xref: /openbmc/linux/drivers/md/bcache/super.c (revision ba61bb17)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 static struct kobject *bcache_kobj;
41 struct mutex bch_register_lock;
42 LIST_HEAD(bch_cache_sets);
43 static LIST_HEAD(uncached_devices);
44 
45 static int bcache_major;
46 static DEFINE_IDA(bcache_device_idx);
47 static wait_queue_head_t unregister_wait;
48 struct workqueue_struct *bcache_wq;
49 
50 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
51 /* limitation of partitions number on single bcache device */
52 #define BCACHE_MINORS		128
53 /* limitation of bcache devices number on single system */
54 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
55 
56 /* Superblock */
57 
58 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
59 			      struct page **res)
60 {
61 	const char *err;
62 	struct cache_sb *s;
63 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
64 	unsigned i;
65 
66 	if (!bh)
67 		return "IO error";
68 
69 	s = (struct cache_sb *) bh->b_data;
70 
71 	sb->offset		= le64_to_cpu(s->offset);
72 	sb->version		= le64_to_cpu(s->version);
73 
74 	memcpy(sb->magic,	s->magic, 16);
75 	memcpy(sb->uuid,	s->uuid, 16);
76 	memcpy(sb->set_uuid,	s->set_uuid, 16);
77 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
78 
79 	sb->flags		= le64_to_cpu(s->flags);
80 	sb->seq			= le64_to_cpu(s->seq);
81 	sb->last_mount		= le32_to_cpu(s->last_mount);
82 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
83 	sb->keys		= le16_to_cpu(s->keys);
84 
85 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
86 		sb->d[i] = le64_to_cpu(s->d[i]);
87 
88 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
89 		 sb->version, sb->flags, sb->seq, sb->keys);
90 
91 	err = "Not a bcache superblock";
92 	if (sb->offset != SB_SECTOR)
93 		goto err;
94 
95 	if (memcmp(sb->magic, bcache_magic, 16))
96 		goto err;
97 
98 	err = "Too many journal buckets";
99 	if (sb->keys > SB_JOURNAL_BUCKETS)
100 		goto err;
101 
102 	err = "Bad checksum";
103 	if (s->csum != csum_set(s))
104 		goto err;
105 
106 	err = "Bad UUID";
107 	if (bch_is_zero(sb->uuid, 16))
108 		goto err;
109 
110 	sb->block_size	= le16_to_cpu(s->block_size);
111 
112 	err = "Superblock block size smaller than device block size";
113 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
114 		goto err;
115 
116 	switch (sb->version) {
117 	case BCACHE_SB_VERSION_BDEV:
118 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
119 		break;
120 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
121 		sb->data_offset	= le64_to_cpu(s->data_offset);
122 
123 		err = "Bad data offset";
124 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
125 			goto err;
126 
127 		break;
128 	case BCACHE_SB_VERSION_CDEV:
129 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
130 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
131 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
132 
133 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
134 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
135 
136 		err = "Too many buckets";
137 		if (sb->nbuckets > LONG_MAX)
138 			goto err;
139 
140 		err = "Not enough buckets";
141 		if (sb->nbuckets < 1 << 7)
142 			goto err;
143 
144 		err = "Bad block/bucket size";
145 		if (!is_power_of_2(sb->block_size) ||
146 		    sb->block_size > PAGE_SECTORS ||
147 		    !is_power_of_2(sb->bucket_size) ||
148 		    sb->bucket_size < PAGE_SECTORS)
149 			goto err;
150 
151 		err = "Invalid superblock: device too small";
152 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
153 			goto err;
154 
155 		err = "Bad UUID";
156 		if (bch_is_zero(sb->set_uuid, 16))
157 			goto err;
158 
159 		err = "Bad cache device number in set";
160 		if (!sb->nr_in_set ||
161 		    sb->nr_in_set <= sb->nr_this_dev ||
162 		    sb->nr_in_set > MAX_CACHES_PER_SET)
163 			goto err;
164 
165 		err = "Journal buckets not sequential";
166 		for (i = 0; i < sb->keys; i++)
167 			if (sb->d[i] != sb->first_bucket + i)
168 				goto err;
169 
170 		err = "Too many journal buckets";
171 		if (sb->first_bucket + sb->keys > sb->nbuckets)
172 			goto err;
173 
174 		err = "Invalid superblock: first bucket comes before end of super";
175 		if (sb->first_bucket * sb->bucket_size < 16)
176 			goto err;
177 
178 		break;
179 	default:
180 		err = "Unsupported superblock version";
181 		goto err;
182 	}
183 
184 	sb->last_mount = get_seconds();
185 	err = NULL;
186 
187 	get_page(bh->b_page);
188 	*res = bh->b_page;
189 err:
190 	put_bh(bh);
191 	return err;
192 }
193 
194 static void write_bdev_super_endio(struct bio *bio)
195 {
196 	struct cached_dev *dc = bio->bi_private;
197 	/* XXX: error checking */
198 
199 	closure_put(&dc->sb_write);
200 }
201 
202 static void __write_super(struct cache_sb *sb, struct bio *bio)
203 {
204 	struct cache_sb *out = page_address(bio_first_page_all(bio));
205 	unsigned i;
206 
207 	bio->bi_iter.bi_sector	= SB_SECTOR;
208 	bio->bi_iter.bi_size	= SB_SIZE;
209 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
210 	bch_bio_map(bio, NULL);
211 
212 	out->offset		= cpu_to_le64(sb->offset);
213 	out->version		= cpu_to_le64(sb->version);
214 
215 	memcpy(out->uuid,	sb->uuid, 16);
216 	memcpy(out->set_uuid,	sb->set_uuid, 16);
217 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
218 
219 	out->flags		= cpu_to_le64(sb->flags);
220 	out->seq		= cpu_to_le64(sb->seq);
221 
222 	out->last_mount		= cpu_to_le32(sb->last_mount);
223 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
224 	out->keys		= cpu_to_le16(sb->keys);
225 
226 	for (i = 0; i < sb->keys; i++)
227 		out->d[i] = cpu_to_le64(sb->d[i]);
228 
229 	out->csum = csum_set(out);
230 
231 	pr_debug("ver %llu, flags %llu, seq %llu",
232 		 sb->version, sb->flags, sb->seq);
233 
234 	submit_bio(bio);
235 }
236 
237 static void bch_write_bdev_super_unlock(struct closure *cl)
238 {
239 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
240 
241 	up(&dc->sb_write_mutex);
242 }
243 
244 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
245 {
246 	struct closure *cl = &dc->sb_write;
247 	struct bio *bio = &dc->sb_bio;
248 
249 	down(&dc->sb_write_mutex);
250 	closure_init(cl, parent);
251 
252 	bio_reset(bio);
253 	bio_set_dev(bio, dc->bdev);
254 	bio->bi_end_io	= write_bdev_super_endio;
255 	bio->bi_private = dc;
256 
257 	closure_get(cl);
258 	/* I/O request sent to backing device */
259 	__write_super(&dc->sb, bio);
260 
261 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
262 }
263 
264 static void write_super_endio(struct bio *bio)
265 {
266 	struct cache *ca = bio->bi_private;
267 
268 	/* is_read = 0 */
269 	bch_count_io_errors(ca, bio->bi_status, 0,
270 			    "writing superblock");
271 	closure_put(&ca->set->sb_write);
272 }
273 
274 static void bcache_write_super_unlock(struct closure *cl)
275 {
276 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
277 
278 	up(&c->sb_write_mutex);
279 }
280 
281 void bcache_write_super(struct cache_set *c)
282 {
283 	struct closure *cl = &c->sb_write;
284 	struct cache *ca;
285 	unsigned i;
286 
287 	down(&c->sb_write_mutex);
288 	closure_init(cl, &c->cl);
289 
290 	c->sb.seq++;
291 
292 	for_each_cache(ca, c, i) {
293 		struct bio *bio = &ca->sb_bio;
294 
295 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
296 		ca->sb.seq		= c->sb.seq;
297 		ca->sb.last_mount	= c->sb.last_mount;
298 
299 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
300 
301 		bio_reset(bio);
302 		bio_set_dev(bio, ca->bdev);
303 		bio->bi_end_io	= write_super_endio;
304 		bio->bi_private = ca;
305 
306 		closure_get(cl);
307 		__write_super(&ca->sb, bio);
308 	}
309 
310 	closure_return_with_destructor(cl, bcache_write_super_unlock);
311 }
312 
313 /* UUID io */
314 
315 static void uuid_endio(struct bio *bio)
316 {
317 	struct closure *cl = bio->bi_private;
318 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
319 
320 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
321 	bch_bbio_free(bio, c);
322 	closure_put(cl);
323 }
324 
325 static void uuid_io_unlock(struct closure *cl)
326 {
327 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
328 
329 	up(&c->uuid_write_mutex);
330 }
331 
332 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
333 		    struct bkey *k, struct closure *parent)
334 {
335 	struct closure *cl = &c->uuid_write;
336 	struct uuid_entry *u;
337 	unsigned i;
338 	char buf[80];
339 
340 	BUG_ON(!parent);
341 	down(&c->uuid_write_mutex);
342 	closure_init(cl, parent);
343 
344 	for (i = 0; i < KEY_PTRS(k); i++) {
345 		struct bio *bio = bch_bbio_alloc(c);
346 
347 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
348 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
349 
350 		bio->bi_end_io	= uuid_endio;
351 		bio->bi_private = cl;
352 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
353 		bch_bio_map(bio, c->uuids);
354 
355 		bch_submit_bbio(bio, c, k, i);
356 
357 		if (op != REQ_OP_WRITE)
358 			break;
359 	}
360 
361 	bch_extent_to_text(buf, sizeof(buf), k);
362 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
363 
364 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
365 		if (!bch_is_zero(u->uuid, 16))
366 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
367 				 u - c->uuids, u->uuid, u->label,
368 				 u->first_reg, u->last_reg, u->invalidated);
369 
370 	closure_return_with_destructor(cl, uuid_io_unlock);
371 }
372 
373 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
374 {
375 	struct bkey *k = &j->uuid_bucket;
376 
377 	if (__bch_btree_ptr_invalid(c, k))
378 		return "bad uuid pointer";
379 
380 	bkey_copy(&c->uuid_bucket, k);
381 	uuid_io(c, REQ_OP_READ, 0, k, cl);
382 
383 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
384 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
385 		struct uuid_entry	*u1 = (void *) c->uuids;
386 		int i;
387 
388 		closure_sync(cl);
389 
390 		/*
391 		 * Since the new uuid entry is bigger than the old, we have to
392 		 * convert starting at the highest memory address and work down
393 		 * in order to do it in place
394 		 */
395 
396 		for (i = c->nr_uuids - 1;
397 		     i >= 0;
398 		     --i) {
399 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
400 			memcpy(u1[i].label,	u0[i].label, 32);
401 
402 			u1[i].first_reg		= u0[i].first_reg;
403 			u1[i].last_reg		= u0[i].last_reg;
404 			u1[i].invalidated	= u0[i].invalidated;
405 
406 			u1[i].flags	= 0;
407 			u1[i].sectors	= 0;
408 		}
409 	}
410 
411 	return NULL;
412 }
413 
414 static int __uuid_write(struct cache_set *c)
415 {
416 	BKEY_PADDED(key) k;
417 	struct closure cl;
418 	closure_init_stack(&cl);
419 
420 	lockdep_assert_held(&bch_register_lock);
421 
422 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
423 		return 1;
424 
425 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
426 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
427 	closure_sync(&cl);
428 
429 	bkey_copy(&c->uuid_bucket, &k.key);
430 	bkey_put(c, &k.key);
431 	return 0;
432 }
433 
434 int bch_uuid_write(struct cache_set *c)
435 {
436 	int ret = __uuid_write(c);
437 
438 	if (!ret)
439 		bch_journal_meta(c, NULL);
440 
441 	return ret;
442 }
443 
444 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
445 {
446 	struct uuid_entry *u;
447 
448 	for (u = c->uuids;
449 	     u < c->uuids + c->nr_uuids; u++)
450 		if (!memcmp(u->uuid, uuid, 16))
451 			return u;
452 
453 	return NULL;
454 }
455 
456 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
457 {
458 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
459 	return uuid_find(c, zero_uuid);
460 }
461 
462 /*
463  * Bucket priorities/gens:
464  *
465  * For each bucket, we store on disk its
466    * 8 bit gen
467    * 16 bit priority
468  *
469  * See alloc.c for an explanation of the gen. The priority is used to implement
470  * lru (and in the future other) cache replacement policies; for most purposes
471  * it's just an opaque integer.
472  *
473  * The gens and the priorities don't have a whole lot to do with each other, and
474  * it's actually the gens that must be written out at specific times - it's no
475  * big deal if the priorities don't get written, if we lose them we just reuse
476  * buckets in suboptimal order.
477  *
478  * On disk they're stored in a packed array, and in as many buckets are required
479  * to fit them all. The buckets we use to store them form a list; the journal
480  * header points to the first bucket, the first bucket points to the second
481  * bucket, et cetera.
482  *
483  * This code is used by the allocation code; periodically (whenever it runs out
484  * of buckets to allocate from) the allocation code will invalidate some
485  * buckets, but it can't use those buckets until their new gens are safely on
486  * disk.
487  */
488 
489 static void prio_endio(struct bio *bio)
490 {
491 	struct cache *ca = bio->bi_private;
492 
493 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
494 	bch_bbio_free(bio, ca->set);
495 	closure_put(&ca->prio);
496 }
497 
498 static void prio_io(struct cache *ca, uint64_t bucket, int op,
499 		    unsigned long op_flags)
500 {
501 	struct closure *cl = &ca->prio;
502 	struct bio *bio = bch_bbio_alloc(ca->set);
503 
504 	closure_init_stack(cl);
505 
506 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
507 	bio_set_dev(bio, ca->bdev);
508 	bio->bi_iter.bi_size	= bucket_bytes(ca);
509 
510 	bio->bi_end_io	= prio_endio;
511 	bio->bi_private = ca;
512 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
513 	bch_bio_map(bio, ca->disk_buckets);
514 
515 	closure_bio_submit(ca->set, bio, &ca->prio);
516 	closure_sync(cl);
517 }
518 
519 void bch_prio_write(struct cache *ca)
520 {
521 	int i;
522 	struct bucket *b;
523 	struct closure cl;
524 
525 	closure_init_stack(&cl);
526 
527 	lockdep_assert_held(&ca->set->bucket_lock);
528 
529 	ca->disk_buckets->seq++;
530 
531 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
532 			&ca->meta_sectors_written);
533 
534 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
535 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
536 
537 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
538 		long bucket;
539 		struct prio_set *p = ca->disk_buckets;
540 		struct bucket_disk *d = p->data;
541 		struct bucket_disk *end = d + prios_per_bucket(ca);
542 
543 		for (b = ca->buckets + i * prios_per_bucket(ca);
544 		     b < ca->buckets + ca->sb.nbuckets && d < end;
545 		     b++, d++) {
546 			d->prio = cpu_to_le16(b->prio);
547 			d->gen = b->gen;
548 		}
549 
550 		p->next_bucket	= ca->prio_buckets[i + 1];
551 		p->magic	= pset_magic(&ca->sb);
552 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
553 
554 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
555 		BUG_ON(bucket == -1);
556 
557 		mutex_unlock(&ca->set->bucket_lock);
558 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
559 		mutex_lock(&ca->set->bucket_lock);
560 
561 		ca->prio_buckets[i] = bucket;
562 		atomic_dec_bug(&ca->buckets[bucket].pin);
563 	}
564 
565 	mutex_unlock(&ca->set->bucket_lock);
566 
567 	bch_journal_meta(ca->set, &cl);
568 	closure_sync(&cl);
569 
570 	mutex_lock(&ca->set->bucket_lock);
571 
572 	/*
573 	 * Don't want the old priorities to get garbage collected until after we
574 	 * finish writing the new ones, and they're journalled
575 	 */
576 	for (i = 0; i < prio_buckets(ca); i++) {
577 		if (ca->prio_last_buckets[i])
578 			__bch_bucket_free(ca,
579 				&ca->buckets[ca->prio_last_buckets[i]]);
580 
581 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
582 	}
583 }
584 
585 static void prio_read(struct cache *ca, uint64_t bucket)
586 {
587 	struct prio_set *p = ca->disk_buckets;
588 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
589 	struct bucket *b;
590 	unsigned bucket_nr = 0;
591 
592 	for (b = ca->buckets;
593 	     b < ca->buckets + ca->sb.nbuckets;
594 	     b++, d++) {
595 		if (d == end) {
596 			ca->prio_buckets[bucket_nr] = bucket;
597 			ca->prio_last_buckets[bucket_nr] = bucket;
598 			bucket_nr++;
599 
600 			prio_io(ca, bucket, REQ_OP_READ, 0);
601 
602 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
603 				pr_warn("bad csum reading priorities");
604 
605 			if (p->magic != pset_magic(&ca->sb))
606 				pr_warn("bad magic reading priorities");
607 
608 			bucket = p->next_bucket;
609 			d = p->data;
610 		}
611 
612 		b->prio = le16_to_cpu(d->prio);
613 		b->gen = b->last_gc = d->gen;
614 	}
615 }
616 
617 /* Bcache device */
618 
619 static int open_dev(struct block_device *b, fmode_t mode)
620 {
621 	struct bcache_device *d = b->bd_disk->private_data;
622 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
623 		return -ENXIO;
624 
625 	closure_get(&d->cl);
626 	return 0;
627 }
628 
629 static void release_dev(struct gendisk *b, fmode_t mode)
630 {
631 	struct bcache_device *d = b->private_data;
632 	closure_put(&d->cl);
633 }
634 
635 static int ioctl_dev(struct block_device *b, fmode_t mode,
636 		     unsigned int cmd, unsigned long arg)
637 {
638 	struct bcache_device *d = b->bd_disk->private_data;
639 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
640 
641 	if (dc->io_disable)
642 		return -EIO;
643 
644 	return d->ioctl(d, mode, cmd, arg);
645 }
646 
647 static const struct block_device_operations bcache_ops = {
648 	.open		= open_dev,
649 	.release	= release_dev,
650 	.ioctl		= ioctl_dev,
651 	.owner		= THIS_MODULE,
652 };
653 
654 void bcache_device_stop(struct bcache_device *d)
655 {
656 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
657 		closure_queue(&d->cl);
658 }
659 
660 static void bcache_device_unlink(struct bcache_device *d)
661 {
662 	lockdep_assert_held(&bch_register_lock);
663 
664 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
665 		unsigned i;
666 		struct cache *ca;
667 
668 		sysfs_remove_link(&d->c->kobj, d->name);
669 		sysfs_remove_link(&d->kobj, "cache");
670 
671 		for_each_cache(ca, d->c, i)
672 			bd_unlink_disk_holder(ca->bdev, d->disk);
673 	}
674 }
675 
676 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
677 			       const char *name)
678 {
679 	unsigned i;
680 	struct cache *ca;
681 
682 	for_each_cache(ca, d->c, i)
683 		bd_link_disk_holder(ca->bdev, d->disk);
684 
685 	snprintf(d->name, BCACHEDEVNAME_SIZE,
686 		 "%s%u", name, d->id);
687 
688 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
689 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
690 	     "Couldn't create device <-> cache set symlinks");
691 
692 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
693 }
694 
695 static void bcache_device_detach(struct bcache_device *d)
696 {
697 	lockdep_assert_held(&bch_register_lock);
698 
699 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
700 		struct uuid_entry *u = d->c->uuids + d->id;
701 
702 		SET_UUID_FLASH_ONLY(u, 0);
703 		memcpy(u->uuid, invalid_uuid, 16);
704 		u->invalidated = cpu_to_le32(get_seconds());
705 		bch_uuid_write(d->c);
706 	}
707 
708 	bcache_device_unlink(d);
709 
710 	d->c->devices[d->id] = NULL;
711 	closure_put(&d->c->caching);
712 	d->c = NULL;
713 }
714 
715 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
716 				 unsigned id)
717 {
718 	d->id = id;
719 	d->c = c;
720 	c->devices[id] = d;
721 
722 	if (id >= c->devices_max_used)
723 		c->devices_max_used = id + 1;
724 
725 	closure_get(&c->caching);
726 }
727 
728 static inline int first_minor_to_idx(int first_minor)
729 {
730 	return (first_minor/BCACHE_MINORS);
731 }
732 
733 static inline int idx_to_first_minor(int idx)
734 {
735 	return (idx * BCACHE_MINORS);
736 }
737 
738 static void bcache_device_free(struct bcache_device *d)
739 {
740 	lockdep_assert_held(&bch_register_lock);
741 
742 	pr_info("%s stopped", d->disk->disk_name);
743 
744 	if (d->c)
745 		bcache_device_detach(d);
746 	if (d->disk && d->disk->flags & GENHD_FL_UP)
747 		del_gendisk(d->disk);
748 	if (d->disk && d->disk->queue)
749 		blk_cleanup_queue(d->disk->queue);
750 	if (d->disk) {
751 		ida_simple_remove(&bcache_device_idx,
752 				  first_minor_to_idx(d->disk->first_minor));
753 		put_disk(d->disk);
754 	}
755 
756 	bioset_exit(&d->bio_split);
757 	kvfree(d->full_dirty_stripes);
758 	kvfree(d->stripe_sectors_dirty);
759 
760 	closure_debug_destroy(&d->cl);
761 }
762 
763 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
764 			      sector_t sectors)
765 {
766 	struct request_queue *q;
767 	const size_t max_stripes = min_t(size_t, INT_MAX,
768 					 SIZE_MAX / sizeof(atomic_t));
769 	size_t n;
770 	int idx;
771 
772 	if (!d->stripe_size)
773 		d->stripe_size = 1 << 31;
774 
775 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
776 
777 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
778 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
779 			(unsigned)d->nr_stripes);
780 		return -ENOMEM;
781 	}
782 
783 	n = d->nr_stripes * sizeof(atomic_t);
784 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
785 	if (!d->stripe_sectors_dirty)
786 		return -ENOMEM;
787 
788 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
789 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
790 	if (!d->full_dirty_stripes)
791 		return -ENOMEM;
792 
793 	idx = ida_simple_get(&bcache_device_idx, 0,
794 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
795 	if (idx < 0)
796 		return idx;
797 
798 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
799 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
800 	    !(d->disk = alloc_disk(BCACHE_MINORS))) {
801 		ida_simple_remove(&bcache_device_idx, idx);
802 		return -ENOMEM;
803 	}
804 
805 	set_capacity(d->disk, sectors);
806 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
807 
808 	d->disk->major		= bcache_major;
809 	d->disk->first_minor	= idx_to_first_minor(idx);
810 	d->disk->fops		= &bcache_ops;
811 	d->disk->private_data	= d;
812 
813 	q = blk_alloc_queue(GFP_KERNEL);
814 	if (!q)
815 		return -ENOMEM;
816 
817 	blk_queue_make_request(q, NULL);
818 	d->disk->queue			= q;
819 	q->queuedata			= d;
820 	q->backing_dev_info->congested_data = d;
821 	q->limits.max_hw_sectors	= UINT_MAX;
822 	q->limits.max_sectors		= UINT_MAX;
823 	q->limits.max_segment_size	= UINT_MAX;
824 	q->limits.max_segments		= BIO_MAX_PAGES;
825 	blk_queue_max_discard_sectors(q, UINT_MAX);
826 	q->limits.discard_granularity	= 512;
827 	q->limits.io_min		= block_size;
828 	q->limits.logical_block_size	= block_size;
829 	q->limits.physical_block_size	= block_size;
830 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
831 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
832 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
833 
834 	blk_queue_write_cache(q, true, true);
835 
836 	return 0;
837 }
838 
839 /* Cached device */
840 
841 static void calc_cached_dev_sectors(struct cache_set *c)
842 {
843 	uint64_t sectors = 0;
844 	struct cached_dev *dc;
845 
846 	list_for_each_entry(dc, &c->cached_devs, list)
847 		sectors += bdev_sectors(dc->bdev);
848 
849 	c->cached_dev_sectors = sectors;
850 }
851 
852 #define BACKING_DEV_OFFLINE_TIMEOUT 5
853 static int cached_dev_status_update(void *arg)
854 {
855 	struct cached_dev *dc = arg;
856 	struct request_queue *q;
857 
858 	/*
859 	 * If this delayed worker is stopping outside, directly quit here.
860 	 * dc->io_disable might be set via sysfs interface, so check it
861 	 * here too.
862 	 */
863 	while (!kthread_should_stop() && !dc->io_disable) {
864 		q = bdev_get_queue(dc->bdev);
865 		if (blk_queue_dying(q))
866 			dc->offline_seconds++;
867 		else
868 			dc->offline_seconds = 0;
869 
870 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
871 			pr_err("%s: device offline for %d seconds",
872 			       dc->backing_dev_name,
873 			       BACKING_DEV_OFFLINE_TIMEOUT);
874 			pr_err("%s: disable I/O request due to backing "
875 			       "device offline", dc->disk.name);
876 			dc->io_disable = true;
877 			/* let others know earlier that io_disable is true */
878 			smp_mb();
879 			bcache_device_stop(&dc->disk);
880 			break;
881 		}
882 		schedule_timeout_interruptible(HZ);
883 	}
884 
885 	wait_for_kthread_stop();
886 	return 0;
887 }
888 
889 
890 void bch_cached_dev_run(struct cached_dev *dc)
891 {
892 	struct bcache_device *d = &dc->disk;
893 	char buf[SB_LABEL_SIZE + 1];
894 	char *env[] = {
895 		"DRIVER=bcache",
896 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
897 		NULL,
898 		NULL,
899 	};
900 
901 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
902 	buf[SB_LABEL_SIZE] = '\0';
903 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
904 
905 	if (atomic_xchg(&dc->running, 1)) {
906 		kfree(env[1]);
907 		kfree(env[2]);
908 		return;
909 	}
910 
911 	if (!d->c &&
912 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
913 		struct closure cl;
914 		closure_init_stack(&cl);
915 
916 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
917 		bch_write_bdev_super(dc, &cl);
918 		closure_sync(&cl);
919 	}
920 
921 	add_disk(d->disk);
922 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
923 	/* won't show up in the uevent file, use udevadm monitor -e instead
924 	 * only class / kset properties are persistent */
925 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
926 	kfree(env[1]);
927 	kfree(env[2]);
928 
929 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
930 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
931 		pr_debug("error creating sysfs link");
932 
933 	dc->status_update_thread = kthread_run(cached_dev_status_update,
934 					       dc, "bcache_status_update");
935 	if (IS_ERR(dc->status_update_thread)) {
936 		pr_warn("failed to create bcache_status_update kthread, "
937 			"continue to run without monitoring backing "
938 			"device status");
939 	}
940 }
941 
942 /*
943  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
944  * work dc->writeback_rate_update is running. Wait until the routine
945  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
946  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
947  * seconds, give up waiting here and continue to cancel it too.
948  */
949 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
950 {
951 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
952 
953 	do {
954 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
955 			      &dc->disk.flags))
956 			break;
957 		time_out--;
958 		schedule_timeout_interruptible(1);
959 	} while (time_out > 0);
960 
961 	if (time_out == 0)
962 		pr_warn("give up waiting for dc->writeback_write_update to quit");
963 
964 	cancel_delayed_work_sync(&dc->writeback_rate_update);
965 }
966 
967 static void cached_dev_detach_finish(struct work_struct *w)
968 {
969 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
970 	struct closure cl;
971 	closure_init_stack(&cl);
972 
973 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
974 	BUG_ON(refcount_read(&dc->count));
975 
976 	mutex_lock(&bch_register_lock);
977 
978 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
979 		cancel_writeback_rate_update_dwork(dc);
980 
981 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
982 		kthread_stop(dc->writeback_thread);
983 		dc->writeback_thread = NULL;
984 	}
985 
986 	memset(&dc->sb.set_uuid, 0, 16);
987 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
988 
989 	bch_write_bdev_super(dc, &cl);
990 	closure_sync(&cl);
991 
992 	bcache_device_detach(&dc->disk);
993 	list_move(&dc->list, &uncached_devices);
994 
995 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
996 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
997 
998 	mutex_unlock(&bch_register_lock);
999 
1000 	pr_info("Caching disabled for %s", dc->backing_dev_name);
1001 
1002 	/* Drop ref we took in cached_dev_detach() */
1003 	closure_put(&dc->disk.cl);
1004 }
1005 
1006 void bch_cached_dev_detach(struct cached_dev *dc)
1007 {
1008 	lockdep_assert_held(&bch_register_lock);
1009 
1010 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1011 		return;
1012 
1013 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1014 		return;
1015 
1016 	/*
1017 	 * Block the device from being closed and freed until we're finished
1018 	 * detaching
1019 	 */
1020 	closure_get(&dc->disk.cl);
1021 
1022 	bch_writeback_queue(dc);
1023 
1024 	cached_dev_put(dc);
1025 }
1026 
1027 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1028 			  uint8_t *set_uuid)
1029 {
1030 	uint32_t rtime = cpu_to_le32(get_seconds());
1031 	struct uuid_entry *u;
1032 	struct cached_dev *exist_dc, *t;
1033 
1034 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1035 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1036 		return -ENOENT;
1037 
1038 	if (dc->disk.c) {
1039 		pr_err("Can't attach %s: already attached",
1040 		       dc->backing_dev_name);
1041 		return -EINVAL;
1042 	}
1043 
1044 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1045 		pr_err("Can't attach %s: shutting down",
1046 		       dc->backing_dev_name);
1047 		return -EINVAL;
1048 	}
1049 
1050 	if (dc->sb.block_size < c->sb.block_size) {
1051 		/* Will die */
1052 		pr_err("Couldn't attach %s: block size less than set's block size",
1053 		       dc->backing_dev_name);
1054 		return -EINVAL;
1055 	}
1056 
1057 	/* Check whether already attached */
1058 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1059 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1060 			pr_err("Tried to attach %s but duplicate UUID already attached",
1061 				dc->backing_dev_name);
1062 
1063 			return -EINVAL;
1064 		}
1065 	}
1066 
1067 	u = uuid_find(c, dc->sb.uuid);
1068 
1069 	if (u &&
1070 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1071 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1072 		memcpy(u->uuid, invalid_uuid, 16);
1073 		u->invalidated = cpu_to_le32(get_seconds());
1074 		u = NULL;
1075 	}
1076 
1077 	if (!u) {
1078 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1079 			pr_err("Couldn't find uuid for %s in set",
1080 			       dc->backing_dev_name);
1081 			return -ENOENT;
1082 		}
1083 
1084 		u = uuid_find_empty(c);
1085 		if (!u) {
1086 			pr_err("Not caching %s, no room for UUID",
1087 			       dc->backing_dev_name);
1088 			return -EINVAL;
1089 		}
1090 	}
1091 
1092 	/* Deadlocks since we're called via sysfs...
1093 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1094 	 */
1095 
1096 	if (bch_is_zero(u->uuid, 16)) {
1097 		struct closure cl;
1098 		closure_init_stack(&cl);
1099 
1100 		memcpy(u->uuid, dc->sb.uuid, 16);
1101 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1102 		u->first_reg = u->last_reg = rtime;
1103 		bch_uuid_write(c);
1104 
1105 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1106 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1107 
1108 		bch_write_bdev_super(dc, &cl);
1109 		closure_sync(&cl);
1110 	} else {
1111 		u->last_reg = rtime;
1112 		bch_uuid_write(c);
1113 	}
1114 
1115 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1116 	list_move(&dc->list, &c->cached_devs);
1117 	calc_cached_dev_sectors(c);
1118 
1119 	smp_wmb();
1120 	/*
1121 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1122 	 * cached_dev_get()
1123 	 */
1124 	refcount_set(&dc->count, 1);
1125 
1126 	/* Block writeback thread, but spawn it */
1127 	down_write(&dc->writeback_lock);
1128 	if (bch_cached_dev_writeback_start(dc)) {
1129 		up_write(&dc->writeback_lock);
1130 		return -ENOMEM;
1131 	}
1132 
1133 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1134 		bch_sectors_dirty_init(&dc->disk);
1135 		atomic_set(&dc->has_dirty, 1);
1136 		bch_writeback_queue(dc);
1137 	}
1138 
1139 	bch_cached_dev_run(dc);
1140 	bcache_device_link(&dc->disk, c, "bdev");
1141 
1142 	/* Allow the writeback thread to proceed */
1143 	up_write(&dc->writeback_lock);
1144 
1145 	pr_info("Caching %s as %s on set %pU",
1146 		dc->backing_dev_name,
1147 		dc->disk.disk->disk_name,
1148 		dc->disk.c->sb.set_uuid);
1149 	return 0;
1150 }
1151 
1152 void bch_cached_dev_release(struct kobject *kobj)
1153 {
1154 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1155 					     disk.kobj);
1156 	kfree(dc);
1157 	module_put(THIS_MODULE);
1158 }
1159 
1160 static void cached_dev_free(struct closure *cl)
1161 {
1162 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1163 
1164 	mutex_lock(&bch_register_lock);
1165 
1166 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1167 		cancel_writeback_rate_update_dwork(dc);
1168 
1169 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1170 		kthread_stop(dc->writeback_thread);
1171 	if (dc->writeback_write_wq)
1172 		destroy_workqueue(dc->writeback_write_wq);
1173 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1174 		kthread_stop(dc->status_update_thread);
1175 
1176 	if (atomic_read(&dc->running))
1177 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1178 	bcache_device_free(&dc->disk);
1179 	list_del(&dc->list);
1180 
1181 	mutex_unlock(&bch_register_lock);
1182 
1183 	if (!IS_ERR_OR_NULL(dc->bdev))
1184 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1185 
1186 	wake_up(&unregister_wait);
1187 
1188 	kobject_put(&dc->disk.kobj);
1189 }
1190 
1191 static void cached_dev_flush(struct closure *cl)
1192 {
1193 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1194 	struct bcache_device *d = &dc->disk;
1195 
1196 	mutex_lock(&bch_register_lock);
1197 	bcache_device_unlink(d);
1198 	mutex_unlock(&bch_register_lock);
1199 
1200 	bch_cache_accounting_destroy(&dc->accounting);
1201 	kobject_del(&d->kobj);
1202 
1203 	continue_at(cl, cached_dev_free, system_wq);
1204 }
1205 
1206 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1207 {
1208 	int ret;
1209 	struct io *io;
1210 	struct request_queue *q = bdev_get_queue(dc->bdev);
1211 
1212 	__module_get(THIS_MODULE);
1213 	INIT_LIST_HEAD(&dc->list);
1214 	closure_init(&dc->disk.cl, NULL);
1215 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1216 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1217 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1218 	sema_init(&dc->sb_write_mutex, 1);
1219 	INIT_LIST_HEAD(&dc->io_lru);
1220 	spin_lock_init(&dc->io_lock);
1221 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1222 
1223 	dc->sequential_cutoff		= 4 << 20;
1224 
1225 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1226 		list_add(&io->lru, &dc->io_lru);
1227 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1228 	}
1229 
1230 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1231 
1232 	if (dc->disk.stripe_size)
1233 		dc->partial_stripes_expensive =
1234 			q->limits.raid_partial_stripes_expensive;
1235 
1236 	ret = bcache_device_init(&dc->disk, block_size,
1237 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1238 	if (ret)
1239 		return ret;
1240 
1241 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1242 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1243 		    q->backing_dev_info->ra_pages);
1244 
1245 	atomic_set(&dc->io_errors, 0);
1246 	dc->io_disable = false;
1247 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1248 	/* default to auto */
1249 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1250 
1251 	bch_cached_dev_request_init(dc);
1252 	bch_cached_dev_writeback_init(dc);
1253 	return 0;
1254 }
1255 
1256 /* Cached device - bcache superblock */
1257 
1258 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1259 				 struct block_device *bdev,
1260 				 struct cached_dev *dc)
1261 {
1262 	const char *err = "cannot allocate memory";
1263 	struct cache_set *c;
1264 
1265 	bdevname(bdev, dc->backing_dev_name);
1266 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1267 	dc->bdev = bdev;
1268 	dc->bdev->bd_holder = dc;
1269 
1270 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1271 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1272 	get_page(sb_page);
1273 
1274 
1275 	if (cached_dev_init(dc, sb->block_size << 9))
1276 		goto err;
1277 
1278 	err = "error creating kobject";
1279 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1280 			"bcache"))
1281 		goto err;
1282 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1283 		goto err;
1284 
1285 	pr_info("registered backing device %s", dc->backing_dev_name);
1286 
1287 	list_add(&dc->list, &uncached_devices);
1288 	list_for_each_entry(c, &bch_cache_sets, list)
1289 		bch_cached_dev_attach(dc, c, NULL);
1290 
1291 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1292 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1293 		bch_cached_dev_run(dc);
1294 
1295 	return;
1296 err:
1297 	pr_notice("error %s: %s", dc->backing_dev_name, err);
1298 	bcache_device_stop(&dc->disk);
1299 }
1300 
1301 /* Flash only volumes */
1302 
1303 void bch_flash_dev_release(struct kobject *kobj)
1304 {
1305 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1306 					       kobj);
1307 	kfree(d);
1308 }
1309 
1310 static void flash_dev_free(struct closure *cl)
1311 {
1312 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1313 	mutex_lock(&bch_register_lock);
1314 	bcache_device_free(d);
1315 	mutex_unlock(&bch_register_lock);
1316 	kobject_put(&d->kobj);
1317 }
1318 
1319 static void flash_dev_flush(struct closure *cl)
1320 {
1321 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1322 
1323 	mutex_lock(&bch_register_lock);
1324 	bcache_device_unlink(d);
1325 	mutex_unlock(&bch_register_lock);
1326 	kobject_del(&d->kobj);
1327 	continue_at(cl, flash_dev_free, system_wq);
1328 }
1329 
1330 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1331 {
1332 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1333 					  GFP_KERNEL);
1334 	if (!d)
1335 		return -ENOMEM;
1336 
1337 	closure_init(&d->cl, NULL);
1338 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1339 
1340 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1341 
1342 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1343 		goto err;
1344 
1345 	bcache_device_attach(d, c, u - c->uuids);
1346 	bch_sectors_dirty_init(d);
1347 	bch_flash_dev_request_init(d);
1348 	add_disk(d->disk);
1349 
1350 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1351 		goto err;
1352 
1353 	bcache_device_link(d, c, "volume");
1354 
1355 	return 0;
1356 err:
1357 	kobject_put(&d->kobj);
1358 	return -ENOMEM;
1359 }
1360 
1361 static int flash_devs_run(struct cache_set *c)
1362 {
1363 	int ret = 0;
1364 	struct uuid_entry *u;
1365 
1366 	for (u = c->uuids;
1367 	     u < c->uuids + c->nr_uuids && !ret;
1368 	     u++)
1369 		if (UUID_FLASH_ONLY(u))
1370 			ret = flash_dev_run(c, u);
1371 
1372 	return ret;
1373 }
1374 
1375 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1376 {
1377 	struct uuid_entry *u;
1378 
1379 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1380 		return -EINTR;
1381 
1382 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1383 		return -EPERM;
1384 
1385 	u = uuid_find_empty(c);
1386 	if (!u) {
1387 		pr_err("Can't create volume, no room for UUID");
1388 		return -EINVAL;
1389 	}
1390 
1391 	get_random_bytes(u->uuid, 16);
1392 	memset(u->label, 0, 32);
1393 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1394 
1395 	SET_UUID_FLASH_ONLY(u, 1);
1396 	u->sectors = size >> 9;
1397 
1398 	bch_uuid_write(c);
1399 
1400 	return flash_dev_run(c, u);
1401 }
1402 
1403 bool bch_cached_dev_error(struct cached_dev *dc)
1404 {
1405 	struct cache_set *c;
1406 
1407 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1408 		return false;
1409 
1410 	dc->io_disable = true;
1411 	/* make others know io_disable is true earlier */
1412 	smp_mb();
1413 
1414 	pr_err("stop %s: too many IO errors on backing device %s\n",
1415 		dc->disk.disk->disk_name, dc->backing_dev_name);
1416 
1417 	/*
1418 	 * If the cached device is still attached to a cache set,
1419 	 * even dc->io_disable is true and no more I/O requests
1420 	 * accepted, cache device internal I/O (writeback scan or
1421 	 * garbage collection) may still prevent bcache device from
1422 	 * being stopped. So here CACHE_SET_IO_DISABLE should be
1423 	 * set to c->flags too, to make the internal I/O to cache
1424 	 * device rejected and stopped immediately.
1425 	 * If c is NULL, that means the bcache device is not attached
1426 	 * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1427 	 */
1428 	c = dc->disk.c;
1429 	if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1430 		pr_info("CACHE_SET_IO_DISABLE already set");
1431 
1432 	bcache_device_stop(&dc->disk);
1433 	return true;
1434 }
1435 
1436 /* Cache set */
1437 
1438 __printf(2, 3)
1439 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1440 {
1441 	va_list args;
1442 
1443 	if (c->on_error != ON_ERROR_PANIC &&
1444 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1445 		return false;
1446 
1447 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1448 		pr_info("CACHE_SET_IO_DISABLE already set");
1449 
1450 	/* XXX: we can be called from atomic context
1451 	acquire_console_sem();
1452 	*/
1453 
1454 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1455 
1456 	va_start(args, fmt);
1457 	vprintk(fmt, args);
1458 	va_end(args);
1459 
1460 	printk(", disabling caching\n");
1461 
1462 	if (c->on_error == ON_ERROR_PANIC)
1463 		panic("panic forced after error\n");
1464 
1465 	bch_cache_set_unregister(c);
1466 	return true;
1467 }
1468 
1469 void bch_cache_set_release(struct kobject *kobj)
1470 {
1471 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1472 	kfree(c);
1473 	module_put(THIS_MODULE);
1474 }
1475 
1476 static void cache_set_free(struct closure *cl)
1477 {
1478 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1479 	struct cache *ca;
1480 	unsigned i;
1481 
1482 	if (!IS_ERR_OR_NULL(c->debug))
1483 		debugfs_remove(c->debug);
1484 
1485 	bch_open_buckets_free(c);
1486 	bch_btree_cache_free(c);
1487 	bch_journal_free(c);
1488 
1489 	for_each_cache(ca, c, i)
1490 		if (ca) {
1491 			ca->set = NULL;
1492 			c->cache[ca->sb.nr_this_dev] = NULL;
1493 			kobject_put(&ca->kobj);
1494 		}
1495 
1496 	bch_bset_sort_state_free(&c->sort);
1497 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1498 
1499 	if (c->moving_gc_wq)
1500 		destroy_workqueue(c->moving_gc_wq);
1501 	bioset_exit(&c->bio_split);
1502 	mempool_exit(&c->fill_iter);
1503 	mempool_exit(&c->bio_meta);
1504 	mempool_exit(&c->search);
1505 	kfree(c->devices);
1506 
1507 	mutex_lock(&bch_register_lock);
1508 	list_del(&c->list);
1509 	mutex_unlock(&bch_register_lock);
1510 
1511 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1512 	wake_up(&unregister_wait);
1513 
1514 	closure_debug_destroy(&c->cl);
1515 	kobject_put(&c->kobj);
1516 }
1517 
1518 static void cache_set_flush(struct closure *cl)
1519 {
1520 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1521 	struct cache *ca;
1522 	struct btree *b;
1523 	unsigned i;
1524 
1525 	bch_cache_accounting_destroy(&c->accounting);
1526 
1527 	kobject_put(&c->internal);
1528 	kobject_del(&c->kobj);
1529 
1530 	if (c->gc_thread)
1531 		kthread_stop(c->gc_thread);
1532 
1533 	if (!IS_ERR_OR_NULL(c->root))
1534 		list_add(&c->root->list, &c->btree_cache);
1535 
1536 	/* Should skip this if we're unregistering because of an error */
1537 	list_for_each_entry(b, &c->btree_cache, list) {
1538 		mutex_lock(&b->write_lock);
1539 		if (btree_node_dirty(b))
1540 			__bch_btree_node_write(b, NULL);
1541 		mutex_unlock(&b->write_lock);
1542 	}
1543 
1544 	for_each_cache(ca, c, i)
1545 		if (ca->alloc_thread)
1546 			kthread_stop(ca->alloc_thread);
1547 
1548 	if (c->journal.cur) {
1549 		cancel_delayed_work_sync(&c->journal.work);
1550 		/* flush last journal entry if needed */
1551 		c->journal.work.work.func(&c->journal.work.work);
1552 	}
1553 
1554 	closure_return(cl);
1555 }
1556 
1557 /*
1558  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1559  * cache set is unregistering due to too many I/O errors. In this condition,
1560  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1561  * value and whether the broken cache has dirty data:
1562  *
1563  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1564  *  BCH_CACHED_STOP_AUTO               0               NO
1565  *  BCH_CACHED_STOP_AUTO               1               YES
1566  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1567  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1568  *
1569  * The expected behavior is, if stop_when_cache_set_failed is configured to
1570  * "auto" via sysfs interface, the bcache device will not be stopped if the
1571  * backing device is clean on the broken cache device.
1572  */
1573 static void conditional_stop_bcache_device(struct cache_set *c,
1574 					   struct bcache_device *d,
1575 					   struct cached_dev *dc)
1576 {
1577 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1578 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1579 			d->disk->disk_name, c->sb.set_uuid);
1580 		bcache_device_stop(d);
1581 	} else if (atomic_read(&dc->has_dirty)) {
1582 		/*
1583 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1584 		 * and dc->has_dirty == 1
1585 		 */
1586 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1587 			d->disk->disk_name);
1588 			/*
1589 			 * There might be a small time gap that cache set is
1590 			 * released but bcache device is not. Inside this time
1591 			 * gap, regular I/O requests will directly go into
1592 			 * backing device as no cache set attached to. This
1593 			 * behavior may also introduce potential inconsistence
1594 			 * data in writeback mode while cache is dirty.
1595 			 * Therefore before calling bcache_device_stop() due
1596 			 * to a broken cache device, dc->io_disable should be
1597 			 * explicitly set to true.
1598 			 */
1599 			dc->io_disable = true;
1600 			/* make others know io_disable is true earlier */
1601 			smp_mb();
1602 			bcache_device_stop(d);
1603 	} else {
1604 		/*
1605 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1606 		 * and dc->has_dirty == 0
1607 		 */
1608 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1609 			d->disk->disk_name);
1610 	}
1611 }
1612 
1613 static void __cache_set_unregister(struct closure *cl)
1614 {
1615 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1616 	struct cached_dev *dc;
1617 	struct bcache_device *d;
1618 	size_t i;
1619 
1620 	mutex_lock(&bch_register_lock);
1621 
1622 	for (i = 0; i < c->devices_max_used; i++) {
1623 		d = c->devices[i];
1624 		if (!d)
1625 			continue;
1626 
1627 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1628 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1629 			dc = container_of(d, struct cached_dev, disk);
1630 			bch_cached_dev_detach(dc);
1631 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1632 				conditional_stop_bcache_device(c, d, dc);
1633 		} else {
1634 			bcache_device_stop(d);
1635 		}
1636 	}
1637 
1638 	mutex_unlock(&bch_register_lock);
1639 
1640 	continue_at(cl, cache_set_flush, system_wq);
1641 }
1642 
1643 void bch_cache_set_stop(struct cache_set *c)
1644 {
1645 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1646 		closure_queue(&c->caching);
1647 }
1648 
1649 void bch_cache_set_unregister(struct cache_set *c)
1650 {
1651 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1652 	bch_cache_set_stop(c);
1653 }
1654 
1655 #define alloc_bucket_pages(gfp, c)			\
1656 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1657 
1658 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1659 {
1660 	int iter_size;
1661 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1662 	if (!c)
1663 		return NULL;
1664 
1665 	__module_get(THIS_MODULE);
1666 	closure_init(&c->cl, NULL);
1667 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1668 
1669 	closure_init(&c->caching, &c->cl);
1670 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1671 
1672 	/* Maybe create continue_at_noreturn() and use it here? */
1673 	closure_set_stopped(&c->cl);
1674 	closure_put(&c->cl);
1675 
1676 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1677 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1678 
1679 	bch_cache_accounting_init(&c->accounting, &c->cl);
1680 
1681 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1682 	c->sb.block_size	= sb->block_size;
1683 	c->sb.bucket_size	= sb->bucket_size;
1684 	c->sb.nr_in_set		= sb->nr_in_set;
1685 	c->sb.last_mount	= sb->last_mount;
1686 	c->bucket_bits		= ilog2(sb->bucket_size);
1687 	c->block_bits		= ilog2(sb->block_size);
1688 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1689 	c->devices_max_used	= 0;
1690 	c->btree_pages		= bucket_pages(c);
1691 	if (c->btree_pages > BTREE_MAX_PAGES)
1692 		c->btree_pages = max_t(int, c->btree_pages / 4,
1693 				       BTREE_MAX_PAGES);
1694 
1695 	sema_init(&c->sb_write_mutex, 1);
1696 	mutex_init(&c->bucket_lock);
1697 	init_waitqueue_head(&c->btree_cache_wait);
1698 	init_waitqueue_head(&c->bucket_wait);
1699 	init_waitqueue_head(&c->gc_wait);
1700 	sema_init(&c->uuid_write_mutex, 1);
1701 
1702 	spin_lock_init(&c->btree_gc_time.lock);
1703 	spin_lock_init(&c->btree_split_time.lock);
1704 	spin_lock_init(&c->btree_read_time.lock);
1705 
1706 	bch_moving_init_cache_set(c);
1707 
1708 	INIT_LIST_HEAD(&c->list);
1709 	INIT_LIST_HEAD(&c->cached_devs);
1710 	INIT_LIST_HEAD(&c->btree_cache);
1711 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1712 	INIT_LIST_HEAD(&c->btree_cache_freed);
1713 	INIT_LIST_HEAD(&c->data_buckets);
1714 
1715 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1716 		sizeof(struct btree_iter_set);
1717 
1718 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1719 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1720 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1721 				      sizeof(struct bbio) + sizeof(struct bio_vec) *
1722 				      bucket_pages(c)) ||
1723 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1724 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1725 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1726 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1727 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1728 						WQ_MEM_RECLAIM, 0)) ||
1729 	    bch_journal_alloc(c) ||
1730 	    bch_btree_cache_alloc(c) ||
1731 	    bch_open_buckets_alloc(c) ||
1732 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1733 		goto err;
1734 
1735 	c->congested_read_threshold_us	= 2000;
1736 	c->congested_write_threshold_us	= 20000;
1737 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1738 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1739 
1740 	return c;
1741 err:
1742 	bch_cache_set_unregister(c);
1743 	return NULL;
1744 }
1745 
1746 static void run_cache_set(struct cache_set *c)
1747 {
1748 	const char *err = "cannot allocate memory";
1749 	struct cached_dev *dc, *t;
1750 	struct cache *ca;
1751 	struct closure cl;
1752 	unsigned i;
1753 
1754 	closure_init_stack(&cl);
1755 
1756 	for_each_cache(ca, c, i)
1757 		c->nbuckets += ca->sb.nbuckets;
1758 	set_gc_sectors(c);
1759 
1760 	if (CACHE_SYNC(&c->sb)) {
1761 		LIST_HEAD(journal);
1762 		struct bkey *k;
1763 		struct jset *j;
1764 
1765 		err = "cannot allocate memory for journal";
1766 		if (bch_journal_read(c, &journal))
1767 			goto err;
1768 
1769 		pr_debug("btree_journal_read() done");
1770 
1771 		err = "no journal entries found";
1772 		if (list_empty(&journal))
1773 			goto err;
1774 
1775 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1776 
1777 		err = "IO error reading priorities";
1778 		for_each_cache(ca, c, i)
1779 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1780 
1781 		/*
1782 		 * If prio_read() fails it'll call cache_set_error and we'll
1783 		 * tear everything down right away, but if we perhaps checked
1784 		 * sooner we could avoid journal replay.
1785 		 */
1786 
1787 		k = &j->btree_root;
1788 
1789 		err = "bad btree root";
1790 		if (__bch_btree_ptr_invalid(c, k))
1791 			goto err;
1792 
1793 		err = "error reading btree root";
1794 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1795 		if (IS_ERR_OR_NULL(c->root))
1796 			goto err;
1797 
1798 		list_del_init(&c->root->list);
1799 		rw_unlock(true, c->root);
1800 
1801 		err = uuid_read(c, j, &cl);
1802 		if (err)
1803 			goto err;
1804 
1805 		err = "error in recovery";
1806 		if (bch_btree_check(c))
1807 			goto err;
1808 
1809 		bch_journal_mark(c, &journal);
1810 		bch_initial_gc_finish(c);
1811 		pr_debug("btree_check() done");
1812 
1813 		/*
1814 		 * bcache_journal_next() can't happen sooner, or
1815 		 * btree_gc_finish() will give spurious errors about last_gc >
1816 		 * gc_gen - this is a hack but oh well.
1817 		 */
1818 		bch_journal_next(&c->journal);
1819 
1820 		err = "error starting allocator thread";
1821 		for_each_cache(ca, c, i)
1822 			if (bch_cache_allocator_start(ca))
1823 				goto err;
1824 
1825 		/*
1826 		 * First place it's safe to allocate: btree_check() and
1827 		 * btree_gc_finish() have to run before we have buckets to
1828 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1829 		 * entry to be written so bcache_journal_next() has to be called
1830 		 * first.
1831 		 *
1832 		 * If the uuids were in the old format we have to rewrite them
1833 		 * before the next journal entry is written:
1834 		 */
1835 		if (j->version < BCACHE_JSET_VERSION_UUID)
1836 			__uuid_write(c);
1837 
1838 		bch_journal_replay(c, &journal);
1839 	} else {
1840 		pr_notice("invalidating existing data");
1841 
1842 		for_each_cache(ca, c, i) {
1843 			unsigned j;
1844 
1845 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1846 					      2, SB_JOURNAL_BUCKETS);
1847 
1848 			for (j = 0; j < ca->sb.keys; j++)
1849 				ca->sb.d[j] = ca->sb.first_bucket + j;
1850 		}
1851 
1852 		bch_initial_gc_finish(c);
1853 
1854 		err = "error starting allocator thread";
1855 		for_each_cache(ca, c, i)
1856 			if (bch_cache_allocator_start(ca))
1857 				goto err;
1858 
1859 		mutex_lock(&c->bucket_lock);
1860 		for_each_cache(ca, c, i)
1861 			bch_prio_write(ca);
1862 		mutex_unlock(&c->bucket_lock);
1863 
1864 		err = "cannot allocate new UUID bucket";
1865 		if (__uuid_write(c))
1866 			goto err;
1867 
1868 		err = "cannot allocate new btree root";
1869 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1870 		if (IS_ERR_OR_NULL(c->root))
1871 			goto err;
1872 
1873 		mutex_lock(&c->root->write_lock);
1874 		bkey_copy_key(&c->root->key, &MAX_KEY);
1875 		bch_btree_node_write(c->root, &cl);
1876 		mutex_unlock(&c->root->write_lock);
1877 
1878 		bch_btree_set_root(c->root);
1879 		rw_unlock(true, c->root);
1880 
1881 		/*
1882 		 * We don't want to write the first journal entry until
1883 		 * everything is set up - fortunately journal entries won't be
1884 		 * written until the SET_CACHE_SYNC() here:
1885 		 */
1886 		SET_CACHE_SYNC(&c->sb, true);
1887 
1888 		bch_journal_next(&c->journal);
1889 		bch_journal_meta(c, &cl);
1890 	}
1891 
1892 	err = "error starting gc thread";
1893 	if (bch_gc_thread_start(c))
1894 		goto err;
1895 
1896 	closure_sync(&cl);
1897 	c->sb.last_mount = get_seconds();
1898 	bcache_write_super(c);
1899 
1900 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1901 		bch_cached_dev_attach(dc, c, NULL);
1902 
1903 	flash_devs_run(c);
1904 
1905 	set_bit(CACHE_SET_RUNNING, &c->flags);
1906 	return;
1907 err:
1908 	closure_sync(&cl);
1909 	/* XXX: test this, it's broken */
1910 	bch_cache_set_error(c, "%s", err);
1911 }
1912 
1913 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1914 {
1915 	return ca->sb.block_size	== c->sb.block_size &&
1916 		ca->sb.bucket_size	== c->sb.bucket_size &&
1917 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1918 }
1919 
1920 static const char *register_cache_set(struct cache *ca)
1921 {
1922 	char buf[12];
1923 	const char *err = "cannot allocate memory";
1924 	struct cache_set *c;
1925 
1926 	list_for_each_entry(c, &bch_cache_sets, list)
1927 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1928 			if (c->cache[ca->sb.nr_this_dev])
1929 				return "duplicate cache set member";
1930 
1931 			if (!can_attach_cache(ca, c))
1932 				return "cache sb does not match set";
1933 
1934 			if (!CACHE_SYNC(&ca->sb))
1935 				SET_CACHE_SYNC(&c->sb, false);
1936 
1937 			goto found;
1938 		}
1939 
1940 	c = bch_cache_set_alloc(&ca->sb);
1941 	if (!c)
1942 		return err;
1943 
1944 	err = "error creating kobject";
1945 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1946 	    kobject_add(&c->internal, &c->kobj, "internal"))
1947 		goto err;
1948 
1949 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1950 		goto err;
1951 
1952 	bch_debug_init_cache_set(c);
1953 
1954 	list_add(&c->list, &bch_cache_sets);
1955 found:
1956 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1957 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1958 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1959 		goto err;
1960 
1961 	if (ca->sb.seq > c->sb.seq) {
1962 		c->sb.version		= ca->sb.version;
1963 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1964 		c->sb.flags             = ca->sb.flags;
1965 		c->sb.seq		= ca->sb.seq;
1966 		pr_debug("set version = %llu", c->sb.version);
1967 	}
1968 
1969 	kobject_get(&ca->kobj);
1970 	ca->set = c;
1971 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1972 	c->cache_by_alloc[c->caches_loaded++] = ca;
1973 
1974 	if (c->caches_loaded == c->sb.nr_in_set)
1975 		run_cache_set(c);
1976 
1977 	return NULL;
1978 err:
1979 	bch_cache_set_unregister(c);
1980 	return err;
1981 }
1982 
1983 /* Cache device */
1984 
1985 void bch_cache_release(struct kobject *kobj)
1986 {
1987 	struct cache *ca = container_of(kobj, struct cache, kobj);
1988 	unsigned i;
1989 
1990 	if (ca->set) {
1991 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1992 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1993 	}
1994 
1995 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1996 	kfree(ca->prio_buckets);
1997 	vfree(ca->buckets);
1998 
1999 	free_heap(&ca->heap);
2000 	free_fifo(&ca->free_inc);
2001 
2002 	for (i = 0; i < RESERVE_NR; i++)
2003 		free_fifo(&ca->free[i]);
2004 
2005 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2006 		put_page(bio_first_page_all(&ca->sb_bio));
2007 
2008 	if (!IS_ERR_OR_NULL(ca->bdev))
2009 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2010 
2011 	kfree(ca);
2012 	module_put(THIS_MODULE);
2013 }
2014 
2015 static int cache_alloc(struct cache *ca)
2016 {
2017 	size_t free;
2018 	size_t btree_buckets;
2019 	struct bucket *b;
2020 
2021 	__module_get(THIS_MODULE);
2022 	kobject_init(&ca->kobj, &bch_cache_ktype);
2023 
2024 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2025 
2026 	/*
2027 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2028 	 * and in bch_journal_replay(), tree node may split,
2029 	 * so bucket of RESERVE_BTREE type is needed,
2030 	 * the worst situation is all journal buckets are valid journal,
2031 	 * and all the keys need to replay,
2032 	 * so the number of  RESERVE_BTREE type buckets should be as much
2033 	 * as journal buckets
2034 	 */
2035 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2036 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2037 
2038 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
2039 	    !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
2040 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
2041 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
2042 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
2043 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
2044 	    !(ca->buckets	= vzalloc(array_size(sizeof(struct bucket),
2045 						     ca->sb.nbuckets))) ||
2046 	    !(ca->prio_buckets	= kzalloc(array3_size(sizeof(uint64_t),
2047 						      prio_buckets(ca), 2),
2048 					  GFP_KERNEL)) ||
2049 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
2050 		return -ENOMEM;
2051 
2052 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2053 
2054 	for_each_bucket(b, ca)
2055 		atomic_set(&b->pin, 0);
2056 
2057 	return 0;
2058 }
2059 
2060 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2061 				struct block_device *bdev, struct cache *ca)
2062 {
2063 	const char *err = NULL; /* must be set for any error case */
2064 	int ret = 0;
2065 
2066 	bdevname(bdev, ca->cache_dev_name);
2067 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2068 	ca->bdev = bdev;
2069 	ca->bdev->bd_holder = ca;
2070 
2071 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2072 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2073 	get_page(sb_page);
2074 
2075 	if (blk_queue_discard(bdev_get_queue(bdev)))
2076 		ca->discard = CACHE_DISCARD(&ca->sb);
2077 
2078 	ret = cache_alloc(ca);
2079 	if (ret != 0) {
2080 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2081 		if (ret == -ENOMEM)
2082 			err = "cache_alloc(): -ENOMEM";
2083 		else
2084 			err = "cache_alloc(): unknown error";
2085 		goto err;
2086 	}
2087 
2088 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
2089 		err = "error calling kobject_add";
2090 		ret = -ENOMEM;
2091 		goto out;
2092 	}
2093 
2094 	mutex_lock(&bch_register_lock);
2095 	err = register_cache_set(ca);
2096 	mutex_unlock(&bch_register_lock);
2097 
2098 	if (err) {
2099 		ret = -ENODEV;
2100 		goto out;
2101 	}
2102 
2103 	pr_info("registered cache device %s", ca->cache_dev_name);
2104 
2105 out:
2106 	kobject_put(&ca->kobj);
2107 
2108 err:
2109 	if (err)
2110 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2111 
2112 	return ret;
2113 }
2114 
2115 /* Global interfaces/init */
2116 
2117 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
2118 			       const char *, size_t);
2119 
2120 kobj_attribute_write(register,		register_bcache);
2121 kobj_attribute_write(register_quiet,	register_bcache);
2122 
2123 static bool bch_is_open_backing(struct block_device *bdev) {
2124 	struct cache_set *c, *tc;
2125 	struct cached_dev *dc, *t;
2126 
2127 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2128 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2129 			if (dc->bdev == bdev)
2130 				return true;
2131 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2132 		if (dc->bdev == bdev)
2133 			return true;
2134 	return false;
2135 }
2136 
2137 static bool bch_is_open_cache(struct block_device *bdev) {
2138 	struct cache_set *c, *tc;
2139 	struct cache *ca;
2140 	unsigned i;
2141 
2142 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2143 		for_each_cache(ca, c, i)
2144 			if (ca->bdev == bdev)
2145 				return true;
2146 	return false;
2147 }
2148 
2149 static bool bch_is_open(struct block_device *bdev) {
2150 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2151 }
2152 
2153 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2154 			       const char *buffer, size_t size)
2155 {
2156 	ssize_t ret = size;
2157 	const char *err = "cannot allocate memory";
2158 	char *path = NULL;
2159 	struct cache_sb *sb = NULL;
2160 	struct block_device *bdev = NULL;
2161 	struct page *sb_page = NULL;
2162 
2163 	if (!try_module_get(THIS_MODULE))
2164 		return -EBUSY;
2165 
2166 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
2167 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2168 		goto err;
2169 
2170 	err = "failed to open device";
2171 	bdev = blkdev_get_by_path(strim(path),
2172 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2173 				  sb);
2174 	if (IS_ERR(bdev)) {
2175 		if (bdev == ERR_PTR(-EBUSY)) {
2176 			bdev = lookup_bdev(strim(path));
2177 			mutex_lock(&bch_register_lock);
2178 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2179 				err = "device already registered";
2180 			else
2181 				err = "device busy";
2182 			mutex_unlock(&bch_register_lock);
2183 			if (!IS_ERR(bdev))
2184 				bdput(bdev);
2185 			if (attr == &ksysfs_register_quiet)
2186 				goto out;
2187 		}
2188 		goto err;
2189 	}
2190 
2191 	err = "failed to set blocksize";
2192 	if (set_blocksize(bdev, 4096))
2193 		goto err_close;
2194 
2195 	err = read_super(sb, bdev, &sb_page);
2196 	if (err)
2197 		goto err_close;
2198 
2199 	err = "failed to register device";
2200 	if (SB_IS_BDEV(sb)) {
2201 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2202 		if (!dc)
2203 			goto err_close;
2204 
2205 		mutex_lock(&bch_register_lock);
2206 		register_bdev(sb, sb_page, bdev, dc);
2207 		mutex_unlock(&bch_register_lock);
2208 	} else {
2209 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2210 		if (!ca)
2211 			goto err_close;
2212 
2213 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2214 			goto err;
2215 	}
2216 out:
2217 	if (sb_page)
2218 		put_page(sb_page);
2219 	kfree(sb);
2220 	kfree(path);
2221 	module_put(THIS_MODULE);
2222 	return ret;
2223 
2224 err_close:
2225 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2226 err:
2227 	pr_info("error %s: %s", path, err);
2228 	ret = -EINVAL;
2229 	goto out;
2230 }
2231 
2232 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2233 {
2234 	if (code == SYS_DOWN ||
2235 	    code == SYS_HALT ||
2236 	    code == SYS_POWER_OFF) {
2237 		DEFINE_WAIT(wait);
2238 		unsigned long start = jiffies;
2239 		bool stopped = false;
2240 
2241 		struct cache_set *c, *tc;
2242 		struct cached_dev *dc, *tdc;
2243 
2244 		mutex_lock(&bch_register_lock);
2245 
2246 		if (list_empty(&bch_cache_sets) &&
2247 		    list_empty(&uncached_devices))
2248 			goto out;
2249 
2250 		pr_info("Stopping all devices:");
2251 
2252 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2253 			bch_cache_set_stop(c);
2254 
2255 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2256 			bcache_device_stop(&dc->disk);
2257 
2258 		/* What's a condition variable? */
2259 		while (1) {
2260 			long timeout = start + 2 * HZ - jiffies;
2261 
2262 			stopped = list_empty(&bch_cache_sets) &&
2263 				list_empty(&uncached_devices);
2264 
2265 			if (timeout < 0 || stopped)
2266 				break;
2267 
2268 			prepare_to_wait(&unregister_wait, &wait,
2269 					TASK_UNINTERRUPTIBLE);
2270 
2271 			mutex_unlock(&bch_register_lock);
2272 			schedule_timeout(timeout);
2273 			mutex_lock(&bch_register_lock);
2274 		}
2275 
2276 		finish_wait(&unregister_wait, &wait);
2277 
2278 		if (stopped)
2279 			pr_info("All devices stopped");
2280 		else
2281 			pr_notice("Timeout waiting for devices to be closed");
2282 out:
2283 		mutex_unlock(&bch_register_lock);
2284 	}
2285 
2286 	return NOTIFY_DONE;
2287 }
2288 
2289 static struct notifier_block reboot = {
2290 	.notifier_call	= bcache_reboot,
2291 	.priority	= INT_MAX, /* before any real devices */
2292 };
2293 
2294 static void bcache_exit(void)
2295 {
2296 	bch_debug_exit();
2297 	bch_request_exit();
2298 	if (bcache_kobj)
2299 		kobject_put(bcache_kobj);
2300 	if (bcache_wq)
2301 		destroy_workqueue(bcache_wq);
2302 	if (bcache_major)
2303 		unregister_blkdev(bcache_major, "bcache");
2304 	unregister_reboot_notifier(&reboot);
2305 	mutex_destroy(&bch_register_lock);
2306 }
2307 
2308 static int __init bcache_init(void)
2309 {
2310 	static const struct attribute *files[] = {
2311 		&ksysfs_register.attr,
2312 		&ksysfs_register_quiet.attr,
2313 		NULL
2314 	};
2315 
2316 	mutex_init(&bch_register_lock);
2317 	init_waitqueue_head(&unregister_wait);
2318 	register_reboot_notifier(&reboot);
2319 
2320 	bcache_major = register_blkdev(0, "bcache");
2321 	if (bcache_major < 0) {
2322 		unregister_reboot_notifier(&reboot);
2323 		mutex_destroy(&bch_register_lock);
2324 		return bcache_major;
2325 	}
2326 
2327 	if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2328 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2329 	    bch_request_init() ||
2330 	    bch_debug_init(bcache_kobj) || closure_debug_init() ||
2331 	    sysfs_create_files(bcache_kobj, files))
2332 		goto err;
2333 
2334 	return 0;
2335 err:
2336 	bcache_exit();
2337 	return -ENOMEM;
2338 }
2339 
2340 module_exit(bcache_exit);
2341 module_init(bcache_init);
2342