xref: /openbmc/linux/drivers/md/bcache/super.c (revision bc000245)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/buffer_head.h>
17 #include <linux/debugfs.h>
18 #include <linux/genhd.h>
19 #include <linux/idr.h>
20 #include <linux/kthread.h>
21 #include <linux/module.h>
22 #include <linux/random.h>
23 #include <linux/reboot.h>
24 #include <linux/sysfs.h>
25 
26 MODULE_LICENSE("GPL");
27 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
28 
29 static const char bcache_magic[] = {
30 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
31 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
32 };
33 
34 static const char invalid_uuid[] = {
35 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
36 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
37 };
38 
39 /* Default is -1; we skip past it for struct cached_dev's cache mode */
40 const char * const bch_cache_modes[] = {
41 	"default",
42 	"writethrough",
43 	"writeback",
44 	"writearound",
45 	"none",
46 	NULL
47 };
48 
49 static struct kobject *bcache_kobj;
50 struct mutex bch_register_lock;
51 LIST_HEAD(bch_cache_sets);
52 static LIST_HEAD(uncached_devices);
53 
54 static int bcache_major;
55 static DEFINE_IDA(bcache_minor);
56 static wait_queue_head_t unregister_wait;
57 struct workqueue_struct *bcache_wq;
58 
59 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
60 
61 static void bio_split_pool_free(struct bio_split_pool *p)
62 {
63 	if (p->bio_split_hook)
64 		mempool_destroy(p->bio_split_hook);
65 
66 	if (p->bio_split)
67 		bioset_free(p->bio_split);
68 }
69 
70 static int bio_split_pool_init(struct bio_split_pool *p)
71 {
72 	p->bio_split = bioset_create(4, 0);
73 	if (!p->bio_split)
74 		return -ENOMEM;
75 
76 	p->bio_split_hook = mempool_create_kmalloc_pool(4,
77 				sizeof(struct bio_split_hook));
78 	if (!p->bio_split_hook)
79 		return -ENOMEM;
80 
81 	return 0;
82 }
83 
84 /* Superblock */
85 
86 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
87 			      struct page **res)
88 {
89 	const char *err;
90 	struct cache_sb *s;
91 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
92 	unsigned i;
93 
94 	if (!bh)
95 		return "IO error";
96 
97 	s = (struct cache_sb *) bh->b_data;
98 
99 	sb->offset		= le64_to_cpu(s->offset);
100 	sb->version		= le64_to_cpu(s->version);
101 
102 	memcpy(sb->magic,	s->magic, 16);
103 	memcpy(sb->uuid,	s->uuid, 16);
104 	memcpy(sb->set_uuid,	s->set_uuid, 16);
105 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
106 
107 	sb->flags		= le64_to_cpu(s->flags);
108 	sb->seq			= le64_to_cpu(s->seq);
109 	sb->last_mount		= le32_to_cpu(s->last_mount);
110 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
111 	sb->keys		= le16_to_cpu(s->keys);
112 
113 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
114 		sb->d[i] = le64_to_cpu(s->d[i]);
115 
116 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
117 		 sb->version, sb->flags, sb->seq, sb->keys);
118 
119 	err = "Not a bcache superblock";
120 	if (sb->offset != SB_SECTOR)
121 		goto err;
122 
123 	if (memcmp(sb->magic, bcache_magic, 16))
124 		goto err;
125 
126 	err = "Too many journal buckets";
127 	if (sb->keys > SB_JOURNAL_BUCKETS)
128 		goto err;
129 
130 	err = "Bad checksum";
131 	if (s->csum != csum_set(s))
132 		goto err;
133 
134 	err = "Bad UUID";
135 	if (bch_is_zero(sb->uuid, 16))
136 		goto err;
137 
138 	sb->block_size	= le16_to_cpu(s->block_size);
139 
140 	err = "Superblock block size smaller than device block size";
141 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
142 		goto err;
143 
144 	switch (sb->version) {
145 	case BCACHE_SB_VERSION_BDEV:
146 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
147 		break;
148 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
149 		sb->data_offset	= le64_to_cpu(s->data_offset);
150 
151 		err = "Bad data offset";
152 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
153 			goto err;
154 
155 		break;
156 	case BCACHE_SB_VERSION_CDEV:
157 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
158 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
159 		sb->block_size	= le16_to_cpu(s->block_size);
160 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
161 
162 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
163 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
164 
165 		err = "Too many buckets";
166 		if (sb->nbuckets > LONG_MAX)
167 			goto err;
168 
169 		err = "Not enough buckets";
170 		if (sb->nbuckets < 1 << 7)
171 			goto err;
172 
173 		err = "Bad block/bucket size";
174 		if (!is_power_of_2(sb->block_size) ||
175 		    sb->block_size > PAGE_SECTORS ||
176 		    !is_power_of_2(sb->bucket_size) ||
177 		    sb->bucket_size < PAGE_SECTORS)
178 			goto err;
179 
180 		err = "Invalid superblock: device too small";
181 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
182 			goto err;
183 
184 		err = "Bad UUID";
185 		if (bch_is_zero(sb->set_uuid, 16))
186 			goto err;
187 
188 		err = "Bad cache device number in set";
189 		if (!sb->nr_in_set ||
190 		    sb->nr_in_set <= sb->nr_this_dev ||
191 		    sb->nr_in_set > MAX_CACHES_PER_SET)
192 			goto err;
193 
194 		err = "Journal buckets not sequential";
195 		for (i = 0; i < sb->keys; i++)
196 			if (sb->d[i] != sb->first_bucket + i)
197 				goto err;
198 
199 		err = "Too many journal buckets";
200 		if (sb->first_bucket + sb->keys > sb->nbuckets)
201 			goto err;
202 
203 		err = "Invalid superblock: first bucket comes before end of super";
204 		if (sb->first_bucket * sb->bucket_size < 16)
205 			goto err;
206 
207 		break;
208 	default:
209 		err = "Unsupported superblock version";
210 		goto err;
211 	}
212 
213 	sb->last_mount = get_seconds();
214 	err = NULL;
215 
216 	get_page(bh->b_page);
217 	*res = bh->b_page;
218 err:
219 	put_bh(bh);
220 	return err;
221 }
222 
223 static void write_bdev_super_endio(struct bio *bio, int error)
224 {
225 	struct cached_dev *dc = bio->bi_private;
226 	/* XXX: error checking */
227 
228 	closure_put(&dc->sb_write.cl);
229 }
230 
231 static void __write_super(struct cache_sb *sb, struct bio *bio)
232 {
233 	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
234 	unsigned i;
235 
236 	bio->bi_sector	= SB_SECTOR;
237 	bio->bi_rw	= REQ_SYNC|REQ_META;
238 	bio->bi_size	= SB_SIZE;
239 	bch_bio_map(bio, NULL);
240 
241 	out->offset		= cpu_to_le64(sb->offset);
242 	out->version		= cpu_to_le64(sb->version);
243 
244 	memcpy(out->uuid,	sb->uuid, 16);
245 	memcpy(out->set_uuid,	sb->set_uuid, 16);
246 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
247 
248 	out->flags		= cpu_to_le64(sb->flags);
249 	out->seq		= cpu_to_le64(sb->seq);
250 
251 	out->last_mount		= cpu_to_le32(sb->last_mount);
252 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
253 	out->keys		= cpu_to_le16(sb->keys);
254 
255 	for (i = 0; i < sb->keys; i++)
256 		out->d[i] = cpu_to_le64(sb->d[i]);
257 
258 	out->csum = csum_set(out);
259 
260 	pr_debug("ver %llu, flags %llu, seq %llu",
261 		 sb->version, sb->flags, sb->seq);
262 
263 	submit_bio(REQ_WRITE, bio);
264 }
265 
266 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
267 {
268 	struct closure *cl = &dc->sb_write.cl;
269 	struct bio *bio = &dc->sb_bio;
270 
271 	closure_lock(&dc->sb_write, parent);
272 
273 	bio_reset(bio);
274 	bio->bi_bdev	= dc->bdev;
275 	bio->bi_end_io	= write_bdev_super_endio;
276 	bio->bi_private = dc;
277 
278 	closure_get(cl);
279 	__write_super(&dc->sb, bio);
280 
281 	closure_return(cl);
282 }
283 
284 static void write_super_endio(struct bio *bio, int error)
285 {
286 	struct cache *ca = bio->bi_private;
287 
288 	bch_count_io_errors(ca, error, "writing superblock");
289 	closure_put(&ca->set->sb_write.cl);
290 }
291 
292 void bcache_write_super(struct cache_set *c)
293 {
294 	struct closure *cl = &c->sb_write.cl;
295 	struct cache *ca;
296 	unsigned i;
297 
298 	closure_lock(&c->sb_write, &c->cl);
299 
300 	c->sb.seq++;
301 
302 	for_each_cache(ca, c, i) {
303 		struct bio *bio = &ca->sb_bio;
304 
305 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
306 		ca->sb.seq		= c->sb.seq;
307 		ca->sb.last_mount	= c->sb.last_mount;
308 
309 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
310 
311 		bio_reset(bio);
312 		bio->bi_bdev	= ca->bdev;
313 		bio->bi_end_io	= write_super_endio;
314 		bio->bi_private = ca;
315 
316 		closure_get(cl);
317 		__write_super(&ca->sb, bio);
318 	}
319 
320 	closure_return(cl);
321 }
322 
323 /* UUID io */
324 
325 static void uuid_endio(struct bio *bio, int error)
326 {
327 	struct closure *cl = bio->bi_private;
328 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write.cl);
329 
330 	cache_set_err_on(error, c, "accessing uuids");
331 	bch_bbio_free(bio, c);
332 	closure_put(cl);
333 }
334 
335 static void uuid_io(struct cache_set *c, unsigned long rw,
336 		    struct bkey *k, struct closure *parent)
337 {
338 	struct closure *cl = &c->uuid_write.cl;
339 	struct uuid_entry *u;
340 	unsigned i;
341 	char buf[80];
342 
343 	BUG_ON(!parent);
344 	closure_lock(&c->uuid_write, parent);
345 
346 	for (i = 0; i < KEY_PTRS(k); i++) {
347 		struct bio *bio = bch_bbio_alloc(c);
348 
349 		bio->bi_rw	= REQ_SYNC|REQ_META|rw;
350 		bio->bi_size	= KEY_SIZE(k) << 9;
351 
352 		bio->bi_end_io	= uuid_endio;
353 		bio->bi_private = cl;
354 		bch_bio_map(bio, c->uuids);
355 
356 		bch_submit_bbio(bio, c, k, i);
357 
358 		if (!(rw & WRITE))
359 			break;
360 	}
361 
362 	bch_bkey_to_text(buf, sizeof(buf), k);
363 	pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
364 
365 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
366 		if (!bch_is_zero(u->uuid, 16))
367 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
368 				 u - c->uuids, u->uuid, u->label,
369 				 u->first_reg, u->last_reg, u->invalidated);
370 
371 	closure_return(cl);
372 }
373 
374 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
375 {
376 	struct bkey *k = &j->uuid_bucket;
377 
378 	if (bch_btree_ptr_invalid(c, k))
379 		return "bad uuid pointer";
380 
381 	bkey_copy(&c->uuid_bucket, k);
382 	uuid_io(c, READ_SYNC, k, cl);
383 
384 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
385 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
386 		struct uuid_entry	*u1 = (void *) c->uuids;
387 		int i;
388 
389 		closure_sync(cl);
390 
391 		/*
392 		 * Since the new uuid entry is bigger than the old, we have to
393 		 * convert starting at the highest memory address and work down
394 		 * in order to do it in place
395 		 */
396 
397 		for (i = c->nr_uuids - 1;
398 		     i >= 0;
399 		     --i) {
400 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
401 			memcpy(u1[i].label,	u0[i].label, 32);
402 
403 			u1[i].first_reg		= u0[i].first_reg;
404 			u1[i].last_reg		= u0[i].last_reg;
405 			u1[i].invalidated	= u0[i].invalidated;
406 
407 			u1[i].flags	= 0;
408 			u1[i].sectors	= 0;
409 		}
410 	}
411 
412 	return NULL;
413 }
414 
415 static int __uuid_write(struct cache_set *c)
416 {
417 	BKEY_PADDED(key) k;
418 	struct closure cl;
419 	closure_init_stack(&cl);
420 
421 	lockdep_assert_held(&bch_register_lock);
422 
423 	if (bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
424 		return 1;
425 
426 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
427 	uuid_io(c, REQ_WRITE, &k.key, &cl);
428 	closure_sync(&cl);
429 
430 	bkey_copy(&c->uuid_bucket, &k.key);
431 	bkey_put(c, &k.key);
432 	return 0;
433 }
434 
435 int bch_uuid_write(struct cache_set *c)
436 {
437 	int ret = __uuid_write(c);
438 
439 	if (!ret)
440 		bch_journal_meta(c, NULL);
441 
442 	return ret;
443 }
444 
445 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
446 {
447 	struct uuid_entry *u;
448 
449 	for (u = c->uuids;
450 	     u < c->uuids + c->nr_uuids; u++)
451 		if (!memcmp(u->uuid, uuid, 16))
452 			return u;
453 
454 	return NULL;
455 }
456 
457 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
458 {
459 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
460 	return uuid_find(c, zero_uuid);
461 }
462 
463 /*
464  * Bucket priorities/gens:
465  *
466  * For each bucket, we store on disk its
467    * 8 bit gen
468    * 16 bit priority
469  *
470  * See alloc.c for an explanation of the gen. The priority is used to implement
471  * lru (and in the future other) cache replacement policies; for most purposes
472  * it's just an opaque integer.
473  *
474  * The gens and the priorities don't have a whole lot to do with each other, and
475  * it's actually the gens that must be written out at specific times - it's no
476  * big deal if the priorities don't get written, if we lose them we just reuse
477  * buckets in suboptimal order.
478  *
479  * On disk they're stored in a packed array, and in as many buckets are required
480  * to fit them all. The buckets we use to store them form a list; the journal
481  * header points to the first bucket, the first bucket points to the second
482  * bucket, et cetera.
483  *
484  * This code is used by the allocation code; periodically (whenever it runs out
485  * of buckets to allocate from) the allocation code will invalidate some
486  * buckets, but it can't use those buckets until their new gens are safely on
487  * disk.
488  */
489 
490 static void prio_endio(struct bio *bio, int error)
491 {
492 	struct cache *ca = bio->bi_private;
493 
494 	cache_set_err_on(error, ca->set, "accessing priorities");
495 	bch_bbio_free(bio, ca->set);
496 	closure_put(&ca->prio);
497 }
498 
499 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
500 {
501 	struct closure *cl = &ca->prio;
502 	struct bio *bio = bch_bbio_alloc(ca->set);
503 
504 	closure_init_stack(cl);
505 
506 	bio->bi_sector	= bucket * ca->sb.bucket_size;
507 	bio->bi_bdev	= ca->bdev;
508 	bio->bi_rw	= REQ_SYNC|REQ_META|rw;
509 	bio->bi_size	= bucket_bytes(ca);
510 
511 	bio->bi_end_io	= prio_endio;
512 	bio->bi_private = ca;
513 	bch_bio_map(bio, ca->disk_buckets);
514 
515 	closure_bio_submit(bio, &ca->prio, ca);
516 	closure_sync(cl);
517 }
518 
519 #define buckets_free(c)	"free %zu, free_inc %zu, unused %zu",		\
520 	fifo_used(&c->free), fifo_used(&c->free_inc), fifo_used(&c->unused)
521 
522 void bch_prio_write(struct cache *ca)
523 {
524 	int i;
525 	struct bucket *b;
526 	struct closure cl;
527 
528 	closure_init_stack(&cl);
529 
530 	lockdep_assert_held(&ca->set->bucket_lock);
531 
532 	for (b = ca->buckets;
533 	     b < ca->buckets + ca->sb.nbuckets; b++)
534 		b->disk_gen = b->gen;
535 
536 	ca->disk_buckets->seq++;
537 
538 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
539 			&ca->meta_sectors_written);
540 
541 	pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
542 		 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
543 
544 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
545 		long bucket;
546 		struct prio_set *p = ca->disk_buckets;
547 		struct bucket_disk *d = p->data;
548 		struct bucket_disk *end = d + prios_per_bucket(ca);
549 
550 		for (b = ca->buckets + i * prios_per_bucket(ca);
551 		     b < ca->buckets + ca->sb.nbuckets && d < end;
552 		     b++, d++) {
553 			d->prio = cpu_to_le16(b->prio);
554 			d->gen = b->gen;
555 		}
556 
557 		p->next_bucket	= ca->prio_buckets[i + 1];
558 		p->magic	= pset_magic(&ca->sb);
559 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
560 
561 		bucket = bch_bucket_alloc(ca, WATERMARK_PRIO, true);
562 		BUG_ON(bucket == -1);
563 
564 		mutex_unlock(&ca->set->bucket_lock);
565 		prio_io(ca, bucket, REQ_WRITE);
566 		mutex_lock(&ca->set->bucket_lock);
567 
568 		ca->prio_buckets[i] = bucket;
569 		atomic_dec_bug(&ca->buckets[bucket].pin);
570 	}
571 
572 	mutex_unlock(&ca->set->bucket_lock);
573 
574 	bch_journal_meta(ca->set, &cl);
575 	closure_sync(&cl);
576 
577 	mutex_lock(&ca->set->bucket_lock);
578 
579 	ca->need_save_prio = 0;
580 
581 	/*
582 	 * Don't want the old priorities to get garbage collected until after we
583 	 * finish writing the new ones, and they're journalled
584 	 */
585 	for (i = 0; i < prio_buckets(ca); i++)
586 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
587 }
588 
589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591 	struct prio_set *p = ca->disk_buckets;
592 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593 	struct bucket *b;
594 	unsigned bucket_nr = 0;
595 
596 	for (b = ca->buckets;
597 	     b < ca->buckets + ca->sb.nbuckets;
598 	     b++, d++) {
599 		if (d == end) {
600 			ca->prio_buckets[bucket_nr] = bucket;
601 			ca->prio_last_buckets[bucket_nr] = bucket;
602 			bucket_nr++;
603 
604 			prio_io(ca, bucket, READ_SYNC);
605 
606 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
607 				pr_warn("bad csum reading priorities");
608 
609 			if (p->magic != pset_magic(&ca->sb))
610 				pr_warn("bad magic reading priorities");
611 
612 			bucket = p->next_bucket;
613 			d = p->data;
614 		}
615 
616 		b->prio = le16_to_cpu(d->prio);
617 		b->gen = b->disk_gen = b->last_gc = b->gc_gen = d->gen;
618 	}
619 }
620 
621 /* Bcache device */
622 
623 static int open_dev(struct block_device *b, fmode_t mode)
624 {
625 	struct bcache_device *d = b->bd_disk->private_data;
626 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
627 		return -ENXIO;
628 
629 	closure_get(&d->cl);
630 	return 0;
631 }
632 
633 static void release_dev(struct gendisk *b, fmode_t mode)
634 {
635 	struct bcache_device *d = b->private_data;
636 	closure_put(&d->cl);
637 }
638 
639 static int ioctl_dev(struct block_device *b, fmode_t mode,
640 		     unsigned int cmd, unsigned long arg)
641 {
642 	struct bcache_device *d = b->bd_disk->private_data;
643 	return d->ioctl(d, mode, cmd, arg);
644 }
645 
646 static const struct block_device_operations bcache_ops = {
647 	.open		= open_dev,
648 	.release	= release_dev,
649 	.ioctl		= ioctl_dev,
650 	.owner		= THIS_MODULE,
651 };
652 
653 void bcache_device_stop(struct bcache_device *d)
654 {
655 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
656 		closure_queue(&d->cl);
657 }
658 
659 static void bcache_device_unlink(struct bcache_device *d)
660 {
661 	lockdep_assert_held(&bch_register_lock);
662 
663 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
664 		unsigned i;
665 		struct cache *ca;
666 
667 		sysfs_remove_link(&d->c->kobj, d->name);
668 		sysfs_remove_link(&d->kobj, "cache");
669 
670 		for_each_cache(ca, d->c, i)
671 			bd_unlink_disk_holder(ca->bdev, d->disk);
672 	}
673 }
674 
675 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
676 			       const char *name)
677 {
678 	unsigned i;
679 	struct cache *ca;
680 
681 	for_each_cache(ca, d->c, i)
682 		bd_link_disk_holder(ca->bdev, d->disk);
683 
684 	snprintf(d->name, BCACHEDEVNAME_SIZE,
685 		 "%s%u", name, d->id);
686 
687 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
688 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
689 	     "Couldn't create device <-> cache set symlinks");
690 }
691 
692 static void bcache_device_detach(struct bcache_device *d)
693 {
694 	lockdep_assert_held(&bch_register_lock);
695 
696 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
697 		struct uuid_entry *u = d->c->uuids + d->id;
698 
699 		SET_UUID_FLASH_ONLY(u, 0);
700 		memcpy(u->uuid, invalid_uuid, 16);
701 		u->invalidated = cpu_to_le32(get_seconds());
702 		bch_uuid_write(d->c);
703 	}
704 
705 	bcache_device_unlink(d);
706 
707 	d->c->devices[d->id] = NULL;
708 	closure_put(&d->c->caching);
709 	d->c = NULL;
710 }
711 
712 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
713 				 unsigned id)
714 {
715 	BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
716 
717 	d->id = id;
718 	d->c = c;
719 	c->devices[id] = d;
720 
721 	closure_get(&c->caching);
722 }
723 
724 static void bcache_device_free(struct bcache_device *d)
725 {
726 	lockdep_assert_held(&bch_register_lock);
727 
728 	pr_info("%s stopped", d->disk->disk_name);
729 
730 	if (d->c)
731 		bcache_device_detach(d);
732 	if (d->disk && d->disk->flags & GENHD_FL_UP)
733 		del_gendisk(d->disk);
734 	if (d->disk && d->disk->queue)
735 		blk_cleanup_queue(d->disk->queue);
736 	if (d->disk) {
737 		ida_simple_remove(&bcache_minor, d->disk->first_minor);
738 		put_disk(d->disk);
739 	}
740 
741 	bio_split_pool_free(&d->bio_split_hook);
742 	if (d->unaligned_bvec)
743 		mempool_destroy(d->unaligned_bvec);
744 	if (d->bio_split)
745 		bioset_free(d->bio_split);
746 	if (is_vmalloc_addr(d->full_dirty_stripes))
747 		vfree(d->full_dirty_stripes);
748 	else
749 		kfree(d->full_dirty_stripes);
750 	if (is_vmalloc_addr(d->stripe_sectors_dirty))
751 		vfree(d->stripe_sectors_dirty);
752 	else
753 		kfree(d->stripe_sectors_dirty);
754 
755 	closure_debug_destroy(&d->cl);
756 }
757 
758 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
759 			      sector_t sectors)
760 {
761 	struct request_queue *q;
762 	size_t n;
763 	int minor;
764 
765 	if (!d->stripe_size)
766 		d->stripe_size = 1 << 31;
767 
768 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
769 
770 	if (!d->nr_stripes ||
771 	    d->nr_stripes > INT_MAX ||
772 	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
773 		pr_err("nr_stripes too large");
774 		return -ENOMEM;
775 	}
776 
777 	n = d->nr_stripes * sizeof(atomic_t);
778 	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
779 		? kzalloc(n, GFP_KERNEL)
780 		: vzalloc(n);
781 	if (!d->stripe_sectors_dirty)
782 		return -ENOMEM;
783 
784 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
785 	d->full_dirty_stripes = n < PAGE_SIZE << 6
786 		? kzalloc(n, GFP_KERNEL)
787 		: vzalloc(n);
788 	if (!d->full_dirty_stripes)
789 		return -ENOMEM;
790 
791 	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
792 	if (minor < 0)
793 		return minor;
794 
795 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
796 	    !(d->unaligned_bvec = mempool_create_kmalloc_pool(1,
797 				sizeof(struct bio_vec) * BIO_MAX_PAGES)) ||
798 	    bio_split_pool_init(&d->bio_split_hook) ||
799 	    !(d->disk = alloc_disk(1))) {
800 		ida_simple_remove(&bcache_minor, minor);
801 		return -ENOMEM;
802 	}
803 
804 	set_capacity(d->disk, sectors);
805 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
806 
807 	d->disk->major		= bcache_major;
808 	d->disk->first_minor	= minor;
809 	d->disk->fops		= &bcache_ops;
810 	d->disk->private_data	= d;
811 
812 	q = blk_alloc_queue(GFP_KERNEL);
813 	if (!q)
814 		return -ENOMEM;
815 
816 	blk_queue_make_request(q, NULL);
817 	d->disk->queue			= q;
818 	q->queuedata			= d;
819 	q->backing_dev_info.congested_data = d;
820 	q->limits.max_hw_sectors	= UINT_MAX;
821 	q->limits.max_sectors		= UINT_MAX;
822 	q->limits.max_segment_size	= UINT_MAX;
823 	q->limits.max_segments		= BIO_MAX_PAGES;
824 	q->limits.max_discard_sectors	= UINT_MAX;
825 	q->limits.io_min		= block_size;
826 	q->limits.logical_block_size	= block_size;
827 	q->limits.physical_block_size	= block_size;
828 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
829 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
830 
831 	blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
832 
833 	return 0;
834 }
835 
836 /* Cached device */
837 
838 static void calc_cached_dev_sectors(struct cache_set *c)
839 {
840 	uint64_t sectors = 0;
841 	struct cached_dev *dc;
842 
843 	list_for_each_entry(dc, &c->cached_devs, list)
844 		sectors += bdev_sectors(dc->bdev);
845 
846 	c->cached_dev_sectors = sectors;
847 }
848 
849 void bch_cached_dev_run(struct cached_dev *dc)
850 {
851 	struct bcache_device *d = &dc->disk;
852 	char buf[SB_LABEL_SIZE + 1];
853 	char *env[] = {
854 		"DRIVER=bcache",
855 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
856 		NULL,
857 		NULL,
858 	};
859 
860 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
861 	buf[SB_LABEL_SIZE] = '\0';
862 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
863 
864 	if (atomic_xchg(&dc->running, 1))
865 		return;
866 
867 	if (!d->c &&
868 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
869 		struct closure cl;
870 		closure_init_stack(&cl);
871 
872 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
873 		bch_write_bdev_super(dc, &cl);
874 		closure_sync(&cl);
875 	}
876 
877 	add_disk(d->disk);
878 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
879 	/* won't show up in the uevent file, use udevadm monitor -e instead
880 	 * only class / kset properties are persistent */
881 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
882 	kfree(env[1]);
883 	kfree(env[2]);
884 
885 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
886 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
887 		pr_debug("error creating sysfs link");
888 }
889 
890 static void cached_dev_detach_finish(struct work_struct *w)
891 {
892 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
893 	char buf[BDEVNAME_SIZE];
894 	struct closure cl;
895 	closure_init_stack(&cl);
896 
897 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
898 	BUG_ON(atomic_read(&dc->count));
899 
900 	mutex_lock(&bch_register_lock);
901 
902 	memset(&dc->sb.set_uuid, 0, 16);
903 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
904 
905 	bch_write_bdev_super(dc, &cl);
906 	closure_sync(&cl);
907 
908 	bcache_device_detach(&dc->disk);
909 	list_move(&dc->list, &uncached_devices);
910 
911 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
912 
913 	mutex_unlock(&bch_register_lock);
914 
915 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
916 
917 	/* Drop ref we took in cached_dev_detach() */
918 	closure_put(&dc->disk.cl);
919 }
920 
921 void bch_cached_dev_detach(struct cached_dev *dc)
922 {
923 	lockdep_assert_held(&bch_register_lock);
924 
925 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
926 		return;
927 
928 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
929 		return;
930 
931 	/*
932 	 * Block the device from being closed and freed until we're finished
933 	 * detaching
934 	 */
935 	closure_get(&dc->disk.cl);
936 
937 	bch_writeback_queue(dc);
938 	cached_dev_put(dc);
939 }
940 
941 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
942 {
943 	uint32_t rtime = cpu_to_le32(get_seconds());
944 	struct uuid_entry *u;
945 	char buf[BDEVNAME_SIZE];
946 
947 	bdevname(dc->bdev, buf);
948 
949 	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
950 		return -ENOENT;
951 
952 	if (dc->disk.c) {
953 		pr_err("Can't attach %s: already attached", buf);
954 		return -EINVAL;
955 	}
956 
957 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
958 		pr_err("Can't attach %s: shutting down", buf);
959 		return -EINVAL;
960 	}
961 
962 	if (dc->sb.block_size < c->sb.block_size) {
963 		/* Will die */
964 		pr_err("Couldn't attach %s: block size less than set's block size",
965 		       buf);
966 		return -EINVAL;
967 	}
968 
969 	u = uuid_find(c, dc->sb.uuid);
970 
971 	if (u &&
972 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
973 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
974 		memcpy(u->uuid, invalid_uuid, 16);
975 		u->invalidated = cpu_to_le32(get_seconds());
976 		u = NULL;
977 	}
978 
979 	if (!u) {
980 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
981 			pr_err("Couldn't find uuid for %s in set", buf);
982 			return -ENOENT;
983 		}
984 
985 		u = uuid_find_empty(c);
986 		if (!u) {
987 			pr_err("Not caching %s, no room for UUID", buf);
988 			return -EINVAL;
989 		}
990 	}
991 
992 	/* Deadlocks since we're called via sysfs...
993 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
994 	 */
995 
996 	if (bch_is_zero(u->uuid, 16)) {
997 		struct closure cl;
998 		closure_init_stack(&cl);
999 
1000 		memcpy(u->uuid, dc->sb.uuid, 16);
1001 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1002 		u->first_reg = u->last_reg = rtime;
1003 		bch_uuid_write(c);
1004 
1005 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1006 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1007 
1008 		bch_write_bdev_super(dc, &cl);
1009 		closure_sync(&cl);
1010 	} else {
1011 		u->last_reg = rtime;
1012 		bch_uuid_write(c);
1013 	}
1014 
1015 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1016 	list_move(&dc->list, &c->cached_devs);
1017 	calc_cached_dev_sectors(c);
1018 
1019 	smp_wmb();
1020 	/*
1021 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1022 	 * cached_dev_get()
1023 	 */
1024 	atomic_set(&dc->count, 1);
1025 
1026 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1027 		bch_sectors_dirty_init(dc);
1028 		atomic_set(&dc->has_dirty, 1);
1029 		atomic_inc(&dc->count);
1030 		bch_writeback_queue(dc);
1031 	}
1032 
1033 	bch_cached_dev_run(dc);
1034 	bcache_device_link(&dc->disk, c, "bdev");
1035 
1036 	pr_info("Caching %s as %s on set %pU",
1037 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1038 		dc->disk.c->sb.set_uuid);
1039 	return 0;
1040 }
1041 
1042 void bch_cached_dev_release(struct kobject *kobj)
1043 {
1044 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1045 					     disk.kobj);
1046 	kfree(dc);
1047 	module_put(THIS_MODULE);
1048 }
1049 
1050 static void cached_dev_free(struct closure *cl)
1051 {
1052 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1053 
1054 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1055 	kthread_stop(dc->writeback_thread);
1056 
1057 	mutex_lock(&bch_register_lock);
1058 
1059 	if (atomic_read(&dc->running))
1060 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1061 	bcache_device_free(&dc->disk);
1062 	list_del(&dc->list);
1063 
1064 	mutex_unlock(&bch_register_lock);
1065 
1066 	if (!IS_ERR_OR_NULL(dc->bdev)) {
1067 		if (dc->bdev->bd_disk)
1068 			blk_sync_queue(bdev_get_queue(dc->bdev));
1069 
1070 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1071 	}
1072 
1073 	wake_up(&unregister_wait);
1074 
1075 	kobject_put(&dc->disk.kobj);
1076 }
1077 
1078 static void cached_dev_flush(struct closure *cl)
1079 {
1080 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1081 	struct bcache_device *d = &dc->disk;
1082 
1083 	mutex_lock(&bch_register_lock);
1084 	bcache_device_unlink(d);
1085 	mutex_unlock(&bch_register_lock);
1086 
1087 	bch_cache_accounting_destroy(&dc->accounting);
1088 	kobject_del(&d->kobj);
1089 
1090 	continue_at(cl, cached_dev_free, system_wq);
1091 }
1092 
1093 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1094 {
1095 	int ret;
1096 	struct io *io;
1097 	struct request_queue *q = bdev_get_queue(dc->bdev);
1098 
1099 	__module_get(THIS_MODULE);
1100 	INIT_LIST_HEAD(&dc->list);
1101 	closure_init(&dc->disk.cl, NULL);
1102 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1103 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1104 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1105 	closure_init_unlocked(&dc->sb_write);
1106 	INIT_LIST_HEAD(&dc->io_lru);
1107 	spin_lock_init(&dc->io_lock);
1108 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1109 
1110 	dc->sequential_cutoff		= 4 << 20;
1111 
1112 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1113 		list_add(&io->lru, &dc->io_lru);
1114 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1115 	}
1116 
1117 	ret = bcache_device_init(&dc->disk, block_size,
1118 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1119 	if (ret)
1120 		return ret;
1121 
1122 	set_capacity(dc->disk.disk,
1123 		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1124 
1125 	dc->disk.disk->queue->backing_dev_info.ra_pages =
1126 		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1127 		    q->backing_dev_info.ra_pages);
1128 
1129 	bch_cached_dev_request_init(dc);
1130 	bch_cached_dev_writeback_init(dc);
1131 	return 0;
1132 }
1133 
1134 /* Cached device - bcache superblock */
1135 
1136 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1137 				 struct block_device *bdev,
1138 				 struct cached_dev *dc)
1139 {
1140 	char name[BDEVNAME_SIZE];
1141 	const char *err = "cannot allocate memory";
1142 	struct cache_set *c;
1143 
1144 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1145 	dc->bdev = bdev;
1146 	dc->bdev->bd_holder = dc;
1147 
1148 	bio_init(&dc->sb_bio);
1149 	dc->sb_bio.bi_max_vecs	= 1;
1150 	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1151 	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1152 	get_page(sb_page);
1153 
1154 	if (cached_dev_init(dc, sb->block_size << 9))
1155 		goto err;
1156 
1157 	err = "error creating kobject";
1158 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1159 			"bcache"))
1160 		goto err;
1161 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1162 		goto err;
1163 
1164 	pr_info("registered backing device %s", bdevname(bdev, name));
1165 
1166 	list_add(&dc->list, &uncached_devices);
1167 	list_for_each_entry(c, &bch_cache_sets, list)
1168 		bch_cached_dev_attach(dc, c);
1169 
1170 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1171 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1172 		bch_cached_dev_run(dc);
1173 
1174 	return;
1175 err:
1176 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1177 	bcache_device_stop(&dc->disk);
1178 }
1179 
1180 /* Flash only volumes */
1181 
1182 void bch_flash_dev_release(struct kobject *kobj)
1183 {
1184 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1185 					       kobj);
1186 	kfree(d);
1187 }
1188 
1189 static void flash_dev_free(struct closure *cl)
1190 {
1191 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1192 	bcache_device_free(d);
1193 	kobject_put(&d->kobj);
1194 }
1195 
1196 static void flash_dev_flush(struct closure *cl)
1197 {
1198 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1199 
1200 	bcache_device_unlink(d);
1201 	kobject_del(&d->kobj);
1202 	continue_at(cl, flash_dev_free, system_wq);
1203 }
1204 
1205 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1206 {
1207 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1208 					  GFP_KERNEL);
1209 	if (!d)
1210 		return -ENOMEM;
1211 
1212 	closure_init(&d->cl, NULL);
1213 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1214 
1215 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1216 
1217 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1218 		goto err;
1219 
1220 	bcache_device_attach(d, c, u - c->uuids);
1221 	bch_flash_dev_request_init(d);
1222 	add_disk(d->disk);
1223 
1224 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1225 		goto err;
1226 
1227 	bcache_device_link(d, c, "volume");
1228 
1229 	return 0;
1230 err:
1231 	kobject_put(&d->kobj);
1232 	return -ENOMEM;
1233 }
1234 
1235 static int flash_devs_run(struct cache_set *c)
1236 {
1237 	int ret = 0;
1238 	struct uuid_entry *u;
1239 
1240 	for (u = c->uuids;
1241 	     u < c->uuids + c->nr_uuids && !ret;
1242 	     u++)
1243 		if (UUID_FLASH_ONLY(u))
1244 			ret = flash_dev_run(c, u);
1245 
1246 	return ret;
1247 }
1248 
1249 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1250 {
1251 	struct uuid_entry *u;
1252 
1253 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1254 		return -EINTR;
1255 
1256 	u = uuid_find_empty(c);
1257 	if (!u) {
1258 		pr_err("Can't create volume, no room for UUID");
1259 		return -EINVAL;
1260 	}
1261 
1262 	get_random_bytes(u->uuid, 16);
1263 	memset(u->label, 0, 32);
1264 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1265 
1266 	SET_UUID_FLASH_ONLY(u, 1);
1267 	u->sectors = size >> 9;
1268 
1269 	bch_uuid_write(c);
1270 
1271 	return flash_dev_run(c, u);
1272 }
1273 
1274 /* Cache set */
1275 
1276 __printf(2, 3)
1277 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1278 {
1279 	va_list args;
1280 
1281 	if (c->on_error != ON_ERROR_PANIC &&
1282 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1283 		return false;
1284 
1285 	/* XXX: we can be called from atomic context
1286 	acquire_console_sem();
1287 	*/
1288 
1289 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1290 
1291 	va_start(args, fmt);
1292 	vprintk(fmt, args);
1293 	va_end(args);
1294 
1295 	printk(", disabling caching\n");
1296 
1297 	if (c->on_error == ON_ERROR_PANIC)
1298 		panic("panic forced after error\n");
1299 
1300 	bch_cache_set_unregister(c);
1301 	return true;
1302 }
1303 
1304 void bch_cache_set_release(struct kobject *kobj)
1305 {
1306 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1307 	kfree(c);
1308 	module_put(THIS_MODULE);
1309 }
1310 
1311 static void cache_set_free(struct closure *cl)
1312 {
1313 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1314 	struct cache *ca;
1315 	unsigned i;
1316 
1317 	if (!IS_ERR_OR_NULL(c->debug))
1318 		debugfs_remove(c->debug);
1319 
1320 	bch_open_buckets_free(c);
1321 	bch_btree_cache_free(c);
1322 	bch_journal_free(c);
1323 
1324 	for_each_cache(ca, c, i)
1325 		if (ca)
1326 			kobject_put(&ca->kobj);
1327 
1328 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1329 	free_pages((unsigned long) c->sort, ilog2(bucket_pages(c)));
1330 
1331 	if (c->bio_split)
1332 		bioset_free(c->bio_split);
1333 	if (c->fill_iter)
1334 		mempool_destroy(c->fill_iter);
1335 	if (c->bio_meta)
1336 		mempool_destroy(c->bio_meta);
1337 	if (c->search)
1338 		mempool_destroy(c->search);
1339 	kfree(c->devices);
1340 
1341 	mutex_lock(&bch_register_lock);
1342 	list_del(&c->list);
1343 	mutex_unlock(&bch_register_lock);
1344 
1345 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1346 	wake_up(&unregister_wait);
1347 
1348 	closure_debug_destroy(&c->cl);
1349 	kobject_put(&c->kobj);
1350 }
1351 
1352 static void cache_set_flush(struct closure *cl)
1353 {
1354 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1355 	struct cache *ca;
1356 	struct btree *b;
1357 	unsigned i;
1358 
1359 	bch_cache_accounting_destroy(&c->accounting);
1360 
1361 	kobject_put(&c->internal);
1362 	kobject_del(&c->kobj);
1363 
1364 	if (c->gc_thread)
1365 		kthread_stop(c->gc_thread);
1366 
1367 	if (!IS_ERR_OR_NULL(c->root))
1368 		list_add(&c->root->list, &c->btree_cache);
1369 
1370 	/* Should skip this if we're unregistering because of an error */
1371 	list_for_each_entry(b, &c->btree_cache, list)
1372 		if (btree_node_dirty(b))
1373 			bch_btree_node_write(b, NULL);
1374 
1375 	for_each_cache(ca, c, i)
1376 		if (ca->alloc_thread)
1377 			kthread_stop(ca->alloc_thread);
1378 
1379 	closure_return(cl);
1380 }
1381 
1382 static void __cache_set_unregister(struct closure *cl)
1383 {
1384 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1385 	struct cached_dev *dc;
1386 	size_t i;
1387 
1388 	mutex_lock(&bch_register_lock);
1389 
1390 	for (i = 0; i < c->nr_uuids; i++)
1391 		if (c->devices[i]) {
1392 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1393 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1394 				dc = container_of(c->devices[i],
1395 						  struct cached_dev, disk);
1396 				bch_cached_dev_detach(dc);
1397 			} else {
1398 				bcache_device_stop(c->devices[i]);
1399 			}
1400 		}
1401 
1402 	mutex_unlock(&bch_register_lock);
1403 
1404 	continue_at(cl, cache_set_flush, system_wq);
1405 }
1406 
1407 void bch_cache_set_stop(struct cache_set *c)
1408 {
1409 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1410 		closure_queue(&c->caching);
1411 }
1412 
1413 void bch_cache_set_unregister(struct cache_set *c)
1414 {
1415 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1416 	bch_cache_set_stop(c);
1417 }
1418 
1419 #define alloc_bucket_pages(gfp, c)			\
1420 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1421 
1422 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1423 {
1424 	int iter_size;
1425 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1426 	if (!c)
1427 		return NULL;
1428 
1429 	__module_get(THIS_MODULE);
1430 	closure_init(&c->cl, NULL);
1431 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1432 
1433 	closure_init(&c->caching, &c->cl);
1434 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1435 
1436 	/* Maybe create continue_at_noreturn() and use it here? */
1437 	closure_set_stopped(&c->cl);
1438 	closure_put(&c->cl);
1439 
1440 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1441 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1442 
1443 	bch_cache_accounting_init(&c->accounting, &c->cl);
1444 
1445 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1446 	c->sb.block_size	= sb->block_size;
1447 	c->sb.bucket_size	= sb->bucket_size;
1448 	c->sb.nr_in_set		= sb->nr_in_set;
1449 	c->sb.last_mount	= sb->last_mount;
1450 	c->bucket_bits		= ilog2(sb->bucket_size);
1451 	c->block_bits		= ilog2(sb->block_size);
1452 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1453 
1454 	c->btree_pages		= c->sb.bucket_size / PAGE_SECTORS;
1455 	if (c->btree_pages > BTREE_MAX_PAGES)
1456 		c->btree_pages = max_t(int, c->btree_pages / 4,
1457 				       BTREE_MAX_PAGES);
1458 
1459 	c->sort_crit_factor = int_sqrt(c->btree_pages);
1460 
1461 	closure_init_unlocked(&c->sb_write);
1462 	mutex_init(&c->bucket_lock);
1463 	init_waitqueue_head(&c->try_wait);
1464 	init_waitqueue_head(&c->bucket_wait);
1465 	closure_init_unlocked(&c->uuid_write);
1466 	mutex_init(&c->sort_lock);
1467 
1468 	spin_lock_init(&c->sort_time.lock);
1469 	spin_lock_init(&c->btree_gc_time.lock);
1470 	spin_lock_init(&c->btree_split_time.lock);
1471 	spin_lock_init(&c->btree_read_time.lock);
1472 	spin_lock_init(&c->try_harder_time.lock);
1473 
1474 	bch_moving_init_cache_set(c);
1475 
1476 	INIT_LIST_HEAD(&c->list);
1477 	INIT_LIST_HEAD(&c->cached_devs);
1478 	INIT_LIST_HEAD(&c->btree_cache);
1479 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1480 	INIT_LIST_HEAD(&c->btree_cache_freed);
1481 	INIT_LIST_HEAD(&c->data_buckets);
1482 
1483 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1484 	if (!c->search)
1485 		goto err;
1486 
1487 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1488 		sizeof(struct btree_iter_set);
1489 
1490 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1491 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1492 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1493 				bucket_pages(c))) ||
1494 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1495 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1496 	    !(c->sort = alloc_bucket_pages(GFP_KERNEL, c)) ||
1497 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1498 	    bch_journal_alloc(c) ||
1499 	    bch_btree_cache_alloc(c) ||
1500 	    bch_open_buckets_alloc(c))
1501 		goto err;
1502 
1503 	c->congested_read_threshold_us	= 2000;
1504 	c->congested_write_threshold_us	= 20000;
1505 	c->error_limit	= 8 << IO_ERROR_SHIFT;
1506 
1507 	return c;
1508 err:
1509 	bch_cache_set_unregister(c);
1510 	return NULL;
1511 }
1512 
1513 static void run_cache_set(struct cache_set *c)
1514 {
1515 	const char *err = "cannot allocate memory";
1516 	struct cached_dev *dc, *t;
1517 	struct cache *ca;
1518 	struct closure cl;
1519 	unsigned i;
1520 
1521 	closure_init_stack(&cl);
1522 
1523 	for_each_cache(ca, c, i)
1524 		c->nbuckets += ca->sb.nbuckets;
1525 
1526 	if (CACHE_SYNC(&c->sb)) {
1527 		LIST_HEAD(journal);
1528 		struct bkey *k;
1529 		struct jset *j;
1530 
1531 		err = "cannot allocate memory for journal";
1532 		if (bch_journal_read(c, &journal))
1533 			goto err;
1534 
1535 		pr_debug("btree_journal_read() done");
1536 
1537 		err = "no journal entries found";
1538 		if (list_empty(&journal))
1539 			goto err;
1540 
1541 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1542 
1543 		err = "IO error reading priorities";
1544 		for_each_cache(ca, c, i)
1545 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1546 
1547 		/*
1548 		 * If prio_read() fails it'll call cache_set_error and we'll
1549 		 * tear everything down right away, but if we perhaps checked
1550 		 * sooner we could avoid journal replay.
1551 		 */
1552 
1553 		k = &j->btree_root;
1554 
1555 		err = "bad btree root";
1556 		if (bch_btree_ptr_invalid(c, k))
1557 			goto err;
1558 
1559 		err = "error reading btree root";
1560 		c->root = bch_btree_node_get(c, k, j->btree_level, true);
1561 		if (IS_ERR_OR_NULL(c->root))
1562 			goto err;
1563 
1564 		list_del_init(&c->root->list);
1565 		rw_unlock(true, c->root);
1566 
1567 		err = uuid_read(c, j, &cl);
1568 		if (err)
1569 			goto err;
1570 
1571 		err = "error in recovery";
1572 		if (bch_btree_check(c))
1573 			goto err;
1574 
1575 		bch_journal_mark(c, &journal);
1576 		bch_btree_gc_finish(c);
1577 		pr_debug("btree_check() done");
1578 
1579 		/*
1580 		 * bcache_journal_next() can't happen sooner, or
1581 		 * btree_gc_finish() will give spurious errors about last_gc >
1582 		 * gc_gen - this is a hack but oh well.
1583 		 */
1584 		bch_journal_next(&c->journal);
1585 
1586 		err = "error starting allocator thread";
1587 		for_each_cache(ca, c, i)
1588 			if (bch_cache_allocator_start(ca))
1589 				goto err;
1590 
1591 		/*
1592 		 * First place it's safe to allocate: btree_check() and
1593 		 * btree_gc_finish() have to run before we have buckets to
1594 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1595 		 * entry to be written so bcache_journal_next() has to be called
1596 		 * first.
1597 		 *
1598 		 * If the uuids were in the old format we have to rewrite them
1599 		 * before the next journal entry is written:
1600 		 */
1601 		if (j->version < BCACHE_JSET_VERSION_UUID)
1602 			__uuid_write(c);
1603 
1604 		bch_journal_replay(c, &journal);
1605 	} else {
1606 		pr_notice("invalidating existing data");
1607 
1608 		for_each_cache(ca, c, i) {
1609 			unsigned j;
1610 
1611 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1612 					      2, SB_JOURNAL_BUCKETS);
1613 
1614 			for (j = 0; j < ca->sb.keys; j++)
1615 				ca->sb.d[j] = ca->sb.first_bucket + j;
1616 		}
1617 
1618 		bch_btree_gc_finish(c);
1619 
1620 		err = "error starting allocator thread";
1621 		for_each_cache(ca, c, i)
1622 			if (bch_cache_allocator_start(ca))
1623 				goto err;
1624 
1625 		mutex_lock(&c->bucket_lock);
1626 		for_each_cache(ca, c, i)
1627 			bch_prio_write(ca);
1628 		mutex_unlock(&c->bucket_lock);
1629 
1630 		err = "cannot allocate new UUID bucket";
1631 		if (__uuid_write(c))
1632 			goto err;
1633 
1634 		err = "cannot allocate new btree root";
1635 		c->root = bch_btree_node_alloc(c, 0, true);
1636 		if (IS_ERR_OR_NULL(c->root))
1637 			goto err;
1638 
1639 		bkey_copy_key(&c->root->key, &MAX_KEY);
1640 		bch_btree_node_write(c->root, &cl);
1641 
1642 		bch_btree_set_root(c->root);
1643 		rw_unlock(true, c->root);
1644 
1645 		/*
1646 		 * We don't want to write the first journal entry until
1647 		 * everything is set up - fortunately journal entries won't be
1648 		 * written until the SET_CACHE_SYNC() here:
1649 		 */
1650 		SET_CACHE_SYNC(&c->sb, true);
1651 
1652 		bch_journal_next(&c->journal);
1653 		bch_journal_meta(c, &cl);
1654 	}
1655 
1656 	err = "error starting gc thread";
1657 	if (bch_gc_thread_start(c))
1658 		goto err;
1659 
1660 	closure_sync(&cl);
1661 	c->sb.last_mount = get_seconds();
1662 	bcache_write_super(c);
1663 
1664 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1665 		bch_cached_dev_attach(dc, c);
1666 
1667 	flash_devs_run(c);
1668 
1669 	return;
1670 err:
1671 	closure_sync(&cl);
1672 	/* XXX: test this, it's broken */
1673 	bch_cache_set_error(c, "%s", err);
1674 }
1675 
1676 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1677 {
1678 	return ca->sb.block_size	== c->sb.block_size &&
1679 		ca->sb.bucket_size	== c->sb.block_size &&
1680 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1681 }
1682 
1683 static const char *register_cache_set(struct cache *ca)
1684 {
1685 	char buf[12];
1686 	const char *err = "cannot allocate memory";
1687 	struct cache_set *c;
1688 
1689 	list_for_each_entry(c, &bch_cache_sets, list)
1690 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1691 			if (c->cache[ca->sb.nr_this_dev])
1692 				return "duplicate cache set member";
1693 
1694 			if (!can_attach_cache(ca, c))
1695 				return "cache sb does not match set";
1696 
1697 			if (!CACHE_SYNC(&ca->sb))
1698 				SET_CACHE_SYNC(&c->sb, false);
1699 
1700 			goto found;
1701 		}
1702 
1703 	c = bch_cache_set_alloc(&ca->sb);
1704 	if (!c)
1705 		return err;
1706 
1707 	err = "error creating kobject";
1708 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1709 	    kobject_add(&c->internal, &c->kobj, "internal"))
1710 		goto err;
1711 
1712 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1713 		goto err;
1714 
1715 	bch_debug_init_cache_set(c);
1716 
1717 	list_add(&c->list, &bch_cache_sets);
1718 found:
1719 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1720 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1721 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1722 		goto err;
1723 
1724 	if (ca->sb.seq > c->sb.seq) {
1725 		c->sb.version		= ca->sb.version;
1726 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1727 		c->sb.flags             = ca->sb.flags;
1728 		c->sb.seq		= ca->sb.seq;
1729 		pr_debug("set version = %llu", c->sb.version);
1730 	}
1731 
1732 	ca->set = c;
1733 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1734 	c->cache_by_alloc[c->caches_loaded++] = ca;
1735 
1736 	if (c->caches_loaded == c->sb.nr_in_set)
1737 		run_cache_set(c);
1738 
1739 	return NULL;
1740 err:
1741 	bch_cache_set_unregister(c);
1742 	return err;
1743 }
1744 
1745 /* Cache device */
1746 
1747 void bch_cache_release(struct kobject *kobj)
1748 {
1749 	struct cache *ca = container_of(kobj, struct cache, kobj);
1750 
1751 	if (ca->set)
1752 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1753 
1754 	bio_split_pool_free(&ca->bio_split_hook);
1755 
1756 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1757 	kfree(ca->prio_buckets);
1758 	vfree(ca->buckets);
1759 
1760 	free_heap(&ca->heap);
1761 	free_fifo(&ca->unused);
1762 	free_fifo(&ca->free_inc);
1763 	free_fifo(&ca->free);
1764 
1765 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1766 		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1767 
1768 	if (!IS_ERR_OR_NULL(ca->bdev)) {
1769 		blk_sync_queue(bdev_get_queue(ca->bdev));
1770 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1771 	}
1772 
1773 	kfree(ca);
1774 	module_put(THIS_MODULE);
1775 }
1776 
1777 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1778 {
1779 	size_t free;
1780 	struct bucket *b;
1781 
1782 	__module_get(THIS_MODULE);
1783 	kobject_init(&ca->kobj, &bch_cache_ktype);
1784 
1785 	bio_init(&ca->journal.bio);
1786 	ca->journal.bio.bi_max_vecs = 8;
1787 	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1788 
1789 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 9;
1790 	free = max_t(size_t, free, (prio_buckets(ca) + 8) * 2);
1791 
1792 	if (!init_fifo(&ca->free,	free, GFP_KERNEL) ||
1793 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1794 	    !init_fifo(&ca->unused,	free << 2, GFP_KERNEL) ||
1795 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1796 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1797 					  ca->sb.nbuckets)) ||
1798 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1799 					  2, GFP_KERNEL)) ||
1800 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)) ||
1801 	    bio_split_pool_init(&ca->bio_split_hook))
1802 		return -ENOMEM;
1803 
1804 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1805 
1806 	for_each_bucket(b, ca)
1807 		atomic_set(&b->pin, 0);
1808 
1809 	if (bch_cache_allocator_init(ca))
1810 		goto err;
1811 
1812 	return 0;
1813 err:
1814 	kobject_put(&ca->kobj);
1815 	return -ENOMEM;
1816 }
1817 
1818 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1819 				  struct block_device *bdev, struct cache *ca)
1820 {
1821 	char name[BDEVNAME_SIZE];
1822 	const char *err = "cannot allocate memory";
1823 
1824 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1825 	ca->bdev = bdev;
1826 	ca->bdev->bd_holder = ca;
1827 
1828 	bio_init(&ca->sb_bio);
1829 	ca->sb_bio.bi_max_vecs	= 1;
1830 	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1831 	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1832 	get_page(sb_page);
1833 
1834 	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1835 		ca->discard = CACHE_DISCARD(&ca->sb);
1836 
1837 	if (cache_alloc(sb, ca) != 0)
1838 		goto err;
1839 
1840 	err = "error creating kobject";
1841 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1842 		goto err;
1843 
1844 	err = register_cache_set(ca);
1845 	if (err)
1846 		goto err;
1847 
1848 	pr_info("registered cache device %s", bdevname(bdev, name));
1849 	return;
1850 err:
1851 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1852 	kobject_put(&ca->kobj);
1853 }
1854 
1855 /* Global interfaces/init */
1856 
1857 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1858 			       const char *, size_t);
1859 
1860 kobj_attribute_write(register,		register_bcache);
1861 kobj_attribute_write(register_quiet,	register_bcache);
1862 
1863 static bool bch_is_open_backing(struct block_device *bdev) {
1864 	struct cache_set *c, *tc;
1865 	struct cached_dev *dc, *t;
1866 
1867 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1868 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1869 			if (dc->bdev == bdev)
1870 				return true;
1871 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1872 		if (dc->bdev == bdev)
1873 			return true;
1874 	return false;
1875 }
1876 
1877 static bool bch_is_open_cache(struct block_device *bdev) {
1878 	struct cache_set *c, *tc;
1879 	struct cache *ca;
1880 	unsigned i;
1881 
1882 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1883 		for_each_cache(ca, c, i)
1884 			if (ca->bdev == bdev)
1885 				return true;
1886 	return false;
1887 }
1888 
1889 static bool bch_is_open(struct block_device *bdev) {
1890 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1891 }
1892 
1893 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1894 			       const char *buffer, size_t size)
1895 {
1896 	ssize_t ret = size;
1897 	const char *err = "cannot allocate memory";
1898 	char *path = NULL;
1899 	struct cache_sb *sb = NULL;
1900 	struct block_device *bdev = NULL;
1901 	struct page *sb_page = NULL;
1902 
1903 	if (!try_module_get(THIS_MODULE))
1904 		return -EBUSY;
1905 
1906 	mutex_lock(&bch_register_lock);
1907 
1908 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1909 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1910 		goto err;
1911 
1912 	err = "failed to open device";
1913 	bdev = blkdev_get_by_path(strim(path),
1914 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1915 				  sb);
1916 	if (IS_ERR(bdev)) {
1917 		if (bdev == ERR_PTR(-EBUSY)) {
1918 			bdev = lookup_bdev(strim(path));
1919 			if (!IS_ERR(bdev) && bch_is_open(bdev))
1920 				err = "device already registered";
1921 			else
1922 				err = "device busy";
1923 		}
1924 		goto err;
1925 	}
1926 
1927 	err = "failed to set blocksize";
1928 	if (set_blocksize(bdev, 4096))
1929 		goto err_close;
1930 
1931 	err = read_super(sb, bdev, &sb_page);
1932 	if (err)
1933 		goto err_close;
1934 
1935 	if (SB_IS_BDEV(sb)) {
1936 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1937 		if (!dc)
1938 			goto err_close;
1939 
1940 		register_bdev(sb, sb_page, bdev, dc);
1941 	} else {
1942 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1943 		if (!ca)
1944 			goto err_close;
1945 
1946 		register_cache(sb, sb_page, bdev, ca);
1947 	}
1948 out:
1949 	if (sb_page)
1950 		put_page(sb_page);
1951 	kfree(sb);
1952 	kfree(path);
1953 	mutex_unlock(&bch_register_lock);
1954 	module_put(THIS_MODULE);
1955 	return ret;
1956 
1957 err_close:
1958 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1959 err:
1960 	if (attr != &ksysfs_register_quiet)
1961 		pr_info("error opening %s: %s", path, err);
1962 	ret = -EINVAL;
1963 	goto out;
1964 }
1965 
1966 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1967 {
1968 	if (code == SYS_DOWN ||
1969 	    code == SYS_HALT ||
1970 	    code == SYS_POWER_OFF) {
1971 		DEFINE_WAIT(wait);
1972 		unsigned long start = jiffies;
1973 		bool stopped = false;
1974 
1975 		struct cache_set *c, *tc;
1976 		struct cached_dev *dc, *tdc;
1977 
1978 		mutex_lock(&bch_register_lock);
1979 
1980 		if (list_empty(&bch_cache_sets) &&
1981 		    list_empty(&uncached_devices))
1982 			goto out;
1983 
1984 		pr_info("Stopping all devices:");
1985 
1986 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1987 			bch_cache_set_stop(c);
1988 
1989 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
1990 			bcache_device_stop(&dc->disk);
1991 
1992 		/* What's a condition variable? */
1993 		while (1) {
1994 			long timeout = start + 2 * HZ - jiffies;
1995 
1996 			stopped = list_empty(&bch_cache_sets) &&
1997 				list_empty(&uncached_devices);
1998 
1999 			if (timeout < 0 || stopped)
2000 				break;
2001 
2002 			prepare_to_wait(&unregister_wait, &wait,
2003 					TASK_UNINTERRUPTIBLE);
2004 
2005 			mutex_unlock(&bch_register_lock);
2006 			schedule_timeout(timeout);
2007 			mutex_lock(&bch_register_lock);
2008 		}
2009 
2010 		finish_wait(&unregister_wait, &wait);
2011 
2012 		if (stopped)
2013 			pr_info("All devices stopped");
2014 		else
2015 			pr_notice("Timeout waiting for devices to be closed");
2016 out:
2017 		mutex_unlock(&bch_register_lock);
2018 	}
2019 
2020 	return NOTIFY_DONE;
2021 }
2022 
2023 static struct notifier_block reboot = {
2024 	.notifier_call	= bcache_reboot,
2025 	.priority	= INT_MAX, /* before any real devices */
2026 };
2027 
2028 static void bcache_exit(void)
2029 {
2030 	bch_debug_exit();
2031 	bch_request_exit();
2032 	bch_btree_exit();
2033 	if (bcache_kobj)
2034 		kobject_put(bcache_kobj);
2035 	if (bcache_wq)
2036 		destroy_workqueue(bcache_wq);
2037 	unregister_blkdev(bcache_major, "bcache");
2038 	unregister_reboot_notifier(&reboot);
2039 }
2040 
2041 static int __init bcache_init(void)
2042 {
2043 	static const struct attribute *files[] = {
2044 		&ksysfs_register.attr,
2045 		&ksysfs_register_quiet.attr,
2046 		NULL
2047 	};
2048 
2049 	mutex_init(&bch_register_lock);
2050 	init_waitqueue_head(&unregister_wait);
2051 	register_reboot_notifier(&reboot);
2052 	closure_debug_init();
2053 
2054 	bcache_major = register_blkdev(0, "bcache");
2055 	if (bcache_major < 0)
2056 		return bcache_major;
2057 
2058 	if (!(bcache_wq = create_workqueue("bcache")) ||
2059 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2060 	    sysfs_create_files(bcache_kobj, files) ||
2061 	    bch_btree_init() ||
2062 	    bch_request_init() ||
2063 	    bch_debug_init(bcache_kobj))
2064 		goto err;
2065 
2066 	return 0;
2067 err:
2068 	bcache_exit();
2069 	return -ENOMEM;
2070 }
2071 
2072 module_exit(bcache_exit);
2073 module_init(bcache_init);
2074