heap_alloc;
2328 	}
2329 
2330 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2331 			      ca->sb.nbuckets));
2332 	if (!ca->buckets) {
2333 		err = "ca->buckets alloc failed";
2334 		goto err_buckets_alloc;
2335 	}
2336 
2337 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2338 				   prio_buckets(ca), 2),
2339 				   GFP_KERNEL);
2340 	if (!ca->prio_buckets) {
2341 		err = "ca->prio_buckets alloc failed";
2342 		goto err_prio_buckets_alloc;
2343 	}
2344 
2345 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2346 	if (!ca->disk_buckets) {
2347 		err = "ca->disk_buckets alloc failed";
2348 		goto err_disk_buckets_alloc;
2349 	}
2350 
2351 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2352 
2353 	for_each_bucket(b, ca)
2354 		atomic_set(&b->pin, 0);
2355 	return 0;
2356 
2357 err_disk_buckets_alloc:
2358 	kfree(ca->prio_buckets);
2359 err_prio_buckets_alloc:
2360 	vfree(ca->buckets);
2361 err_buckets_alloc:
2362 	free_heap(&ca->heap);
2363 err_heap_alloc:
2364 	free_fifo(&ca->free_inc);
2365 err_free_inc_alloc:
2366 	free_fifo(&ca->free[RESERVE_NONE]);
2367 err_none_alloc:
2368 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2369 err_movinggc_alloc:
2370 	free_fifo(&ca->free[RESERVE_PRIO]);
2371 err_prio_alloc:
2372 	free_fifo(&ca->free[RESERVE_BTREE]);
2373 err_btree_alloc:
2374 err_free:
2375 	module_put(THIS_MODULE);
2376 	if (err)
2377 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2378 	return ret;
2379 }
2380 
2381 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2382 				struct block_device *bdev, struct cache *ca)
2383 {
2384 	const char *err = NULL; /* must be set for any error case */
2385 	int ret = 0;
2386 
2387 	bdevname(bdev, ca->cache_dev_name);
2388 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2389 	ca->bdev = bdev;
2390 	ca->bdev->bd_holder = ca;
2391 	ca->sb_disk = sb_disk;
2392 
2393 	if (blk_queue_discard(bdev_get_queue(bdev)))
2394 		ca->discard = CACHE_DISCARD(&ca->sb);
2395 
2396 	ret = cache_alloc(ca);
2397 	if (ret != 0) {
2398 		/*
2399 		 * If we failed here, it means ca->kobj is not initialized yet,
2400 		 * kobject_put() won't be called and there is no chance to
2401 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2402 		 * explicitly call blkdev_put() here.
2403 		 */
2404 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2405 		if (ret == -ENOMEM)
2406 			err = "cache_alloc(): -ENOMEM";
2407 		else if (ret == -EPERM)
2408 			err = "cache_alloc(): cache device is too small";
2409 		else
2410 			err = "cache_alloc(): unknown error";
2411 		goto err;
2412 	}
2413 
2414 	if (kobject_add(&ca->kobj,
2415 			&part_to_dev(bdev->bd_part)->kobj,
2416 			"bcache")) {
2417 		err = "error calling kobject_add";
2418 		ret = -ENOMEM;
2419 		goto out;
2420 	}
2421 
2422 	mutex_lock(&bch_register_lock);
2423 	err = register_cache_set(ca);
2424 	mutex_unlock(&bch_register_lock);
2425 
2426 	if (err) {
2427 		ret = -ENODEV;
2428 		goto out;
2429 	}
2430 
2431 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2432 
2433 out:
2434 	kobject_put(&ca->kobj);
2435 
2436 err:
2437 	if (err)
2438 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2439 
2440 	return ret;
2441 }
2442 
2443 /* Global interfaces/init */
2444 
2445 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2446 			       const char *buffer, size_t size);
2447 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2448 					 struct kobj_attribute *attr,
2449 					 const char *buffer, size_t size);
2450 
2451 kobj_attribute_write(register,		register_bcache);
2452 kobj_attribute_write(register_quiet,	register_bcache);
2453 kobj_attribute_write(register_async,	register_bcache);
2454 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2455 
2456 static bool bch_is_open_backing(struct block_device *bdev)
2457 {
2458 	struct cache_set *c, *tc;
2459 	struct cached_dev *dc, *t;
2460 
2461 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2462 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2463 			if (dc->bdev == bdev)
2464 				return true;
2465 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2466 		if (dc->bdev == bdev)
2467 			return true;
2468 	return false;
2469 }
2470 
2471 static bool bch_is_open_cache(struct block_device *bdev)
2472 {
2473 	struct cache_set *c, *tc;
2474 	struct cache *ca;
2475 	unsigned int i;
2476 
2477 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2478 		for_each_cache(ca, c, i)
2479 			if (ca->bdev == bdev)
2480 				return true;
2481 	return false;
2482 }
2483 
2484 static bool bch_is_open(struct block_device *bdev)
2485 {
2486 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2487 }
2488 
2489 struct async_reg_args {
2490 	struct delayed_work reg_work;
2491 	char *path;
2492 	struct cache_sb *sb;
2493 	struct cache_sb_disk *sb_disk;
2494 	struct block_device *bdev;
2495 };
2496 
2497 static void register_bdev_worker(struct work_struct *work)
2498 {
2499 	int fail = false;
2500 	struct async_reg_args *args =
2501 		container_of(work, struct async_reg_args, reg_work.work);
2502 	struct cached_dev *dc;
2503 
2504 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2505 	if (!dc) {
2506 		fail = true;
2507 		put_page(virt_to_page(args->sb_disk));
2508 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2509 		goto out;
2510 	}
2511 
2512 	mutex_lock(&bch_register_lock);
2513 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2514 		fail = true;
2515 	mutex_unlock(&bch_register_lock);
2516 
2517 out:
2518 	if (fail)
2519 		pr_info("error %s: fail to register backing device\n",
2520 			args->path);
2521 	kfree(args->sb);
2522 	kfree(args->path);
2523 	kfree(args);
2524 	module_put(THIS_MODULE);
2525 }
2526 
2527 static void register_cache_worker(struct work_struct *work)
2528 {
2529 	int fail = false;
2530 	struct async_reg_args *args =
2531 		container_of(work, struct async_reg_args, reg_work.work);
2532 	struct cache *ca;
2533 
2534 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2535 	if (!ca) {
2536 		fail = true;
2537 		put_page(virt_to_page(args->sb_disk));
2538 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2539 		goto out;
2540 	}
2541 
2542 	/* blkdev_put() will be called in bch_cache_release() */
2543 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2544 		fail = true;
2545 
2546 out:
2547 	if (fail)
2548 		pr_info("error %s: fail to register cache device\n",
2549 			args->path);
2550 	kfree(args->sb);
2551 	kfree(args->path);
2552 	kfree(args);
2553 	module_put(THIS_MODULE);
2554 }
2555 
2556 static void register_device_aync(struct async_reg_args *args)
2557 {
2558 	if (SB_IS_BDEV(args->sb))
2559 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2560 	else
2561 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2562 
2563 	/* 10 jiffies is enough for a delay */
2564 	queue_delayed_work(system_wq, &args->reg_work, 10);
2565 }
2566 
2567 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2568 			       const char *buffer, size_t size)
2569 {
2570 	const char *err;
2571 	char *path = NULL;
2572 	struct cache_sb *sb;
2573 	struct cache_sb_disk *sb_disk;
2574 	struct block_device *bdev;
2575 	ssize_t ret;
2576 
2577 	ret = -EBUSY;
2578 	err = "failed to reference bcache module";
2579 	if (!try_module_get(THIS_MODULE))
2580 		goto out;
2581 
2582 	/* For latest state of bcache_is_reboot */
2583 	smp_mb();
2584 	err = "bcache is in reboot";
2585 	if (bcache_is_reboot)
2586 		goto out_module_put;
2587 
2588 	ret = -ENOMEM;
2589 	err = "cannot allocate memory";
2590 	path = kstrndup(buffer, size, GFP_KERNEL);
2591 	if (!path)
2592 		goto out_module_put;
2593 
2594 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2595 	if (!sb)
2596 		goto out_free_path;
2597 
2598 	ret = -EINVAL;
2599 	err = "failed to open device";
2600 	bdev = blkdev_get_by_path(strim(path),
2601 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2602 				  sb);
2603 	if (IS_ERR(bdev)) {
2604 		if (bdev == ERR_PTR(-EBUSY)) {
2605 			bdev = lookup_bdev(strim(path));
2606 			mutex_lock(&bch_register_lock);
2607 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2608 				err = "device already registered";
2609 			else
2610 				err = "device busy";
2611 			mutex_unlock(&bch_register_lock);
2612 			if (!IS_ERR(bdev))
2613 				bdput(bdev);
2614 			if (attr == &ksysfs_register_quiet)
2615 				goto done;
2616 		}
2617 		goto out_free_sb;
2618 	}
2619 
2620 	err = "failed to set blocksize";
2621 	if (set_blocksize(bdev, 4096))
2622 		goto out_blkdev_put;
2623 
2624 	err = read_super(sb, bdev, &sb_disk);
2625 	if (err)
2626 		goto out_blkdev_put;
2627 
2628 	err = "failed to register device";
2629 	if (attr == &ksysfs_register_async) {
2630 		/* register in asynchronous way */
2631 		struct async_reg_args *args =
2632 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2633 
2634 		if (!args) {
2635 			ret = -ENOMEM;
2636 			err = "cannot allocate memory";
2637 			goto out_put_sb_page;
2638 		}
2639 
2640 		args->path	= path;
2641 		args->sb	= sb;
2642 		args->sb_disk	= sb_disk;
2643 		args->bdev	= bdev;
2644 		register_device_aync(args);
2645 		/* No wait and returns to user space */
2646 		goto async_done;
2647 	}
2648 
2649 	if (SB_IS_BDEV(sb)) {
2650 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2651 
2652 		if (!dc)
2653 			goto out_put_sb_page;
2654 
2655 		mutex_lock(&bch_register_lock);
2656 		ret = register_bdev(sb, sb_disk, bdev, dc);
2657 		mutex_unlock(&bch_register_lock);
2658 		/* blkdev_put() will be called in cached_dev_free() */
2659 		if (ret < 0)
2660 			goto out_free_sb;
2661 	} else {
2662 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2663 
2664 		if (!ca)
2665 			goto out_put_sb_page;
2666 
2667 		/* blkdev_put() will be called in bch_cache_release() */
2668 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2669 			goto out_free_sb;
2670 	}
2671 
2672 done:
2673 	kfree(sb);
2674 	kfree(path);
2675 	module_put(THIS_MODULE);
2676 async_done:
2677 	return size;
2678 
2679 out_put_sb_page:
2680 	put_page(virt_to_page(sb_disk));
2681 out_blkdev_put:
2682 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2683 out_free_sb:
2684 	kfree(sb);
2685 out_free_path:
2686 	kfree(path);
2687 	path = NULL;
2688 out_module_put:
2689 	module_put(THIS_MODULE);
2690 out:
2691 	pr_info("error %s: %s\n", path?path:"", err);
2692 	return ret;
2693 }
2694 
2695 
2696 struct pdev {
2697 	struct list_head list;
2698 	struct cached_dev *dc;
2699 };
2700 
2701 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2702 					 struct kobj_attribute *attr,
2703 					 const char *buffer,
2704 					 size_t size)
2705 {
2706 	LIST_HEAD(pending_devs);
2707 	ssize_t ret = size;
2708 	struct cached_dev *dc, *tdc;
2709 	struct pdev *pdev, *tpdev;
2710 	struct cache_set *c, *tc;
2711 
2712 	mutex_lock(&bch_register_lock);
2713 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2714 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2715 		if (!pdev)
2716 			break;
2717 		pdev->dc = dc;
2718 		list_add(&pdev->list, &pending_devs);
2719 	}
2720 
2721 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2722 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2723 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2724 			char *set_uuid = c->sb.uuid;
2725 
2726 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2727 				list_del(&pdev->list);
2728 				kfree(pdev);
2729 				break;
2730 			}
2731 		}
2732 	}
2733 	mutex_unlock(&bch_register_lock);
2734 
2735 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2736 		pr_info("delete pdev %p\n", pdev);
2737 		list_del(&pdev->list);
2738 		bcache_device_stop(&pdev->dc->disk);
2739 		kfree(pdev);
2740 	}
2741 
2742 	return ret;
2743 }
2744 
2745 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2746 {
2747 	if (bcache_is_reboot)
2748 		return NOTIFY_DONE;
2749 
2750 	if (code == SYS_DOWN ||
2751 	    code == SYS_HALT ||
2752 	    code == SYS_POWER_OFF) {
2753 		DEFINE_WAIT(wait);
2754 		unsigned long start = jiffies;
2755 		bool stopped = false;
2756 
2757 		struct cache_set *c, *tc;
2758 		struct cached_dev *dc, *tdc;
2759 
2760 		mutex_lock(&bch_register_lock);
2761 
2762 		if (bcache_is_reboot)
2763 			goto out;
2764 
2765 		/* New registration is rejected since now */
2766 		bcache_is_reboot = true;
2767 		/*
2768 		 * Make registering caller (if there is) on other CPU
2769 		 * core know bcache_is_reboot set to true earlier
2770 		 */
2771 		smp_mb();
2772 
2773 		if (list_empty(&bch_cache_sets) &&
2774 		    list_empty(&uncached_devices))
2775 			goto out;
2776 
2777 		mutex_unlock(&bch_register_lock);
2778 
2779 		pr_info("Stopping all devices:\n");
2780 
2781 		/*
2782 		 * The reason bch_register_lock is not held to call
2783 		 * bch_cache_set_stop() and bcache_device_stop() is to
2784 		 * avoid potential deadlock during reboot, because cache
2785 		 * set or bcache device stopping process will acqurie
2786 		 * bch_register_lock too.
2787 		 *
2788 		 * We are safe here because bcache_is_reboot sets to
2789 		 * true already, register_bcache() will reject new
2790 		 * registration now. bcache_is_reboot also makes sure
2791 		 * bcache_reboot() won't be re-entered on by other thread,
2792 		 * so there is no race in following list iteration by
2793 		 * list_for_each_entry_safe().
2794 		 */
2795 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2796 			bch_cache_set_stop(c);
2797 
2798 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2799 			bcache_device_stop(&dc->disk);
2800 
2801 
2802 		/*
2803 		 * Give an early chance for other kthreads and
2804 		 * kworkers to stop themselves
2805 		 */
2806 		schedule();
2807 
2808 		/* What's a condition variable? */
2809 		while (1) {
2810 			long timeout = start + 10 * HZ - jiffies;
2811 
2812 			mutex_lock(&bch_register_lock);
2813 			stopped = list_empty(&bch_cache_sets) &&
2814 				list_empty(&uncached_devices);
2815 
2816 			if (timeout < 0 || stopped)
2817 				break;
2818 
2819 			prepare_to_wait(&unregister_wait, &wait,
2820 					TASK_UNINTERRUPTIBLE);
2821 
2822 			mutex_unlock(&bch_register_lock);
2823 			schedule_timeout(timeout);
2824 		}
2825 
2826 		finish_wait(&unregister_wait, &wait);
2827 
2828 		if (stopped)
2829 			pr_info("All devices stopped\n");
2830 		else
2831 			pr_notice("Timeout waiting for devices to be closed\n");
2832 out:
2833 		mutex_unlock(&bch_register_lock);
2834 	}
2835 
2836 	return NOTIFY_DONE;
2837 }
2838 
2839 static struct notifier_block reboot = {
2840 	.notifier_call	= bcache_reboot,
2841 	.priority	= INT_MAX, /* before any real devices */
2842 };
2843 
2844 static void bcache_exit(void)
2845 {
2846 	bch_debug_exit();
2847 	bch_request_exit();
2848 	if (bcache_kobj)
2849 		kobject_put(bcache_kobj);
2850 	if (bcache_wq)
2851 		destroy_workqueue(bcache_wq);
2852 	if (bch_journal_wq)
2853 		destroy_workqueue(bch_journal_wq);
2854 
2855 	if (bcache_major)
2856 		unregister_blkdev(bcache_major, "bcache");
2857 	unregister_reboot_notifier(&reboot);
2858 	mutex_destroy(&bch_register_lock);
2859 }
2860 
2861 /* Check and fixup module parameters */
2862 static void check_module_parameters(void)
2863 {
2864 	if (bch_cutoff_writeback_sync == 0)
2865 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2866 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2867 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2868 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2869 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2870 	}
2871 
2872 	if (bch_cutoff_writeback == 0)
2873 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2874 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2875 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2876 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2877 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2878 	}
2879 
2880 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2881 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2882 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2883 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2884 	}
2885 }
2886 
2887 static int __init bcache_init(void)
2888 {
2889 	static const struct attribute *files[] = {
2890 		&ksysfs_register.attr,
2891 		&ksysfs_register_quiet.attr,
2892 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2893 		&ksysfs_register_async.attr,
2894 #endif
2895 		&ksysfs_pendings_cleanup.attr,
2896 		NULL
2897 	};
2898 
2899 	check_module_parameters();
2900 
2901 	mutex_init(&bch_register_lock);
2902 	init_waitqueue_head(&unregister_wait);
2903 	register_reboot_notifier(&reboot);
2904 
2905 	bcache_major = register_blkdev(0, "bcache");
2906 	if (bcache_major < 0) {
2907 		unregister_reboot_notifier(&reboot);
2908 		mutex_destroy(&bch_register_lock);
2909 		return bcache_major;
2910 	}
2911 
2912 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2913 	if (!bcache_wq)
2914 		goto err;
2915 
2916 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2917 	if (!bch_journal_wq)
2918 		goto err;
2919 
2920 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2921 	if (!bcache_kobj)
2922 		goto err;
2923 
2924 	if (bch_request_init() ||
2925 	    sysfs_create_files(bcache_kobj, files))
2926 		goto err;
2927 
2928 	bch_debug_init();
2929 	closure_debug_init();
2930 
2931 	bcache_is_reboot = false;
2932 
2933 	return 0;
2934 err:
2935 	bcache_exit();
2936 	return -ENOMEM;
2937 }
2938 
2939 /*
2940  * Module hooks
2941  */
2942 module_exit(bcache_exit);
2943 module_init(bcache_init);
2944 
2945 module_param(bch_cutoff_writeback, uint, 0);
2946 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2947 
2948 module_param(bch_cutoff_writeback_sync, uint, 0);
2949 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2950 
2951 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2952 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2953 MODULE_LICENSE("GPL");
2954