1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_journal_wq; 53 54 55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 56 /* limitation of partitions number on single bcache device */ 57 #define BCACHE_MINORS 128 58 /* limitation of bcache devices number on single system */ 59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 60 61 /* Superblock */ 62 63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 64 { 65 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 66 67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES && 68 bch_has_feature_large_bucket(sb)) 69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16; 70 71 return bucket_size; 72 } 73 74 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 75 struct cache_sb_disk *s) 76 { 77 const char *err; 78 unsigned int i; 79 80 sb->first_bucket= le16_to_cpu(s->first_bucket); 81 sb->nbuckets = le64_to_cpu(s->nbuckets); 82 sb->bucket_size = get_bucket_size(sb, s); 83 84 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 86 87 err = "Too many journal buckets"; 88 if (sb->keys > SB_JOURNAL_BUCKETS) 89 goto err; 90 91 err = "Too many buckets"; 92 if (sb->nbuckets > LONG_MAX) 93 goto err; 94 95 err = "Not enough buckets"; 96 if (sb->nbuckets < 1 << 7) 97 goto err; 98 99 err = "Bad block size (not power of 2)"; 100 if (!is_power_of_2(sb->block_size)) 101 goto err; 102 103 err = "Bad block size (larger than page size)"; 104 if (sb->block_size > PAGE_SECTORS) 105 goto err; 106 107 err = "Bad bucket size (not power of 2)"; 108 if (!is_power_of_2(sb->bucket_size)) 109 goto err; 110 111 err = "Bad bucket size (smaller than page size)"; 112 if (sb->bucket_size < PAGE_SECTORS) 113 goto err; 114 115 err = "Invalid superblock: device too small"; 116 if (get_capacity(bdev->bd_disk) < 117 sb->bucket_size * sb->nbuckets) 118 goto err; 119 120 err = "Bad UUID"; 121 if (bch_is_zero(sb->set_uuid, 16)) 122 goto err; 123 124 err = "Bad cache device number in set"; 125 if (!sb->nr_in_set || 126 sb->nr_in_set <= sb->nr_this_dev || 127 sb->nr_in_set > MAX_CACHES_PER_SET) 128 goto err; 129 130 err = "Journal buckets not sequential"; 131 for (i = 0; i < sb->keys; i++) 132 if (sb->d[i] != sb->first_bucket + i) 133 goto err; 134 135 err = "Too many journal buckets"; 136 if (sb->first_bucket + sb->keys > sb->nbuckets) 137 goto err; 138 139 err = "Invalid superblock: first bucket comes before end of super"; 140 if (sb->first_bucket * sb->bucket_size < 16) 141 goto err; 142 143 err = NULL; 144 err: 145 return err; 146 } 147 148 149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 150 struct cache_sb_disk **res) 151 { 152 const char *err; 153 struct cache_sb_disk *s; 154 struct page *page; 155 unsigned int i; 156 157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 159 if (IS_ERR(page)) 160 return "IO error"; 161 s = page_address(page) + offset_in_page(SB_OFFSET); 162 163 sb->offset = le64_to_cpu(s->offset); 164 sb->version = le64_to_cpu(s->version); 165 166 memcpy(sb->magic, s->magic, 16); 167 memcpy(sb->uuid, s->uuid, 16); 168 memcpy(sb->set_uuid, s->set_uuid, 16); 169 memcpy(sb->label, s->label, SB_LABEL_SIZE); 170 171 sb->flags = le64_to_cpu(s->flags); 172 sb->seq = le64_to_cpu(s->seq); 173 sb->last_mount = le32_to_cpu(s->last_mount); 174 sb->keys = le16_to_cpu(s->keys); 175 176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 177 sb->d[i] = le64_to_cpu(s->d[i]); 178 179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 180 sb->version, sb->flags, sb->seq, sb->keys); 181 182 err = "Not a bcache superblock (bad offset)"; 183 if (sb->offset != SB_SECTOR) 184 goto err; 185 186 err = "Not a bcache superblock (bad magic)"; 187 if (memcmp(sb->magic, bcache_magic, 16)) 188 goto err; 189 190 err = "Bad checksum"; 191 if (s->csum != csum_set(s)) 192 goto err; 193 194 err = "Bad UUID"; 195 if (bch_is_zero(sb->uuid, 16)) 196 goto err; 197 198 sb->block_size = le16_to_cpu(s->block_size); 199 200 err = "Superblock block size smaller than device block size"; 201 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 202 goto err; 203 204 switch (sb->version) { 205 case BCACHE_SB_VERSION_BDEV: 206 sb->data_offset = BDEV_DATA_START_DEFAULT; 207 break; 208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 210 sb->data_offset = le64_to_cpu(s->data_offset); 211 212 err = "Bad data offset"; 213 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 214 goto err; 215 216 break; 217 case BCACHE_SB_VERSION_CDEV: 218 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 219 err = read_super_common(sb, bdev, s); 220 if (err) 221 goto err; 222 break; 223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 224 /* 225 * Feature bits are needed in read_super_common(), 226 * convert them firstly. 227 */ 228 sb->feature_compat = le64_to_cpu(s->feature_compat); 229 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 231 err = read_super_common(sb, bdev, s); 232 if (err) 233 goto err; 234 break; 235 default: 236 err = "Unsupported superblock version"; 237 goto err; 238 } 239 240 sb->last_mount = (u32)ktime_get_real_seconds(); 241 *res = s; 242 return NULL; 243 err: 244 put_page(page); 245 return err; 246 } 247 248 static void write_bdev_super_endio(struct bio *bio) 249 { 250 struct cached_dev *dc = bio->bi_private; 251 252 if (bio->bi_status) 253 bch_count_backing_io_errors(dc, bio); 254 255 closure_put(&dc->sb_write); 256 } 257 258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 259 struct bio *bio) 260 { 261 unsigned int i; 262 263 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 264 bio->bi_iter.bi_sector = SB_SECTOR; 265 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 266 offset_in_page(out)); 267 268 out->offset = cpu_to_le64(sb->offset); 269 270 memcpy(out->uuid, sb->uuid, 16); 271 memcpy(out->set_uuid, sb->set_uuid, 16); 272 memcpy(out->label, sb->label, SB_LABEL_SIZE); 273 274 out->flags = cpu_to_le64(sb->flags); 275 out->seq = cpu_to_le64(sb->seq); 276 277 out->last_mount = cpu_to_le32(sb->last_mount); 278 out->first_bucket = cpu_to_le16(sb->first_bucket); 279 out->keys = cpu_to_le16(sb->keys); 280 281 for (i = 0; i < sb->keys; i++) 282 out->d[i] = cpu_to_le64(sb->d[i]); 283 284 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 285 out->feature_compat = cpu_to_le64(sb->feature_compat); 286 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 287 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 288 } 289 290 out->version = cpu_to_le64(sb->version); 291 out->csum = csum_set(out); 292 293 pr_debug("ver %llu, flags %llu, seq %llu\n", 294 sb->version, sb->flags, sb->seq); 295 296 submit_bio(bio); 297 } 298 299 static void bch_write_bdev_super_unlock(struct closure *cl) 300 { 301 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 302 303 up(&dc->sb_write_mutex); 304 } 305 306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 307 { 308 struct closure *cl = &dc->sb_write; 309 struct bio *bio = &dc->sb_bio; 310 311 down(&dc->sb_write_mutex); 312 closure_init(cl, parent); 313 314 bio_init(bio, dc->sb_bv, 1); 315 bio_set_dev(bio, dc->bdev); 316 bio->bi_end_io = write_bdev_super_endio; 317 bio->bi_private = dc; 318 319 closure_get(cl); 320 /* I/O request sent to backing device */ 321 __write_super(&dc->sb, dc->sb_disk, bio); 322 323 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 324 } 325 326 static void write_super_endio(struct bio *bio) 327 { 328 struct cache *ca = bio->bi_private; 329 330 /* is_read = 0 */ 331 bch_count_io_errors(ca, bio->bi_status, 0, 332 "writing superblock"); 333 closure_put(&ca->set->sb_write); 334 } 335 336 static void bcache_write_super_unlock(struct closure *cl) 337 { 338 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 339 340 up(&c->sb_write_mutex); 341 } 342 343 void bcache_write_super(struct cache_set *c) 344 { 345 struct closure *cl = &c->sb_write; 346 struct cache *ca = c->cache; 347 struct bio *bio = &ca->sb_bio; 348 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 349 350 down(&c->sb_write_mutex); 351 closure_init(cl, &c->cl); 352 353 ca->sb.seq++; 354 355 if (ca->sb.version < version) 356 ca->sb.version = version; 357 358 bio_init(bio, ca->sb_bv, 1); 359 bio_set_dev(bio, ca->bdev); 360 bio->bi_end_io = write_super_endio; 361 bio->bi_private = ca; 362 363 closure_get(cl); 364 __write_super(&ca->sb, ca->sb_disk, bio); 365 366 closure_return_with_destructor(cl, bcache_write_super_unlock); 367 } 368 369 /* UUID io */ 370 371 static void uuid_endio(struct bio *bio) 372 { 373 struct closure *cl = bio->bi_private; 374 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 375 376 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 377 bch_bbio_free(bio, c); 378 closure_put(cl); 379 } 380 381 static void uuid_io_unlock(struct closure *cl) 382 { 383 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 384 385 up(&c->uuid_write_mutex); 386 } 387 388 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 389 struct bkey *k, struct closure *parent) 390 { 391 struct closure *cl = &c->uuid_write; 392 struct uuid_entry *u; 393 unsigned int i; 394 char buf[80]; 395 396 BUG_ON(!parent); 397 down(&c->uuid_write_mutex); 398 closure_init(cl, parent); 399 400 for (i = 0; i < KEY_PTRS(k); i++) { 401 struct bio *bio = bch_bbio_alloc(c); 402 403 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 404 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 405 406 bio->bi_end_io = uuid_endio; 407 bio->bi_private = cl; 408 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 409 bch_bio_map(bio, c->uuids); 410 411 bch_submit_bbio(bio, c, k, i); 412 413 if (op != REQ_OP_WRITE) 414 break; 415 } 416 417 bch_extent_to_text(buf, sizeof(buf), k); 418 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 419 420 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 421 if (!bch_is_zero(u->uuid, 16)) 422 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 423 u - c->uuids, u->uuid, u->label, 424 u->first_reg, u->last_reg, u->invalidated); 425 426 closure_return_with_destructor(cl, uuid_io_unlock); 427 } 428 429 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 430 { 431 struct bkey *k = &j->uuid_bucket; 432 433 if (__bch_btree_ptr_invalid(c, k)) 434 return "bad uuid pointer"; 435 436 bkey_copy(&c->uuid_bucket, k); 437 uuid_io(c, REQ_OP_READ, 0, k, cl); 438 439 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 440 struct uuid_entry_v0 *u0 = (void *) c->uuids; 441 struct uuid_entry *u1 = (void *) c->uuids; 442 int i; 443 444 closure_sync(cl); 445 446 /* 447 * Since the new uuid entry is bigger than the old, we have to 448 * convert starting at the highest memory address and work down 449 * in order to do it in place 450 */ 451 452 for (i = c->nr_uuids - 1; 453 i >= 0; 454 --i) { 455 memcpy(u1[i].uuid, u0[i].uuid, 16); 456 memcpy(u1[i].label, u0[i].label, 32); 457 458 u1[i].first_reg = u0[i].first_reg; 459 u1[i].last_reg = u0[i].last_reg; 460 u1[i].invalidated = u0[i].invalidated; 461 462 u1[i].flags = 0; 463 u1[i].sectors = 0; 464 } 465 } 466 467 return NULL; 468 } 469 470 static int __uuid_write(struct cache_set *c) 471 { 472 BKEY_PADDED(key) k; 473 struct closure cl; 474 struct cache *ca = c->cache; 475 unsigned int size; 476 477 closure_init_stack(&cl); 478 lockdep_assert_held(&bch_register_lock); 479 480 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 481 return 1; 482 483 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 484 SET_KEY_SIZE(&k.key, size); 485 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 486 closure_sync(&cl); 487 488 /* Only one bucket used for uuid write */ 489 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 490 491 bkey_copy(&c->uuid_bucket, &k.key); 492 bkey_put(c, &k.key); 493 return 0; 494 } 495 496 int bch_uuid_write(struct cache_set *c) 497 { 498 int ret = __uuid_write(c); 499 500 if (!ret) 501 bch_journal_meta(c, NULL); 502 503 return ret; 504 } 505 506 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 507 { 508 struct uuid_entry *u; 509 510 for (u = c->uuids; 511 u < c->uuids + c->nr_uuids; u++) 512 if (!memcmp(u->uuid, uuid, 16)) 513 return u; 514 515 return NULL; 516 } 517 518 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 519 { 520 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 521 522 return uuid_find(c, zero_uuid); 523 } 524 525 /* 526 * Bucket priorities/gens: 527 * 528 * For each bucket, we store on disk its 529 * 8 bit gen 530 * 16 bit priority 531 * 532 * See alloc.c for an explanation of the gen. The priority is used to implement 533 * lru (and in the future other) cache replacement policies; for most purposes 534 * it's just an opaque integer. 535 * 536 * The gens and the priorities don't have a whole lot to do with each other, and 537 * it's actually the gens that must be written out at specific times - it's no 538 * big deal if the priorities don't get written, if we lose them we just reuse 539 * buckets in suboptimal order. 540 * 541 * On disk they're stored in a packed array, and in as many buckets are required 542 * to fit them all. The buckets we use to store them form a list; the journal 543 * header points to the first bucket, the first bucket points to the second 544 * bucket, et cetera. 545 * 546 * This code is used by the allocation code; periodically (whenever it runs out 547 * of buckets to allocate from) the allocation code will invalidate some 548 * buckets, but it can't use those buckets until their new gens are safely on 549 * disk. 550 */ 551 552 static void prio_endio(struct bio *bio) 553 { 554 struct cache *ca = bio->bi_private; 555 556 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 557 bch_bbio_free(bio, ca->set); 558 closure_put(&ca->prio); 559 } 560 561 static void prio_io(struct cache *ca, uint64_t bucket, int op, 562 unsigned long op_flags) 563 { 564 struct closure *cl = &ca->prio; 565 struct bio *bio = bch_bbio_alloc(ca->set); 566 567 closure_init_stack(cl); 568 569 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 570 bio_set_dev(bio, ca->bdev); 571 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 572 573 bio->bi_end_io = prio_endio; 574 bio->bi_private = ca; 575 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 576 bch_bio_map(bio, ca->disk_buckets); 577 578 closure_bio_submit(ca->set, bio, &ca->prio); 579 closure_sync(cl); 580 } 581 582 int bch_prio_write(struct cache *ca, bool wait) 583 { 584 int i; 585 struct bucket *b; 586 struct closure cl; 587 588 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 589 fifo_used(&ca->free[RESERVE_PRIO]), 590 fifo_used(&ca->free[RESERVE_NONE]), 591 fifo_used(&ca->free_inc)); 592 593 /* 594 * Pre-check if there are enough free buckets. In the non-blocking 595 * scenario it's better to fail early rather than starting to allocate 596 * buckets and do a cleanup later in case of failure. 597 */ 598 if (!wait) { 599 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 600 fifo_used(&ca->free[RESERVE_NONE]); 601 if (prio_buckets(ca) > avail) 602 return -ENOMEM; 603 } 604 605 closure_init_stack(&cl); 606 607 lockdep_assert_held(&ca->set->bucket_lock); 608 609 ca->disk_buckets->seq++; 610 611 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 612 &ca->meta_sectors_written); 613 614 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 615 long bucket; 616 struct prio_set *p = ca->disk_buckets; 617 struct bucket_disk *d = p->data; 618 struct bucket_disk *end = d + prios_per_bucket(ca); 619 620 for (b = ca->buckets + i * prios_per_bucket(ca); 621 b < ca->buckets + ca->sb.nbuckets && d < end; 622 b++, d++) { 623 d->prio = cpu_to_le16(b->prio); 624 d->gen = b->gen; 625 } 626 627 p->next_bucket = ca->prio_buckets[i + 1]; 628 p->magic = pset_magic(&ca->sb); 629 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 630 631 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 632 BUG_ON(bucket == -1); 633 634 mutex_unlock(&ca->set->bucket_lock); 635 prio_io(ca, bucket, REQ_OP_WRITE, 0); 636 mutex_lock(&ca->set->bucket_lock); 637 638 ca->prio_buckets[i] = bucket; 639 atomic_dec_bug(&ca->buckets[bucket].pin); 640 } 641 642 mutex_unlock(&ca->set->bucket_lock); 643 644 bch_journal_meta(ca->set, &cl); 645 closure_sync(&cl); 646 647 mutex_lock(&ca->set->bucket_lock); 648 649 /* 650 * Don't want the old priorities to get garbage collected until after we 651 * finish writing the new ones, and they're journalled 652 */ 653 for (i = 0; i < prio_buckets(ca); i++) { 654 if (ca->prio_last_buckets[i]) 655 __bch_bucket_free(ca, 656 &ca->buckets[ca->prio_last_buckets[i]]); 657 658 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 659 } 660 return 0; 661 } 662 663 static int prio_read(struct cache *ca, uint64_t bucket) 664 { 665 struct prio_set *p = ca->disk_buckets; 666 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 667 struct bucket *b; 668 unsigned int bucket_nr = 0; 669 int ret = -EIO; 670 671 for (b = ca->buckets; 672 b < ca->buckets + ca->sb.nbuckets; 673 b++, d++) { 674 if (d == end) { 675 ca->prio_buckets[bucket_nr] = bucket; 676 ca->prio_last_buckets[bucket_nr] = bucket; 677 bucket_nr++; 678 679 prio_io(ca, bucket, REQ_OP_READ, 0); 680 681 if (p->csum != 682 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 683 pr_warn("bad csum reading priorities\n"); 684 goto out; 685 } 686 687 if (p->magic != pset_magic(&ca->sb)) { 688 pr_warn("bad magic reading priorities\n"); 689 goto out; 690 } 691 692 bucket = p->next_bucket; 693 d = p->data; 694 } 695 696 b->prio = le16_to_cpu(d->prio); 697 b->gen = b->last_gc = d->gen; 698 } 699 700 ret = 0; 701 out: 702 return ret; 703 } 704 705 /* Bcache device */ 706 707 static int open_dev(struct block_device *b, fmode_t mode) 708 { 709 struct bcache_device *d = b->bd_disk->private_data; 710 711 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 712 return -ENXIO; 713 714 closure_get(&d->cl); 715 return 0; 716 } 717 718 static void release_dev(struct gendisk *b, fmode_t mode) 719 { 720 struct bcache_device *d = b->private_data; 721 722 closure_put(&d->cl); 723 } 724 725 static int ioctl_dev(struct block_device *b, fmode_t mode, 726 unsigned int cmd, unsigned long arg) 727 { 728 struct bcache_device *d = b->bd_disk->private_data; 729 730 return d->ioctl(d, mode, cmd, arg); 731 } 732 733 static const struct block_device_operations bcache_cached_ops = { 734 .submit_bio = cached_dev_submit_bio, 735 .open = open_dev, 736 .release = release_dev, 737 .ioctl = ioctl_dev, 738 .owner = THIS_MODULE, 739 }; 740 741 static const struct block_device_operations bcache_flash_ops = { 742 .submit_bio = flash_dev_submit_bio, 743 .open = open_dev, 744 .release = release_dev, 745 .ioctl = ioctl_dev, 746 .owner = THIS_MODULE, 747 }; 748 749 void bcache_device_stop(struct bcache_device *d) 750 { 751 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 752 /* 753 * closure_fn set to 754 * - cached device: cached_dev_flush() 755 * - flash dev: flash_dev_flush() 756 */ 757 closure_queue(&d->cl); 758 } 759 760 static void bcache_device_unlink(struct bcache_device *d) 761 { 762 lockdep_assert_held(&bch_register_lock); 763 764 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 765 struct cache *ca = d->c->cache; 766 767 sysfs_remove_link(&d->c->kobj, d->name); 768 sysfs_remove_link(&d->kobj, "cache"); 769 770 bd_unlink_disk_holder(ca->bdev, d->disk); 771 } 772 } 773 774 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 775 const char *name) 776 { 777 struct cache *ca = c->cache; 778 int ret; 779 780 bd_link_disk_holder(ca->bdev, d->disk); 781 782 snprintf(d->name, BCACHEDEVNAME_SIZE, 783 "%s%u", name, d->id); 784 785 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 786 if (ret < 0) 787 pr_err("Couldn't create device -> cache set symlink\n"); 788 789 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 790 if (ret < 0) 791 pr_err("Couldn't create cache set -> device symlink\n"); 792 793 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 794 } 795 796 static void bcache_device_detach(struct bcache_device *d) 797 { 798 lockdep_assert_held(&bch_register_lock); 799 800 atomic_dec(&d->c->attached_dev_nr); 801 802 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 803 struct uuid_entry *u = d->c->uuids + d->id; 804 805 SET_UUID_FLASH_ONLY(u, 0); 806 memcpy(u->uuid, invalid_uuid, 16); 807 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 808 bch_uuid_write(d->c); 809 } 810 811 bcache_device_unlink(d); 812 813 d->c->devices[d->id] = NULL; 814 closure_put(&d->c->caching); 815 d->c = NULL; 816 } 817 818 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 819 unsigned int id) 820 { 821 d->id = id; 822 d->c = c; 823 c->devices[id] = d; 824 825 if (id >= c->devices_max_used) 826 c->devices_max_used = id + 1; 827 828 closure_get(&c->caching); 829 } 830 831 static inline int first_minor_to_idx(int first_minor) 832 { 833 return (first_minor/BCACHE_MINORS); 834 } 835 836 static inline int idx_to_first_minor(int idx) 837 { 838 return (idx * BCACHE_MINORS); 839 } 840 841 static void bcache_device_free(struct bcache_device *d) 842 { 843 struct gendisk *disk = d->disk; 844 845 lockdep_assert_held(&bch_register_lock); 846 847 if (disk) 848 pr_info("%s stopped\n", disk->disk_name); 849 else 850 pr_err("bcache device (NULL gendisk) stopped\n"); 851 852 if (d->c) 853 bcache_device_detach(d); 854 855 if (disk) { 856 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 857 858 if (disk_added) 859 del_gendisk(disk); 860 861 if (disk->queue) 862 blk_cleanup_queue(disk->queue); 863 864 ida_simple_remove(&bcache_device_idx, 865 first_minor_to_idx(disk->first_minor)); 866 if (disk_added) 867 put_disk(disk); 868 } 869 870 bioset_exit(&d->bio_split); 871 kvfree(d->full_dirty_stripes); 872 kvfree(d->stripe_sectors_dirty); 873 874 closure_debug_destroy(&d->cl); 875 } 876 877 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 878 sector_t sectors, struct block_device *cached_bdev, 879 const struct block_device_operations *ops) 880 { 881 struct request_queue *q; 882 const size_t max_stripes = min_t(size_t, INT_MAX, 883 SIZE_MAX / sizeof(atomic_t)); 884 uint64_t n; 885 int idx; 886 887 if (!d->stripe_size) 888 d->stripe_size = 1 << 31; 889 890 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 891 if (!n || n > max_stripes) { 892 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 893 n); 894 return -ENOMEM; 895 } 896 d->nr_stripes = n; 897 898 n = d->nr_stripes * sizeof(atomic_t); 899 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 900 if (!d->stripe_sectors_dirty) 901 return -ENOMEM; 902 903 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 904 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 905 if (!d->full_dirty_stripes) 906 return -ENOMEM; 907 908 idx = ida_simple_get(&bcache_device_idx, 0, 909 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 910 if (idx < 0) 911 return idx; 912 913 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 914 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 915 goto err; 916 917 d->disk = alloc_disk(BCACHE_MINORS); 918 if (!d->disk) 919 goto err; 920 921 set_capacity(d->disk, sectors); 922 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 923 924 d->disk->major = bcache_major; 925 d->disk->first_minor = idx_to_first_minor(idx); 926 d->disk->fops = ops; 927 d->disk->private_data = d; 928 929 q = blk_alloc_queue(NUMA_NO_NODE); 930 if (!q) 931 return -ENOMEM; 932 933 d->disk->queue = q; 934 q->limits.max_hw_sectors = UINT_MAX; 935 q->limits.max_sectors = UINT_MAX; 936 q->limits.max_segment_size = UINT_MAX; 937 q->limits.max_segments = BIO_MAX_PAGES; 938 blk_queue_max_discard_sectors(q, UINT_MAX); 939 q->limits.discard_granularity = 512; 940 q->limits.io_min = block_size; 941 q->limits.logical_block_size = block_size; 942 q->limits.physical_block_size = block_size; 943 944 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 945 /* 946 * This should only happen with BCACHE_SB_VERSION_BDEV. 947 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 948 */ 949 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 950 d->disk->disk_name, q->limits.logical_block_size, 951 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 952 953 /* This also adjusts physical block size/min io size if needed */ 954 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 955 } 956 957 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 958 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 959 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 960 961 blk_queue_write_cache(q, true, true); 962 963 return 0; 964 965 err: 966 ida_simple_remove(&bcache_device_idx, idx); 967 return -ENOMEM; 968 969 } 970 971 /* Cached device */ 972 973 static void calc_cached_dev_sectors(struct cache_set *c) 974 { 975 uint64_t sectors = 0; 976 struct cached_dev *dc; 977 978 list_for_each_entry(dc, &c->cached_devs, list) 979 sectors += bdev_sectors(dc->bdev); 980 981 c->cached_dev_sectors = sectors; 982 } 983 984 #define BACKING_DEV_OFFLINE_TIMEOUT 5 985 static int cached_dev_status_update(void *arg) 986 { 987 struct cached_dev *dc = arg; 988 struct request_queue *q; 989 990 /* 991 * If this delayed worker is stopping outside, directly quit here. 992 * dc->io_disable might be set via sysfs interface, so check it 993 * here too. 994 */ 995 while (!kthread_should_stop() && !dc->io_disable) { 996 q = bdev_get_queue(dc->bdev); 997 if (blk_queue_dying(q)) 998 dc->offline_seconds++; 999 else 1000 dc->offline_seconds = 0; 1001 1002 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1003 pr_err("%s: device offline for %d seconds\n", 1004 dc->backing_dev_name, 1005 BACKING_DEV_OFFLINE_TIMEOUT); 1006 pr_err("%s: disable I/O request due to backing device offline\n", 1007 dc->disk.name); 1008 dc->io_disable = true; 1009 /* let others know earlier that io_disable is true */ 1010 smp_mb(); 1011 bcache_device_stop(&dc->disk); 1012 break; 1013 } 1014 schedule_timeout_interruptible(HZ); 1015 } 1016 1017 wait_for_kthread_stop(); 1018 return 0; 1019 } 1020 1021 1022 int bch_cached_dev_run(struct cached_dev *dc) 1023 { 1024 struct bcache_device *d = &dc->disk; 1025 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1026 char *env[] = { 1027 "DRIVER=bcache", 1028 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1029 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1030 NULL, 1031 }; 1032 1033 if (dc->io_disable) { 1034 pr_err("I/O disabled on cached dev %s\n", 1035 dc->backing_dev_name); 1036 kfree(env[1]); 1037 kfree(env[2]); 1038 kfree(buf); 1039 return -EIO; 1040 } 1041 1042 if (atomic_xchg(&dc->running, 1)) { 1043 kfree(env[1]); 1044 kfree(env[2]); 1045 kfree(buf); 1046 pr_info("cached dev %s is running already\n", 1047 dc->backing_dev_name); 1048 return -EBUSY; 1049 } 1050 1051 if (!d->c && 1052 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1053 struct closure cl; 1054 1055 closure_init_stack(&cl); 1056 1057 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1058 bch_write_bdev_super(dc, &cl); 1059 closure_sync(&cl); 1060 } 1061 1062 add_disk(d->disk); 1063 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1064 /* 1065 * won't show up in the uevent file, use udevadm monitor -e instead 1066 * only class / kset properties are persistent 1067 */ 1068 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1069 kfree(env[1]); 1070 kfree(env[2]); 1071 kfree(buf); 1072 1073 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1074 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1075 &d->kobj, "bcache")) { 1076 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1077 return -ENOMEM; 1078 } 1079 1080 dc->status_update_thread = kthread_run(cached_dev_status_update, 1081 dc, "bcache_status_update"); 1082 if (IS_ERR(dc->status_update_thread)) { 1083 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1091 * work dc->writeback_rate_update is running. Wait until the routine 1092 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1093 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1094 * seconds, give up waiting here and continue to cancel it too. 1095 */ 1096 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1097 { 1098 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1099 1100 do { 1101 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1102 &dc->disk.flags)) 1103 break; 1104 time_out--; 1105 schedule_timeout_interruptible(1); 1106 } while (time_out > 0); 1107 1108 if (time_out == 0) 1109 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1110 1111 cancel_delayed_work_sync(&dc->writeback_rate_update); 1112 } 1113 1114 static void cached_dev_detach_finish(struct work_struct *w) 1115 { 1116 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1117 struct closure cl; 1118 1119 closure_init_stack(&cl); 1120 1121 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1122 BUG_ON(refcount_read(&dc->count)); 1123 1124 1125 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1126 cancel_writeback_rate_update_dwork(dc); 1127 1128 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1129 kthread_stop(dc->writeback_thread); 1130 dc->writeback_thread = NULL; 1131 } 1132 1133 memset(&dc->sb.set_uuid, 0, 16); 1134 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1135 1136 bch_write_bdev_super(dc, &cl); 1137 closure_sync(&cl); 1138 1139 mutex_lock(&bch_register_lock); 1140 1141 calc_cached_dev_sectors(dc->disk.c); 1142 bcache_device_detach(&dc->disk); 1143 list_move(&dc->list, &uncached_devices); 1144 1145 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1146 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1147 1148 mutex_unlock(&bch_register_lock); 1149 1150 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1151 1152 /* Drop ref we took in cached_dev_detach() */ 1153 closure_put(&dc->disk.cl); 1154 } 1155 1156 void bch_cached_dev_detach(struct cached_dev *dc) 1157 { 1158 lockdep_assert_held(&bch_register_lock); 1159 1160 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1161 return; 1162 1163 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1164 return; 1165 1166 /* 1167 * Block the device from being closed and freed until we're finished 1168 * detaching 1169 */ 1170 closure_get(&dc->disk.cl); 1171 1172 bch_writeback_queue(dc); 1173 1174 cached_dev_put(dc); 1175 } 1176 1177 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1178 uint8_t *set_uuid) 1179 { 1180 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1181 struct uuid_entry *u; 1182 struct cached_dev *exist_dc, *t; 1183 int ret = 0; 1184 1185 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1186 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1187 return -ENOENT; 1188 1189 if (dc->disk.c) { 1190 pr_err("Can't attach %s: already attached\n", 1191 dc->backing_dev_name); 1192 return -EINVAL; 1193 } 1194 1195 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1196 pr_err("Can't attach %s: shutting down\n", 1197 dc->backing_dev_name); 1198 return -EINVAL; 1199 } 1200 1201 if (dc->sb.block_size < c->cache->sb.block_size) { 1202 /* Will die */ 1203 pr_err("Couldn't attach %s: block size less than set's block size\n", 1204 dc->backing_dev_name); 1205 return -EINVAL; 1206 } 1207 1208 /* Check whether already attached */ 1209 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1210 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1211 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1212 dc->backing_dev_name); 1213 1214 return -EINVAL; 1215 } 1216 } 1217 1218 u = uuid_find(c, dc->sb.uuid); 1219 1220 if (u && 1221 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1222 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1223 memcpy(u->uuid, invalid_uuid, 16); 1224 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1225 u = NULL; 1226 } 1227 1228 if (!u) { 1229 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1230 pr_err("Couldn't find uuid for %s in set\n", 1231 dc->backing_dev_name); 1232 return -ENOENT; 1233 } 1234 1235 u = uuid_find_empty(c); 1236 if (!u) { 1237 pr_err("Not caching %s, no room for UUID\n", 1238 dc->backing_dev_name); 1239 return -EINVAL; 1240 } 1241 } 1242 1243 /* 1244 * Deadlocks since we're called via sysfs... 1245 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1246 */ 1247 1248 if (bch_is_zero(u->uuid, 16)) { 1249 struct closure cl; 1250 1251 closure_init_stack(&cl); 1252 1253 memcpy(u->uuid, dc->sb.uuid, 16); 1254 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1255 u->first_reg = u->last_reg = rtime; 1256 bch_uuid_write(c); 1257 1258 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1259 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1260 1261 bch_write_bdev_super(dc, &cl); 1262 closure_sync(&cl); 1263 } else { 1264 u->last_reg = rtime; 1265 bch_uuid_write(c); 1266 } 1267 1268 bcache_device_attach(&dc->disk, c, u - c->uuids); 1269 list_move(&dc->list, &c->cached_devs); 1270 calc_cached_dev_sectors(c); 1271 1272 /* 1273 * dc->c must be set before dc->count != 0 - paired with the mb in 1274 * cached_dev_get() 1275 */ 1276 smp_wmb(); 1277 refcount_set(&dc->count, 1); 1278 1279 /* Block writeback thread, but spawn it */ 1280 down_write(&dc->writeback_lock); 1281 if (bch_cached_dev_writeback_start(dc)) { 1282 up_write(&dc->writeback_lock); 1283 pr_err("Couldn't start writeback facilities for %s\n", 1284 dc->disk.disk->disk_name); 1285 return -ENOMEM; 1286 } 1287 1288 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1289 atomic_set(&dc->has_dirty, 1); 1290 bch_writeback_queue(dc); 1291 } 1292 1293 bch_sectors_dirty_init(&dc->disk); 1294 1295 ret = bch_cached_dev_run(dc); 1296 if (ret && (ret != -EBUSY)) { 1297 up_write(&dc->writeback_lock); 1298 /* 1299 * bch_register_lock is held, bcache_device_stop() is not 1300 * able to be directly called. The kthread and kworker 1301 * created previously in bch_cached_dev_writeback_start() 1302 * have to be stopped manually here. 1303 */ 1304 kthread_stop(dc->writeback_thread); 1305 cancel_writeback_rate_update_dwork(dc); 1306 pr_err("Couldn't run cached device %s\n", 1307 dc->backing_dev_name); 1308 return ret; 1309 } 1310 1311 bcache_device_link(&dc->disk, c, "bdev"); 1312 atomic_inc(&c->attached_dev_nr); 1313 1314 /* Allow the writeback thread to proceed */ 1315 up_write(&dc->writeback_lock); 1316 1317 pr_info("Caching %s as %s on set %pU\n", 1318 dc->backing_dev_name, 1319 dc->disk.disk->disk_name, 1320 dc->disk.c->set_uuid); 1321 return 0; 1322 } 1323 1324 /* when dc->disk.kobj released */ 1325 void bch_cached_dev_release(struct kobject *kobj) 1326 { 1327 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1328 disk.kobj); 1329 kfree(dc); 1330 module_put(THIS_MODULE); 1331 } 1332 1333 static void cached_dev_free(struct closure *cl) 1334 { 1335 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1336 1337 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1338 cancel_writeback_rate_update_dwork(dc); 1339 1340 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1341 kthread_stop(dc->writeback_thread); 1342 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1343 kthread_stop(dc->status_update_thread); 1344 1345 mutex_lock(&bch_register_lock); 1346 1347 if (atomic_read(&dc->running)) 1348 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1349 bcache_device_free(&dc->disk); 1350 list_del(&dc->list); 1351 1352 mutex_unlock(&bch_register_lock); 1353 1354 if (dc->sb_disk) 1355 put_page(virt_to_page(dc->sb_disk)); 1356 1357 if (!IS_ERR_OR_NULL(dc->bdev)) 1358 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1359 1360 wake_up(&unregister_wait); 1361 1362 kobject_put(&dc->disk.kobj); 1363 } 1364 1365 static void cached_dev_flush(struct closure *cl) 1366 { 1367 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1368 struct bcache_device *d = &dc->disk; 1369 1370 mutex_lock(&bch_register_lock); 1371 bcache_device_unlink(d); 1372 mutex_unlock(&bch_register_lock); 1373 1374 bch_cache_accounting_destroy(&dc->accounting); 1375 kobject_del(&d->kobj); 1376 1377 continue_at(cl, cached_dev_free, system_wq); 1378 } 1379 1380 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1381 { 1382 int ret; 1383 struct io *io; 1384 struct request_queue *q = bdev_get_queue(dc->bdev); 1385 1386 __module_get(THIS_MODULE); 1387 INIT_LIST_HEAD(&dc->list); 1388 closure_init(&dc->disk.cl, NULL); 1389 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1390 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1391 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1392 sema_init(&dc->sb_write_mutex, 1); 1393 INIT_LIST_HEAD(&dc->io_lru); 1394 spin_lock_init(&dc->io_lock); 1395 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1396 1397 dc->sequential_cutoff = 4 << 20; 1398 1399 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1400 list_add(&io->lru, &dc->io_lru); 1401 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1402 } 1403 1404 dc->disk.stripe_size = q->limits.io_opt >> 9; 1405 1406 if (dc->disk.stripe_size) 1407 dc->partial_stripes_expensive = 1408 q->limits.raid_partial_stripes_expensive; 1409 1410 ret = bcache_device_init(&dc->disk, block_size, 1411 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1412 dc->bdev, &bcache_cached_ops); 1413 if (ret) 1414 return ret; 1415 1416 blk_queue_io_opt(dc->disk.disk->queue, 1417 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1418 1419 atomic_set(&dc->io_errors, 0); 1420 dc->io_disable = false; 1421 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1422 /* default to auto */ 1423 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1424 1425 bch_cached_dev_request_init(dc); 1426 bch_cached_dev_writeback_init(dc); 1427 return 0; 1428 } 1429 1430 /* Cached device - bcache superblock */ 1431 1432 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1433 struct block_device *bdev, 1434 struct cached_dev *dc) 1435 { 1436 const char *err = "cannot allocate memory"; 1437 struct cache_set *c; 1438 int ret = -ENOMEM; 1439 1440 bdevname(bdev, dc->backing_dev_name); 1441 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1442 dc->bdev = bdev; 1443 dc->bdev->bd_holder = dc; 1444 dc->sb_disk = sb_disk; 1445 1446 if (cached_dev_init(dc, sb->block_size << 9)) 1447 goto err; 1448 1449 err = "error creating kobject"; 1450 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1451 "bcache")) 1452 goto err; 1453 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1454 goto err; 1455 1456 pr_info("registered backing device %s\n", dc->backing_dev_name); 1457 1458 list_add(&dc->list, &uncached_devices); 1459 /* attach to a matched cache set if it exists */ 1460 list_for_each_entry(c, &bch_cache_sets, list) 1461 bch_cached_dev_attach(dc, c, NULL); 1462 1463 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1464 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1465 err = "failed to run cached device"; 1466 ret = bch_cached_dev_run(dc); 1467 if (ret) 1468 goto err; 1469 } 1470 1471 return 0; 1472 err: 1473 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1474 bcache_device_stop(&dc->disk); 1475 return ret; 1476 } 1477 1478 /* Flash only volumes */ 1479 1480 /* When d->kobj released */ 1481 void bch_flash_dev_release(struct kobject *kobj) 1482 { 1483 struct bcache_device *d = container_of(kobj, struct bcache_device, 1484 kobj); 1485 kfree(d); 1486 } 1487 1488 static void flash_dev_free(struct closure *cl) 1489 { 1490 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1491 1492 mutex_lock(&bch_register_lock); 1493 atomic_long_sub(bcache_dev_sectors_dirty(d), 1494 &d->c->flash_dev_dirty_sectors); 1495 bcache_device_free(d); 1496 mutex_unlock(&bch_register_lock); 1497 kobject_put(&d->kobj); 1498 } 1499 1500 static void flash_dev_flush(struct closure *cl) 1501 { 1502 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1503 1504 mutex_lock(&bch_register_lock); 1505 bcache_device_unlink(d); 1506 mutex_unlock(&bch_register_lock); 1507 kobject_del(&d->kobj); 1508 continue_at(cl, flash_dev_free, system_wq); 1509 } 1510 1511 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1512 { 1513 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1514 GFP_KERNEL); 1515 if (!d) 1516 return -ENOMEM; 1517 1518 closure_init(&d->cl, NULL); 1519 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1520 1521 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1522 1523 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1524 NULL, &bcache_flash_ops)) 1525 goto err; 1526 1527 bcache_device_attach(d, c, u - c->uuids); 1528 bch_sectors_dirty_init(d); 1529 bch_flash_dev_request_init(d); 1530 add_disk(d->disk); 1531 1532 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1533 goto err; 1534 1535 bcache_device_link(d, c, "volume"); 1536 1537 return 0; 1538 err: 1539 kobject_put(&d->kobj); 1540 return -ENOMEM; 1541 } 1542 1543 static int flash_devs_run(struct cache_set *c) 1544 { 1545 int ret = 0; 1546 struct uuid_entry *u; 1547 1548 for (u = c->uuids; 1549 u < c->uuids + c->nr_uuids && !ret; 1550 u++) 1551 if (UUID_FLASH_ONLY(u)) 1552 ret = flash_dev_run(c, u); 1553 1554 return ret; 1555 } 1556 1557 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1558 { 1559 struct uuid_entry *u; 1560 1561 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1562 return -EINTR; 1563 1564 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1565 return -EPERM; 1566 1567 u = uuid_find_empty(c); 1568 if (!u) { 1569 pr_err("Can't create volume, no room for UUID\n"); 1570 return -EINVAL; 1571 } 1572 1573 get_random_bytes(u->uuid, 16); 1574 memset(u->label, 0, 32); 1575 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1576 1577 SET_UUID_FLASH_ONLY(u, 1); 1578 u->sectors = size >> 9; 1579 1580 bch_uuid_write(c); 1581 1582 return flash_dev_run(c, u); 1583 } 1584 1585 bool bch_cached_dev_error(struct cached_dev *dc) 1586 { 1587 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1588 return false; 1589 1590 dc->io_disable = true; 1591 /* make others know io_disable is true earlier */ 1592 smp_mb(); 1593 1594 pr_err("stop %s: too many IO errors on backing device %s\n", 1595 dc->disk.disk->disk_name, dc->backing_dev_name); 1596 1597 bcache_device_stop(&dc->disk); 1598 return true; 1599 } 1600 1601 /* Cache set */ 1602 1603 __printf(2, 3) 1604 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1605 { 1606 struct va_format vaf; 1607 va_list args; 1608 1609 if (c->on_error != ON_ERROR_PANIC && 1610 test_bit(CACHE_SET_STOPPING, &c->flags)) 1611 return false; 1612 1613 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1614 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1615 1616 /* 1617 * XXX: we can be called from atomic context 1618 * acquire_console_sem(); 1619 */ 1620 1621 va_start(args, fmt); 1622 1623 vaf.fmt = fmt; 1624 vaf.va = &args; 1625 1626 pr_err("error on %pU: %pV, disabling caching\n", 1627 c->set_uuid, &vaf); 1628 1629 va_end(args); 1630 1631 if (c->on_error == ON_ERROR_PANIC) 1632 panic("panic forced after error\n"); 1633 1634 bch_cache_set_unregister(c); 1635 return true; 1636 } 1637 1638 /* When c->kobj released */ 1639 void bch_cache_set_release(struct kobject *kobj) 1640 { 1641 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1642 1643 kfree(c); 1644 module_put(THIS_MODULE); 1645 } 1646 1647 static void cache_set_free(struct closure *cl) 1648 { 1649 struct cache_set *c = container_of(cl, struct cache_set, cl); 1650 struct cache *ca; 1651 1652 debugfs_remove(c->debug); 1653 1654 bch_open_buckets_free(c); 1655 bch_btree_cache_free(c); 1656 bch_journal_free(c); 1657 1658 mutex_lock(&bch_register_lock); 1659 bch_bset_sort_state_free(&c->sort); 1660 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1661 1662 ca = c->cache; 1663 if (ca) { 1664 ca->set = NULL; 1665 c->cache = NULL; 1666 kobject_put(&ca->kobj); 1667 } 1668 1669 1670 if (c->moving_gc_wq) 1671 destroy_workqueue(c->moving_gc_wq); 1672 bioset_exit(&c->bio_split); 1673 mempool_exit(&c->fill_iter); 1674 mempool_exit(&c->bio_meta); 1675 mempool_exit(&c->search); 1676 kfree(c->devices); 1677 1678 list_del(&c->list); 1679 mutex_unlock(&bch_register_lock); 1680 1681 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1682 wake_up(&unregister_wait); 1683 1684 closure_debug_destroy(&c->cl); 1685 kobject_put(&c->kobj); 1686 } 1687 1688 static void cache_set_flush(struct closure *cl) 1689 { 1690 struct cache_set *c = container_of(cl, struct cache_set, caching); 1691 struct cache *ca = c->cache; 1692 struct btree *b; 1693 1694 bch_cache_accounting_destroy(&c->accounting); 1695 1696 kobject_put(&c->internal); 1697 kobject_del(&c->kobj); 1698 1699 if (!IS_ERR_OR_NULL(c->gc_thread)) 1700 kthread_stop(c->gc_thread); 1701 1702 if (!IS_ERR_OR_NULL(c->root)) 1703 list_add(&c->root->list, &c->btree_cache); 1704 1705 /* 1706 * Avoid flushing cached nodes if cache set is retiring 1707 * due to too many I/O errors detected. 1708 */ 1709 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1710 list_for_each_entry(b, &c->btree_cache, list) { 1711 mutex_lock(&b->write_lock); 1712 if (btree_node_dirty(b)) 1713 __bch_btree_node_write(b, NULL); 1714 mutex_unlock(&b->write_lock); 1715 } 1716 1717 if (ca->alloc_thread) 1718 kthread_stop(ca->alloc_thread); 1719 1720 if (c->journal.cur) { 1721 cancel_delayed_work_sync(&c->journal.work); 1722 /* flush last journal entry if needed */ 1723 c->journal.work.work.func(&c->journal.work.work); 1724 } 1725 1726 closure_return(cl); 1727 } 1728 1729 /* 1730 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1731 * cache set is unregistering due to too many I/O errors. In this condition, 1732 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1733 * value and whether the broken cache has dirty data: 1734 * 1735 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1736 * BCH_CACHED_STOP_AUTO 0 NO 1737 * BCH_CACHED_STOP_AUTO 1 YES 1738 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1739 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1740 * 1741 * The expected behavior is, if stop_when_cache_set_failed is configured to 1742 * "auto" via sysfs interface, the bcache device will not be stopped if the 1743 * backing device is clean on the broken cache device. 1744 */ 1745 static void conditional_stop_bcache_device(struct cache_set *c, 1746 struct bcache_device *d, 1747 struct cached_dev *dc) 1748 { 1749 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1750 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1751 d->disk->disk_name, c->set_uuid); 1752 bcache_device_stop(d); 1753 } else if (atomic_read(&dc->has_dirty)) { 1754 /* 1755 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1756 * and dc->has_dirty == 1 1757 */ 1758 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1759 d->disk->disk_name); 1760 /* 1761 * There might be a small time gap that cache set is 1762 * released but bcache device is not. Inside this time 1763 * gap, regular I/O requests will directly go into 1764 * backing device as no cache set attached to. This 1765 * behavior may also introduce potential inconsistence 1766 * data in writeback mode while cache is dirty. 1767 * Therefore before calling bcache_device_stop() due 1768 * to a broken cache device, dc->io_disable should be 1769 * explicitly set to true. 1770 */ 1771 dc->io_disable = true; 1772 /* make others know io_disable is true earlier */ 1773 smp_mb(); 1774 bcache_device_stop(d); 1775 } else { 1776 /* 1777 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1778 * and dc->has_dirty == 0 1779 */ 1780 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1781 d->disk->disk_name); 1782 } 1783 } 1784 1785 static void __cache_set_unregister(struct closure *cl) 1786 { 1787 struct cache_set *c = container_of(cl, struct cache_set, caching); 1788 struct cached_dev *dc; 1789 struct bcache_device *d; 1790 size_t i; 1791 1792 mutex_lock(&bch_register_lock); 1793 1794 for (i = 0; i < c->devices_max_used; i++) { 1795 d = c->devices[i]; 1796 if (!d) 1797 continue; 1798 1799 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1800 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1801 dc = container_of(d, struct cached_dev, disk); 1802 bch_cached_dev_detach(dc); 1803 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1804 conditional_stop_bcache_device(c, d, dc); 1805 } else { 1806 bcache_device_stop(d); 1807 } 1808 } 1809 1810 mutex_unlock(&bch_register_lock); 1811 1812 continue_at(cl, cache_set_flush, system_wq); 1813 } 1814 1815 void bch_cache_set_stop(struct cache_set *c) 1816 { 1817 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1818 /* closure_fn set to __cache_set_unregister() */ 1819 closure_queue(&c->caching); 1820 } 1821 1822 void bch_cache_set_unregister(struct cache_set *c) 1823 { 1824 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1825 bch_cache_set_stop(c); 1826 } 1827 1828 #define alloc_meta_bucket_pages(gfp, sb) \ 1829 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1830 1831 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1832 { 1833 int iter_size; 1834 struct cache *ca = container_of(sb, struct cache, sb); 1835 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1836 1837 if (!c) 1838 return NULL; 1839 1840 __module_get(THIS_MODULE); 1841 closure_init(&c->cl, NULL); 1842 set_closure_fn(&c->cl, cache_set_free, system_wq); 1843 1844 closure_init(&c->caching, &c->cl); 1845 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1846 1847 /* Maybe create continue_at_noreturn() and use it here? */ 1848 closure_set_stopped(&c->cl); 1849 closure_put(&c->cl); 1850 1851 kobject_init(&c->kobj, &bch_cache_set_ktype); 1852 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1853 1854 bch_cache_accounting_init(&c->accounting, &c->cl); 1855 1856 memcpy(c->set_uuid, sb->set_uuid, 16); 1857 1858 c->cache = ca; 1859 c->cache->set = c; 1860 c->bucket_bits = ilog2(sb->bucket_size); 1861 c->block_bits = ilog2(sb->block_size); 1862 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1863 c->devices_max_used = 0; 1864 atomic_set(&c->attached_dev_nr, 0); 1865 c->btree_pages = meta_bucket_pages(sb); 1866 if (c->btree_pages > BTREE_MAX_PAGES) 1867 c->btree_pages = max_t(int, c->btree_pages / 4, 1868 BTREE_MAX_PAGES); 1869 1870 sema_init(&c->sb_write_mutex, 1); 1871 mutex_init(&c->bucket_lock); 1872 init_waitqueue_head(&c->btree_cache_wait); 1873 spin_lock_init(&c->btree_cannibalize_lock); 1874 init_waitqueue_head(&c->bucket_wait); 1875 init_waitqueue_head(&c->gc_wait); 1876 sema_init(&c->uuid_write_mutex, 1); 1877 1878 spin_lock_init(&c->btree_gc_time.lock); 1879 spin_lock_init(&c->btree_split_time.lock); 1880 spin_lock_init(&c->btree_read_time.lock); 1881 1882 bch_moving_init_cache_set(c); 1883 1884 INIT_LIST_HEAD(&c->list); 1885 INIT_LIST_HEAD(&c->cached_devs); 1886 INIT_LIST_HEAD(&c->btree_cache); 1887 INIT_LIST_HEAD(&c->btree_cache_freeable); 1888 INIT_LIST_HEAD(&c->btree_cache_freed); 1889 INIT_LIST_HEAD(&c->data_buckets); 1890 1891 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1892 sizeof(struct btree_iter_set); 1893 1894 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1895 if (!c->devices) 1896 goto err; 1897 1898 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1899 goto err; 1900 1901 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1902 sizeof(struct bbio) + 1903 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1904 goto err; 1905 1906 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1907 goto err; 1908 1909 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1910 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 1911 goto err; 1912 1913 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1914 if (!c->uuids) 1915 goto err; 1916 1917 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1918 if (!c->moving_gc_wq) 1919 goto err; 1920 1921 if (bch_journal_alloc(c)) 1922 goto err; 1923 1924 if (bch_btree_cache_alloc(c)) 1925 goto err; 1926 1927 if (bch_open_buckets_alloc(c)) 1928 goto err; 1929 1930 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1931 goto err; 1932 1933 c->congested_read_threshold_us = 2000; 1934 c->congested_write_threshold_us = 20000; 1935 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1936 c->idle_max_writeback_rate_enabled = 1; 1937 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1938 1939 return c; 1940 err: 1941 bch_cache_set_unregister(c); 1942 return NULL; 1943 } 1944 1945 static int run_cache_set(struct cache_set *c) 1946 { 1947 const char *err = "cannot allocate memory"; 1948 struct cached_dev *dc, *t; 1949 struct cache *ca = c->cache; 1950 struct closure cl; 1951 LIST_HEAD(journal); 1952 struct journal_replay *l; 1953 1954 closure_init_stack(&cl); 1955 1956 c->nbuckets = ca->sb.nbuckets; 1957 set_gc_sectors(c); 1958 1959 if (CACHE_SYNC(&c->cache->sb)) { 1960 struct bkey *k; 1961 struct jset *j; 1962 1963 err = "cannot allocate memory for journal"; 1964 if (bch_journal_read(c, &journal)) 1965 goto err; 1966 1967 pr_debug("btree_journal_read() done\n"); 1968 1969 err = "no journal entries found"; 1970 if (list_empty(&journal)) 1971 goto err; 1972 1973 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1974 1975 err = "IO error reading priorities"; 1976 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1977 goto err; 1978 1979 /* 1980 * If prio_read() fails it'll call cache_set_error and we'll 1981 * tear everything down right away, but if we perhaps checked 1982 * sooner we could avoid journal replay. 1983 */ 1984 1985 k = &j->btree_root; 1986 1987 err = "bad btree root"; 1988 if (__bch_btree_ptr_invalid(c, k)) 1989 goto err; 1990 1991 err = "error reading btree root"; 1992 c->root = bch_btree_node_get(c, NULL, k, 1993 j->btree_level, 1994 true, NULL); 1995 if (IS_ERR_OR_NULL(c->root)) 1996 goto err; 1997 1998 list_del_init(&c->root->list); 1999 rw_unlock(true, c->root); 2000 2001 err = uuid_read(c, j, &cl); 2002 if (err) 2003 goto err; 2004 2005 err = "error in recovery"; 2006 if (bch_btree_check(c)) 2007 goto err; 2008 2009 bch_journal_mark(c, &journal); 2010 bch_initial_gc_finish(c); 2011 pr_debug("btree_check() done\n"); 2012 2013 /* 2014 * bcache_journal_next() can't happen sooner, or 2015 * btree_gc_finish() will give spurious errors about last_gc > 2016 * gc_gen - this is a hack but oh well. 2017 */ 2018 bch_journal_next(&c->journal); 2019 2020 err = "error starting allocator thread"; 2021 if (bch_cache_allocator_start(ca)) 2022 goto err; 2023 2024 /* 2025 * First place it's safe to allocate: btree_check() and 2026 * btree_gc_finish() have to run before we have buckets to 2027 * allocate, and bch_bucket_alloc_set() might cause a journal 2028 * entry to be written so bcache_journal_next() has to be called 2029 * first. 2030 * 2031 * If the uuids were in the old format we have to rewrite them 2032 * before the next journal entry is written: 2033 */ 2034 if (j->version < BCACHE_JSET_VERSION_UUID) 2035 __uuid_write(c); 2036 2037 err = "bcache: replay journal failed"; 2038 if (bch_journal_replay(c, &journal)) 2039 goto err; 2040 } else { 2041 unsigned int j; 2042 2043 pr_notice("invalidating existing data\n"); 2044 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2045 2, SB_JOURNAL_BUCKETS); 2046 2047 for (j = 0; j < ca->sb.keys; j++) 2048 ca->sb.d[j] = ca->sb.first_bucket + j; 2049 2050 bch_initial_gc_finish(c); 2051 2052 err = "error starting allocator thread"; 2053 if (bch_cache_allocator_start(ca)) 2054 goto err; 2055 2056 mutex_lock(&c->bucket_lock); 2057 bch_prio_write(ca, true); 2058 mutex_unlock(&c->bucket_lock); 2059 2060 err = "cannot allocate new UUID bucket"; 2061 if (__uuid_write(c)) 2062 goto err; 2063 2064 err = "cannot allocate new btree root"; 2065 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2066 if (IS_ERR_OR_NULL(c->root)) 2067 goto err; 2068 2069 mutex_lock(&c->root->write_lock); 2070 bkey_copy_key(&c->root->key, &MAX_KEY); 2071 bch_btree_node_write(c->root, &cl); 2072 mutex_unlock(&c->root->write_lock); 2073 2074 bch_btree_set_root(c->root); 2075 rw_unlock(true, c->root); 2076 2077 /* 2078 * We don't want to write the first journal entry until 2079 * everything is set up - fortunately journal entries won't be 2080 * written until the SET_CACHE_SYNC() here: 2081 */ 2082 SET_CACHE_SYNC(&c->cache->sb, true); 2083 2084 bch_journal_next(&c->journal); 2085 bch_journal_meta(c, &cl); 2086 } 2087 2088 err = "error starting gc thread"; 2089 if (bch_gc_thread_start(c)) 2090 goto err; 2091 2092 closure_sync(&cl); 2093 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2094 bcache_write_super(c); 2095 2096 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2097 bch_cached_dev_attach(dc, c, NULL); 2098 2099 flash_devs_run(c); 2100 2101 set_bit(CACHE_SET_RUNNING, &c->flags); 2102 return 0; 2103 err: 2104 while (!list_empty(&journal)) { 2105 l = list_first_entry(&journal, struct journal_replay, list); 2106 list_del(&l->list); 2107 kfree(l); 2108 } 2109 2110 closure_sync(&cl); 2111 2112 bch_cache_set_error(c, "%s", err); 2113 2114 return -EIO; 2115 } 2116 2117 static const char *register_cache_set(struct cache *ca) 2118 { 2119 char buf[12]; 2120 const char *err = "cannot allocate memory"; 2121 struct cache_set *c; 2122 2123 list_for_each_entry(c, &bch_cache_sets, list) 2124 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2125 if (c->cache) 2126 return "duplicate cache set member"; 2127 2128 goto found; 2129 } 2130 2131 c = bch_cache_set_alloc(&ca->sb); 2132 if (!c) 2133 return err; 2134 2135 err = "error creating kobject"; 2136 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2137 kobject_add(&c->internal, &c->kobj, "internal")) 2138 goto err; 2139 2140 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2141 goto err; 2142 2143 bch_debug_init_cache_set(c); 2144 2145 list_add(&c->list, &bch_cache_sets); 2146 found: 2147 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2148 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2149 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2150 goto err; 2151 2152 kobject_get(&ca->kobj); 2153 ca->set = c; 2154 ca->set->cache = ca; 2155 2156 err = "failed to run cache set"; 2157 if (run_cache_set(c) < 0) 2158 goto err; 2159 2160 return NULL; 2161 err: 2162 bch_cache_set_unregister(c); 2163 return err; 2164 } 2165 2166 /* Cache device */ 2167 2168 /* When ca->kobj released */ 2169 void bch_cache_release(struct kobject *kobj) 2170 { 2171 struct cache *ca = container_of(kobj, struct cache, kobj); 2172 unsigned int i; 2173 2174 if (ca->set) { 2175 BUG_ON(ca->set->cache != ca); 2176 ca->set->cache = NULL; 2177 } 2178 2179 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2180 kfree(ca->prio_buckets); 2181 vfree(ca->buckets); 2182 2183 free_heap(&ca->heap); 2184 free_fifo(&ca->free_inc); 2185 2186 for (i = 0; i < RESERVE_NR; i++) 2187 free_fifo(&ca->free[i]); 2188 2189 if (ca->sb_disk) 2190 put_page(virt_to_page(ca->sb_disk)); 2191 2192 if (!IS_ERR_OR_NULL(ca->bdev)) 2193 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2194 2195 kfree(ca); 2196 module_put(THIS_MODULE); 2197 } 2198 2199 static int cache_alloc(struct cache *ca) 2200 { 2201 size_t free; 2202 size_t btree_buckets; 2203 struct bucket *b; 2204 int ret = -ENOMEM; 2205 const char *err = NULL; 2206 2207 __module_get(THIS_MODULE); 2208 kobject_init(&ca->kobj, &bch_cache_ktype); 2209 2210 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2211 2212 /* 2213 * when ca->sb.njournal_buckets is not zero, journal exists, 2214 * and in bch_journal_replay(), tree node may split, 2215 * so bucket of RESERVE_BTREE type is needed, 2216 * the worst situation is all journal buckets are valid journal, 2217 * and all the keys need to replay, 2218 * so the number of RESERVE_BTREE type buckets should be as much 2219 * as journal buckets 2220 */ 2221 btree_buckets = ca->sb.njournal_buckets ?: 8; 2222 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2223 if (!free) { 2224 ret = -EPERM; 2225 err = "ca->sb.nbuckets is too small"; 2226 goto err_free; 2227 } 2228 2229 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2230 GFP_KERNEL)) { 2231 err = "ca->free[RESERVE_BTREE] alloc failed"; 2232 goto err_btree_alloc; 2233 } 2234 2235 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2236 GFP_KERNEL)) { 2237 err = "ca->free[RESERVE_PRIO] alloc failed"; 2238 goto err_prio_alloc; 2239 } 2240 2241 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2242 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2243 goto err_movinggc_alloc; 2244 } 2245 2246 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2247 err = "ca->free[RESERVE_NONE] alloc failed"; 2248 goto err_none_alloc; 2249 } 2250 2251 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2252 err = "ca->free_inc alloc failed"; 2253 goto err_free_inc_alloc; 2254 } 2255 2256 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2257 err = "ca->heap alloc failed"; 2258 goto err_heap_alloc; 2259 } 2260 2261 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2262 ca->sb.nbuckets)); 2263 if (!ca->buckets) { 2264 err = "ca->buckets alloc failed"; 2265 goto err_buckets_alloc; 2266 } 2267 2268 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2269 prio_buckets(ca), 2), 2270 GFP_KERNEL); 2271 if (!ca->prio_buckets) { 2272 err = "ca->prio_buckets alloc failed"; 2273 goto err_prio_buckets_alloc; 2274 } 2275 2276 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2277 if (!ca->disk_buckets) { 2278 err = "ca->disk_buckets alloc failed"; 2279 goto err_disk_buckets_alloc; 2280 } 2281 2282 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2283 2284 for_each_bucket(b, ca) 2285 atomic_set(&b->pin, 0); 2286 return 0; 2287 2288 err_disk_buckets_alloc: 2289 kfree(ca->prio_buckets); 2290 err_prio_buckets_alloc: 2291 vfree(ca->buckets); 2292 err_buckets_alloc: 2293 free_heap(&ca->heap); 2294 err_heap_alloc: 2295 free_fifo(&ca->free_inc); 2296 err_free_inc_alloc: 2297 free_fifo(&ca->free[RESERVE_NONE]); 2298 err_none_alloc: 2299 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2300 err_movinggc_alloc: 2301 free_fifo(&ca->free[RESERVE_PRIO]); 2302 err_prio_alloc: 2303 free_fifo(&ca->free[RESERVE_BTREE]); 2304 err_btree_alloc: 2305 err_free: 2306 module_put(THIS_MODULE); 2307 if (err) 2308 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2309 return ret; 2310 } 2311 2312 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2313 struct block_device *bdev, struct cache *ca) 2314 { 2315 const char *err = NULL; /* must be set for any error case */ 2316 int ret = 0; 2317 2318 bdevname(bdev, ca->cache_dev_name); 2319 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2320 ca->bdev = bdev; 2321 ca->bdev->bd_holder = ca; 2322 ca->sb_disk = sb_disk; 2323 2324 if (blk_queue_discard(bdev_get_queue(bdev))) 2325 ca->discard = CACHE_DISCARD(&ca->sb); 2326 2327 ret = cache_alloc(ca); 2328 if (ret != 0) { 2329 /* 2330 * If we failed here, it means ca->kobj is not initialized yet, 2331 * kobject_put() won't be called and there is no chance to 2332 * call blkdev_put() to bdev in bch_cache_release(). So we 2333 * explicitly call blkdev_put() here. 2334 */ 2335 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2336 if (ret == -ENOMEM) 2337 err = "cache_alloc(): -ENOMEM"; 2338 else if (ret == -EPERM) 2339 err = "cache_alloc(): cache device is too small"; 2340 else 2341 err = "cache_alloc(): unknown error"; 2342 goto err; 2343 } 2344 2345 if (kobject_add(&ca->kobj, 2346 &part_to_dev(bdev->bd_part)->kobj, 2347 "bcache")) { 2348 err = "error calling kobject_add"; 2349 ret = -ENOMEM; 2350 goto out; 2351 } 2352 2353 mutex_lock(&bch_register_lock); 2354 err = register_cache_set(ca); 2355 mutex_unlock(&bch_register_lock); 2356 2357 if (err) { 2358 ret = -ENODEV; 2359 goto out; 2360 } 2361 2362 pr_info("registered cache device %s\n", ca->cache_dev_name); 2363 2364 out: 2365 kobject_put(&ca->kobj); 2366 2367 err: 2368 if (err) 2369 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2370 2371 return ret; 2372 } 2373 2374 /* Global interfaces/init */ 2375 2376 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2377 const char *buffer, size_t size); 2378 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2379 struct kobj_attribute *attr, 2380 const char *buffer, size_t size); 2381 2382 kobj_attribute_write(register, register_bcache); 2383 kobj_attribute_write(register_quiet, register_bcache); 2384 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2385 2386 static bool bch_is_open_backing(struct block_device *bdev) 2387 { 2388 struct cache_set *c, *tc; 2389 struct cached_dev *dc, *t; 2390 2391 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2392 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2393 if (dc->bdev == bdev) 2394 return true; 2395 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2396 if (dc->bdev == bdev) 2397 return true; 2398 return false; 2399 } 2400 2401 static bool bch_is_open_cache(struct block_device *bdev) 2402 { 2403 struct cache_set *c, *tc; 2404 2405 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2406 struct cache *ca = c->cache; 2407 2408 if (ca->bdev == bdev) 2409 return true; 2410 } 2411 2412 return false; 2413 } 2414 2415 static bool bch_is_open(struct block_device *bdev) 2416 { 2417 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2418 } 2419 2420 struct async_reg_args { 2421 struct delayed_work reg_work; 2422 char *path; 2423 struct cache_sb *sb; 2424 struct cache_sb_disk *sb_disk; 2425 struct block_device *bdev; 2426 }; 2427 2428 static void register_bdev_worker(struct work_struct *work) 2429 { 2430 int fail = false; 2431 struct async_reg_args *args = 2432 container_of(work, struct async_reg_args, reg_work.work); 2433 struct cached_dev *dc; 2434 2435 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2436 if (!dc) { 2437 fail = true; 2438 put_page(virt_to_page(args->sb_disk)); 2439 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2440 goto out; 2441 } 2442 2443 mutex_lock(&bch_register_lock); 2444 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2445 fail = true; 2446 mutex_unlock(&bch_register_lock); 2447 2448 out: 2449 if (fail) 2450 pr_info("error %s: fail to register backing device\n", 2451 args->path); 2452 kfree(args->sb); 2453 kfree(args->path); 2454 kfree(args); 2455 module_put(THIS_MODULE); 2456 } 2457 2458 static void register_cache_worker(struct work_struct *work) 2459 { 2460 int fail = false; 2461 struct async_reg_args *args = 2462 container_of(work, struct async_reg_args, reg_work.work); 2463 struct cache *ca; 2464 2465 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2466 if (!ca) { 2467 fail = true; 2468 put_page(virt_to_page(args->sb_disk)); 2469 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2470 goto out; 2471 } 2472 2473 /* blkdev_put() will be called in bch_cache_release() */ 2474 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2475 fail = true; 2476 2477 out: 2478 if (fail) 2479 pr_info("error %s: fail to register cache device\n", 2480 args->path); 2481 kfree(args->sb); 2482 kfree(args->path); 2483 kfree(args); 2484 module_put(THIS_MODULE); 2485 } 2486 2487 static void register_device_aync(struct async_reg_args *args) 2488 { 2489 if (SB_IS_BDEV(args->sb)) 2490 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2491 else 2492 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2493 2494 /* 10 jiffies is enough for a delay */ 2495 queue_delayed_work(system_wq, &args->reg_work, 10); 2496 } 2497 2498 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2499 const char *buffer, size_t size) 2500 { 2501 const char *err; 2502 char *path = NULL; 2503 struct cache_sb *sb; 2504 struct cache_sb_disk *sb_disk; 2505 struct block_device *bdev; 2506 ssize_t ret; 2507 bool async_registration = false; 2508 2509 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2510 async_registration = true; 2511 #endif 2512 2513 ret = -EBUSY; 2514 err = "failed to reference bcache module"; 2515 if (!try_module_get(THIS_MODULE)) 2516 goto out; 2517 2518 /* For latest state of bcache_is_reboot */ 2519 smp_mb(); 2520 err = "bcache is in reboot"; 2521 if (bcache_is_reboot) 2522 goto out_module_put; 2523 2524 ret = -ENOMEM; 2525 err = "cannot allocate memory"; 2526 path = kstrndup(buffer, size, GFP_KERNEL); 2527 if (!path) 2528 goto out_module_put; 2529 2530 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2531 if (!sb) 2532 goto out_free_path; 2533 2534 ret = -EINVAL; 2535 err = "failed to open device"; 2536 bdev = blkdev_get_by_path(strim(path), 2537 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2538 sb); 2539 if (IS_ERR(bdev)) { 2540 if (bdev == ERR_PTR(-EBUSY)) { 2541 bdev = lookup_bdev(strim(path)); 2542 mutex_lock(&bch_register_lock); 2543 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2544 err = "device already registered"; 2545 else 2546 err = "device busy"; 2547 mutex_unlock(&bch_register_lock); 2548 if (!IS_ERR(bdev)) 2549 bdput(bdev); 2550 if (attr == &ksysfs_register_quiet) 2551 goto done; 2552 } 2553 goto out_free_sb; 2554 } 2555 2556 err = "failed to set blocksize"; 2557 if (set_blocksize(bdev, 4096)) 2558 goto out_blkdev_put; 2559 2560 err = read_super(sb, bdev, &sb_disk); 2561 if (err) 2562 goto out_blkdev_put; 2563 2564 err = "failed to register device"; 2565 2566 if (async_registration) { 2567 /* register in asynchronous way */ 2568 struct async_reg_args *args = 2569 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2570 2571 if (!args) { 2572 ret = -ENOMEM; 2573 err = "cannot allocate memory"; 2574 goto out_put_sb_page; 2575 } 2576 2577 args->path = path; 2578 args->sb = sb; 2579 args->sb_disk = sb_disk; 2580 args->bdev = bdev; 2581 register_device_aync(args); 2582 /* No wait and returns to user space */ 2583 goto async_done; 2584 } 2585 2586 if (SB_IS_BDEV(sb)) { 2587 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2588 2589 if (!dc) 2590 goto out_put_sb_page; 2591 2592 mutex_lock(&bch_register_lock); 2593 ret = register_bdev(sb, sb_disk, bdev, dc); 2594 mutex_unlock(&bch_register_lock); 2595 /* blkdev_put() will be called in cached_dev_free() */ 2596 if (ret < 0) 2597 goto out_free_sb; 2598 } else { 2599 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2600 2601 if (!ca) 2602 goto out_put_sb_page; 2603 2604 /* blkdev_put() will be called in bch_cache_release() */ 2605 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2606 goto out_free_sb; 2607 } 2608 2609 done: 2610 kfree(sb); 2611 kfree(path); 2612 module_put(THIS_MODULE); 2613 async_done: 2614 return size; 2615 2616 out_put_sb_page: 2617 put_page(virt_to_page(sb_disk)); 2618 out_blkdev_put: 2619 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2620 out_free_sb: 2621 kfree(sb); 2622 out_free_path: 2623 kfree(path); 2624 path = NULL; 2625 out_module_put: 2626 module_put(THIS_MODULE); 2627 out: 2628 pr_info("error %s: %s\n", path?path:"", err); 2629 return ret; 2630 } 2631 2632 2633 struct pdev { 2634 struct list_head list; 2635 struct cached_dev *dc; 2636 }; 2637 2638 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2639 struct kobj_attribute *attr, 2640 const char *buffer, 2641 size_t size) 2642 { 2643 LIST_HEAD(pending_devs); 2644 ssize_t ret = size; 2645 struct cached_dev *dc, *tdc; 2646 struct pdev *pdev, *tpdev; 2647 struct cache_set *c, *tc; 2648 2649 mutex_lock(&bch_register_lock); 2650 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2651 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2652 if (!pdev) 2653 break; 2654 pdev->dc = dc; 2655 list_add(&pdev->list, &pending_devs); 2656 } 2657 2658 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2659 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2660 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2661 char *set_uuid = c->set_uuid; 2662 2663 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2664 list_del(&pdev->list); 2665 kfree(pdev); 2666 break; 2667 } 2668 } 2669 } 2670 mutex_unlock(&bch_register_lock); 2671 2672 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2673 pr_info("delete pdev %p\n", pdev); 2674 list_del(&pdev->list); 2675 bcache_device_stop(&pdev->dc->disk); 2676 kfree(pdev); 2677 } 2678 2679 return ret; 2680 } 2681 2682 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2683 { 2684 if (bcache_is_reboot) 2685 return NOTIFY_DONE; 2686 2687 if (code == SYS_DOWN || 2688 code == SYS_HALT || 2689 code == SYS_POWER_OFF) { 2690 DEFINE_WAIT(wait); 2691 unsigned long start = jiffies; 2692 bool stopped = false; 2693 2694 struct cache_set *c, *tc; 2695 struct cached_dev *dc, *tdc; 2696 2697 mutex_lock(&bch_register_lock); 2698 2699 if (bcache_is_reboot) 2700 goto out; 2701 2702 /* New registration is rejected since now */ 2703 bcache_is_reboot = true; 2704 /* 2705 * Make registering caller (if there is) on other CPU 2706 * core know bcache_is_reboot set to true earlier 2707 */ 2708 smp_mb(); 2709 2710 if (list_empty(&bch_cache_sets) && 2711 list_empty(&uncached_devices)) 2712 goto out; 2713 2714 mutex_unlock(&bch_register_lock); 2715 2716 pr_info("Stopping all devices:\n"); 2717 2718 /* 2719 * The reason bch_register_lock is not held to call 2720 * bch_cache_set_stop() and bcache_device_stop() is to 2721 * avoid potential deadlock during reboot, because cache 2722 * set or bcache device stopping process will acqurie 2723 * bch_register_lock too. 2724 * 2725 * We are safe here because bcache_is_reboot sets to 2726 * true already, register_bcache() will reject new 2727 * registration now. bcache_is_reboot also makes sure 2728 * bcache_reboot() won't be re-entered on by other thread, 2729 * so there is no race in following list iteration by 2730 * list_for_each_entry_safe(). 2731 */ 2732 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2733 bch_cache_set_stop(c); 2734 2735 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2736 bcache_device_stop(&dc->disk); 2737 2738 2739 /* 2740 * Give an early chance for other kthreads and 2741 * kworkers to stop themselves 2742 */ 2743 schedule(); 2744 2745 /* What's a condition variable? */ 2746 while (1) { 2747 long timeout = start + 10 * HZ - jiffies; 2748 2749 mutex_lock(&bch_register_lock); 2750 stopped = list_empty(&bch_cache_sets) && 2751 list_empty(&uncached_devices); 2752 2753 if (timeout < 0 || stopped) 2754 break; 2755 2756 prepare_to_wait(&unregister_wait, &wait, 2757 TASK_UNINTERRUPTIBLE); 2758 2759 mutex_unlock(&bch_register_lock); 2760 schedule_timeout(timeout); 2761 } 2762 2763 finish_wait(&unregister_wait, &wait); 2764 2765 if (stopped) 2766 pr_info("All devices stopped\n"); 2767 else 2768 pr_notice("Timeout waiting for devices to be closed\n"); 2769 out: 2770 mutex_unlock(&bch_register_lock); 2771 } 2772 2773 return NOTIFY_DONE; 2774 } 2775 2776 static struct notifier_block reboot = { 2777 .notifier_call = bcache_reboot, 2778 .priority = INT_MAX, /* before any real devices */ 2779 }; 2780 2781 static void bcache_exit(void) 2782 { 2783 bch_debug_exit(); 2784 bch_request_exit(); 2785 if (bcache_kobj) 2786 kobject_put(bcache_kobj); 2787 if (bcache_wq) 2788 destroy_workqueue(bcache_wq); 2789 if (bch_journal_wq) 2790 destroy_workqueue(bch_journal_wq); 2791 2792 if (bcache_major) 2793 unregister_blkdev(bcache_major, "bcache"); 2794 unregister_reboot_notifier(&reboot); 2795 mutex_destroy(&bch_register_lock); 2796 } 2797 2798 /* Check and fixup module parameters */ 2799 static void check_module_parameters(void) 2800 { 2801 if (bch_cutoff_writeback_sync == 0) 2802 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2803 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2804 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2805 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2806 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2807 } 2808 2809 if (bch_cutoff_writeback == 0) 2810 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2811 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2812 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2813 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2814 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2815 } 2816 2817 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2818 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2819 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2820 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2821 } 2822 } 2823 2824 static int __init bcache_init(void) 2825 { 2826 static const struct attribute *files[] = { 2827 &ksysfs_register.attr, 2828 &ksysfs_register_quiet.attr, 2829 &ksysfs_pendings_cleanup.attr, 2830 NULL 2831 }; 2832 2833 check_module_parameters(); 2834 2835 mutex_init(&bch_register_lock); 2836 init_waitqueue_head(&unregister_wait); 2837 register_reboot_notifier(&reboot); 2838 2839 bcache_major = register_blkdev(0, "bcache"); 2840 if (bcache_major < 0) { 2841 unregister_reboot_notifier(&reboot); 2842 mutex_destroy(&bch_register_lock); 2843 return bcache_major; 2844 } 2845 2846 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2847 if (!bcache_wq) 2848 goto err; 2849 2850 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2851 if (!bch_journal_wq) 2852 goto err; 2853 2854 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2855 if (!bcache_kobj) 2856 goto err; 2857 2858 if (bch_request_init() || 2859 sysfs_create_files(bcache_kobj, files)) 2860 goto err; 2861 2862 bch_debug_init(); 2863 closure_debug_init(); 2864 2865 bcache_is_reboot = false; 2866 2867 return 0; 2868 err: 2869 bcache_exit(); 2870 return -ENOMEM; 2871 } 2872 2873 /* 2874 * Module hooks 2875 */ 2876 module_exit(bcache_exit); 2877 module_init(bcache_init); 2878 2879 module_param(bch_cutoff_writeback, uint, 0); 2880 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2881 2882 module_param(bch_cutoff_writeback_sync, uint, 0); 2883 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2884 2885 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2886 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2887 MODULE_LICENSE("GPL"); 2888