xref: /openbmc/linux/drivers/md/bcache/super.c (revision f3a8b664)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 	"default",
43 	"writethrough",
44 	"writeback",
45 	"writearound",
46 	"none",
47 	NULL
48 };
49 
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54 
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59 
60 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
61 
62 /* Superblock */
63 
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65 			      struct page **res)
66 {
67 	const char *err;
68 	struct cache_sb *s;
69 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70 	unsigned i;
71 
72 	if (!bh)
73 		return "IO error";
74 
75 	s = (struct cache_sb *) bh->b_data;
76 
77 	sb->offset		= le64_to_cpu(s->offset);
78 	sb->version		= le64_to_cpu(s->version);
79 
80 	memcpy(sb->magic,	s->magic, 16);
81 	memcpy(sb->uuid,	s->uuid, 16);
82 	memcpy(sb->set_uuid,	s->set_uuid, 16);
83 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
84 
85 	sb->flags		= le64_to_cpu(s->flags);
86 	sb->seq			= le64_to_cpu(s->seq);
87 	sb->last_mount		= le32_to_cpu(s->last_mount);
88 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
89 	sb->keys		= le16_to_cpu(s->keys);
90 
91 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92 		sb->d[i] = le64_to_cpu(s->d[i]);
93 
94 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95 		 sb->version, sb->flags, sb->seq, sb->keys);
96 
97 	err = "Not a bcache superblock";
98 	if (sb->offset != SB_SECTOR)
99 		goto err;
100 
101 	if (memcmp(sb->magic, bcache_magic, 16))
102 		goto err;
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Bad checksum";
109 	if (s->csum != csum_set(s))
110 		goto err;
111 
112 	err = "Bad UUID";
113 	if (bch_is_zero(sb->uuid, 16))
114 		goto err;
115 
116 	sb->block_size	= le16_to_cpu(s->block_size);
117 
118 	err = "Superblock block size smaller than device block size";
119 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 		goto err;
121 
122 	switch (sb->version) {
123 	case BCACHE_SB_VERSION_BDEV:
124 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
125 		break;
126 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 		sb->data_offset	= le64_to_cpu(s->data_offset);
128 
129 		err = "Bad data offset";
130 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 			goto err;
132 
133 		break;
134 	case BCACHE_SB_VERSION_CDEV:
135 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
137 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
138 
139 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
140 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
141 
142 		err = "Too many buckets";
143 		if (sb->nbuckets > LONG_MAX)
144 			goto err;
145 
146 		err = "Not enough buckets";
147 		if (sb->nbuckets < 1 << 7)
148 			goto err;
149 
150 		err = "Bad block/bucket size";
151 		if (!is_power_of_2(sb->block_size) ||
152 		    sb->block_size > PAGE_SECTORS ||
153 		    !is_power_of_2(sb->bucket_size) ||
154 		    sb->bucket_size < PAGE_SECTORS)
155 			goto err;
156 
157 		err = "Invalid superblock: device too small";
158 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
159 			goto err;
160 
161 		err = "Bad UUID";
162 		if (bch_is_zero(sb->set_uuid, 16))
163 			goto err;
164 
165 		err = "Bad cache device number in set";
166 		if (!sb->nr_in_set ||
167 		    sb->nr_in_set <= sb->nr_this_dev ||
168 		    sb->nr_in_set > MAX_CACHES_PER_SET)
169 			goto err;
170 
171 		err = "Journal buckets not sequential";
172 		for (i = 0; i < sb->keys; i++)
173 			if (sb->d[i] != sb->first_bucket + i)
174 				goto err;
175 
176 		err = "Too many journal buckets";
177 		if (sb->first_bucket + sb->keys > sb->nbuckets)
178 			goto err;
179 
180 		err = "Invalid superblock: first bucket comes before end of super";
181 		if (sb->first_bucket * sb->bucket_size < 16)
182 			goto err;
183 
184 		break;
185 	default:
186 		err = "Unsupported superblock version";
187 		goto err;
188 	}
189 
190 	sb->last_mount = get_seconds();
191 	err = NULL;
192 
193 	get_page(bh->b_page);
194 	*res = bh->b_page;
195 err:
196 	put_bh(bh);
197 	return err;
198 }
199 
200 static void write_bdev_super_endio(struct bio *bio)
201 {
202 	struct cached_dev *dc = bio->bi_private;
203 	/* XXX: error checking */
204 
205 	closure_put(&dc->sb_write);
206 }
207 
208 static void __write_super(struct cache_sb *sb, struct bio *bio)
209 {
210 	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
211 	unsigned i;
212 
213 	bio->bi_iter.bi_sector	= SB_SECTOR;
214 	bio->bi_iter.bi_size	= SB_SIZE;
215 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
216 	bch_bio_map(bio, NULL);
217 
218 	out->offset		= cpu_to_le64(sb->offset);
219 	out->version		= cpu_to_le64(sb->version);
220 
221 	memcpy(out->uuid,	sb->uuid, 16);
222 	memcpy(out->set_uuid,	sb->set_uuid, 16);
223 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
224 
225 	out->flags		= cpu_to_le64(sb->flags);
226 	out->seq		= cpu_to_le64(sb->seq);
227 
228 	out->last_mount		= cpu_to_le32(sb->last_mount);
229 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
230 	out->keys		= cpu_to_le16(sb->keys);
231 
232 	for (i = 0; i < sb->keys; i++)
233 		out->d[i] = cpu_to_le64(sb->d[i]);
234 
235 	out->csum = csum_set(out);
236 
237 	pr_debug("ver %llu, flags %llu, seq %llu",
238 		 sb->version, sb->flags, sb->seq);
239 
240 	submit_bio(bio);
241 }
242 
243 static void bch_write_bdev_super_unlock(struct closure *cl)
244 {
245 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
246 
247 	up(&dc->sb_write_mutex);
248 }
249 
250 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
251 {
252 	struct closure *cl = &dc->sb_write;
253 	struct bio *bio = &dc->sb_bio;
254 
255 	down(&dc->sb_write_mutex);
256 	closure_init(cl, parent);
257 
258 	bio_reset(bio);
259 	bio->bi_bdev	= dc->bdev;
260 	bio->bi_end_io	= write_bdev_super_endio;
261 	bio->bi_private = dc;
262 
263 	closure_get(cl);
264 	__write_super(&dc->sb, bio);
265 
266 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
267 }
268 
269 static void write_super_endio(struct bio *bio)
270 {
271 	struct cache *ca = bio->bi_private;
272 
273 	bch_count_io_errors(ca, bio->bi_error, "writing superblock");
274 	closure_put(&ca->set->sb_write);
275 }
276 
277 static void bcache_write_super_unlock(struct closure *cl)
278 {
279 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
280 
281 	up(&c->sb_write_mutex);
282 }
283 
284 void bcache_write_super(struct cache_set *c)
285 {
286 	struct closure *cl = &c->sb_write;
287 	struct cache *ca;
288 	unsigned i;
289 
290 	down(&c->sb_write_mutex);
291 	closure_init(cl, &c->cl);
292 
293 	c->sb.seq++;
294 
295 	for_each_cache(ca, c, i) {
296 		struct bio *bio = &ca->sb_bio;
297 
298 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
299 		ca->sb.seq		= c->sb.seq;
300 		ca->sb.last_mount	= c->sb.last_mount;
301 
302 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
303 
304 		bio_reset(bio);
305 		bio->bi_bdev	= ca->bdev;
306 		bio->bi_end_io	= write_super_endio;
307 		bio->bi_private = ca;
308 
309 		closure_get(cl);
310 		__write_super(&ca->sb, bio);
311 	}
312 
313 	closure_return_with_destructor(cl, bcache_write_super_unlock);
314 }
315 
316 /* UUID io */
317 
318 static void uuid_endio(struct bio *bio)
319 {
320 	struct closure *cl = bio->bi_private;
321 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
322 
323 	cache_set_err_on(bio->bi_error, c, "accessing uuids");
324 	bch_bbio_free(bio, c);
325 	closure_put(cl);
326 }
327 
328 static void uuid_io_unlock(struct closure *cl)
329 {
330 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
331 
332 	up(&c->uuid_write_mutex);
333 }
334 
335 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
336 		    struct bkey *k, struct closure *parent)
337 {
338 	struct closure *cl = &c->uuid_write;
339 	struct uuid_entry *u;
340 	unsigned i;
341 	char buf[80];
342 
343 	BUG_ON(!parent);
344 	down(&c->uuid_write_mutex);
345 	closure_init(cl, parent);
346 
347 	for (i = 0; i < KEY_PTRS(k); i++) {
348 		struct bio *bio = bch_bbio_alloc(c);
349 
350 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
351 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
352 
353 		bio->bi_end_io	= uuid_endio;
354 		bio->bi_private = cl;
355 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
356 		bch_bio_map(bio, c->uuids);
357 
358 		bch_submit_bbio(bio, c, k, i);
359 
360 		if (op != REQ_OP_WRITE)
361 			break;
362 	}
363 
364 	bch_extent_to_text(buf, sizeof(buf), k);
365 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
366 
367 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 		if (!bch_is_zero(u->uuid, 16))
369 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 				 u - c->uuids, u->uuid, u->label,
371 				 u->first_reg, u->last_reg, u->invalidated);
372 
373 	closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375 
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 	struct bkey *k = &j->uuid_bucket;
379 
380 	if (__bch_btree_ptr_invalid(c, k))
381 		return "bad uuid pointer";
382 
383 	bkey_copy(&c->uuid_bucket, k);
384 	uuid_io(c, REQ_OP_READ, READ_SYNC, k, cl);
385 
386 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
388 		struct uuid_entry	*u1 = (void *) c->uuids;
389 		int i;
390 
391 		closure_sync(cl);
392 
393 		/*
394 		 * Since the new uuid entry is bigger than the old, we have to
395 		 * convert starting at the highest memory address and work down
396 		 * in order to do it in place
397 		 */
398 
399 		for (i = c->nr_uuids - 1;
400 		     i >= 0;
401 		     --i) {
402 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
403 			memcpy(u1[i].label,	u0[i].label, 32);
404 
405 			u1[i].first_reg		= u0[i].first_reg;
406 			u1[i].last_reg		= u0[i].last_reg;
407 			u1[i].invalidated	= u0[i].invalidated;
408 
409 			u1[i].flags	= 0;
410 			u1[i].sectors	= 0;
411 		}
412 	}
413 
414 	return NULL;
415 }
416 
417 static int __uuid_write(struct cache_set *c)
418 {
419 	BKEY_PADDED(key) k;
420 	struct closure cl;
421 	closure_init_stack(&cl);
422 
423 	lockdep_assert_held(&bch_register_lock);
424 
425 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426 		return 1;
427 
428 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
430 	closure_sync(&cl);
431 
432 	bkey_copy(&c->uuid_bucket, &k.key);
433 	bkey_put(c, &k.key);
434 	return 0;
435 }
436 
437 int bch_uuid_write(struct cache_set *c)
438 {
439 	int ret = __uuid_write(c);
440 
441 	if (!ret)
442 		bch_journal_meta(c, NULL);
443 
444 	return ret;
445 }
446 
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449 	struct uuid_entry *u;
450 
451 	for (u = c->uuids;
452 	     u < c->uuids + c->nr_uuids; u++)
453 		if (!memcmp(u->uuid, uuid, 16))
454 			return u;
455 
456 	return NULL;
457 }
458 
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462 	return uuid_find(c, zero_uuid);
463 }
464 
465 /*
466  * Bucket priorities/gens:
467  *
468  * For each bucket, we store on disk its
469    * 8 bit gen
470    * 16 bit priority
471  *
472  * See alloc.c for an explanation of the gen. The priority is used to implement
473  * lru (and in the future other) cache replacement policies; for most purposes
474  * it's just an opaque integer.
475  *
476  * The gens and the priorities don't have a whole lot to do with each other, and
477  * it's actually the gens that must be written out at specific times - it's no
478  * big deal if the priorities don't get written, if we lose them we just reuse
479  * buckets in suboptimal order.
480  *
481  * On disk they're stored in a packed array, and in as many buckets are required
482  * to fit them all. The buckets we use to store them form a list; the journal
483  * header points to the first bucket, the first bucket points to the second
484  * bucket, et cetera.
485  *
486  * This code is used by the allocation code; periodically (whenever it runs out
487  * of buckets to allocate from) the allocation code will invalidate some
488  * buckets, but it can't use those buckets until their new gens are safely on
489  * disk.
490  */
491 
492 static void prio_endio(struct bio *bio)
493 {
494 	struct cache *ca = bio->bi_private;
495 
496 	cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497 	bch_bbio_free(bio, ca->set);
498 	closure_put(&ca->prio);
499 }
500 
501 static void prio_io(struct cache *ca, uint64_t bucket, int op,
502 		    unsigned long op_flags)
503 {
504 	struct closure *cl = &ca->prio;
505 	struct bio *bio = bch_bbio_alloc(ca->set);
506 
507 	closure_init_stack(cl);
508 
509 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
510 	bio->bi_bdev		= ca->bdev;
511 	bio->bi_iter.bi_size	= bucket_bytes(ca);
512 
513 	bio->bi_end_io	= prio_endio;
514 	bio->bi_private = ca;
515 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
516 	bch_bio_map(bio, ca->disk_buckets);
517 
518 	closure_bio_submit(bio, &ca->prio);
519 	closure_sync(cl);
520 }
521 
522 void bch_prio_write(struct cache *ca)
523 {
524 	int i;
525 	struct bucket *b;
526 	struct closure cl;
527 
528 	closure_init_stack(&cl);
529 
530 	lockdep_assert_held(&ca->set->bucket_lock);
531 
532 	ca->disk_buckets->seq++;
533 
534 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
535 			&ca->meta_sectors_written);
536 
537 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
538 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
539 
540 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
541 		long bucket;
542 		struct prio_set *p = ca->disk_buckets;
543 		struct bucket_disk *d = p->data;
544 		struct bucket_disk *end = d + prios_per_bucket(ca);
545 
546 		for (b = ca->buckets + i * prios_per_bucket(ca);
547 		     b < ca->buckets + ca->sb.nbuckets && d < end;
548 		     b++, d++) {
549 			d->prio = cpu_to_le16(b->prio);
550 			d->gen = b->gen;
551 		}
552 
553 		p->next_bucket	= ca->prio_buckets[i + 1];
554 		p->magic	= pset_magic(&ca->sb);
555 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
556 
557 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
558 		BUG_ON(bucket == -1);
559 
560 		mutex_unlock(&ca->set->bucket_lock);
561 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
562 		mutex_lock(&ca->set->bucket_lock);
563 
564 		ca->prio_buckets[i] = bucket;
565 		atomic_dec_bug(&ca->buckets[bucket].pin);
566 	}
567 
568 	mutex_unlock(&ca->set->bucket_lock);
569 
570 	bch_journal_meta(ca->set, &cl);
571 	closure_sync(&cl);
572 
573 	mutex_lock(&ca->set->bucket_lock);
574 
575 	/*
576 	 * Don't want the old priorities to get garbage collected until after we
577 	 * finish writing the new ones, and they're journalled
578 	 */
579 	for (i = 0; i < prio_buckets(ca); i++) {
580 		if (ca->prio_last_buckets[i])
581 			__bch_bucket_free(ca,
582 				&ca->buckets[ca->prio_last_buckets[i]]);
583 
584 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
585 	}
586 }
587 
588 static void prio_read(struct cache *ca, uint64_t bucket)
589 {
590 	struct prio_set *p = ca->disk_buckets;
591 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
592 	struct bucket *b;
593 	unsigned bucket_nr = 0;
594 
595 	for (b = ca->buckets;
596 	     b < ca->buckets + ca->sb.nbuckets;
597 	     b++, d++) {
598 		if (d == end) {
599 			ca->prio_buckets[bucket_nr] = bucket;
600 			ca->prio_last_buckets[bucket_nr] = bucket;
601 			bucket_nr++;
602 
603 			prio_io(ca, bucket, REQ_OP_READ, READ_SYNC);
604 
605 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
606 				pr_warn("bad csum reading priorities");
607 
608 			if (p->magic != pset_magic(&ca->sb))
609 				pr_warn("bad magic reading priorities");
610 
611 			bucket = p->next_bucket;
612 			d = p->data;
613 		}
614 
615 		b->prio = le16_to_cpu(d->prio);
616 		b->gen = b->last_gc = d->gen;
617 	}
618 }
619 
620 /* Bcache device */
621 
622 static int open_dev(struct block_device *b, fmode_t mode)
623 {
624 	struct bcache_device *d = b->bd_disk->private_data;
625 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
626 		return -ENXIO;
627 
628 	closure_get(&d->cl);
629 	return 0;
630 }
631 
632 static void release_dev(struct gendisk *b, fmode_t mode)
633 {
634 	struct bcache_device *d = b->private_data;
635 	closure_put(&d->cl);
636 }
637 
638 static int ioctl_dev(struct block_device *b, fmode_t mode,
639 		     unsigned int cmd, unsigned long arg)
640 {
641 	struct bcache_device *d = b->bd_disk->private_data;
642 	return d->ioctl(d, mode, cmd, arg);
643 }
644 
645 static const struct block_device_operations bcache_ops = {
646 	.open		= open_dev,
647 	.release	= release_dev,
648 	.ioctl		= ioctl_dev,
649 	.owner		= THIS_MODULE,
650 };
651 
652 void bcache_device_stop(struct bcache_device *d)
653 {
654 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
655 		closure_queue(&d->cl);
656 }
657 
658 static void bcache_device_unlink(struct bcache_device *d)
659 {
660 	lockdep_assert_held(&bch_register_lock);
661 
662 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
663 		unsigned i;
664 		struct cache *ca;
665 
666 		sysfs_remove_link(&d->c->kobj, d->name);
667 		sysfs_remove_link(&d->kobj, "cache");
668 
669 		for_each_cache(ca, d->c, i)
670 			bd_unlink_disk_holder(ca->bdev, d->disk);
671 	}
672 }
673 
674 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
675 			       const char *name)
676 {
677 	unsigned i;
678 	struct cache *ca;
679 
680 	for_each_cache(ca, d->c, i)
681 		bd_link_disk_holder(ca->bdev, d->disk);
682 
683 	snprintf(d->name, BCACHEDEVNAME_SIZE,
684 		 "%s%u", name, d->id);
685 
686 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
687 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
688 	     "Couldn't create device <-> cache set symlinks");
689 
690 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
691 }
692 
693 static void bcache_device_detach(struct bcache_device *d)
694 {
695 	lockdep_assert_held(&bch_register_lock);
696 
697 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
698 		struct uuid_entry *u = d->c->uuids + d->id;
699 
700 		SET_UUID_FLASH_ONLY(u, 0);
701 		memcpy(u->uuid, invalid_uuid, 16);
702 		u->invalidated = cpu_to_le32(get_seconds());
703 		bch_uuid_write(d->c);
704 	}
705 
706 	bcache_device_unlink(d);
707 
708 	d->c->devices[d->id] = NULL;
709 	closure_put(&d->c->caching);
710 	d->c = NULL;
711 }
712 
713 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
714 				 unsigned id)
715 {
716 	d->id = id;
717 	d->c = c;
718 	c->devices[id] = d;
719 
720 	closure_get(&c->caching);
721 }
722 
723 static void bcache_device_free(struct bcache_device *d)
724 {
725 	lockdep_assert_held(&bch_register_lock);
726 
727 	pr_info("%s stopped", d->disk->disk_name);
728 
729 	if (d->c)
730 		bcache_device_detach(d);
731 	if (d->disk && d->disk->flags & GENHD_FL_UP)
732 		del_gendisk(d->disk);
733 	if (d->disk && d->disk->queue)
734 		blk_cleanup_queue(d->disk->queue);
735 	if (d->disk) {
736 		ida_simple_remove(&bcache_minor, d->disk->first_minor);
737 		put_disk(d->disk);
738 	}
739 
740 	if (d->bio_split)
741 		bioset_free(d->bio_split);
742 	kvfree(d->full_dirty_stripes);
743 	kvfree(d->stripe_sectors_dirty);
744 
745 	closure_debug_destroy(&d->cl);
746 }
747 
748 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
749 			      sector_t sectors)
750 {
751 	struct request_queue *q;
752 	size_t n;
753 	int minor;
754 
755 	if (!d->stripe_size)
756 		d->stripe_size = 1 << 31;
757 
758 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
759 
760 	if (!d->nr_stripes ||
761 	    d->nr_stripes > INT_MAX ||
762 	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
763 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
764 			(unsigned)d->nr_stripes);
765 		return -ENOMEM;
766 	}
767 
768 	n = d->nr_stripes * sizeof(atomic_t);
769 	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
770 		? kzalloc(n, GFP_KERNEL)
771 		: vzalloc(n);
772 	if (!d->stripe_sectors_dirty)
773 		return -ENOMEM;
774 
775 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
776 	d->full_dirty_stripes = n < PAGE_SIZE << 6
777 		? kzalloc(n, GFP_KERNEL)
778 		: vzalloc(n);
779 	if (!d->full_dirty_stripes)
780 		return -ENOMEM;
781 
782 	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
783 	if (minor < 0)
784 		return minor;
785 
786 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
787 	    !(d->disk = alloc_disk(1))) {
788 		ida_simple_remove(&bcache_minor, minor);
789 		return -ENOMEM;
790 	}
791 
792 	set_capacity(d->disk, sectors);
793 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
794 
795 	d->disk->major		= bcache_major;
796 	d->disk->first_minor	= minor;
797 	d->disk->fops		= &bcache_ops;
798 	d->disk->private_data	= d;
799 
800 	q = blk_alloc_queue(GFP_KERNEL);
801 	if (!q)
802 		return -ENOMEM;
803 
804 	blk_queue_make_request(q, NULL);
805 	d->disk->queue			= q;
806 	q->queuedata			= d;
807 	q->backing_dev_info.congested_data = d;
808 	q->limits.max_hw_sectors	= UINT_MAX;
809 	q->limits.max_sectors		= UINT_MAX;
810 	q->limits.max_segment_size	= UINT_MAX;
811 	q->limits.max_segments		= BIO_MAX_PAGES;
812 	blk_queue_max_discard_sectors(q, UINT_MAX);
813 	q->limits.discard_granularity	= 512;
814 	q->limits.io_min		= block_size;
815 	q->limits.logical_block_size	= block_size;
816 	q->limits.physical_block_size	= block_size;
817 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
818 	clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
819 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
820 
821 	blk_queue_write_cache(q, true, true);
822 
823 	return 0;
824 }
825 
826 /* Cached device */
827 
828 static void calc_cached_dev_sectors(struct cache_set *c)
829 {
830 	uint64_t sectors = 0;
831 	struct cached_dev *dc;
832 
833 	list_for_each_entry(dc, &c->cached_devs, list)
834 		sectors += bdev_sectors(dc->bdev);
835 
836 	c->cached_dev_sectors = sectors;
837 }
838 
839 void bch_cached_dev_run(struct cached_dev *dc)
840 {
841 	struct bcache_device *d = &dc->disk;
842 	char buf[SB_LABEL_SIZE + 1];
843 	char *env[] = {
844 		"DRIVER=bcache",
845 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
846 		NULL,
847 		NULL,
848 	};
849 
850 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
851 	buf[SB_LABEL_SIZE] = '\0';
852 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
853 
854 	if (atomic_xchg(&dc->running, 1)) {
855 		kfree(env[1]);
856 		kfree(env[2]);
857 		return;
858 	}
859 
860 	if (!d->c &&
861 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
862 		struct closure cl;
863 		closure_init_stack(&cl);
864 
865 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
866 		bch_write_bdev_super(dc, &cl);
867 		closure_sync(&cl);
868 	}
869 
870 	add_disk(d->disk);
871 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
872 	/* won't show up in the uevent file, use udevadm monitor -e instead
873 	 * only class / kset properties are persistent */
874 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
875 	kfree(env[1]);
876 	kfree(env[2]);
877 
878 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
879 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
880 		pr_debug("error creating sysfs link");
881 }
882 
883 static void cached_dev_detach_finish(struct work_struct *w)
884 {
885 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
886 	char buf[BDEVNAME_SIZE];
887 	struct closure cl;
888 	closure_init_stack(&cl);
889 
890 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
891 	BUG_ON(atomic_read(&dc->count));
892 
893 	mutex_lock(&bch_register_lock);
894 
895 	memset(&dc->sb.set_uuid, 0, 16);
896 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
897 
898 	bch_write_bdev_super(dc, &cl);
899 	closure_sync(&cl);
900 
901 	bcache_device_detach(&dc->disk);
902 	list_move(&dc->list, &uncached_devices);
903 
904 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
905 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
906 
907 	mutex_unlock(&bch_register_lock);
908 
909 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
910 
911 	/* Drop ref we took in cached_dev_detach() */
912 	closure_put(&dc->disk.cl);
913 }
914 
915 void bch_cached_dev_detach(struct cached_dev *dc)
916 {
917 	lockdep_assert_held(&bch_register_lock);
918 
919 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
920 		return;
921 
922 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
923 		return;
924 
925 	/*
926 	 * Block the device from being closed and freed until we're finished
927 	 * detaching
928 	 */
929 	closure_get(&dc->disk.cl);
930 
931 	bch_writeback_queue(dc);
932 	cached_dev_put(dc);
933 }
934 
935 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
936 {
937 	uint32_t rtime = cpu_to_le32(get_seconds());
938 	struct uuid_entry *u;
939 	char buf[BDEVNAME_SIZE];
940 
941 	bdevname(dc->bdev, buf);
942 
943 	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
944 		return -ENOENT;
945 
946 	if (dc->disk.c) {
947 		pr_err("Can't attach %s: already attached", buf);
948 		return -EINVAL;
949 	}
950 
951 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
952 		pr_err("Can't attach %s: shutting down", buf);
953 		return -EINVAL;
954 	}
955 
956 	if (dc->sb.block_size < c->sb.block_size) {
957 		/* Will die */
958 		pr_err("Couldn't attach %s: block size less than set's block size",
959 		       buf);
960 		return -EINVAL;
961 	}
962 
963 	u = uuid_find(c, dc->sb.uuid);
964 
965 	if (u &&
966 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
967 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
968 		memcpy(u->uuid, invalid_uuid, 16);
969 		u->invalidated = cpu_to_le32(get_seconds());
970 		u = NULL;
971 	}
972 
973 	if (!u) {
974 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
975 			pr_err("Couldn't find uuid for %s in set", buf);
976 			return -ENOENT;
977 		}
978 
979 		u = uuid_find_empty(c);
980 		if (!u) {
981 			pr_err("Not caching %s, no room for UUID", buf);
982 			return -EINVAL;
983 		}
984 	}
985 
986 	/* Deadlocks since we're called via sysfs...
987 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
988 	 */
989 
990 	if (bch_is_zero(u->uuid, 16)) {
991 		struct closure cl;
992 		closure_init_stack(&cl);
993 
994 		memcpy(u->uuid, dc->sb.uuid, 16);
995 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
996 		u->first_reg = u->last_reg = rtime;
997 		bch_uuid_write(c);
998 
999 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1000 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1001 
1002 		bch_write_bdev_super(dc, &cl);
1003 		closure_sync(&cl);
1004 	} else {
1005 		u->last_reg = rtime;
1006 		bch_uuid_write(c);
1007 	}
1008 
1009 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1010 	list_move(&dc->list, &c->cached_devs);
1011 	calc_cached_dev_sectors(c);
1012 
1013 	smp_wmb();
1014 	/*
1015 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1016 	 * cached_dev_get()
1017 	 */
1018 	atomic_set(&dc->count, 1);
1019 
1020 	/* Block writeback thread, but spawn it */
1021 	down_write(&dc->writeback_lock);
1022 	if (bch_cached_dev_writeback_start(dc)) {
1023 		up_write(&dc->writeback_lock);
1024 		return -ENOMEM;
1025 	}
1026 
1027 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1028 		bch_sectors_dirty_init(dc);
1029 		atomic_set(&dc->has_dirty, 1);
1030 		atomic_inc(&dc->count);
1031 		bch_writeback_queue(dc);
1032 	}
1033 
1034 	bch_cached_dev_run(dc);
1035 	bcache_device_link(&dc->disk, c, "bdev");
1036 
1037 	/* Allow the writeback thread to proceed */
1038 	up_write(&dc->writeback_lock);
1039 
1040 	pr_info("Caching %s as %s on set %pU",
1041 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1042 		dc->disk.c->sb.set_uuid);
1043 	return 0;
1044 }
1045 
1046 void bch_cached_dev_release(struct kobject *kobj)
1047 {
1048 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1049 					     disk.kobj);
1050 	kfree(dc);
1051 	module_put(THIS_MODULE);
1052 }
1053 
1054 static void cached_dev_free(struct closure *cl)
1055 {
1056 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1057 
1058 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1059 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1060 		kthread_stop(dc->writeback_thread);
1061 
1062 	mutex_lock(&bch_register_lock);
1063 
1064 	if (atomic_read(&dc->running))
1065 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1066 	bcache_device_free(&dc->disk);
1067 	list_del(&dc->list);
1068 
1069 	mutex_unlock(&bch_register_lock);
1070 
1071 	if (!IS_ERR_OR_NULL(dc->bdev))
1072 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1073 
1074 	wake_up(&unregister_wait);
1075 
1076 	kobject_put(&dc->disk.kobj);
1077 }
1078 
1079 static void cached_dev_flush(struct closure *cl)
1080 {
1081 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1082 	struct bcache_device *d = &dc->disk;
1083 
1084 	mutex_lock(&bch_register_lock);
1085 	bcache_device_unlink(d);
1086 	mutex_unlock(&bch_register_lock);
1087 
1088 	bch_cache_accounting_destroy(&dc->accounting);
1089 	kobject_del(&d->kobj);
1090 
1091 	continue_at(cl, cached_dev_free, system_wq);
1092 }
1093 
1094 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1095 {
1096 	int ret;
1097 	struct io *io;
1098 	struct request_queue *q = bdev_get_queue(dc->bdev);
1099 
1100 	__module_get(THIS_MODULE);
1101 	INIT_LIST_HEAD(&dc->list);
1102 	closure_init(&dc->disk.cl, NULL);
1103 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1104 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1105 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1106 	sema_init(&dc->sb_write_mutex, 1);
1107 	INIT_LIST_HEAD(&dc->io_lru);
1108 	spin_lock_init(&dc->io_lock);
1109 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1110 
1111 	dc->sequential_cutoff		= 4 << 20;
1112 
1113 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1114 		list_add(&io->lru, &dc->io_lru);
1115 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1116 	}
1117 
1118 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1119 
1120 	if (dc->disk.stripe_size)
1121 		dc->partial_stripes_expensive =
1122 			q->limits.raid_partial_stripes_expensive;
1123 
1124 	ret = bcache_device_init(&dc->disk, block_size,
1125 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1126 	if (ret)
1127 		return ret;
1128 
1129 	set_capacity(dc->disk.disk,
1130 		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1131 
1132 	dc->disk.disk->queue->backing_dev_info.ra_pages =
1133 		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1134 		    q->backing_dev_info.ra_pages);
1135 
1136 	bch_cached_dev_request_init(dc);
1137 	bch_cached_dev_writeback_init(dc);
1138 	return 0;
1139 }
1140 
1141 /* Cached device - bcache superblock */
1142 
1143 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1144 				 struct block_device *bdev,
1145 				 struct cached_dev *dc)
1146 {
1147 	char name[BDEVNAME_SIZE];
1148 	const char *err = "cannot allocate memory";
1149 	struct cache_set *c;
1150 
1151 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1152 	dc->bdev = bdev;
1153 	dc->bdev->bd_holder = dc;
1154 
1155 	bio_init(&dc->sb_bio);
1156 	dc->sb_bio.bi_max_vecs	= 1;
1157 	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1158 	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1159 	get_page(sb_page);
1160 
1161 	if (cached_dev_init(dc, sb->block_size << 9))
1162 		goto err;
1163 
1164 	err = "error creating kobject";
1165 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1166 			"bcache"))
1167 		goto err;
1168 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1169 		goto err;
1170 
1171 	pr_info("registered backing device %s", bdevname(bdev, name));
1172 
1173 	list_add(&dc->list, &uncached_devices);
1174 	list_for_each_entry(c, &bch_cache_sets, list)
1175 		bch_cached_dev_attach(dc, c);
1176 
1177 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1178 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1179 		bch_cached_dev_run(dc);
1180 
1181 	return;
1182 err:
1183 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1184 	bcache_device_stop(&dc->disk);
1185 }
1186 
1187 /* Flash only volumes */
1188 
1189 void bch_flash_dev_release(struct kobject *kobj)
1190 {
1191 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1192 					       kobj);
1193 	kfree(d);
1194 }
1195 
1196 static void flash_dev_free(struct closure *cl)
1197 {
1198 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1199 	mutex_lock(&bch_register_lock);
1200 	bcache_device_free(d);
1201 	mutex_unlock(&bch_register_lock);
1202 	kobject_put(&d->kobj);
1203 }
1204 
1205 static void flash_dev_flush(struct closure *cl)
1206 {
1207 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1208 
1209 	mutex_lock(&bch_register_lock);
1210 	bcache_device_unlink(d);
1211 	mutex_unlock(&bch_register_lock);
1212 	kobject_del(&d->kobj);
1213 	continue_at(cl, flash_dev_free, system_wq);
1214 }
1215 
1216 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1217 {
1218 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1219 					  GFP_KERNEL);
1220 	if (!d)
1221 		return -ENOMEM;
1222 
1223 	closure_init(&d->cl, NULL);
1224 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1225 
1226 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1227 
1228 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1229 		goto err;
1230 
1231 	bcache_device_attach(d, c, u - c->uuids);
1232 	bch_flash_dev_request_init(d);
1233 	add_disk(d->disk);
1234 
1235 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1236 		goto err;
1237 
1238 	bcache_device_link(d, c, "volume");
1239 
1240 	return 0;
1241 err:
1242 	kobject_put(&d->kobj);
1243 	return -ENOMEM;
1244 }
1245 
1246 static int flash_devs_run(struct cache_set *c)
1247 {
1248 	int ret = 0;
1249 	struct uuid_entry *u;
1250 
1251 	for (u = c->uuids;
1252 	     u < c->uuids + c->nr_uuids && !ret;
1253 	     u++)
1254 		if (UUID_FLASH_ONLY(u))
1255 			ret = flash_dev_run(c, u);
1256 
1257 	return ret;
1258 }
1259 
1260 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1261 {
1262 	struct uuid_entry *u;
1263 
1264 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1265 		return -EINTR;
1266 
1267 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1268 		return -EPERM;
1269 
1270 	u = uuid_find_empty(c);
1271 	if (!u) {
1272 		pr_err("Can't create volume, no room for UUID");
1273 		return -EINVAL;
1274 	}
1275 
1276 	get_random_bytes(u->uuid, 16);
1277 	memset(u->label, 0, 32);
1278 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1279 
1280 	SET_UUID_FLASH_ONLY(u, 1);
1281 	u->sectors = size >> 9;
1282 
1283 	bch_uuid_write(c);
1284 
1285 	return flash_dev_run(c, u);
1286 }
1287 
1288 /* Cache set */
1289 
1290 __printf(2, 3)
1291 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1292 {
1293 	va_list args;
1294 
1295 	if (c->on_error != ON_ERROR_PANIC &&
1296 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1297 		return false;
1298 
1299 	/* XXX: we can be called from atomic context
1300 	acquire_console_sem();
1301 	*/
1302 
1303 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1304 
1305 	va_start(args, fmt);
1306 	vprintk(fmt, args);
1307 	va_end(args);
1308 
1309 	printk(", disabling caching\n");
1310 
1311 	if (c->on_error == ON_ERROR_PANIC)
1312 		panic("panic forced after error\n");
1313 
1314 	bch_cache_set_unregister(c);
1315 	return true;
1316 }
1317 
1318 void bch_cache_set_release(struct kobject *kobj)
1319 {
1320 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1321 	kfree(c);
1322 	module_put(THIS_MODULE);
1323 }
1324 
1325 static void cache_set_free(struct closure *cl)
1326 {
1327 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1328 	struct cache *ca;
1329 	unsigned i;
1330 
1331 	if (!IS_ERR_OR_NULL(c->debug))
1332 		debugfs_remove(c->debug);
1333 
1334 	bch_open_buckets_free(c);
1335 	bch_btree_cache_free(c);
1336 	bch_journal_free(c);
1337 
1338 	for_each_cache(ca, c, i)
1339 		if (ca) {
1340 			ca->set = NULL;
1341 			c->cache[ca->sb.nr_this_dev] = NULL;
1342 			kobject_put(&ca->kobj);
1343 		}
1344 
1345 	bch_bset_sort_state_free(&c->sort);
1346 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1347 
1348 	if (c->moving_gc_wq)
1349 		destroy_workqueue(c->moving_gc_wq);
1350 	if (c->bio_split)
1351 		bioset_free(c->bio_split);
1352 	if (c->fill_iter)
1353 		mempool_destroy(c->fill_iter);
1354 	if (c->bio_meta)
1355 		mempool_destroy(c->bio_meta);
1356 	if (c->search)
1357 		mempool_destroy(c->search);
1358 	kfree(c->devices);
1359 
1360 	mutex_lock(&bch_register_lock);
1361 	list_del(&c->list);
1362 	mutex_unlock(&bch_register_lock);
1363 
1364 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1365 	wake_up(&unregister_wait);
1366 
1367 	closure_debug_destroy(&c->cl);
1368 	kobject_put(&c->kobj);
1369 }
1370 
1371 static void cache_set_flush(struct closure *cl)
1372 {
1373 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1374 	struct cache *ca;
1375 	struct btree *b;
1376 	unsigned i;
1377 
1378 	if (!c)
1379 		closure_return(cl);
1380 
1381 	bch_cache_accounting_destroy(&c->accounting);
1382 
1383 	kobject_put(&c->internal);
1384 	kobject_del(&c->kobj);
1385 
1386 	if (c->gc_thread)
1387 		kthread_stop(c->gc_thread);
1388 
1389 	if (!IS_ERR_OR_NULL(c->root))
1390 		list_add(&c->root->list, &c->btree_cache);
1391 
1392 	/* Should skip this if we're unregistering because of an error */
1393 	list_for_each_entry(b, &c->btree_cache, list) {
1394 		mutex_lock(&b->write_lock);
1395 		if (btree_node_dirty(b))
1396 			__bch_btree_node_write(b, NULL);
1397 		mutex_unlock(&b->write_lock);
1398 	}
1399 
1400 	for_each_cache(ca, c, i)
1401 		if (ca->alloc_thread)
1402 			kthread_stop(ca->alloc_thread);
1403 
1404 	if (c->journal.cur) {
1405 		cancel_delayed_work_sync(&c->journal.work);
1406 		/* flush last journal entry if needed */
1407 		c->journal.work.work.func(&c->journal.work.work);
1408 	}
1409 
1410 	closure_return(cl);
1411 }
1412 
1413 static void __cache_set_unregister(struct closure *cl)
1414 {
1415 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1416 	struct cached_dev *dc;
1417 	size_t i;
1418 
1419 	mutex_lock(&bch_register_lock);
1420 
1421 	for (i = 0; i < c->nr_uuids; i++)
1422 		if (c->devices[i]) {
1423 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1424 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1425 				dc = container_of(c->devices[i],
1426 						  struct cached_dev, disk);
1427 				bch_cached_dev_detach(dc);
1428 			} else {
1429 				bcache_device_stop(c->devices[i]);
1430 			}
1431 		}
1432 
1433 	mutex_unlock(&bch_register_lock);
1434 
1435 	continue_at(cl, cache_set_flush, system_wq);
1436 }
1437 
1438 void bch_cache_set_stop(struct cache_set *c)
1439 {
1440 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1441 		closure_queue(&c->caching);
1442 }
1443 
1444 void bch_cache_set_unregister(struct cache_set *c)
1445 {
1446 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1447 	bch_cache_set_stop(c);
1448 }
1449 
1450 #define alloc_bucket_pages(gfp, c)			\
1451 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1452 
1453 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1454 {
1455 	int iter_size;
1456 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1457 	if (!c)
1458 		return NULL;
1459 
1460 	__module_get(THIS_MODULE);
1461 	closure_init(&c->cl, NULL);
1462 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1463 
1464 	closure_init(&c->caching, &c->cl);
1465 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1466 
1467 	/* Maybe create continue_at_noreturn() and use it here? */
1468 	closure_set_stopped(&c->cl);
1469 	closure_put(&c->cl);
1470 
1471 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1472 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1473 
1474 	bch_cache_accounting_init(&c->accounting, &c->cl);
1475 
1476 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1477 	c->sb.block_size	= sb->block_size;
1478 	c->sb.bucket_size	= sb->bucket_size;
1479 	c->sb.nr_in_set		= sb->nr_in_set;
1480 	c->sb.last_mount	= sb->last_mount;
1481 	c->bucket_bits		= ilog2(sb->bucket_size);
1482 	c->block_bits		= ilog2(sb->block_size);
1483 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1484 
1485 	c->btree_pages		= bucket_pages(c);
1486 	if (c->btree_pages > BTREE_MAX_PAGES)
1487 		c->btree_pages = max_t(int, c->btree_pages / 4,
1488 				       BTREE_MAX_PAGES);
1489 
1490 	sema_init(&c->sb_write_mutex, 1);
1491 	mutex_init(&c->bucket_lock);
1492 	init_waitqueue_head(&c->btree_cache_wait);
1493 	init_waitqueue_head(&c->bucket_wait);
1494 	sema_init(&c->uuid_write_mutex, 1);
1495 
1496 	spin_lock_init(&c->btree_gc_time.lock);
1497 	spin_lock_init(&c->btree_split_time.lock);
1498 	spin_lock_init(&c->btree_read_time.lock);
1499 
1500 	bch_moving_init_cache_set(c);
1501 
1502 	INIT_LIST_HEAD(&c->list);
1503 	INIT_LIST_HEAD(&c->cached_devs);
1504 	INIT_LIST_HEAD(&c->btree_cache);
1505 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1506 	INIT_LIST_HEAD(&c->btree_cache_freed);
1507 	INIT_LIST_HEAD(&c->data_buckets);
1508 
1509 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1510 	if (!c->search)
1511 		goto err;
1512 
1513 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1514 		sizeof(struct btree_iter_set);
1515 
1516 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1517 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1518 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1519 				bucket_pages(c))) ||
1520 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1521 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1522 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1523 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1524 						WQ_MEM_RECLAIM, 0)) ||
1525 	    bch_journal_alloc(c) ||
1526 	    bch_btree_cache_alloc(c) ||
1527 	    bch_open_buckets_alloc(c) ||
1528 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1529 		goto err;
1530 
1531 	c->congested_read_threshold_us	= 2000;
1532 	c->congested_write_threshold_us	= 20000;
1533 	c->error_limit	= 8 << IO_ERROR_SHIFT;
1534 
1535 	return c;
1536 err:
1537 	bch_cache_set_unregister(c);
1538 	return NULL;
1539 }
1540 
1541 static void run_cache_set(struct cache_set *c)
1542 {
1543 	const char *err = "cannot allocate memory";
1544 	struct cached_dev *dc, *t;
1545 	struct cache *ca;
1546 	struct closure cl;
1547 	unsigned i;
1548 
1549 	closure_init_stack(&cl);
1550 
1551 	for_each_cache(ca, c, i)
1552 		c->nbuckets += ca->sb.nbuckets;
1553 
1554 	if (CACHE_SYNC(&c->sb)) {
1555 		LIST_HEAD(journal);
1556 		struct bkey *k;
1557 		struct jset *j;
1558 
1559 		err = "cannot allocate memory for journal";
1560 		if (bch_journal_read(c, &journal))
1561 			goto err;
1562 
1563 		pr_debug("btree_journal_read() done");
1564 
1565 		err = "no journal entries found";
1566 		if (list_empty(&journal))
1567 			goto err;
1568 
1569 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1570 
1571 		err = "IO error reading priorities";
1572 		for_each_cache(ca, c, i)
1573 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1574 
1575 		/*
1576 		 * If prio_read() fails it'll call cache_set_error and we'll
1577 		 * tear everything down right away, but if we perhaps checked
1578 		 * sooner we could avoid journal replay.
1579 		 */
1580 
1581 		k = &j->btree_root;
1582 
1583 		err = "bad btree root";
1584 		if (__bch_btree_ptr_invalid(c, k))
1585 			goto err;
1586 
1587 		err = "error reading btree root";
1588 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1589 		if (IS_ERR_OR_NULL(c->root))
1590 			goto err;
1591 
1592 		list_del_init(&c->root->list);
1593 		rw_unlock(true, c->root);
1594 
1595 		err = uuid_read(c, j, &cl);
1596 		if (err)
1597 			goto err;
1598 
1599 		err = "error in recovery";
1600 		if (bch_btree_check(c))
1601 			goto err;
1602 
1603 		bch_journal_mark(c, &journal);
1604 		bch_initial_gc_finish(c);
1605 		pr_debug("btree_check() done");
1606 
1607 		/*
1608 		 * bcache_journal_next() can't happen sooner, or
1609 		 * btree_gc_finish() will give spurious errors about last_gc >
1610 		 * gc_gen - this is a hack but oh well.
1611 		 */
1612 		bch_journal_next(&c->journal);
1613 
1614 		err = "error starting allocator thread";
1615 		for_each_cache(ca, c, i)
1616 			if (bch_cache_allocator_start(ca))
1617 				goto err;
1618 
1619 		/*
1620 		 * First place it's safe to allocate: btree_check() and
1621 		 * btree_gc_finish() have to run before we have buckets to
1622 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1623 		 * entry to be written so bcache_journal_next() has to be called
1624 		 * first.
1625 		 *
1626 		 * If the uuids were in the old format we have to rewrite them
1627 		 * before the next journal entry is written:
1628 		 */
1629 		if (j->version < BCACHE_JSET_VERSION_UUID)
1630 			__uuid_write(c);
1631 
1632 		bch_journal_replay(c, &journal);
1633 	} else {
1634 		pr_notice("invalidating existing data");
1635 
1636 		for_each_cache(ca, c, i) {
1637 			unsigned j;
1638 
1639 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1640 					      2, SB_JOURNAL_BUCKETS);
1641 
1642 			for (j = 0; j < ca->sb.keys; j++)
1643 				ca->sb.d[j] = ca->sb.first_bucket + j;
1644 		}
1645 
1646 		bch_initial_gc_finish(c);
1647 
1648 		err = "error starting allocator thread";
1649 		for_each_cache(ca, c, i)
1650 			if (bch_cache_allocator_start(ca))
1651 				goto err;
1652 
1653 		mutex_lock(&c->bucket_lock);
1654 		for_each_cache(ca, c, i)
1655 			bch_prio_write(ca);
1656 		mutex_unlock(&c->bucket_lock);
1657 
1658 		err = "cannot allocate new UUID bucket";
1659 		if (__uuid_write(c))
1660 			goto err;
1661 
1662 		err = "cannot allocate new btree root";
1663 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1664 		if (IS_ERR_OR_NULL(c->root))
1665 			goto err;
1666 
1667 		mutex_lock(&c->root->write_lock);
1668 		bkey_copy_key(&c->root->key, &MAX_KEY);
1669 		bch_btree_node_write(c->root, &cl);
1670 		mutex_unlock(&c->root->write_lock);
1671 
1672 		bch_btree_set_root(c->root);
1673 		rw_unlock(true, c->root);
1674 
1675 		/*
1676 		 * We don't want to write the first journal entry until
1677 		 * everything is set up - fortunately journal entries won't be
1678 		 * written until the SET_CACHE_SYNC() here:
1679 		 */
1680 		SET_CACHE_SYNC(&c->sb, true);
1681 
1682 		bch_journal_next(&c->journal);
1683 		bch_journal_meta(c, &cl);
1684 	}
1685 
1686 	err = "error starting gc thread";
1687 	if (bch_gc_thread_start(c))
1688 		goto err;
1689 
1690 	closure_sync(&cl);
1691 	c->sb.last_mount = get_seconds();
1692 	bcache_write_super(c);
1693 
1694 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1695 		bch_cached_dev_attach(dc, c);
1696 
1697 	flash_devs_run(c);
1698 
1699 	set_bit(CACHE_SET_RUNNING, &c->flags);
1700 	return;
1701 err:
1702 	closure_sync(&cl);
1703 	/* XXX: test this, it's broken */
1704 	bch_cache_set_error(c, "%s", err);
1705 }
1706 
1707 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1708 {
1709 	return ca->sb.block_size	== c->sb.block_size &&
1710 		ca->sb.bucket_size	== c->sb.bucket_size &&
1711 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1712 }
1713 
1714 static const char *register_cache_set(struct cache *ca)
1715 {
1716 	char buf[12];
1717 	const char *err = "cannot allocate memory";
1718 	struct cache_set *c;
1719 
1720 	list_for_each_entry(c, &bch_cache_sets, list)
1721 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1722 			if (c->cache[ca->sb.nr_this_dev])
1723 				return "duplicate cache set member";
1724 
1725 			if (!can_attach_cache(ca, c))
1726 				return "cache sb does not match set";
1727 
1728 			if (!CACHE_SYNC(&ca->sb))
1729 				SET_CACHE_SYNC(&c->sb, false);
1730 
1731 			goto found;
1732 		}
1733 
1734 	c = bch_cache_set_alloc(&ca->sb);
1735 	if (!c)
1736 		return err;
1737 
1738 	err = "error creating kobject";
1739 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1740 	    kobject_add(&c->internal, &c->kobj, "internal"))
1741 		goto err;
1742 
1743 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1744 		goto err;
1745 
1746 	bch_debug_init_cache_set(c);
1747 
1748 	list_add(&c->list, &bch_cache_sets);
1749 found:
1750 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1751 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1752 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1753 		goto err;
1754 
1755 	if (ca->sb.seq > c->sb.seq) {
1756 		c->sb.version		= ca->sb.version;
1757 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1758 		c->sb.flags             = ca->sb.flags;
1759 		c->sb.seq		= ca->sb.seq;
1760 		pr_debug("set version = %llu", c->sb.version);
1761 	}
1762 
1763 	kobject_get(&ca->kobj);
1764 	ca->set = c;
1765 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1766 	c->cache_by_alloc[c->caches_loaded++] = ca;
1767 
1768 	if (c->caches_loaded == c->sb.nr_in_set)
1769 		run_cache_set(c);
1770 
1771 	return NULL;
1772 err:
1773 	bch_cache_set_unregister(c);
1774 	return err;
1775 }
1776 
1777 /* Cache device */
1778 
1779 void bch_cache_release(struct kobject *kobj)
1780 {
1781 	struct cache *ca = container_of(kobj, struct cache, kobj);
1782 	unsigned i;
1783 
1784 	if (ca->set) {
1785 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1786 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1787 	}
1788 
1789 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1790 	kfree(ca->prio_buckets);
1791 	vfree(ca->buckets);
1792 
1793 	free_heap(&ca->heap);
1794 	free_fifo(&ca->free_inc);
1795 
1796 	for (i = 0; i < RESERVE_NR; i++)
1797 		free_fifo(&ca->free[i]);
1798 
1799 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1800 		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1801 
1802 	if (!IS_ERR_OR_NULL(ca->bdev))
1803 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1804 
1805 	kfree(ca);
1806 	module_put(THIS_MODULE);
1807 }
1808 
1809 static int cache_alloc(struct cache *ca)
1810 {
1811 	size_t free;
1812 	struct bucket *b;
1813 
1814 	__module_get(THIS_MODULE);
1815 	kobject_init(&ca->kobj, &bch_cache_ktype);
1816 
1817 	bio_init(&ca->journal.bio);
1818 	ca->journal.bio.bi_max_vecs = 8;
1819 	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1820 
1821 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1822 
1823 	if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1824 	    !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1825 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1826 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1827 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1828 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1829 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1830 					  ca->sb.nbuckets)) ||
1831 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1832 					  2, GFP_KERNEL)) ||
1833 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
1834 		return -ENOMEM;
1835 
1836 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1837 
1838 	for_each_bucket(b, ca)
1839 		atomic_set(&b->pin, 0);
1840 
1841 	return 0;
1842 }
1843 
1844 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1845 				struct block_device *bdev, struct cache *ca)
1846 {
1847 	char name[BDEVNAME_SIZE];
1848 	const char *err = NULL; /* must be set for any error case */
1849 	int ret = 0;
1850 
1851 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1852 	ca->bdev = bdev;
1853 	ca->bdev->bd_holder = ca;
1854 
1855 	bio_init(&ca->sb_bio);
1856 	ca->sb_bio.bi_max_vecs	= 1;
1857 	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1858 	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1859 	get_page(sb_page);
1860 
1861 	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1862 		ca->discard = CACHE_DISCARD(&ca->sb);
1863 
1864 	ret = cache_alloc(ca);
1865 	if (ret != 0) {
1866 		if (ret == -ENOMEM)
1867 			err = "cache_alloc(): -ENOMEM";
1868 		else
1869 			err = "cache_alloc(): unknown error";
1870 		goto err;
1871 	}
1872 
1873 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1874 		err = "error calling kobject_add";
1875 		ret = -ENOMEM;
1876 		goto out;
1877 	}
1878 
1879 	mutex_lock(&bch_register_lock);
1880 	err = register_cache_set(ca);
1881 	mutex_unlock(&bch_register_lock);
1882 
1883 	if (err) {
1884 		ret = -ENODEV;
1885 		goto out;
1886 	}
1887 
1888 	pr_info("registered cache device %s", bdevname(bdev, name));
1889 
1890 out:
1891 	kobject_put(&ca->kobj);
1892 
1893 err:
1894 	if (err)
1895 		pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1896 
1897 	return ret;
1898 }
1899 
1900 /* Global interfaces/init */
1901 
1902 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1903 			       const char *, size_t);
1904 
1905 kobj_attribute_write(register,		register_bcache);
1906 kobj_attribute_write(register_quiet,	register_bcache);
1907 
1908 static bool bch_is_open_backing(struct block_device *bdev) {
1909 	struct cache_set *c, *tc;
1910 	struct cached_dev *dc, *t;
1911 
1912 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1913 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1914 			if (dc->bdev == bdev)
1915 				return true;
1916 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1917 		if (dc->bdev == bdev)
1918 			return true;
1919 	return false;
1920 }
1921 
1922 static bool bch_is_open_cache(struct block_device *bdev) {
1923 	struct cache_set *c, *tc;
1924 	struct cache *ca;
1925 	unsigned i;
1926 
1927 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1928 		for_each_cache(ca, c, i)
1929 			if (ca->bdev == bdev)
1930 				return true;
1931 	return false;
1932 }
1933 
1934 static bool bch_is_open(struct block_device *bdev) {
1935 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1936 }
1937 
1938 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1939 			       const char *buffer, size_t size)
1940 {
1941 	ssize_t ret = size;
1942 	const char *err = "cannot allocate memory";
1943 	char *path = NULL;
1944 	struct cache_sb *sb = NULL;
1945 	struct block_device *bdev = NULL;
1946 	struct page *sb_page = NULL;
1947 
1948 	if (!try_module_get(THIS_MODULE))
1949 		return -EBUSY;
1950 
1951 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1952 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1953 		goto err;
1954 
1955 	err = "failed to open device";
1956 	bdev = blkdev_get_by_path(strim(path),
1957 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1958 				  sb);
1959 	if (IS_ERR(bdev)) {
1960 		if (bdev == ERR_PTR(-EBUSY)) {
1961 			bdev = lookup_bdev(strim(path));
1962 			mutex_lock(&bch_register_lock);
1963 			if (!IS_ERR(bdev) && bch_is_open(bdev))
1964 				err = "device already registered";
1965 			else
1966 				err = "device busy";
1967 			mutex_unlock(&bch_register_lock);
1968 			if (attr == &ksysfs_register_quiet)
1969 				goto out;
1970 		}
1971 		goto err;
1972 	}
1973 
1974 	err = "failed to set blocksize";
1975 	if (set_blocksize(bdev, 4096))
1976 		goto err_close;
1977 
1978 	err = read_super(sb, bdev, &sb_page);
1979 	if (err)
1980 		goto err_close;
1981 
1982 	if (SB_IS_BDEV(sb)) {
1983 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1984 		if (!dc)
1985 			goto err_close;
1986 
1987 		mutex_lock(&bch_register_lock);
1988 		register_bdev(sb, sb_page, bdev, dc);
1989 		mutex_unlock(&bch_register_lock);
1990 	} else {
1991 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1992 		if (!ca)
1993 			goto err_close;
1994 
1995 		if (register_cache(sb, sb_page, bdev, ca) != 0)
1996 			goto err_close;
1997 	}
1998 out:
1999 	if (sb_page)
2000 		put_page(sb_page);
2001 	kfree(sb);
2002 	kfree(path);
2003 	module_put(THIS_MODULE);
2004 	return ret;
2005 
2006 err_close:
2007 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2008 err:
2009 	pr_info("error opening %s: %s", path, err);
2010 	ret = -EINVAL;
2011 	goto out;
2012 }
2013 
2014 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2015 {
2016 	if (code == SYS_DOWN ||
2017 	    code == SYS_HALT ||
2018 	    code == SYS_POWER_OFF) {
2019 		DEFINE_WAIT(wait);
2020 		unsigned long start = jiffies;
2021 		bool stopped = false;
2022 
2023 		struct cache_set *c, *tc;
2024 		struct cached_dev *dc, *tdc;
2025 
2026 		mutex_lock(&bch_register_lock);
2027 
2028 		if (list_empty(&bch_cache_sets) &&
2029 		    list_empty(&uncached_devices))
2030 			goto out;
2031 
2032 		pr_info("Stopping all devices:");
2033 
2034 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2035 			bch_cache_set_stop(c);
2036 
2037 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2038 			bcache_device_stop(&dc->disk);
2039 
2040 		/* What's a condition variable? */
2041 		while (1) {
2042 			long timeout = start + 2 * HZ - jiffies;
2043 
2044 			stopped = list_empty(&bch_cache_sets) &&
2045 				list_empty(&uncached_devices);
2046 
2047 			if (timeout < 0 || stopped)
2048 				break;
2049 
2050 			prepare_to_wait(&unregister_wait, &wait,
2051 					TASK_UNINTERRUPTIBLE);
2052 
2053 			mutex_unlock(&bch_register_lock);
2054 			schedule_timeout(timeout);
2055 			mutex_lock(&bch_register_lock);
2056 		}
2057 
2058 		finish_wait(&unregister_wait, &wait);
2059 
2060 		if (stopped)
2061 			pr_info("All devices stopped");
2062 		else
2063 			pr_notice("Timeout waiting for devices to be closed");
2064 out:
2065 		mutex_unlock(&bch_register_lock);
2066 	}
2067 
2068 	return NOTIFY_DONE;
2069 }
2070 
2071 static struct notifier_block reboot = {
2072 	.notifier_call	= bcache_reboot,
2073 	.priority	= INT_MAX, /* before any real devices */
2074 };
2075 
2076 static void bcache_exit(void)
2077 {
2078 	bch_debug_exit();
2079 	bch_request_exit();
2080 	if (bcache_kobj)
2081 		kobject_put(bcache_kobj);
2082 	if (bcache_wq)
2083 		destroy_workqueue(bcache_wq);
2084 	if (bcache_major)
2085 		unregister_blkdev(bcache_major, "bcache");
2086 	unregister_reboot_notifier(&reboot);
2087 }
2088 
2089 static int __init bcache_init(void)
2090 {
2091 	static const struct attribute *files[] = {
2092 		&ksysfs_register.attr,
2093 		&ksysfs_register_quiet.attr,
2094 		NULL
2095 	};
2096 
2097 	mutex_init(&bch_register_lock);
2098 	init_waitqueue_head(&unregister_wait);
2099 	register_reboot_notifier(&reboot);
2100 	closure_debug_init();
2101 
2102 	bcache_major = register_blkdev(0, "bcache");
2103 	if (bcache_major < 0) {
2104 		unregister_reboot_notifier(&reboot);
2105 		return bcache_major;
2106 	}
2107 
2108 	if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2109 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2110 	    sysfs_create_files(bcache_kobj, files) ||
2111 	    bch_request_init() ||
2112 	    bch_debug_init(bcache_kobj))
2113 		goto err;
2114 
2115 	return 0;
2116 err:
2117 	bcache_exit();
2118 	return -ENOMEM;
2119 }
2120 
2121 module_exit(bcache_exit);
2122 module_init(bcache_init);
2123