1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 17 #include <linux/blkdev.h> 18 #include <linux/debugfs.h> 19 #include <linux/genhd.h> 20 #include <linux/idr.h> 21 #include <linux/kthread.h> 22 #include <linux/module.h> 23 #include <linux/random.h> 24 #include <linux/reboot.h> 25 #include <linux/sysfs.h> 26 27 unsigned int bch_cutoff_writeback; 28 unsigned int bch_cutoff_writeback_sync; 29 30 static const char bcache_magic[] = { 31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 33 }; 34 35 static const char invalid_uuid[] = { 36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 38 }; 39 40 static struct kobject *bcache_kobj; 41 struct mutex bch_register_lock; 42 bool bcache_is_reboot; 43 LIST_HEAD(bch_cache_sets); 44 static LIST_HEAD(uncached_devices); 45 46 static int bcache_major; 47 static DEFINE_IDA(bcache_device_idx); 48 static wait_queue_head_t unregister_wait; 49 struct workqueue_struct *bcache_wq; 50 struct workqueue_struct *bch_journal_wq; 51 52 53 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 54 /* limitation of partitions number on single bcache device */ 55 #define BCACHE_MINORS 128 56 /* limitation of bcache devices number on single system */ 57 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 58 59 /* Superblock */ 60 61 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 62 struct cache_sb_disk **res) 63 { 64 const char *err; 65 struct cache_sb_disk *s; 66 struct page *page; 67 unsigned int i; 68 69 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 70 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 71 if (IS_ERR(page)) 72 return "IO error"; 73 s = page_address(page) + offset_in_page(SB_OFFSET); 74 75 sb->offset = le64_to_cpu(s->offset); 76 sb->version = le64_to_cpu(s->version); 77 78 memcpy(sb->magic, s->magic, 16); 79 memcpy(sb->uuid, s->uuid, 16); 80 memcpy(sb->set_uuid, s->set_uuid, 16); 81 memcpy(sb->label, s->label, SB_LABEL_SIZE); 82 83 sb->flags = le64_to_cpu(s->flags); 84 sb->seq = le64_to_cpu(s->seq); 85 sb->last_mount = le32_to_cpu(s->last_mount); 86 sb->first_bucket = le16_to_cpu(s->first_bucket); 87 sb->keys = le16_to_cpu(s->keys); 88 89 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 90 sb->d[i] = le64_to_cpu(s->d[i]); 91 92 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 93 sb->version, sb->flags, sb->seq, sb->keys); 94 95 err = "Not a bcache superblock (bad offset)"; 96 if (sb->offset != SB_SECTOR) 97 goto err; 98 99 err = "Not a bcache superblock (bad magic)"; 100 if (memcmp(sb->magic, bcache_magic, 16)) 101 goto err; 102 103 err = "Too many journal buckets"; 104 if (sb->keys > SB_JOURNAL_BUCKETS) 105 goto err; 106 107 err = "Bad checksum"; 108 if (s->csum != csum_set(s)) 109 goto err; 110 111 err = "Bad UUID"; 112 if (bch_is_zero(sb->uuid, 16)) 113 goto err; 114 115 sb->block_size = le16_to_cpu(s->block_size); 116 117 err = "Superblock block size smaller than device block size"; 118 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 119 goto err; 120 121 switch (sb->version) { 122 case BCACHE_SB_VERSION_BDEV: 123 sb->data_offset = BDEV_DATA_START_DEFAULT; 124 break; 125 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 126 sb->data_offset = le64_to_cpu(s->data_offset); 127 128 err = "Bad data offset"; 129 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 130 goto err; 131 132 break; 133 case BCACHE_SB_VERSION_CDEV: 134 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 135 sb->nbuckets = le64_to_cpu(s->nbuckets); 136 sb->bucket_size = le16_to_cpu(s->bucket_size); 137 138 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 139 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 140 141 err = "Too many buckets"; 142 if (sb->nbuckets > LONG_MAX) 143 goto err; 144 145 err = "Not enough buckets"; 146 if (sb->nbuckets < 1 << 7) 147 goto err; 148 149 err = "Bad block/bucket size"; 150 if (!is_power_of_2(sb->block_size) || 151 sb->block_size > PAGE_SECTORS || 152 !is_power_of_2(sb->bucket_size) || 153 sb->bucket_size < PAGE_SECTORS) 154 goto err; 155 156 err = "Invalid superblock: device too small"; 157 if (get_capacity(bdev->bd_disk) < 158 sb->bucket_size * sb->nbuckets) 159 goto err; 160 161 err = "Bad UUID"; 162 if (bch_is_zero(sb->set_uuid, 16)) 163 goto err; 164 165 err = "Bad cache device number in set"; 166 if (!sb->nr_in_set || 167 sb->nr_in_set <= sb->nr_this_dev || 168 sb->nr_in_set > MAX_CACHES_PER_SET) 169 goto err; 170 171 err = "Journal buckets not sequential"; 172 for (i = 0; i < sb->keys; i++) 173 if (sb->d[i] != sb->first_bucket + i) 174 goto err; 175 176 err = "Too many journal buckets"; 177 if (sb->first_bucket + sb->keys > sb->nbuckets) 178 goto err; 179 180 err = "Invalid superblock: first bucket comes before end of super"; 181 if (sb->first_bucket * sb->bucket_size < 16) 182 goto err; 183 184 break; 185 default: 186 err = "Unsupported superblock version"; 187 goto err; 188 } 189 190 sb->last_mount = (u32)ktime_get_real_seconds(); 191 *res = s; 192 return NULL; 193 err: 194 put_page(page); 195 return err; 196 } 197 198 static void write_bdev_super_endio(struct bio *bio) 199 { 200 struct cached_dev *dc = bio->bi_private; 201 202 if (bio->bi_status) 203 bch_count_backing_io_errors(dc, bio); 204 205 closure_put(&dc->sb_write); 206 } 207 208 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 209 struct bio *bio) 210 { 211 unsigned int i; 212 213 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 214 bio->bi_iter.bi_sector = SB_SECTOR; 215 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 216 offset_in_page(out)); 217 218 out->offset = cpu_to_le64(sb->offset); 219 out->version = cpu_to_le64(sb->version); 220 221 memcpy(out->uuid, sb->uuid, 16); 222 memcpy(out->set_uuid, sb->set_uuid, 16); 223 memcpy(out->label, sb->label, SB_LABEL_SIZE); 224 225 out->flags = cpu_to_le64(sb->flags); 226 out->seq = cpu_to_le64(sb->seq); 227 228 out->last_mount = cpu_to_le32(sb->last_mount); 229 out->first_bucket = cpu_to_le16(sb->first_bucket); 230 out->keys = cpu_to_le16(sb->keys); 231 232 for (i = 0; i < sb->keys; i++) 233 out->d[i] = cpu_to_le64(sb->d[i]); 234 235 out->csum = csum_set(out); 236 237 pr_debug("ver %llu, flags %llu, seq %llu\n", 238 sb->version, sb->flags, sb->seq); 239 240 submit_bio(bio); 241 } 242 243 static void bch_write_bdev_super_unlock(struct closure *cl) 244 { 245 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 246 247 up(&dc->sb_write_mutex); 248 } 249 250 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 251 { 252 struct closure *cl = &dc->sb_write; 253 struct bio *bio = &dc->sb_bio; 254 255 down(&dc->sb_write_mutex); 256 closure_init(cl, parent); 257 258 bio_init(bio, dc->sb_bv, 1); 259 bio_set_dev(bio, dc->bdev); 260 bio->bi_end_io = write_bdev_super_endio; 261 bio->bi_private = dc; 262 263 closure_get(cl); 264 /* I/O request sent to backing device */ 265 __write_super(&dc->sb, dc->sb_disk, bio); 266 267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 268 } 269 270 static void write_super_endio(struct bio *bio) 271 { 272 struct cache *ca = bio->bi_private; 273 274 /* is_read = 0 */ 275 bch_count_io_errors(ca, bio->bi_status, 0, 276 "writing superblock"); 277 closure_put(&ca->set->sb_write); 278 } 279 280 static void bcache_write_super_unlock(struct closure *cl) 281 { 282 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 283 284 up(&c->sb_write_mutex); 285 } 286 287 void bcache_write_super(struct cache_set *c) 288 { 289 struct closure *cl = &c->sb_write; 290 struct cache *ca; 291 unsigned int i; 292 293 down(&c->sb_write_mutex); 294 closure_init(cl, &c->cl); 295 296 c->sb.seq++; 297 298 for_each_cache(ca, c, i) { 299 struct bio *bio = &ca->sb_bio; 300 301 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 302 ca->sb.seq = c->sb.seq; 303 ca->sb.last_mount = c->sb.last_mount; 304 305 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 306 307 bio_init(bio, ca->sb_bv, 1); 308 bio_set_dev(bio, ca->bdev); 309 bio->bi_end_io = write_super_endio; 310 bio->bi_private = ca; 311 312 closure_get(cl); 313 __write_super(&ca->sb, ca->sb_disk, bio); 314 } 315 316 closure_return_with_destructor(cl, bcache_write_super_unlock); 317 } 318 319 /* UUID io */ 320 321 static void uuid_endio(struct bio *bio) 322 { 323 struct closure *cl = bio->bi_private; 324 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 325 326 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 327 bch_bbio_free(bio, c); 328 closure_put(cl); 329 } 330 331 static void uuid_io_unlock(struct closure *cl) 332 { 333 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 334 335 up(&c->uuid_write_mutex); 336 } 337 338 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 339 struct bkey *k, struct closure *parent) 340 { 341 struct closure *cl = &c->uuid_write; 342 struct uuid_entry *u; 343 unsigned int i; 344 char buf[80]; 345 346 BUG_ON(!parent); 347 down(&c->uuid_write_mutex); 348 closure_init(cl, parent); 349 350 for (i = 0; i < KEY_PTRS(k); i++) { 351 struct bio *bio = bch_bbio_alloc(c); 352 353 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 354 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 355 356 bio->bi_end_io = uuid_endio; 357 bio->bi_private = cl; 358 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 359 bch_bio_map(bio, c->uuids); 360 361 bch_submit_bbio(bio, c, k, i); 362 363 if (op != REQ_OP_WRITE) 364 break; 365 } 366 367 bch_extent_to_text(buf, sizeof(buf), k); 368 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 369 370 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 371 if (!bch_is_zero(u->uuid, 16)) 372 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 373 u - c->uuids, u->uuid, u->label, 374 u->first_reg, u->last_reg, u->invalidated); 375 376 closure_return_with_destructor(cl, uuid_io_unlock); 377 } 378 379 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 380 { 381 struct bkey *k = &j->uuid_bucket; 382 383 if (__bch_btree_ptr_invalid(c, k)) 384 return "bad uuid pointer"; 385 386 bkey_copy(&c->uuid_bucket, k); 387 uuid_io(c, REQ_OP_READ, 0, k, cl); 388 389 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 390 struct uuid_entry_v0 *u0 = (void *) c->uuids; 391 struct uuid_entry *u1 = (void *) c->uuids; 392 int i; 393 394 closure_sync(cl); 395 396 /* 397 * Since the new uuid entry is bigger than the old, we have to 398 * convert starting at the highest memory address and work down 399 * in order to do it in place 400 */ 401 402 for (i = c->nr_uuids - 1; 403 i >= 0; 404 --i) { 405 memcpy(u1[i].uuid, u0[i].uuid, 16); 406 memcpy(u1[i].label, u0[i].label, 32); 407 408 u1[i].first_reg = u0[i].first_reg; 409 u1[i].last_reg = u0[i].last_reg; 410 u1[i].invalidated = u0[i].invalidated; 411 412 u1[i].flags = 0; 413 u1[i].sectors = 0; 414 } 415 } 416 417 return NULL; 418 } 419 420 static int __uuid_write(struct cache_set *c) 421 { 422 BKEY_PADDED(key) k; 423 struct closure cl; 424 struct cache *ca; 425 426 closure_init_stack(&cl); 427 lockdep_assert_held(&bch_register_lock); 428 429 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 430 return 1; 431 432 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 433 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 434 closure_sync(&cl); 435 436 /* Only one bucket used for uuid write */ 437 ca = PTR_CACHE(c, &k.key, 0); 438 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 439 440 bkey_copy(&c->uuid_bucket, &k.key); 441 bkey_put(c, &k.key); 442 return 0; 443 } 444 445 int bch_uuid_write(struct cache_set *c) 446 { 447 int ret = __uuid_write(c); 448 449 if (!ret) 450 bch_journal_meta(c, NULL); 451 452 return ret; 453 } 454 455 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 456 { 457 struct uuid_entry *u; 458 459 for (u = c->uuids; 460 u < c->uuids + c->nr_uuids; u++) 461 if (!memcmp(u->uuid, uuid, 16)) 462 return u; 463 464 return NULL; 465 } 466 467 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 468 { 469 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 470 471 return uuid_find(c, zero_uuid); 472 } 473 474 /* 475 * Bucket priorities/gens: 476 * 477 * For each bucket, we store on disk its 478 * 8 bit gen 479 * 16 bit priority 480 * 481 * See alloc.c for an explanation of the gen. The priority is used to implement 482 * lru (and in the future other) cache replacement policies; for most purposes 483 * it's just an opaque integer. 484 * 485 * The gens and the priorities don't have a whole lot to do with each other, and 486 * it's actually the gens that must be written out at specific times - it's no 487 * big deal if the priorities don't get written, if we lose them we just reuse 488 * buckets in suboptimal order. 489 * 490 * On disk they're stored in a packed array, and in as many buckets are required 491 * to fit them all. The buckets we use to store them form a list; the journal 492 * header points to the first bucket, the first bucket points to the second 493 * bucket, et cetera. 494 * 495 * This code is used by the allocation code; periodically (whenever it runs out 496 * of buckets to allocate from) the allocation code will invalidate some 497 * buckets, but it can't use those buckets until their new gens are safely on 498 * disk. 499 */ 500 501 static void prio_endio(struct bio *bio) 502 { 503 struct cache *ca = bio->bi_private; 504 505 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 506 bch_bbio_free(bio, ca->set); 507 closure_put(&ca->prio); 508 } 509 510 static void prio_io(struct cache *ca, uint64_t bucket, int op, 511 unsigned long op_flags) 512 { 513 struct closure *cl = &ca->prio; 514 struct bio *bio = bch_bbio_alloc(ca->set); 515 516 closure_init_stack(cl); 517 518 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 519 bio_set_dev(bio, ca->bdev); 520 bio->bi_iter.bi_size = bucket_bytes(ca); 521 522 bio->bi_end_io = prio_endio; 523 bio->bi_private = ca; 524 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 525 bch_bio_map(bio, ca->disk_buckets); 526 527 closure_bio_submit(ca->set, bio, &ca->prio); 528 closure_sync(cl); 529 } 530 531 int bch_prio_write(struct cache *ca, bool wait) 532 { 533 int i; 534 struct bucket *b; 535 struct closure cl; 536 537 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 538 fifo_used(&ca->free[RESERVE_PRIO]), 539 fifo_used(&ca->free[RESERVE_NONE]), 540 fifo_used(&ca->free_inc)); 541 542 /* 543 * Pre-check if there are enough free buckets. In the non-blocking 544 * scenario it's better to fail early rather than starting to allocate 545 * buckets and do a cleanup later in case of failure. 546 */ 547 if (!wait) { 548 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 549 fifo_used(&ca->free[RESERVE_NONE]); 550 if (prio_buckets(ca) > avail) 551 return -ENOMEM; 552 } 553 554 closure_init_stack(&cl); 555 556 lockdep_assert_held(&ca->set->bucket_lock); 557 558 ca->disk_buckets->seq++; 559 560 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 561 &ca->meta_sectors_written); 562 563 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 564 long bucket; 565 struct prio_set *p = ca->disk_buckets; 566 struct bucket_disk *d = p->data; 567 struct bucket_disk *end = d + prios_per_bucket(ca); 568 569 for (b = ca->buckets + i * prios_per_bucket(ca); 570 b < ca->buckets + ca->sb.nbuckets && d < end; 571 b++, d++) { 572 d->prio = cpu_to_le16(b->prio); 573 d->gen = b->gen; 574 } 575 576 p->next_bucket = ca->prio_buckets[i + 1]; 577 p->magic = pset_magic(&ca->sb); 578 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 579 580 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 581 BUG_ON(bucket == -1); 582 583 mutex_unlock(&ca->set->bucket_lock); 584 prio_io(ca, bucket, REQ_OP_WRITE, 0); 585 mutex_lock(&ca->set->bucket_lock); 586 587 ca->prio_buckets[i] = bucket; 588 atomic_dec_bug(&ca->buckets[bucket].pin); 589 } 590 591 mutex_unlock(&ca->set->bucket_lock); 592 593 bch_journal_meta(ca->set, &cl); 594 closure_sync(&cl); 595 596 mutex_lock(&ca->set->bucket_lock); 597 598 /* 599 * Don't want the old priorities to get garbage collected until after we 600 * finish writing the new ones, and they're journalled 601 */ 602 for (i = 0; i < prio_buckets(ca); i++) { 603 if (ca->prio_last_buckets[i]) 604 __bch_bucket_free(ca, 605 &ca->buckets[ca->prio_last_buckets[i]]); 606 607 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 608 } 609 return 0; 610 } 611 612 static int prio_read(struct cache *ca, uint64_t bucket) 613 { 614 struct prio_set *p = ca->disk_buckets; 615 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 616 struct bucket *b; 617 unsigned int bucket_nr = 0; 618 int ret = -EIO; 619 620 for (b = ca->buckets; 621 b < ca->buckets + ca->sb.nbuckets; 622 b++, d++) { 623 if (d == end) { 624 ca->prio_buckets[bucket_nr] = bucket; 625 ca->prio_last_buckets[bucket_nr] = bucket; 626 bucket_nr++; 627 628 prio_io(ca, bucket, REQ_OP_READ, 0); 629 630 if (p->csum != 631 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) { 632 pr_warn("bad csum reading priorities\n"); 633 goto out; 634 } 635 636 if (p->magic != pset_magic(&ca->sb)) { 637 pr_warn("bad magic reading priorities\n"); 638 goto out; 639 } 640 641 bucket = p->next_bucket; 642 d = p->data; 643 } 644 645 b->prio = le16_to_cpu(d->prio); 646 b->gen = b->last_gc = d->gen; 647 } 648 649 ret = 0; 650 out: 651 return ret; 652 } 653 654 /* Bcache device */ 655 656 static int open_dev(struct block_device *b, fmode_t mode) 657 { 658 struct bcache_device *d = b->bd_disk->private_data; 659 660 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 661 return -ENXIO; 662 663 closure_get(&d->cl); 664 return 0; 665 } 666 667 static void release_dev(struct gendisk *b, fmode_t mode) 668 { 669 struct bcache_device *d = b->private_data; 670 671 closure_put(&d->cl); 672 } 673 674 static int ioctl_dev(struct block_device *b, fmode_t mode, 675 unsigned int cmd, unsigned long arg) 676 { 677 struct bcache_device *d = b->bd_disk->private_data; 678 679 return d->ioctl(d, mode, cmd, arg); 680 } 681 682 static const struct block_device_operations bcache_ops = { 683 .open = open_dev, 684 .release = release_dev, 685 .ioctl = ioctl_dev, 686 .owner = THIS_MODULE, 687 }; 688 689 void bcache_device_stop(struct bcache_device *d) 690 { 691 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 692 /* 693 * closure_fn set to 694 * - cached device: cached_dev_flush() 695 * - flash dev: flash_dev_flush() 696 */ 697 closure_queue(&d->cl); 698 } 699 700 static void bcache_device_unlink(struct bcache_device *d) 701 { 702 lockdep_assert_held(&bch_register_lock); 703 704 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 705 unsigned int i; 706 struct cache *ca; 707 708 sysfs_remove_link(&d->c->kobj, d->name); 709 sysfs_remove_link(&d->kobj, "cache"); 710 711 for_each_cache(ca, d->c, i) 712 bd_unlink_disk_holder(ca->bdev, d->disk); 713 } 714 } 715 716 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 717 const char *name) 718 { 719 unsigned int i; 720 struct cache *ca; 721 int ret; 722 723 for_each_cache(ca, d->c, i) 724 bd_link_disk_holder(ca->bdev, d->disk); 725 726 snprintf(d->name, BCACHEDEVNAME_SIZE, 727 "%s%u", name, d->id); 728 729 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 730 if (ret < 0) 731 pr_err("Couldn't create device -> cache set symlink\n"); 732 733 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 734 if (ret < 0) 735 pr_err("Couldn't create cache set -> device symlink\n"); 736 737 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 738 } 739 740 static void bcache_device_detach(struct bcache_device *d) 741 { 742 lockdep_assert_held(&bch_register_lock); 743 744 atomic_dec(&d->c->attached_dev_nr); 745 746 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 747 struct uuid_entry *u = d->c->uuids + d->id; 748 749 SET_UUID_FLASH_ONLY(u, 0); 750 memcpy(u->uuid, invalid_uuid, 16); 751 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 752 bch_uuid_write(d->c); 753 } 754 755 bcache_device_unlink(d); 756 757 d->c->devices[d->id] = NULL; 758 closure_put(&d->c->caching); 759 d->c = NULL; 760 } 761 762 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 763 unsigned int id) 764 { 765 d->id = id; 766 d->c = c; 767 c->devices[id] = d; 768 769 if (id >= c->devices_max_used) 770 c->devices_max_used = id + 1; 771 772 closure_get(&c->caching); 773 } 774 775 static inline int first_minor_to_idx(int first_minor) 776 { 777 return (first_minor/BCACHE_MINORS); 778 } 779 780 static inline int idx_to_first_minor(int idx) 781 { 782 return (idx * BCACHE_MINORS); 783 } 784 785 static void bcache_device_free(struct bcache_device *d) 786 { 787 struct gendisk *disk = d->disk; 788 789 lockdep_assert_held(&bch_register_lock); 790 791 if (disk) 792 pr_info("%s stopped\n", disk->disk_name); 793 else 794 pr_err("bcache device (NULL gendisk) stopped\n"); 795 796 if (d->c) 797 bcache_device_detach(d); 798 799 if (disk) { 800 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 801 802 if (disk_added) 803 del_gendisk(disk); 804 805 if (disk->queue) 806 blk_cleanup_queue(disk->queue); 807 808 ida_simple_remove(&bcache_device_idx, 809 first_minor_to_idx(disk->first_minor)); 810 if (disk_added) 811 put_disk(disk); 812 } 813 814 bioset_exit(&d->bio_split); 815 kvfree(d->full_dirty_stripes); 816 kvfree(d->stripe_sectors_dirty); 817 818 closure_debug_destroy(&d->cl); 819 } 820 821 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 822 sector_t sectors, make_request_fn make_request_fn) 823 { 824 struct request_queue *q; 825 const size_t max_stripes = min_t(size_t, INT_MAX, 826 SIZE_MAX / sizeof(atomic_t)); 827 size_t n; 828 int idx; 829 830 if (!d->stripe_size) 831 d->stripe_size = 1 << 31; 832 833 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 834 835 if (!d->nr_stripes || d->nr_stripes > max_stripes) { 836 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n", 837 (unsigned int)d->nr_stripes); 838 return -ENOMEM; 839 } 840 841 n = d->nr_stripes * sizeof(atomic_t); 842 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 843 if (!d->stripe_sectors_dirty) 844 return -ENOMEM; 845 846 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 847 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 848 if (!d->full_dirty_stripes) 849 return -ENOMEM; 850 851 idx = ida_simple_get(&bcache_device_idx, 0, 852 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 853 if (idx < 0) 854 return idx; 855 856 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 857 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 858 goto err; 859 860 d->disk = alloc_disk(BCACHE_MINORS); 861 if (!d->disk) 862 goto err; 863 864 set_capacity(d->disk, sectors); 865 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 866 867 d->disk->major = bcache_major; 868 d->disk->first_minor = idx_to_first_minor(idx); 869 d->disk->fops = &bcache_ops; 870 d->disk->private_data = d; 871 872 q = blk_alloc_queue(make_request_fn, NUMA_NO_NODE); 873 if (!q) 874 return -ENOMEM; 875 876 d->disk->queue = q; 877 q->queuedata = d; 878 q->backing_dev_info->congested_data = d; 879 q->limits.max_hw_sectors = UINT_MAX; 880 q->limits.max_sectors = UINT_MAX; 881 q->limits.max_segment_size = UINT_MAX; 882 q->limits.max_segments = BIO_MAX_PAGES; 883 blk_queue_max_discard_sectors(q, UINT_MAX); 884 q->limits.discard_granularity = 512; 885 q->limits.io_min = block_size; 886 q->limits.logical_block_size = block_size; 887 q->limits.physical_block_size = block_size; 888 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 889 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 890 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 891 892 blk_queue_write_cache(q, true, true); 893 894 return 0; 895 896 err: 897 ida_simple_remove(&bcache_device_idx, idx); 898 return -ENOMEM; 899 900 } 901 902 /* Cached device */ 903 904 static void calc_cached_dev_sectors(struct cache_set *c) 905 { 906 uint64_t sectors = 0; 907 struct cached_dev *dc; 908 909 list_for_each_entry(dc, &c->cached_devs, list) 910 sectors += bdev_sectors(dc->bdev); 911 912 c->cached_dev_sectors = sectors; 913 } 914 915 #define BACKING_DEV_OFFLINE_TIMEOUT 5 916 static int cached_dev_status_update(void *arg) 917 { 918 struct cached_dev *dc = arg; 919 struct request_queue *q; 920 921 /* 922 * If this delayed worker is stopping outside, directly quit here. 923 * dc->io_disable might be set via sysfs interface, so check it 924 * here too. 925 */ 926 while (!kthread_should_stop() && !dc->io_disable) { 927 q = bdev_get_queue(dc->bdev); 928 if (blk_queue_dying(q)) 929 dc->offline_seconds++; 930 else 931 dc->offline_seconds = 0; 932 933 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 934 pr_err("%s: device offline for %d seconds\n", 935 dc->backing_dev_name, 936 BACKING_DEV_OFFLINE_TIMEOUT); 937 pr_err("%s: disable I/O request due to backing device offline\n", 938 dc->disk.name); 939 dc->io_disable = true; 940 /* let others know earlier that io_disable is true */ 941 smp_mb(); 942 bcache_device_stop(&dc->disk); 943 break; 944 } 945 schedule_timeout_interruptible(HZ); 946 } 947 948 wait_for_kthread_stop(); 949 return 0; 950 } 951 952 953 int bch_cached_dev_run(struct cached_dev *dc) 954 { 955 struct bcache_device *d = &dc->disk; 956 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 957 char *env[] = { 958 "DRIVER=bcache", 959 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 960 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 961 NULL, 962 }; 963 964 if (dc->io_disable) { 965 pr_err("I/O disabled on cached dev %s\n", 966 dc->backing_dev_name); 967 kfree(env[1]); 968 kfree(env[2]); 969 kfree(buf); 970 return -EIO; 971 } 972 973 if (atomic_xchg(&dc->running, 1)) { 974 kfree(env[1]); 975 kfree(env[2]); 976 kfree(buf); 977 pr_info("cached dev %s is running already\n", 978 dc->backing_dev_name); 979 return -EBUSY; 980 } 981 982 if (!d->c && 983 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 984 struct closure cl; 985 986 closure_init_stack(&cl); 987 988 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 989 bch_write_bdev_super(dc, &cl); 990 closure_sync(&cl); 991 } 992 993 add_disk(d->disk); 994 bd_link_disk_holder(dc->bdev, dc->disk.disk); 995 /* 996 * won't show up in the uevent file, use udevadm monitor -e instead 997 * only class / kset properties are persistent 998 */ 999 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1000 kfree(env[1]); 1001 kfree(env[2]); 1002 kfree(buf); 1003 1004 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1005 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1006 &d->kobj, "bcache")) { 1007 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1008 return -ENOMEM; 1009 } 1010 1011 dc->status_update_thread = kthread_run(cached_dev_status_update, 1012 dc, "bcache_status_update"); 1013 if (IS_ERR(dc->status_update_thread)) { 1014 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1015 } 1016 1017 return 0; 1018 } 1019 1020 /* 1021 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1022 * work dc->writeback_rate_update is running. Wait until the routine 1023 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1024 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1025 * seconds, give up waiting here and continue to cancel it too. 1026 */ 1027 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1028 { 1029 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1030 1031 do { 1032 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1033 &dc->disk.flags)) 1034 break; 1035 time_out--; 1036 schedule_timeout_interruptible(1); 1037 } while (time_out > 0); 1038 1039 if (time_out == 0) 1040 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1041 1042 cancel_delayed_work_sync(&dc->writeback_rate_update); 1043 } 1044 1045 static void cached_dev_detach_finish(struct work_struct *w) 1046 { 1047 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1048 struct closure cl; 1049 1050 closure_init_stack(&cl); 1051 1052 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1053 BUG_ON(refcount_read(&dc->count)); 1054 1055 1056 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1057 cancel_writeback_rate_update_dwork(dc); 1058 1059 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1060 kthread_stop(dc->writeback_thread); 1061 dc->writeback_thread = NULL; 1062 } 1063 1064 memset(&dc->sb.set_uuid, 0, 16); 1065 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1066 1067 bch_write_bdev_super(dc, &cl); 1068 closure_sync(&cl); 1069 1070 mutex_lock(&bch_register_lock); 1071 1072 calc_cached_dev_sectors(dc->disk.c); 1073 bcache_device_detach(&dc->disk); 1074 list_move(&dc->list, &uncached_devices); 1075 1076 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1077 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1078 1079 mutex_unlock(&bch_register_lock); 1080 1081 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1082 1083 /* Drop ref we took in cached_dev_detach() */ 1084 closure_put(&dc->disk.cl); 1085 } 1086 1087 void bch_cached_dev_detach(struct cached_dev *dc) 1088 { 1089 lockdep_assert_held(&bch_register_lock); 1090 1091 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1092 return; 1093 1094 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1095 return; 1096 1097 /* 1098 * Block the device from being closed and freed until we're finished 1099 * detaching 1100 */ 1101 closure_get(&dc->disk.cl); 1102 1103 bch_writeback_queue(dc); 1104 1105 cached_dev_put(dc); 1106 } 1107 1108 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1109 uint8_t *set_uuid) 1110 { 1111 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1112 struct uuid_entry *u; 1113 struct cached_dev *exist_dc, *t; 1114 int ret = 0; 1115 1116 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1117 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1118 return -ENOENT; 1119 1120 if (dc->disk.c) { 1121 pr_err("Can't attach %s: already attached\n", 1122 dc->backing_dev_name); 1123 return -EINVAL; 1124 } 1125 1126 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1127 pr_err("Can't attach %s: shutting down\n", 1128 dc->backing_dev_name); 1129 return -EINVAL; 1130 } 1131 1132 if (dc->sb.block_size < c->sb.block_size) { 1133 /* Will die */ 1134 pr_err("Couldn't attach %s: block size less than set's block size\n", 1135 dc->backing_dev_name); 1136 return -EINVAL; 1137 } 1138 1139 /* Check whether already attached */ 1140 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1141 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1142 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1143 dc->backing_dev_name); 1144 1145 return -EINVAL; 1146 } 1147 } 1148 1149 u = uuid_find(c, dc->sb.uuid); 1150 1151 if (u && 1152 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1153 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1154 memcpy(u->uuid, invalid_uuid, 16); 1155 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1156 u = NULL; 1157 } 1158 1159 if (!u) { 1160 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1161 pr_err("Couldn't find uuid for %s in set\n", 1162 dc->backing_dev_name); 1163 return -ENOENT; 1164 } 1165 1166 u = uuid_find_empty(c); 1167 if (!u) { 1168 pr_err("Not caching %s, no room for UUID\n", 1169 dc->backing_dev_name); 1170 return -EINVAL; 1171 } 1172 } 1173 1174 /* 1175 * Deadlocks since we're called via sysfs... 1176 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1177 */ 1178 1179 if (bch_is_zero(u->uuid, 16)) { 1180 struct closure cl; 1181 1182 closure_init_stack(&cl); 1183 1184 memcpy(u->uuid, dc->sb.uuid, 16); 1185 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1186 u->first_reg = u->last_reg = rtime; 1187 bch_uuid_write(c); 1188 1189 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1190 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1191 1192 bch_write_bdev_super(dc, &cl); 1193 closure_sync(&cl); 1194 } else { 1195 u->last_reg = rtime; 1196 bch_uuid_write(c); 1197 } 1198 1199 bcache_device_attach(&dc->disk, c, u - c->uuids); 1200 list_move(&dc->list, &c->cached_devs); 1201 calc_cached_dev_sectors(c); 1202 1203 /* 1204 * dc->c must be set before dc->count != 0 - paired with the mb in 1205 * cached_dev_get() 1206 */ 1207 smp_wmb(); 1208 refcount_set(&dc->count, 1); 1209 1210 /* Block writeback thread, but spawn it */ 1211 down_write(&dc->writeback_lock); 1212 if (bch_cached_dev_writeback_start(dc)) { 1213 up_write(&dc->writeback_lock); 1214 pr_err("Couldn't start writeback facilities for %s\n", 1215 dc->disk.disk->disk_name); 1216 return -ENOMEM; 1217 } 1218 1219 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1220 atomic_set(&dc->has_dirty, 1); 1221 bch_writeback_queue(dc); 1222 } 1223 1224 bch_sectors_dirty_init(&dc->disk); 1225 1226 ret = bch_cached_dev_run(dc); 1227 if (ret && (ret != -EBUSY)) { 1228 up_write(&dc->writeback_lock); 1229 /* 1230 * bch_register_lock is held, bcache_device_stop() is not 1231 * able to be directly called. The kthread and kworker 1232 * created previously in bch_cached_dev_writeback_start() 1233 * have to be stopped manually here. 1234 */ 1235 kthread_stop(dc->writeback_thread); 1236 cancel_writeback_rate_update_dwork(dc); 1237 pr_err("Couldn't run cached device %s\n", 1238 dc->backing_dev_name); 1239 return ret; 1240 } 1241 1242 bcache_device_link(&dc->disk, c, "bdev"); 1243 atomic_inc(&c->attached_dev_nr); 1244 1245 /* Allow the writeback thread to proceed */ 1246 up_write(&dc->writeback_lock); 1247 1248 pr_info("Caching %s as %s on set %pU\n", 1249 dc->backing_dev_name, 1250 dc->disk.disk->disk_name, 1251 dc->disk.c->sb.set_uuid); 1252 return 0; 1253 } 1254 1255 /* when dc->disk.kobj released */ 1256 void bch_cached_dev_release(struct kobject *kobj) 1257 { 1258 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1259 disk.kobj); 1260 kfree(dc); 1261 module_put(THIS_MODULE); 1262 } 1263 1264 static void cached_dev_free(struct closure *cl) 1265 { 1266 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1267 1268 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1269 cancel_writeback_rate_update_dwork(dc); 1270 1271 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1272 kthread_stop(dc->writeback_thread); 1273 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1274 kthread_stop(dc->status_update_thread); 1275 1276 mutex_lock(&bch_register_lock); 1277 1278 if (atomic_read(&dc->running)) 1279 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1280 bcache_device_free(&dc->disk); 1281 list_del(&dc->list); 1282 1283 mutex_unlock(&bch_register_lock); 1284 1285 if (dc->sb_disk) 1286 put_page(virt_to_page(dc->sb_disk)); 1287 1288 if (!IS_ERR_OR_NULL(dc->bdev)) 1289 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1290 1291 wake_up(&unregister_wait); 1292 1293 kobject_put(&dc->disk.kobj); 1294 } 1295 1296 static void cached_dev_flush(struct closure *cl) 1297 { 1298 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1299 struct bcache_device *d = &dc->disk; 1300 1301 mutex_lock(&bch_register_lock); 1302 bcache_device_unlink(d); 1303 mutex_unlock(&bch_register_lock); 1304 1305 bch_cache_accounting_destroy(&dc->accounting); 1306 kobject_del(&d->kobj); 1307 1308 continue_at(cl, cached_dev_free, system_wq); 1309 } 1310 1311 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1312 { 1313 int ret; 1314 struct io *io; 1315 struct request_queue *q = bdev_get_queue(dc->bdev); 1316 1317 __module_get(THIS_MODULE); 1318 INIT_LIST_HEAD(&dc->list); 1319 closure_init(&dc->disk.cl, NULL); 1320 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1321 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1322 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1323 sema_init(&dc->sb_write_mutex, 1); 1324 INIT_LIST_HEAD(&dc->io_lru); 1325 spin_lock_init(&dc->io_lock); 1326 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1327 1328 dc->sequential_cutoff = 4 << 20; 1329 1330 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1331 list_add(&io->lru, &dc->io_lru); 1332 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1333 } 1334 1335 dc->disk.stripe_size = q->limits.io_opt >> 9; 1336 1337 if (dc->disk.stripe_size) 1338 dc->partial_stripes_expensive = 1339 q->limits.raid_partial_stripes_expensive; 1340 1341 ret = bcache_device_init(&dc->disk, block_size, 1342 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1343 cached_dev_make_request); 1344 if (ret) 1345 return ret; 1346 1347 dc->disk.disk->queue->backing_dev_info->ra_pages = 1348 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1349 q->backing_dev_info->ra_pages); 1350 1351 atomic_set(&dc->io_errors, 0); 1352 dc->io_disable = false; 1353 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1354 /* default to auto */ 1355 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1356 1357 bch_cached_dev_request_init(dc); 1358 bch_cached_dev_writeback_init(dc); 1359 return 0; 1360 } 1361 1362 /* Cached device - bcache superblock */ 1363 1364 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1365 struct block_device *bdev, 1366 struct cached_dev *dc) 1367 { 1368 const char *err = "cannot allocate memory"; 1369 struct cache_set *c; 1370 int ret = -ENOMEM; 1371 1372 bdevname(bdev, dc->backing_dev_name); 1373 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1374 dc->bdev = bdev; 1375 dc->bdev->bd_holder = dc; 1376 dc->sb_disk = sb_disk; 1377 1378 if (cached_dev_init(dc, sb->block_size << 9)) 1379 goto err; 1380 1381 err = "error creating kobject"; 1382 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1383 "bcache")) 1384 goto err; 1385 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1386 goto err; 1387 1388 pr_info("registered backing device %s\n", dc->backing_dev_name); 1389 1390 list_add(&dc->list, &uncached_devices); 1391 /* attach to a matched cache set if it exists */ 1392 list_for_each_entry(c, &bch_cache_sets, list) 1393 bch_cached_dev_attach(dc, c, NULL); 1394 1395 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1396 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1397 err = "failed to run cached device"; 1398 ret = bch_cached_dev_run(dc); 1399 if (ret) 1400 goto err; 1401 } 1402 1403 return 0; 1404 err: 1405 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1406 bcache_device_stop(&dc->disk); 1407 return ret; 1408 } 1409 1410 /* Flash only volumes */ 1411 1412 /* When d->kobj released */ 1413 void bch_flash_dev_release(struct kobject *kobj) 1414 { 1415 struct bcache_device *d = container_of(kobj, struct bcache_device, 1416 kobj); 1417 kfree(d); 1418 } 1419 1420 static void flash_dev_free(struct closure *cl) 1421 { 1422 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1423 1424 mutex_lock(&bch_register_lock); 1425 atomic_long_sub(bcache_dev_sectors_dirty(d), 1426 &d->c->flash_dev_dirty_sectors); 1427 bcache_device_free(d); 1428 mutex_unlock(&bch_register_lock); 1429 kobject_put(&d->kobj); 1430 } 1431 1432 static void flash_dev_flush(struct closure *cl) 1433 { 1434 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1435 1436 mutex_lock(&bch_register_lock); 1437 bcache_device_unlink(d); 1438 mutex_unlock(&bch_register_lock); 1439 kobject_del(&d->kobj); 1440 continue_at(cl, flash_dev_free, system_wq); 1441 } 1442 1443 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1444 { 1445 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1446 GFP_KERNEL); 1447 if (!d) 1448 return -ENOMEM; 1449 1450 closure_init(&d->cl, NULL); 1451 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1452 1453 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1454 1455 if (bcache_device_init(d, block_bytes(c), u->sectors, 1456 flash_dev_make_request)) 1457 goto err; 1458 1459 bcache_device_attach(d, c, u - c->uuids); 1460 bch_sectors_dirty_init(d); 1461 bch_flash_dev_request_init(d); 1462 add_disk(d->disk); 1463 1464 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1465 goto err; 1466 1467 bcache_device_link(d, c, "volume"); 1468 1469 return 0; 1470 err: 1471 kobject_put(&d->kobj); 1472 return -ENOMEM; 1473 } 1474 1475 static int flash_devs_run(struct cache_set *c) 1476 { 1477 int ret = 0; 1478 struct uuid_entry *u; 1479 1480 for (u = c->uuids; 1481 u < c->uuids + c->nr_uuids && !ret; 1482 u++) 1483 if (UUID_FLASH_ONLY(u)) 1484 ret = flash_dev_run(c, u); 1485 1486 return ret; 1487 } 1488 1489 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1490 { 1491 struct uuid_entry *u; 1492 1493 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1494 return -EINTR; 1495 1496 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1497 return -EPERM; 1498 1499 u = uuid_find_empty(c); 1500 if (!u) { 1501 pr_err("Can't create volume, no room for UUID\n"); 1502 return -EINVAL; 1503 } 1504 1505 get_random_bytes(u->uuid, 16); 1506 memset(u->label, 0, 32); 1507 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1508 1509 SET_UUID_FLASH_ONLY(u, 1); 1510 u->sectors = size >> 9; 1511 1512 bch_uuid_write(c); 1513 1514 return flash_dev_run(c, u); 1515 } 1516 1517 bool bch_cached_dev_error(struct cached_dev *dc) 1518 { 1519 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1520 return false; 1521 1522 dc->io_disable = true; 1523 /* make others know io_disable is true earlier */ 1524 smp_mb(); 1525 1526 pr_err("stop %s: too many IO errors on backing device %s\n", 1527 dc->disk.disk->disk_name, dc->backing_dev_name); 1528 1529 bcache_device_stop(&dc->disk); 1530 return true; 1531 } 1532 1533 /* Cache set */ 1534 1535 __printf(2, 3) 1536 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1537 { 1538 struct va_format vaf; 1539 va_list args; 1540 1541 if (c->on_error != ON_ERROR_PANIC && 1542 test_bit(CACHE_SET_STOPPING, &c->flags)) 1543 return false; 1544 1545 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1546 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1547 1548 /* 1549 * XXX: we can be called from atomic context 1550 * acquire_console_sem(); 1551 */ 1552 1553 va_start(args, fmt); 1554 1555 vaf.fmt = fmt; 1556 vaf.va = &args; 1557 1558 pr_err("error on %pU: %pV, disabling caching\n", 1559 c->sb.set_uuid, &vaf); 1560 1561 va_end(args); 1562 1563 if (c->on_error == ON_ERROR_PANIC) 1564 panic("panic forced after error\n"); 1565 1566 bch_cache_set_unregister(c); 1567 return true; 1568 } 1569 1570 /* When c->kobj released */ 1571 void bch_cache_set_release(struct kobject *kobj) 1572 { 1573 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1574 1575 kfree(c); 1576 module_put(THIS_MODULE); 1577 } 1578 1579 static void cache_set_free(struct closure *cl) 1580 { 1581 struct cache_set *c = container_of(cl, struct cache_set, cl); 1582 struct cache *ca; 1583 unsigned int i; 1584 1585 debugfs_remove(c->debug); 1586 1587 bch_open_buckets_free(c); 1588 bch_btree_cache_free(c); 1589 bch_journal_free(c); 1590 1591 mutex_lock(&bch_register_lock); 1592 for_each_cache(ca, c, i) 1593 if (ca) { 1594 ca->set = NULL; 1595 c->cache[ca->sb.nr_this_dev] = NULL; 1596 kobject_put(&ca->kobj); 1597 } 1598 1599 bch_bset_sort_state_free(&c->sort); 1600 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1601 1602 if (c->moving_gc_wq) 1603 destroy_workqueue(c->moving_gc_wq); 1604 bioset_exit(&c->bio_split); 1605 mempool_exit(&c->fill_iter); 1606 mempool_exit(&c->bio_meta); 1607 mempool_exit(&c->search); 1608 kfree(c->devices); 1609 1610 list_del(&c->list); 1611 mutex_unlock(&bch_register_lock); 1612 1613 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid); 1614 wake_up(&unregister_wait); 1615 1616 closure_debug_destroy(&c->cl); 1617 kobject_put(&c->kobj); 1618 } 1619 1620 static void cache_set_flush(struct closure *cl) 1621 { 1622 struct cache_set *c = container_of(cl, struct cache_set, caching); 1623 struct cache *ca; 1624 struct btree *b; 1625 unsigned int i; 1626 1627 bch_cache_accounting_destroy(&c->accounting); 1628 1629 kobject_put(&c->internal); 1630 kobject_del(&c->kobj); 1631 1632 if (!IS_ERR_OR_NULL(c->gc_thread)) 1633 kthread_stop(c->gc_thread); 1634 1635 if (!IS_ERR_OR_NULL(c->root)) 1636 list_add(&c->root->list, &c->btree_cache); 1637 1638 /* 1639 * Avoid flushing cached nodes if cache set is retiring 1640 * due to too many I/O errors detected. 1641 */ 1642 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1643 list_for_each_entry(b, &c->btree_cache, list) { 1644 mutex_lock(&b->write_lock); 1645 if (btree_node_dirty(b)) 1646 __bch_btree_node_write(b, NULL); 1647 mutex_unlock(&b->write_lock); 1648 } 1649 1650 for_each_cache(ca, c, i) 1651 if (ca->alloc_thread) 1652 kthread_stop(ca->alloc_thread); 1653 1654 if (c->journal.cur) { 1655 cancel_delayed_work_sync(&c->journal.work); 1656 /* flush last journal entry if needed */ 1657 c->journal.work.work.func(&c->journal.work.work); 1658 } 1659 1660 closure_return(cl); 1661 } 1662 1663 /* 1664 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1665 * cache set is unregistering due to too many I/O errors. In this condition, 1666 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1667 * value and whether the broken cache has dirty data: 1668 * 1669 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1670 * BCH_CACHED_STOP_AUTO 0 NO 1671 * BCH_CACHED_STOP_AUTO 1 YES 1672 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1673 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1674 * 1675 * The expected behavior is, if stop_when_cache_set_failed is configured to 1676 * "auto" via sysfs interface, the bcache device will not be stopped if the 1677 * backing device is clean on the broken cache device. 1678 */ 1679 static void conditional_stop_bcache_device(struct cache_set *c, 1680 struct bcache_device *d, 1681 struct cached_dev *dc) 1682 { 1683 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1684 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1685 d->disk->disk_name, c->sb.set_uuid); 1686 bcache_device_stop(d); 1687 } else if (atomic_read(&dc->has_dirty)) { 1688 /* 1689 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1690 * and dc->has_dirty == 1 1691 */ 1692 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1693 d->disk->disk_name); 1694 /* 1695 * There might be a small time gap that cache set is 1696 * released but bcache device is not. Inside this time 1697 * gap, regular I/O requests will directly go into 1698 * backing device as no cache set attached to. This 1699 * behavior may also introduce potential inconsistence 1700 * data in writeback mode while cache is dirty. 1701 * Therefore before calling bcache_device_stop() due 1702 * to a broken cache device, dc->io_disable should be 1703 * explicitly set to true. 1704 */ 1705 dc->io_disable = true; 1706 /* make others know io_disable is true earlier */ 1707 smp_mb(); 1708 bcache_device_stop(d); 1709 } else { 1710 /* 1711 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1712 * and dc->has_dirty == 0 1713 */ 1714 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1715 d->disk->disk_name); 1716 } 1717 } 1718 1719 static void __cache_set_unregister(struct closure *cl) 1720 { 1721 struct cache_set *c = container_of(cl, struct cache_set, caching); 1722 struct cached_dev *dc; 1723 struct bcache_device *d; 1724 size_t i; 1725 1726 mutex_lock(&bch_register_lock); 1727 1728 for (i = 0; i < c->devices_max_used; i++) { 1729 d = c->devices[i]; 1730 if (!d) 1731 continue; 1732 1733 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1734 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1735 dc = container_of(d, struct cached_dev, disk); 1736 bch_cached_dev_detach(dc); 1737 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1738 conditional_stop_bcache_device(c, d, dc); 1739 } else { 1740 bcache_device_stop(d); 1741 } 1742 } 1743 1744 mutex_unlock(&bch_register_lock); 1745 1746 continue_at(cl, cache_set_flush, system_wq); 1747 } 1748 1749 void bch_cache_set_stop(struct cache_set *c) 1750 { 1751 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1752 /* closure_fn set to __cache_set_unregister() */ 1753 closure_queue(&c->caching); 1754 } 1755 1756 void bch_cache_set_unregister(struct cache_set *c) 1757 { 1758 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1759 bch_cache_set_stop(c); 1760 } 1761 1762 #define alloc_bucket_pages(gfp, c) \ 1763 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1764 1765 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1766 { 1767 int iter_size; 1768 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1769 1770 if (!c) 1771 return NULL; 1772 1773 __module_get(THIS_MODULE); 1774 closure_init(&c->cl, NULL); 1775 set_closure_fn(&c->cl, cache_set_free, system_wq); 1776 1777 closure_init(&c->caching, &c->cl); 1778 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1779 1780 /* Maybe create continue_at_noreturn() and use it here? */ 1781 closure_set_stopped(&c->cl); 1782 closure_put(&c->cl); 1783 1784 kobject_init(&c->kobj, &bch_cache_set_ktype); 1785 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1786 1787 bch_cache_accounting_init(&c->accounting, &c->cl); 1788 1789 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1790 c->sb.block_size = sb->block_size; 1791 c->sb.bucket_size = sb->bucket_size; 1792 c->sb.nr_in_set = sb->nr_in_set; 1793 c->sb.last_mount = sb->last_mount; 1794 c->bucket_bits = ilog2(sb->bucket_size); 1795 c->block_bits = ilog2(sb->block_size); 1796 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1797 c->devices_max_used = 0; 1798 atomic_set(&c->attached_dev_nr, 0); 1799 c->btree_pages = bucket_pages(c); 1800 if (c->btree_pages > BTREE_MAX_PAGES) 1801 c->btree_pages = max_t(int, c->btree_pages / 4, 1802 BTREE_MAX_PAGES); 1803 1804 sema_init(&c->sb_write_mutex, 1); 1805 mutex_init(&c->bucket_lock); 1806 init_waitqueue_head(&c->btree_cache_wait); 1807 spin_lock_init(&c->btree_cannibalize_lock); 1808 init_waitqueue_head(&c->bucket_wait); 1809 init_waitqueue_head(&c->gc_wait); 1810 sema_init(&c->uuid_write_mutex, 1); 1811 1812 spin_lock_init(&c->btree_gc_time.lock); 1813 spin_lock_init(&c->btree_split_time.lock); 1814 spin_lock_init(&c->btree_read_time.lock); 1815 1816 bch_moving_init_cache_set(c); 1817 1818 INIT_LIST_HEAD(&c->list); 1819 INIT_LIST_HEAD(&c->cached_devs); 1820 INIT_LIST_HEAD(&c->btree_cache); 1821 INIT_LIST_HEAD(&c->btree_cache_freeable); 1822 INIT_LIST_HEAD(&c->btree_cache_freed); 1823 INIT_LIST_HEAD(&c->data_buckets); 1824 1825 iter_size = (sb->bucket_size / sb->block_size + 1) * 1826 sizeof(struct btree_iter_set); 1827 1828 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || 1829 mempool_init_slab_pool(&c->search, 32, bch_search_cache) || 1830 mempool_init_kmalloc_pool(&c->bio_meta, 2, 1831 sizeof(struct bbio) + sizeof(struct bio_vec) * 1832 bucket_pages(c)) || 1833 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 1834 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1835 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || 1836 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1837 !(c->moving_gc_wq = alloc_workqueue("bcache_gc", 1838 WQ_MEM_RECLAIM, 0)) || 1839 bch_journal_alloc(c) || 1840 bch_btree_cache_alloc(c) || 1841 bch_open_buckets_alloc(c) || 1842 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1843 goto err; 1844 1845 c->congested_read_threshold_us = 2000; 1846 c->congested_write_threshold_us = 20000; 1847 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1848 c->idle_max_writeback_rate_enabled = 1; 1849 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1850 1851 return c; 1852 err: 1853 bch_cache_set_unregister(c); 1854 return NULL; 1855 } 1856 1857 static int run_cache_set(struct cache_set *c) 1858 { 1859 const char *err = "cannot allocate memory"; 1860 struct cached_dev *dc, *t; 1861 struct cache *ca; 1862 struct closure cl; 1863 unsigned int i; 1864 LIST_HEAD(journal); 1865 struct journal_replay *l; 1866 1867 closure_init_stack(&cl); 1868 1869 for_each_cache(ca, c, i) 1870 c->nbuckets += ca->sb.nbuckets; 1871 set_gc_sectors(c); 1872 1873 if (CACHE_SYNC(&c->sb)) { 1874 struct bkey *k; 1875 struct jset *j; 1876 1877 err = "cannot allocate memory for journal"; 1878 if (bch_journal_read(c, &journal)) 1879 goto err; 1880 1881 pr_debug("btree_journal_read() done\n"); 1882 1883 err = "no journal entries found"; 1884 if (list_empty(&journal)) 1885 goto err; 1886 1887 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1888 1889 err = "IO error reading priorities"; 1890 for_each_cache(ca, c, i) { 1891 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1892 goto err; 1893 } 1894 1895 /* 1896 * If prio_read() fails it'll call cache_set_error and we'll 1897 * tear everything down right away, but if we perhaps checked 1898 * sooner we could avoid journal replay. 1899 */ 1900 1901 k = &j->btree_root; 1902 1903 err = "bad btree root"; 1904 if (__bch_btree_ptr_invalid(c, k)) 1905 goto err; 1906 1907 err = "error reading btree root"; 1908 c->root = bch_btree_node_get(c, NULL, k, 1909 j->btree_level, 1910 true, NULL); 1911 if (IS_ERR_OR_NULL(c->root)) 1912 goto err; 1913 1914 list_del_init(&c->root->list); 1915 rw_unlock(true, c->root); 1916 1917 err = uuid_read(c, j, &cl); 1918 if (err) 1919 goto err; 1920 1921 err = "error in recovery"; 1922 if (bch_btree_check(c)) 1923 goto err; 1924 1925 bch_journal_mark(c, &journal); 1926 bch_initial_gc_finish(c); 1927 pr_debug("btree_check() done\n"); 1928 1929 /* 1930 * bcache_journal_next() can't happen sooner, or 1931 * btree_gc_finish() will give spurious errors about last_gc > 1932 * gc_gen - this is a hack but oh well. 1933 */ 1934 bch_journal_next(&c->journal); 1935 1936 err = "error starting allocator thread"; 1937 for_each_cache(ca, c, i) 1938 if (bch_cache_allocator_start(ca)) 1939 goto err; 1940 1941 /* 1942 * First place it's safe to allocate: btree_check() and 1943 * btree_gc_finish() have to run before we have buckets to 1944 * allocate, and bch_bucket_alloc_set() might cause a journal 1945 * entry to be written so bcache_journal_next() has to be called 1946 * first. 1947 * 1948 * If the uuids were in the old format we have to rewrite them 1949 * before the next journal entry is written: 1950 */ 1951 if (j->version < BCACHE_JSET_VERSION_UUID) 1952 __uuid_write(c); 1953 1954 err = "bcache: replay journal failed"; 1955 if (bch_journal_replay(c, &journal)) 1956 goto err; 1957 } else { 1958 pr_notice("invalidating existing data\n"); 1959 1960 for_each_cache(ca, c, i) { 1961 unsigned int j; 1962 1963 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1964 2, SB_JOURNAL_BUCKETS); 1965 1966 for (j = 0; j < ca->sb.keys; j++) 1967 ca->sb.d[j] = ca->sb.first_bucket + j; 1968 } 1969 1970 bch_initial_gc_finish(c); 1971 1972 err = "error starting allocator thread"; 1973 for_each_cache(ca, c, i) 1974 if (bch_cache_allocator_start(ca)) 1975 goto err; 1976 1977 mutex_lock(&c->bucket_lock); 1978 for_each_cache(ca, c, i) 1979 bch_prio_write(ca, true); 1980 mutex_unlock(&c->bucket_lock); 1981 1982 err = "cannot allocate new UUID bucket"; 1983 if (__uuid_write(c)) 1984 goto err; 1985 1986 err = "cannot allocate new btree root"; 1987 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 1988 if (IS_ERR_OR_NULL(c->root)) 1989 goto err; 1990 1991 mutex_lock(&c->root->write_lock); 1992 bkey_copy_key(&c->root->key, &MAX_KEY); 1993 bch_btree_node_write(c->root, &cl); 1994 mutex_unlock(&c->root->write_lock); 1995 1996 bch_btree_set_root(c->root); 1997 rw_unlock(true, c->root); 1998 1999 /* 2000 * We don't want to write the first journal entry until 2001 * everything is set up - fortunately journal entries won't be 2002 * written until the SET_CACHE_SYNC() here: 2003 */ 2004 SET_CACHE_SYNC(&c->sb, true); 2005 2006 bch_journal_next(&c->journal); 2007 bch_journal_meta(c, &cl); 2008 } 2009 2010 err = "error starting gc thread"; 2011 if (bch_gc_thread_start(c)) 2012 goto err; 2013 2014 closure_sync(&cl); 2015 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2016 bcache_write_super(c); 2017 2018 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2019 bch_cached_dev_attach(dc, c, NULL); 2020 2021 flash_devs_run(c); 2022 2023 set_bit(CACHE_SET_RUNNING, &c->flags); 2024 return 0; 2025 err: 2026 while (!list_empty(&journal)) { 2027 l = list_first_entry(&journal, struct journal_replay, list); 2028 list_del(&l->list); 2029 kfree(l); 2030 } 2031 2032 closure_sync(&cl); 2033 2034 bch_cache_set_error(c, "%s", err); 2035 2036 return -EIO; 2037 } 2038 2039 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2040 { 2041 return ca->sb.block_size == c->sb.block_size && 2042 ca->sb.bucket_size == c->sb.bucket_size && 2043 ca->sb.nr_in_set == c->sb.nr_in_set; 2044 } 2045 2046 static const char *register_cache_set(struct cache *ca) 2047 { 2048 char buf[12]; 2049 const char *err = "cannot allocate memory"; 2050 struct cache_set *c; 2051 2052 list_for_each_entry(c, &bch_cache_sets, list) 2053 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2054 if (c->cache[ca->sb.nr_this_dev]) 2055 return "duplicate cache set member"; 2056 2057 if (!can_attach_cache(ca, c)) 2058 return "cache sb does not match set"; 2059 2060 if (!CACHE_SYNC(&ca->sb)) 2061 SET_CACHE_SYNC(&c->sb, false); 2062 2063 goto found; 2064 } 2065 2066 c = bch_cache_set_alloc(&ca->sb); 2067 if (!c) 2068 return err; 2069 2070 err = "error creating kobject"; 2071 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2072 kobject_add(&c->internal, &c->kobj, "internal")) 2073 goto err; 2074 2075 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2076 goto err; 2077 2078 bch_debug_init_cache_set(c); 2079 2080 list_add(&c->list, &bch_cache_sets); 2081 found: 2082 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2083 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2084 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2085 goto err; 2086 2087 if (ca->sb.seq > c->sb.seq) { 2088 c->sb.version = ca->sb.version; 2089 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2090 c->sb.flags = ca->sb.flags; 2091 c->sb.seq = ca->sb.seq; 2092 pr_debug("set version = %llu\n", c->sb.version); 2093 } 2094 2095 kobject_get(&ca->kobj); 2096 ca->set = c; 2097 ca->set->cache[ca->sb.nr_this_dev] = ca; 2098 c->cache_by_alloc[c->caches_loaded++] = ca; 2099 2100 if (c->caches_loaded == c->sb.nr_in_set) { 2101 err = "failed to run cache set"; 2102 if (run_cache_set(c) < 0) 2103 goto err; 2104 } 2105 2106 return NULL; 2107 err: 2108 bch_cache_set_unregister(c); 2109 return err; 2110 } 2111 2112 /* Cache device */ 2113 2114 /* When ca->kobj released */ 2115 void bch_cache_release(struct kobject *kobj) 2116 { 2117 struct cache *ca = container_of(kobj, struct cache, kobj); 2118 unsigned int i; 2119 2120 if (ca->set) { 2121 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2122 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2123 } 2124 2125 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 2126 kfree(ca->prio_buckets); 2127 vfree(ca->buckets); 2128 2129 free_heap(&ca->heap); 2130 free_fifo(&ca->free_inc); 2131 2132 for (i = 0; i < RESERVE_NR; i++) 2133 free_fifo(&ca->free[i]); 2134 2135 if (ca->sb_disk) 2136 put_page(virt_to_page(ca->sb_disk)); 2137 2138 if (!IS_ERR_OR_NULL(ca->bdev)) 2139 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2140 2141 kfree(ca); 2142 module_put(THIS_MODULE); 2143 } 2144 2145 static int cache_alloc(struct cache *ca) 2146 { 2147 size_t free; 2148 size_t btree_buckets; 2149 struct bucket *b; 2150 int ret = -ENOMEM; 2151 const char *err = NULL; 2152 2153 __module_get(THIS_MODULE); 2154 kobject_init(&ca->kobj, &bch_cache_ktype); 2155 2156 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2157 2158 /* 2159 * when ca->sb.njournal_buckets is not zero, journal exists, 2160 * and in bch_journal_replay(), tree node may split, 2161 * so bucket of RESERVE_BTREE type is needed, 2162 * the worst situation is all journal buckets are valid journal, 2163 * and all the keys need to replay, 2164 * so the number of RESERVE_BTREE type buckets should be as much 2165 * as journal buckets 2166 */ 2167 btree_buckets = ca->sb.njournal_buckets ?: 8; 2168 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2169 if (!free) { 2170 ret = -EPERM; 2171 err = "ca->sb.nbuckets is too small"; 2172 goto err_free; 2173 } 2174 2175 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2176 GFP_KERNEL)) { 2177 err = "ca->free[RESERVE_BTREE] alloc failed"; 2178 goto err_btree_alloc; 2179 } 2180 2181 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2182 GFP_KERNEL)) { 2183 err = "ca->free[RESERVE_PRIO] alloc failed"; 2184 goto err_prio_alloc; 2185 } 2186 2187 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2188 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2189 goto err_movinggc_alloc; 2190 } 2191 2192 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2193 err = "ca->free[RESERVE_NONE] alloc failed"; 2194 goto err_none_alloc; 2195 } 2196 2197 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2198 err = "ca->free_inc alloc failed"; 2199 goto err_free_inc_alloc; 2200 } 2201 2202 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2203 err = "ca->heap alloc failed"; 2204 goto err_heap_alloc; 2205 } 2206 2207 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2208 ca->sb.nbuckets)); 2209 if (!ca->buckets) { 2210 err = "ca->buckets alloc failed"; 2211 goto err_buckets_alloc; 2212 } 2213 2214 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2215 prio_buckets(ca), 2), 2216 GFP_KERNEL); 2217 if (!ca->prio_buckets) { 2218 err = "ca->prio_buckets alloc failed"; 2219 goto err_prio_buckets_alloc; 2220 } 2221 2222 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); 2223 if (!ca->disk_buckets) { 2224 err = "ca->disk_buckets alloc failed"; 2225 goto err_disk_buckets_alloc; 2226 } 2227 2228 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2229 2230 for_each_bucket(b, ca) 2231 atomic_set(&b->pin, 0); 2232 return 0; 2233 2234 err_disk_buckets_alloc: 2235 kfree(ca->prio_buckets); 2236 err_prio_buckets_alloc: 2237 vfree(ca->buckets); 2238 err_buckets_alloc: 2239 free_heap(&ca->heap); 2240 err_heap_alloc: 2241 free_fifo(&ca->free_inc); 2242 err_free_inc_alloc: 2243 free_fifo(&ca->free[RESERVE_NONE]); 2244 err_none_alloc: 2245 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2246 err_movinggc_alloc: 2247 free_fifo(&ca->free[RESERVE_PRIO]); 2248 err_prio_alloc: 2249 free_fifo(&ca->free[RESERVE_BTREE]); 2250 err_btree_alloc: 2251 err_free: 2252 module_put(THIS_MODULE); 2253 if (err) 2254 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2255 return ret; 2256 } 2257 2258 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2259 struct block_device *bdev, struct cache *ca) 2260 { 2261 const char *err = NULL; /* must be set for any error case */ 2262 int ret = 0; 2263 2264 bdevname(bdev, ca->cache_dev_name); 2265 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2266 ca->bdev = bdev; 2267 ca->bdev->bd_holder = ca; 2268 ca->sb_disk = sb_disk; 2269 2270 if (blk_queue_discard(bdev_get_queue(bdev))) 2271 ca->discard = CACHE_DISCARD(&ca->sb); 2272 2273 ret = cache_alloc(ca); 2274 if (ret != 0) { 2275 /* 2276 * If we failed here, it means ca->kobj is not initialized yet, 2277 * kobject_put() won't be called and there is no chance to 2278 * call blkdev_put() to bdev in bch_cache_release(). So we 2279 * explicitly call blkdev_put() here. 2280 */ 2281 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2282 if (ret == -ENOMEM) 2283 err = "cache_alloc(): -ENOMEM"; 2284 else if (ret == -EPERM) 2285 err = "cache_alloc(): cache device is too small"; 2286 else 2287 err = "cache_alloc(): unknown error"; 2288 goto err; 2289 } 2290 2291 if (kobject_add(&ca->kobj, 2292 &part_to_dev(bdev->bd_part)->kobj, 2293 "bcache")) { 2294 err = "error calling kobject_add"; 2295 ret = -ENOMEM; 2296 goto out; 2297 } 2298 2299 mutex_lock(&bch_register_lock); 2300 err = register_cache_set(ca); 2301 mutex_unlock(&bch_register_lock); 2302 2303 if (err) { 2304 ret = -ENODEV; 2305 goto out; 2306 } 2307 2308 pr_info("registered cache device %s\n", ca->cache_dev_name); 2309 2310 out: 2311 kobject_put(&ca->kobj); 2312 2313 err: 2314 if (err) 2315 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2316 2317 return ret; 2318 } 2319 2320 /* Global interfaces/init */ 2321 2322 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2323 const char *buffer, size_t size); 2324 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2325 struct kobj_attribute *attr, 2326 const char *buffer, size_t size); 2327 2328 kobj_attribute_write(register, register_bcache); 2329 kobj_attribute_write(register_quiet, register_bcache); 2330 kobj_attribute_write(register_async, register_bcache); 2331 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2332 2333 static bool bch_is_open_backing(struct block_device *bdev) 2334 { 2335 struct cache_set *c, *tc; 2336 struct cached_dev *dc, *t; 2337 2338 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2339 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2340 if (dc->bdev == bdev) 2341 return true; 2342 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2343 if (dc->bdev == bdev) 2344 return true; 2345 return false; 2346 } 2347 2348 static bool bch_is_open_cache(struct block_device *bdev) 2349 { 2350 struct cache_set *c, *tc; 2351 struct cache *ca; 2352 unsigned int i; 2353 2354 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2355 for_each_cache(ca, c, i) 2356 if (ca->bdev == bdev) 2357 return true; 2358 return false; 2359 } 2360 2361 static bool bch_is_open(struct block_device *bdev) 2362 { 2363 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2364 } 2365 2366 struct async_reg_args { 2367 struct work_struct reg_work; 2368 char *path; 2369 struct cache_sb *sb; 2370 struct cache_sb_disk *sb_disk; 2371 struct block_device *bdev; 2372 }; 2373 2374 static void register_bdev_worker(struct work_struct *work) 2375 { 2376 int fail = false; 2377 struct async_reg_args *args = 2378 container_of(work, struct async_reg_args, reg_work); 2379 struct cached_dev *dc; 2380 2381 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2382 if (!dc) { 2383 fail = true; 2384 put_page(virt_to_page(args->sb_disk)); 2385 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2386 goto out; 2387 } 2388 2389 mutex_lock(&bch_register_lock); 2390 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2391 fail = true; 2392 mutex_unlock(&bch_register_lock); 2393 2394 out: 2395 if (fail) 2396 pr_info("error %s: fail to register backing device\n", 2397 args->path); 2398 kfree(args->sb); 2399 kfree(args->path); 2400 kfree(args); 2401 module_put(THIS_MODULE); 2402 } 2403 2404 static void register_cache_worker(struct work_struct *work) 2405 { 2406 int fail = false; 2407 struct async_reg_args *args = 2408 container_of(work, struct async_reg_args, reg_work); 2409 struct cache *ca; 2410 2411 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2412 if (!ca) { 2413 fail = true; 2414 put_page(virt_to_page(args->sb_disk)); 2415 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2416 goto out; 2417 } 2418 2419 /* blkdev_put() will be called in bch_cache_release() */ 2420 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2421 fail = true; 2422 2423 out: 2424 if (fail) 2425 pr_info("error %s: fail to register cache device\n", 2426 args->path); 2427 kfree(args->sb); 2428 kfree(args->path); 2429 kfree(args); 2430 module_put(THIS_MODULE); 2431 } 2432 2433 static void register_device_aync(struct async_reg_args *args) 2434 { 2435 if (SB_IS_BDEV(args->sb)) 2436 INIT_WORK(&args->reg_work, register_bdev_worker); 2437 else 2438 INIT_WORK(&args->reg_work, register_cache_worker); 2439 2440 queue_work(system_wq, &args->reg_work); 2441 } 2442 2443 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2444 const char *buffer, size_t size) 2445 { 2446 const char *err; 2447 char *path = NULL; 2448 struct cache_sb *sb; 2449 struct cache_sb_disk *sb_disk; 2450 struct block_device *bdev; 2451 ssize_t ret; 2452 2453 ret = -EBUSY; 2454 err = "failed to reference bcache module"; 2455 if (!try_module_get(THIS_MODULE)) 2456 goto out; 2457 2458 /* For latest state of bcache_is_reboot */ 2459 smp_mb(); 2460 err = "bcache is in reboot"; 2461 if (bcache_is_reboot) 2462 goto out_module_put; 2463 2464 ret = -ENOMEM; 2465 err = "cannot allocate memory"; 2466 path = kstrndup(buffer, size, GFP_KERNEL); 2467 if (!path) 2468 goto out_module_put; 2469 2470 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2471 if (!sb) 2472 goto out_free_path; 2473 2474 ret = -EINVAL; 2475 err = "failed to open device"; 2476 bdev = blkdev_get_by_path(strim(path), 2477 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2478 sb); 2479 if (IS_ERR(bdev)) { 2480 if (bdev == ERR_PTR(-EBUSY)) { 2481 bdev = lookup_bdev(strim(path)); 2482 mutex_lock(&bch_register_lock); 2483 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2484 err = "device already registered"; 2485 else 2486 err = "device busy"; 2487 mutex_unlock(&bch_register_lock); 2488 if (!IS_ERR(bdev)) 2489 bdput(bdev); 2490 if (attr == &ksysfs_register_quiet) 2491 goto done; 2492 } 2493 goto out_free_sb; 2494 } 2495 2496 err = "failed to set blocksize"; 2497 if (set_blocksize(bdev, 4096)) 2498 goto out_blkdev_put; 2499 2500 err = read_super(sb, bdev, &sb_disk); 2501 if (err) 2502 goto out_blkdev_put; 2503 2504 err = "failed to register device"; 2505 if (attr == &ksysfs_register_async) { 2506 /* register in asynchronous way */ 2507 struct async_reg_args *args = 2508 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2509 2510 if (!args) { 2511 ret = -ENOMEM; 2512 err = "cannot allocate memory"; 2513 goto out_put_sb_page; 2514 } 2515 2516 args->path = path; 2517 args->sb = sb; 2518 args->sb_disk = sb_disk; 2519 args->bdev = bdev; 2520 register_device_aync(args); 2521 /* No wait and returns to user space */ 2522 goto async_done; 2523 } 2524 2525 if (SB_IS_BDEV(sb)) { 2526 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2527 2528 if (!dc) 2529 goto out_put_sb_page; 2530 2531 mutex_lock(&bch_register_lock); 2532 ret = register_bdev(sb, sb_disk, bdev, dc); 2533 mutex_unlock(&bch_register_lock); 2534 /* blkdev_put() will be called in cached_dev_free() */ 2535 if (ret < 0) 2536 goto out_free_sb; 2537 } else { 2538 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2539 2540 if (!ca) 2541 goto out_put_sb_page; 2542 2543 /* blkdev_put() will be called in bch_cache_release() */ 2544 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2545 goto out_free_sb; 2546 } 2547 2548 done: 2549 kfree(sb); 2550 kfree(path); 2551 module_put(THIS_MODULE); 2552 async_done: 2553 return size; 2554 2555 out_put_sb_page: 2556 put_page(virt_to_page(sb_disk)); 2557 out_blkdev_put: 2558 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2559 out_free_sb: 2560 kfree(sb); 2561 out_free_path: 2562 kfree(path); 2563 path = NULL; 2564 out_module_put: 2565 module_put(THIS_MODULE); 2566 out: 2567 pr_info("error %s: %s\n", path?path:"", err); 2568 return ret; 2569 } 2570 2571 2572 struct pdev { 2573 struct list_head list; 2574 struct cached_dev *dc; 2575 }; 2576 2577 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2578 struct kobj_attribute *attr, 2579 const char *buffer, 2580 size_t size) 2581 { 2582 LIST_HEAD(pending_devs); 2583 ssize_t ret = size; 2584 struct cached_dev *dc, *tdc; 2585 struct pdev *pdev, *tpdev; 2586 struct cache_set *c, *tc; 2587 2588 mutex_lock(&bch_register_lock); 2589 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2590 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2591 if (!pdev) 2592 break; 2593 pdev->dc = dc; 2594 list_add(&pdev->list, &pending_devs); 2595 } 2596 2597 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2598 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2599 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2600 char *set_uuid = c->sb.uuid; 2601 2602 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2603 list_del(&pdev->list); 2604 kfree(pdev); 2605 break; 2606 } 2607 } 2608 } 2609 mutex_unlock(&bch_register_lock); 2610 2611 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2612 pr_info("delete pdev %p\n", pdev); 2613 list_del(&pdev->list); 2614 bcache_device_stop(&pdev->dc->disk); 2615 kfree(pdev); 2616 } 2617 2618 return ret; 2619 } 2620 2621 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2622 { 2623 if (bcache_is_reboot) 2624 return NOTIFY_DONE; 2625 2626 if (code == SYS_DOWN || 2627 code == SYS_HALT || 2628 code == SYS_POWER_OFF) { 2629 DEFINE_WAIT(wait); 2630 unsigned long start = jiffies; 2631 bool stopped = false; 2632 2633 struct cache_set *c, *tc; 2634 struct cached_dev *dc, *tdc; 2635 2636 mutex_lock(&bch_register_lock); 2637 2638 if (bcache_is_reboot) 2639 goto out; 2640 2641 /* New registration is rejected since now */ 2642 bcache_is_reboot = true; 2643 /* 2644 * Make registering caller (if there is) on other CPU 2645 * core know bcache_is_reboot set to true earlier 2646 */ 2647 smp_mb(); 2648 2649 if (list_empty(&bch_cache_sets) && 2650 list_empty(&uncached_devices)) 2651 goto out; 2652 2653 mutex_unlock(&bch_register_lock); 2654 2655 pr_info("Stopping all devices:\n"); 2656 2657 /* 2658 * The reason bch_register_lock is not held to call 2659 * bch_cache_set_stop() and bcache_device_stop() is to 2660 * avoid potential deadlock during reboot, because cache 2661 * set or bcache device stopping process will acqurie 2662 * bch_register_lock too. 2663 * 2664 * We are safe here because bcache_is_reboot sets to 2665 * true already, register_bcache() will reject new 2666 * registration now. bcache_is_reboot also makes sure 2667 * bcache_reboot() won't be re-entered on by other thread, 2668 * so there is no race in following list iteration by 2669 * list_for_each_entry_safe(). 2670 */ 2671 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2672 bch_cache_set_stop(c); 2673 2674 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2675 bcache_device_stop(&dc->disk); 2676 2677 2678 /* 2679 * Give an early chance for other kthreads and 2680 * kworkers to stop themselves 2681 */ 2682 schedule(); 2683 2684 /* What's a condition variable? */ 2685 while (1) { 2686 long timeout = start + 10 * HZ - jiffies; 2687 2688 mutex_lock(&bch_register_lock); 2689 stopped = list_empty(&bch_cache_sets) && 2690 list_empty(&uncached_devices); 2691 2692 if (timeout < 0 || stopped) 2693 break; 2694 2695 prepare_to_wait(&unregister_wait, &wait, 2696 TASK_UNINTERRUPTIBLE); 2697 2698 mutex_unlock(&bch_register_lock); 2699 schedule_timeout(timeout); 2700 } 2701 2702 finish_wait(&unregister_wait, &wait); 2703 2704 if (stopped) 2705 pr_info("All devices stopped\n"); 2706 else 2707 pr_notice("Timeout waiting for devices to be closed\n"); 2708 out: 2709 mutex_unlock(&bch_register_lock); 2710 } 2711 2712 return NOTIFY_DONE; 2713 } 2714 2715 static struct notifier_block reboot = { 2716 .notifier_call = bcache_reboot, 2717 .priority = INT_MAX, /* before any real devices */ 2718 }; 2719 2720 static void bcache_exit(void) 2721 { 2722 bch_debug_exit(); 2723 bch_request_exit(); 2724 if (bcache_kobj) 2725 kobject_put(bcache_kobj); 2726 if (bcache_wq) 2727 destroy_workqueue(bcache_wq); 2728 if (bch_journal_wq) 2729 destroy_workqueue(bch_journal_wq); 2730 2731 if (bcache_major) 2732 unregister_blkdev(bcache_major, "bcache"); 2733 unregister_reboot_notifier(&reboot); 2734 mutex_destroy(&bch_register_lock); 2735 } 2736 2737 /* Check and fixup module parameters */ 2738 static void check_module_parameters(void) 2739 { 2740 if (bch_cutoff_writeback_sync == 0) 2741 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2742 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2743 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2744 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2745 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2746 } 2747 2748 if (bch_cutoff_writeback == 0) 2749 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2750 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2751 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2752 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2753 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2754 } 2755 2756 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2757 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2758 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2759 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2760 } 2761 } 2762 2763 static int __init bcache_init(void) 2764 { 2765 static const struct attribute *files[] = { 2766 &ksysfs_register.attr, 2767 &ksysfs_register_quiet.attr, 2768 #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION 2769 &ksysfs_register_async.attr, 2770 #endif 2771 &ksysfs_pendings_cleanup.attr, 2772 NULL 2773 }; 2774 2775 check_module_parameters(); 2776 2777 mutex_init(&bch_register_lock); 2778 init_waitqueue_head(&unregister_wait); 2779 register_reboot_notifier(&reboot); 2780 2781 bcache_major = register_blkdev(0, "bcache"); 2782 if (bcache_major < 0) { 2783 unregister_reboot_notifier(&reboot); 2784 mutex_destroy(&bch_register_lock); 2785 return bcache_major; 2786 } 2787 2788 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2789 if (!bcache_wq) 2790 goto err; 2791 2792 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2793 if (!bch_journal_wq) 2794 goto err; 2795 2796 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2797 if (!bcache_kobj) 2798 goto err; 2799 2800 if (bch_request_init() || 2801 sysfs_create_files(bcache_kobj, files)) 2802 goto err; 2803 2804 bch_debug_init(); 2805 closure_debug_init(); 2806 2807 bcache_is_reboot = false; 2808 2809 return 0; 2810 err: 2811 bcache_exit(); 2812 return -ENOMEM; 2813 } 2814 2815 /* 2816 * Module hooks 2817 */ 2818 module_exit(bcache_exit); 2819 module_init(bcache_init); 2820 2821 module_param(bch_cutoff_writeback, uint, 0); 2822 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2823 2824 module_param(bch_cutoff_writeback_sync, uint, 0); 2825 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2826 2827 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2828 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2829 MODULE_LICENSE("GPL"); 2830