xref: /openbmc/linux/drivers/md/bcache/super.c (revision b3d9fc14)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 #include "features.h"
17 
18 #include <linux/blkdev.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/workqueue.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/reboot.h>
27 #include <linux/sysfs.h>
28 
29 unsigned int bch_cutoff_writeback;
30 unsigned int bch_cutoff_writeback_sync;
31 
32 static const char bcache_magic[] = {
33 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
34 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
35 };
36 
37 static const char invalid_uuid[] = {
38 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
39 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
40 };
41 
42 static struct kobject *bcache_kobj;
43 struct mutex bch_register_lock;
44 bool bcache_is_reboot;
45 LIST_HEAD(bch_cache_sets);
46 static LIST_HEAD(uncached_devices);
47 
48 static int bcache_major;
49 static DEFINE_IDA(bcache_device_idx);
50 static wait_queue_head_t unregister_wait;
51 struct workqueue_struct *bcache_wq;
52 struct workqueue_struct *bch_flush_wq;
53 struct workqueue_struct *bch_journal_wq;
54 
55 
56 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
57 /* limitation of partitions number on single bcache device */
58 #define BCACHE_MINORS		128
59 /* limitation of bcache devices number on single system */
60 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
61 
62 /* Superblock */
63 
64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s)
65 {
66 	unsigned int bucket_size = le16_to_cpu(s->bucket_size);
67 
68 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
69 		if (bch_has_feature_large_bucket(sb)) {
70 			unsigned int max, order;
71 
72 			max = sizeof(unsigned int) * BITS_PER_BYTE - 1;
73 			order = le16_to_cpu(s->bucket_size);
74 			/*
75 			 * bcache tool will make sure the overflow won't
76 			 * happen, an error message here is enough.
77 			 */
78 			if (order > max)
79 				pr_err("Bucket size (1 << %u) overflows\n",
80 					order);
81 			bucket_size = 1 << order;
82 		} else if (bch_has_feature_obso_large_bucket(sb)) {
83 			bucket_size +=
84 				le16_to_cpu(s->obso_bucket_size_hi) << 16;
85 		}
86 	}
87 
88 	return bucket_size;
89 }
90 
91 static const char *read_super_common(struct cache_sb *sb,  struct block_device *bdev,
92 				     struct cache_sb_disk *s)
93 {
94 	const char *err;
95 	unsigned int i;
96 
97 	sb->first_bucket= le16_to_cpu(s->first_bucket);
98 	sb->nbuckets	= le64_to_cpu(s->nbuckets);
99 	sb->bucket_size	= get_bucket_size(sb, s);
100 
101 	sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
102 	sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Too many buckets";
109 	if (sb->nbuckets > LONG_MAX)
110 		goto err;
111 
112 	err = "Not enough buckets";
113 	if (sb->nbuckets < 1 << 7)
114 		goto err;
115 
116 	err = "Bad block size (not power of 2)";
117 	if (!is_power_of_2(sb->block_size))
118 		goto err;
119 
120 	err = "Bad block size (larger than page size)";
121 	if (sb->block_size > PAGE_SECTORS)
122 		goto err;
123 
124 	err = "Bad bucket size (not power of 2)";
125 	if (!is_power_of_2(sb->bucket_size))
126 		goto err;
127 
128 	err = "Bad bucket size (smaller than page size)";
129 	if (sb->bucket_size < PAGE_SECTORS)
130 		goto err;
131 
132 	err = "Invalid superblock: device too small";
133 	if (get_capacity(bdev->bd_disk) <
134 	    sb->bucket_size * sb->nbuckets)
135 		goto err;
136 
137 	err = "Bad UUID";
138 	if (bch_is_zero(sb->set_uuid, 16))
139 		goto err;
140 
141 	err = "Bad cache device number in set";
142 	if (!sb->nr_in_set ||
143 	    sb->nr_in_set <= sb->nr_this_dev ||
144 	    sb->nr_in_set > MAX_CACHES_PER_SET)
145 		goto err;
146 
147 	err = "Journal buckets not sequential";
148 	for (i = 0; i < sb->keys; i++)
149 		if (sb->d[i] != sb->first_bucket + i)
150 			goto err;
151 
152 	err = "Too many journal buckets";
153 	if (sb->first_bucket + sb->keys > sb->nbuckets)
154 		goto err;
155 
156 	err = "Invalid superblock: first bucket comes before end of super";
157 	if (sb->first_bucket * sb->bucket_size < 16)
158 		goto err;
159 
160 	err = NULL;
161 err:
162 	return err;
163 }
164 
165 
166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
167 			      struct cache_sb_disk **res)
168 {
169 	const char *err;
170 	struct cache_sb_disk *s;
171 	struct page *page;
172 	unsigned int i;
173 
174 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
175 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
176 	if (IS_ERR(page))
177 		return "IO error";
178 	s = page_address(page) + offset_in_page(SB_OFFSET);
179 
180 	sb->offset		= le64_to_cpu(s->offset);
181 	sb->version		= le64_to_cpu(s->version);
182 
183 	memcpy(sb->magic,	s->magic, 16);
184 	memcpy(sb->uuid,	s->uuid, 16);
185 	memcpy(sb->set_uuid,	s->set_uuid, 16);
186 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
187 
188 	sb->flags		= le64_to_cpu(s->flags);
189 	sb->seq			= le64_to_cpu(s->seq);
190 	sb->last_mount		= le32_to_cpu(s->last_mount);
191 	sb->keys		= le16_to_cpu(s->keys);
192 
193 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
194 		sb->d[i] = le64_to_cpu(s->d[i]);
195 
196 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
197 		 sb->version, sb->flags, sb->seq, sb->keys);
198 
199 	err = "Not a bcache superblock (bad offset)";
200 	if (sb->offset != SB_SECTOR)
201 		goto err;
202 
203 	err = "Not a bcache superblock (bad magic)";
204 	if (memcmp(sb->magic, bcache_magic, 16))
205 		goto err;
206 
207 	err = "Bad checksum";
208 	if (s->csum != csum_set(s))
209 		goto err;
210 
211 	err = "Bad UUID";
212 	if (bch_is_zero(sb->uuid, 16))
213 		goto err;
214 
215 	sb->block_size	= le16_to_cpu(s->block_size);
216 
217 	err = "Superblock block size smaller than device block size";
218 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
219 		goto err;
220 
221 	switch (sb->version) {
222 	case BCACHE_SB_VERSION_BDEV:
223 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
224 		break;
225 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
226 	case BCACHE_SB_VERSION_BDEV_WITH_FEATURES:
227 		sb->data_offset	= le64_to_cpu(s->data_offset);
228 
229 		err = "Bad data offset";
230 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
231 			goto err;
232 
233 		break;
234 	case BCACHE_SB_VERSION_CDEV:
235 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
236 		err = read_super_common(sb, bdev, s);
237 		if (err)
238 			goto err;
239 		break;
240 	case BCACHE_SB_VERSION_CDEV_WITH_FEATURES:
241 		/*
242 		 * Feature bits are needed in read_super_common(),
243 		 * convert them firstly.
244 		 */
245 		sb->feature_compat = le64_to_cpu(s->feature_compat);
246 		sb->feature_incompat = le64_to_cpu(s->feature_incompat);
247 		sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat);
248 
249 		/* Check incompatible features */
250 		err = "Unsupported compatible feature found";
251 		if (bch_has_unknown_compat_features(sb))
252 			goto err;
253 
254 		err = "Unsupported read-only compatible feature found";
255 		if (bch_has_unknown_ro_compat_features(sb))
256 			goto err;
257 
258 		err = "Unsupported incompatible feature found";
259 		if (bch_has_unknown_incompat_features(sb))
260 			goto err;
261 
262 		err = read_super_common(sb, bdev, s);
263 		if (err)
264 			goto err;
265 		break;
266 	default:
267 		err = "Unsupported superblock version";
268 		goto err;
269 	}
270 
271 	sb->last_mount = (u32)ktime_get_real_seconds();
272 	*res = s;
273 	return NULL;
274 err:
275 	put_page(page);
276 	return err;
277 }
278 
279 static void write_bdev_super_endio(struct bio *bio)
280 {
281 	struct cached_dev *dc = bio->bi_private;
282 
283 	if (bio->bi_status)
284 		bch_count_backing_io_errors(dc, bio);
285 
286 	closure_put(&dc->sb_write);
287 }
288 
289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
290 		struct bio *bio)
291 {
292 	unsigned int i;
293 
294 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
295 	bio->bi_iter.bi_sector	= SB_SECTOR;
296 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
297 			offset_in_page(out));
298 
299 	out->offset		= cpu_to_le64(sb->offset);
300 
301 	memcpy(out->uuid,	sb->uuid, 16);
302 	memcpy(out->set_uuid,	sb->set_uuid, 16);
303 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
304 
305 	out->flags		= cpu_to_le64(sb->flags);
306 	out->seq		= cpu_to_le64(sb->seq);
307 
308 	out->last_mount		= cpu_to_le32(sb->last_mount);
309 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
310 	out->keys		= cpu_to_le16(sb->keys);
311 
312 	for (i = 0; i < sb->keys; i++)
313 		out->d[i] = cpu_to_le64(sb->d[i]);
314 
315 	if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) {
316 		out->feature_compat    = cpu_to_le64(sb->feature_compat);
317 		out->feature_incompat  = cpu_to_le64(sb->feature_incompat);
318 		out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat);
319 	}
320 
321 	out->version		= cpu_to_le64(sb->version);
322 	out->csum = csum_set(out);
323 
324 	pr_debug("ver %llu, flags %llu, seq %llu\n",
325 		 sb->version, sb->flags, sb->seq);
326 
327 	submit_bio(bio);
328 }
329 
330 static void bch_write_bdev_super_unlock(struct closure *cl)
331 {
332 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
333 
334 	up(&dc->sb_write_mutex);
335 }
336 
337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
338 {
339 	struct closure *cl = &dc->sb_write;
340 	struct bio *bio = &dc->sb_bio;
341 
342 	down(&dc->sb_write_mutex);
343 	closure_init(cl, parent);
344 
345 	bio_init(bio, dc->sb_bv, 1);
346 	bio_set_dev(bio, dc->bdev);
347 	bio->bi_end_io	= write_bdev_super_endio;
348 	bio->bi_private = dc;
349 
350 	closure_get(cl);
351 	/* I/O request sent to backing device */
352 	__write_super(&dc->sb, dc->sb_disk, bio);
353 
354 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
355 }
356 
357 static void write_super_endio(struct bio *bio)
358 {
359 	struct cache *ca = bio->bi_private;
360 
361 	/* is_read = 0 */
362 	bch_count_io_errors(ca, bio->bi_status, 0,
363 			    "writing superblock");
364 	closure_put(&ca->set->sb_write);
365 }
366 
367 static void bcache_write_super_unlock(struct closure *cl)
368 {
369 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
370 
371 	up(&c->sb_write_mutex);
372 }
373 
374 void bcache_write_super(struct cache_set *c)
375 {
376 	struct closure *cl = &c->sb_write;
377 	struct cache *ca = c->cache;
378 	struct bio *bio = &ca->sb_bio;
379 	unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID;
380 
381 	down(&c->sb_write_mutex);
382 	closure_init(cl, &c->cl);
383 
384 	ca->sb.seq++;
385 
386 	if (ca->sb.version < version)
387 		ca->sb.version = version;
388 
389 	bio_init(bio, ca->sb_bv, 1);
390 	bio_set_dev(bio, ca->bdev);
391 	bio->bi_end_io	= write_super_endio;
392 	bio->bi_private = ca;
393 
394 	closure_get(cl);
395 	__write_super(&ca->sb, ca->sb_disk, bio);
396 
397 	closure_return_with_destructor(cl, bcache_write_super_unlock);
398 }
399 
400 /* UUID io */
401 
402 static void uuid_endio(struct bio *bio)
403 {
404 	struct closure *cl = bio->bi_private;
405 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
406 
407 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
408 	bch_bbio_free(bio, c);
409 	closure_put(cl);
410 }
411 
412 static void uuid_io_unlock(struct closure *cl)
413 {
414 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
415 
416 	up(&c->uuid_write_mutex);
417 }
418 
419 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
420 		    struct bkey *k, struct closure *parent)
421 {
422 	struct closure *cl = &c->uuid_write;
423 	struct uuid_entry *u;
424 	unsigned int i;
425 	char buf[80];
426 
427 	BUG_ON(!parent);
428 	down(&c->uuid_write_mutex);
429 	closure_init(cl, parent);
430 
431 	for (i = 0; i < KEY_PTRS(k); i++) {
432 		struct bio *bio = bch_bbio_alloc(c);
433 
434 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
435 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
436 
437 		bio->bi_end_io	= uuid_endio;
438 		bio->bi_private = cl;
439 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
440 		bch_bio_map(bio, c->uuids);
441 
442 		bch_submit_bbio(bio, c, k, i);
443 
444 		if (op != REQ_OP_WRITE)
445 			break;
446 	}
447 
448 	bch_extent_to_text(buf, sizeof(buf), k);
449 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
450 
451 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
452 		if (!bch_is_zero(u->uuid, 16))
453 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
454 				 u - c->uuids, u->uuid, u->label,
455 				 u->first_reg, u->last_reg, u->invalidated);
456 
457 	closure_return_with_destructor(cl, uuid_io_unlock);
458 }
459 
460 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
461 {
462 	struct bkey *k = &j->uuid_bucket;
463 
464 	if (__bch_btree_ptr_invalid(c, k))
465 		return "bad uuid pointer";
466 
467 	bkey_copy(&c->uuid_bucket, k);
468 	uuid_io(c, REQ_OP_READ, 0, k, cl);
469 
470 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
471 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
472 		struct uuid_entry	*u1 = (void *) c->uuids;
473 		int i;
474 
475 		closure_sync(cl);
476 
477 		/*
478 		 * Since the new uuid entry is bigger than the old, we have to
479 		 * convert starting at the highest memory address and work down
480 		 * in order to do it in place
481 		 */
482 
483 		for (i = c->nr_uuids - 1;
484 		     i >= 0;
485 		     --i) {
486 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
487 			memcpy(u1[i].label,	u0[i].label, 32);
488 
489 			u1[i].first_reg		= u0[i].first_reg;
490 			u1[i].last_reg		= u0[i].last_reg;
491 			u1[i].invalidated	= u0[i].invalidated;
492 
493 			u1[i].flags	= 0;
494 			u1[i].sectors	= 0;
495 		}
496 	}
497 
498 	return NULL;
499 }
500 
501 static int __uuid_write(struct cache_set *c)
502 {
503 	BKEY_PADDED(key) k;
504 	struct closure cl;
505 	struct cache *ca = c->cache;
506 	unsigned int size;
507 
508 	closure_init_stack(&cl);
509 	lockdep_assert_held(&bch_register_lock);
510 
511 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true))
512 		return 1;
513 
514 	size =  meta_bucket_pages(&ca->sb) * PAGE_SECTORS;
515 	SET_KEY_SIZE(&k.key, size);
516 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
517 	closure_sync(&cl);
518 
519 	/* Only one bucket used for uuid write */
520 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
521 
522 	bkey_copy(&c->uuid_bucket, &k.key);
523 	bkey_put(c, &k.key);
524 	return 0;
525 }
526 
527 int bch_uuid_write(struct cache_set *c)
528 {
529 	int ret = __uuid_write(c);
530 
531 	if (!ret)
532 		bch_journal_meta(c, NULL);
533 
534 	return ret;
535 }
536 
537 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
538 {
539 	struct uuid_entry *u;
540 
541 	for (u = c->uuids;
542 	     u < c->uuids + c->nr_uuids; u++)
543 		if (!memcmp(u->uuid, uuid, 16))
544 			return u;
545 
546 	return NULL;
547 }
548 
549 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
550 {
551 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
552 
553 	return uuid_find(c, zero_uuid);
554 }
555 
556 /*
557  * Bucket priorities/gens:
558  *
559  * For each bucket, we store on disk its
560  *   8 bit gen
561  *  16 bit priority
562  *
563  * See alloc.c for an explanation of the gen. The priority is used to implement
564  * lru (and in the future other) cache replacement policies; for most purposes
565  * it's just an opaque integer.
566  *
567  * The gens and the priorities don't have a whole lot to do with each other, and
568  * it's actually the gens that must be written out at specific times - it's no
569  * big deal if the priorities don't get written, if we lose them we just reuse
570  * buckets in suboptimal order.
571  *
572  * On disk they're stored in a packed array, and in as many buckets are required
573  * to fit them all. The buckets we use to store them form a list; the journal
574  * header points to the first bucket, the first bucket points to the second
575  * bucket, et cetera.
576  *
577  * This code is used by the allocation code; periodically (whenever it runs out
578  * of buckets to allocate from) the allocation code will invalidate some
579  * buckets, but it can't use those buckets until their new gens are safely on
580  * disk.
581  */
582 
583 static void prio_endio(struct bio *bio)
584 {
585 	struct cache *ca = bio->bi_private;
586 
587 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
588 	bch_bbio_free(bio, ca->set);
589 	closure_put(&ca->prio);
590 }
591 
592 static void prio_io(struct cache *ca, uint64_t bucket, int op,
593 		    unsigned long op_flags)
594 {
595 	struct closure *cl = &ca->prio;
596 	struct bio *bio = bch_bbio_alloc(ca->set);
597 
598 	closure_init_stack(cl);
599 
600 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
601 	bio_set_dev(bio, ca->bdev);
602 	bio->bi_iter.bi_size	= meta_bucket_bytes(&ca->sb);
603 
604 	bio->bi_end_io	= prio_endio;
605 	bio->bi_private = ca;
606 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
607 	bch_bio_map(bio, ca->disk_buckets);
608 
609 	closure_bio_submit(ca->set, bio, &ca->prio);
610 	closure_sync(cl);
611 }
612 
613 int bch_prio_write(struct cache *ca, bool wait)
614 {
615 	int i;
616 	struct bucket *b;
617 	struct closure cl;
618 
619 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
620 		 fifo_used(&ca->free[RESERVE_PRIO]),
621 		 fifo_used(&ca->free[RESERVE_NONE]),
622 		 fifo_used(&ca->free_inc));
623 
624 	/*
625 	 * Pre-check if there are enough free buckets. In the non-blocking
626 	 * scenario it's better to fail early rather than starting to allocate
627 	 * buckets and do a cleanup later in case of failure.
628 	 */
629 	if (!wait) {
630 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
631 			       fifo_used(&ca->free[RESERVE_NONE]);
632 		if (prio_buckets(ca) > avail)
633 			return -ENOMEM;
634 	}
635 
636 	closure_init_stack(&cl);
637 
638 	lockdep_assert_held(&ca->set->bucket_lock);
639 
640 	ca->disk_buckets->seq++;
641 
642 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
643 			&ca->meta_sectors_written);
644 
645 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
646 		long bucket;
647 		struct prio_set *p = ca->disk_buckets;
648 		struct bucket_disk *d = p->data;
649 		struct bucket_disk *end = d + prios_per_bucket(ca);
650 
651 		for (b = ca->buckets + i * prios_per_bucket(ca);
652 		     b < ca->buckets + ca->sb.nbuckets && d < end;
653 		     b++, d++) {
654 			d->prio = cpu_to_le16(b->prio);
655 			d->gen = b->gen;
656 		}
657 
658 		p->next_bucket	= ca->prio_buckets[i + 1];
659 		p->magic	= pset_magic(&ca->sb);
660 		p->csum		= bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8);
661 
662 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
663 		BUG_ON(bucket == -1);
664 
665 		mutex_unlock(&ca->set->bucket_lock);
666 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
667 		mutex_lock(&ca->set->bucket_lock);
668 
669 		ca->prio_buckets[i] = bucket;
670 		atomic_dec_bug(&ca->buckets[bucket].pin);
671 	}
672 
673 	mutex_unlock(&ca->set->bucket_lock);
674 
675 	bch_journal_meta(ca->set, &cl);
676 	closure_sync(&cl);
677 
678 	mutex_lock(&ca->set->bucket_lock);
679 
680 	/*
681 	 * Don't want the old priorities to get garbage collected until after we
682 	 * finish writing the new ones, and they're journalled
683 	 */
684 	for (i = 0; i < prio_buckets(ca); i++) {
685 		if (ca->prio_last_buckets[i])
686 			__bch_bucket_free(ca,
687 				&ca->buckets[ca->prio_last_buckets[i]]);
688 
689 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
690 	}
691 	return 0;
692 }
693 
694 static int prio_read(struct cache *ca, uint64_t bucket)
695 {
696 	struct prio_set *p = ca->disk_buckets;
697 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
698 	struct bucket *b;
699 	unsigned int bucket_nr = 0;
700 	int ret = -EIO;
701 
702 	for (b = ca->buckets;
703 	     b < ca->buckets + ca->sb.nbuckets;
704 	     b++, d++) {
705 		if (d == end) {
706 			ca->prio_buckets[bucket_nr] = bucket;
707 			ca->prio_last_buckets[bucket_nr] = bucket;
708 			bucket_nr++;
709 
710 			prio_io(ca, bucket, REQ_OP_READ, 0);
711 
712 			if (p->csum !=
713 			    bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) {
714 				pr_warn("bad csum reading priorities\n");
715 				goto out;
716 			}
717 
718 			if (p->magic != pset_magic(&ca->sb)) {
719 				pr_warn("bad magic reading priorities\n");
720 				goto out;
721 			}
722 
723 			bucket = p->next_bucket;
724 			d = p->data;
725 		}
726 
727 		b->prio = le16_to_cpu(d->prio);
728 		b->gen = b->last_gc = d->gen;
729 	}
730 
731 	ret = 0;
732 out:
733 	return ret;
734 }
735 
736 /* Bcache device */
737 
738 static int open_dev(struct block_device *b, fmode_t mode)
739 {
740 	struct bcache_device *d = b->bd_disk->private_data;
741 
742 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
743 		return -ENXIO;
744 
745 	closure_get(&d->cl);
746 	return 0;
747 }
748 
749 static void release_dev(struct gendisk *b, fmode_t mode)
750 {
751 	struct bcache_device *d = b->private_data;
752 
753 	closure_put(&d->cl);
754 }
755 
756 static int ioctl_dev(struct block_device *b, fmode_t mode,
757 		     unsigned int cmd, unsigned long arg)
758 {
759 	struct bcache_device *d = b->bd_disk->private_data;
760 
761 	return d->ioctl(d, mode, cmd, arg);
762 }
763 
764 static const struct block_device_operations bcache_cached_ops = {
765 	.submit_bio	= cached_dev_submit_bio,
766 	.open		= open_dev,
767 	.release	= release_dev,
768 	.ioctl		= ioctl_dev,
769 	.owner		= THIS_MODULE,
770 };
771 
772 static const struct block_device_operations bcache_flash_ops = {
773 	.submit_bio	= flash_dev_submit_bio,
774 	.open		= open_dev,
775 	.release	= release_dev,
776 	.ioctl		= ioctl_dev,
777 	.owner		= THIS_MODULE,
778 };
779 
780 void bcache_device_stop(struct bcache_device *d)
781 {
782 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
783 		/*
784 		 * closure_fn set to
785 		 * - cached device: cached_dev_flush()
786 		 * - flash dev: flash_dev_flush()
787 		 */
788 		closure_queue(&d->cl);
789 }
790 
791 static void bcache_device_unlink(struct bcache_device *d)
792 {
793 	lockdep_assert_held(&bch_register_lock);
794 
795 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
796 		struct cache *ca = d->c->cache;
797 
798 		sysfs_remove_link(&d->c->kobj, d->name);
799 		sysfs_remove_link(&d->kobj, "cache");
800 
801 		bd_unlink_disk_holder(ca->bdev, d->disk);
802 	}
803 }
804 
805 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
806 			       const char *name)
807 {
808 	struct cache *ca = c->cache;
809 	int ret;
810 
811 	bd_link_disk_holder(ca->bdev, d->disk);
812 
813 	snprintf(d->name, BCACHEDEVNAME_SIZE,
814 		 "%s%u", name, d->id);
815 
816 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
817 	if (ret < 0)
818 		pr_err("Couldn't create device -> cache set symlink\n");
819 
820 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
821 	if (ret < 0)
822 		pr_err("Couldn't create cache set -> device symlink\n");
823 
824 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
825 }
826 
827 static void bcache_device_detach(struct bcache_device *d)
828 {
829 	lockdep_assert_held(&bch_register_lock);
830 
831 	atomic_dec(&d->c->attached_dev_nr);
832 
833 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
834 		struct uuid_entry *u = d->c->uuids + d->id;
835 
836 		SET_UUID_FLASH_ONLY(u, 0);
837 		memcpy(u->uuid, invalid_uuid, 16);
838 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
839 		bch_uuid_write(d->c);
840 	}
841 
842 	bcache_device_unlink(d);
843 
844 	d->c->devices[d->id] = NULL;
845 	closure_put(&d->c->caching);
846 	d->c = NULL;
847 }
848 
849 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
850 				 unsigned int id)
851 {
852 	d->id = id;
853 	d->c = c;
854 	c->devices[id] = d;
855 
856 	if (id >= c->devices_max_used)
857 		c->devices_max_used = id + 1;
858 
859 	closure_get(&c->caching);
860 }
861 
862 static inline int first_minor_to_idx(int first_minor)
863 {
864 	return (first_minor/BCACHE_MINORS);
865 }
866 
867 static inline int idx_to_first_minor(int idx)
868 {
869 	return (idx * BCACHE_MINORS);
870 }
871 
872 static void bcache_device_free(struct bcache_device *d)
873 {
874 	struct gendisk *disk = d->disk;
875 
876 	lockdep_assert_held(&bch_register_lock);
877 
878 	if (disk)
879 		pr_info("%s stopped\n", disk->disk_name);
880 	else
881 		pr_err("bcache device (NULL gendisk) stopped\n");
882 
883 	if (d->c)
884 		bcache_device_detach(d);
885 
886 	if (disk) {
887 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
888 
889 		if (disk_added)
890 			del_gendisk(disk);
891 
892 		if (disk->queue)
893 			blk_cleanup_queue(disk->queue);
894 
895 		ida_simple_remove(&bcache_device_idx,
896 				  first_minor_to_idx(disk->first_minor));
897 		if (disk_added)
898 			put_disk(disk);
899 	}
900 
901 	bioset_exit(&d->bio_split);
902 	kvfree(d->full_dirty_stripes);
903 	kvfree(d->stripe_sectors_dirty);
904 
905 	closure_debug_destroy(&d->cl);
906 }
907 
908 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
909 		sector_t sectors, struct block_device *cached_bdev,
910 		const struct block_device_operations *ops)
911 {
912 	struct request_queue *q;
913 	const size_t max_stripes = min_t(size_t, INT_MAX,
914 					 SIZE_MAX / sizeof(atomic_t));
915 	uint64_t n;
916 	int idx;
917 
918 	if (!d->stripe_size)
919 		d->stripe_size = 1 << 31;
920 
921 	n = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
922 	if (!n || n > max_stripes) {
923 		pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n",
924 			n);
925 		return -ENOMEM;
926 	}
927 	d->nr_stripes = n;
928 
929 	n = d->nr_stripes * sizeof(atomic_t);
930 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
931 	if (!d->stripe_sectors_dirty)
932 		return -ENOMEM;
933 
934 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
935 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
936 	if (!d->full_dirty_stripes)
937 		return -ENOMEM;
938 
939 	idx = ida_simple_get(&bcache_device_idx, 0,
940 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
941 	if (idx < 0)
942 		return idx;
943 
944 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
945 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
946 		goto err;
947 
948 	d->disk = alloc_disk(BCACHE_MINORS);
949 	if (!d->disk)
950 		goto err;
951 
952 	set_capacity(d->disk, sectors);
953 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
954 
955 	d->disk->major		= bcache_major;
956 	d->disk->first_minor	= idx_to_first_minor(idx);
957 	d->disk->fops		= ops;
958 	d->disk->private_data	= d;
959 
960 	q = blk_alloc_queue(NUMA_NO_NODE);
961 	if (!q)
962 		return -ENOMEM;
963 
964 	d->disk->queue			= q;
965 	q->limits.max_hw_sectors	= UINT_MAX;
966 	q->limits.max_sectors		= UINT_MAX;
967 	q->limits.max_segment_size	= UINT_MAX;
968 	q->limits.max_segments		= BIO_MAX_PAGES;
969 	blk_queue_max_discard_sectors(q, UINT_MAX);
970 	q->limits.discard_granularity	= 512;
971 	q->limits.io_min		= block_size;
972 	q->limits.logical_block_size	= block_size;
973 	q->limits.physical_block_size	= block_size;
974 
975 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
976 		/*
977 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
978 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
979 		 */
980 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
981 			d->disk->disk_name, q->limits.logical_block_size,
982 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
983 
984 		/* This also adjusts physical block size/min io size if needed */
985 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
986 	}
987 
988 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
989 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
990 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
991 
992 	blk_queue_write_cache(q, true, true);
993 
994 	return 0;
995 
996 err:
997 	ida_simple_remove(&bcache_device_idx, idx);
998 	return -ENOMEM;
999 
1000 }
1001 
1002 /* Cached device */
1003 
1004 static void calc_cached_dev_sectors(struct cache_set *c)
1005 {
1006 	uint64_t sectors = 0;
1007 	struct cached_dev *dc;
1008 
1009 	list_for_each_entry(dc, &c->cached_devs, list)
1010 		sectors += bdev_sectors(dc->bdev);
1011 
1012 	c->cached_dev_sectors = sectors;
1013 }
1014 
1015 #define BACKING_DEV_OFFLINE_TIMEOUT 5
1016 static int cached_dev_status_update(void *arg)
1017 {
1018 	struct cached_dev *dc = arg;
1019 	struct request_queue *q;
1020 
1021 	/*
1022 	 * If this delayed worker is stopping outside, directly quit here.
1023 	 * dc->io_disable might be set via sysfs interface, so check it
1024 	 * here too.
1025 	 */
1026 	while (!kthread_should_stop() && !dc->io_disable) {
1027 		q = bdev_get_queue(dc->bdev);
1028 		if (blk_queue_dying(q))
1029 			dc->offline_seconds++;
1030 		else
1031 			dc->offline_seconds = 0;
1032 
1033 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
1034 			pr_err("%s: device offline for %d seconds\n",
1035 			       dc->backing_dev_name,
1036 			       BACKING_DEV_OFFLINE_TIMEOUT);
1037 			pr_err("%s: disable I/O request due to backing device offline\n",
1038 			       dc->disk.name);
1039 			dc->io_disable = true;
1040 			/* let others know earlier that io_disable is true */
1041 			smp_mb();
1042 			bcache_device_stop(&dc->disk);
1043 			break;
1044 		}
1045 		schedule_timeout_interruptible(HZ);
1046 	}
1047 
1048 	wait_for_kthread_stop();
1049 	return 0;
1050 }
1051 
1052 
1053 int bch_cached_dev_run(struct cached_dev *dc)
1054 {
1055 	struct bcache_device *d = &dc->disk;
1056 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
1057 	char *env[] = {
1058 		"DRIVER=bcache",
1059 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
1060 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
1061 		NULL,
1062 	};
1063 
1064 	if (dc->io_disable) {
1065 		pr_err("I/O disabled on cached dev %s\n",
1066 		       dc->backing_dev_name);
1067 		kfree(env[1]);
1068 		kfree(env[2]);
1069 		kfree(buf);
1070 		return -EIO;
1071 	}
1072 
1073 	if (atomic_xchg(&dc->running, 1)) {
1074 		kfree(env[1]);
1075 		kfree(env[2]);
1076 		kfree(buf);
1077 		pr_info("cached dev %s is running already\n",
1078 		       dc->backing_dev_name);
1079 		return -EBUSY;
1080 	}
1081 
1082 	if (!d->c &&
1083 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1084 		struct closure cl;
1085 
1086 		closure_init_stack(&cl);
1087 
1088 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1089 		bch_write_bdev_super(dc, &cl);
1090 		closure_sync(&cl);
1091 	}
1092 
1093 	add_disk(d->disk);
1094 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1095 	/*
1096 	 * won't show up in the uevent file, use udevadm monitor -e instead
1097 	 * only class / kset properties are persistent
1098 	 */
1099 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1100 	kfree(env[1]);
1101 	kfree(env[2]);
1102 	kfree(buf);
1103 
1104 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1105 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1106 			      &d->kobj, "bcache")) {
1107 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1108 		return -ENOMEM;
1109 	}
1110 
1111 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1112 					       dc, "bcache_status_update");
1113 	if (IS_ERR(dc->status_update_thread)) {
1114 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1122  * work dc->writeback_rate_update is running. Wait until the routine
1123  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1124  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1125  * seconds, give up waiting here and continue to cancel it too.
1126  */
1127 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1128 {
1129 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1130 
1131 	do {
1132 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1133 			      &dc->disk.flags))
1134 			break;
1135 		time_out--;
1136 		schedule_timeout_interruptible(1);
1137 	} while (time_out > 0);
1138 
1139 	if (time_out == 0)
1140 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1141 
1142 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1143 }
1144 
1145 static void cached_dev_detach_finish(struct work_struct *w)
1146 {
1147 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1148 
1149 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1150 	BUG_ON(refcount_read(&dc->count));
1151 
1152 
1153 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1154 		cancel_writeback_rate_update_dwork(dc);
1155 
1156 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1157 		kthread_stop(dc->writeback_thread);
1158 		dc->writeback_thread = NULL;
1159 	}
1160 
1161 	mutex_lock(&bch_register_lock);
1162 
1163 	calc_cached_dev_sectors(dc->disk.c);
1164 	bcache_device_detach(&dc->disk);
1165 	list_move(&dc->list, &uncached_devices);
1166 
1167 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1168 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1169 
1170 	mutex_unlock(&bch_register_lock);
1171 
1172 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1173 
1174 	/* Drop ref we took in cached_dev_detach() */
1175 	closure_put(&dc->disk.cl);
1176 }
1177 
1178 void bch_cached_dev_detach(struct cached_dev *dc)
1179 {
1180 	lockdep_assert_held(&bch_register_lock);
1181 
1182 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1183 		return;
1184 
1185 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1186 		return;
1187 
1188 	/*
1189 	 * Block the device from being closed and freed until we're finished
1190 	 * detaching
1191 	 */
1192 	closure_get(&dc->disk.cl);
1193 
1194 	bch_writeback_queue(dc);
1195 
1196 	cached_dev_put(dc);
1197 }
1198 
1199 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1200 			  uint8_t *set_uuid)
1201 {
1202 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1203 	struct uuid_entry *u;
1204 	struct cached_dev *exist_dc, *t;
1205 	int ret = 0;
1206 
1207 	if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) ||
1208 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16)))
1209 		return -ENOENT;
1210 
1211 	if (dc->disk.c) {
1212 		pr_err("Can't attach %s: already attached\n",
1213 		       dc->backing_dev_name);
1214 		return -EINVAL;
1215 	}
1216 
1217 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1218 		pr_err("Can't attach %s: shutting down\n",
1219 		       dc->backing_dev_name);
1220 		return -EINVAL;
1221 	}
1222 
1223 	if (dc->sb.block_size < c->cache->sb.block_size) {
1224 		/* Will die */
1225 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1226 		       dc->backing_dev_name);
1227 		return -EINVAL;
1228 	}
1229 
1230 	/* Check whether already attached */
1231 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1232 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1233 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1234 				dc->backing_dev_name);
1235 
1236 			return -EINVAL;
1237 		}
1238 	}
1239 
1240 	u = uuid_find(c, dc->sb.uuid);
1241 
1242 	if (u &&
1243 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1244 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1245 		memcpy(u->uuid, invalid_uuid, 16);
1246 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1247 		u = NULL;
1248 	}
1249 
1250 	if (!u) {
1251 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1252 			pr_err("Couldn't find uuid for %s in set\n",
1253 			       dc->backing_dev_name);
1254 			return -ENOENT;
1255 		}
1256 
1257 		u = uuid_find_empty(c);
1258 		if (!u) {
1259 			pr_err("Not caching %s, no room for UUID\n",
1260 			       dc->backing_dev_name);
1261 			return -EINVAL;
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * Deadlocks since we're called via sysfs...
1267 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1268 	 */
1269 
1270 	if (bch_is_zero(u->uuid, 16)) {
1271 		struct closure cl;
1272 
1273 		closure_init_stack(&cl);
1274 
1275 		memcpy(u->uuid, dc->sb.uuid, 16);
1276 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1277 		u->first_reg = u->last_reg = rtime;
1278 		bch_uuid_write(c);
1279 
1280 		memcpy(dc->sb.set_uuid, c->set_uuid, 16);
1281 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1282 
1283 		bch_write_bdev_super(dc, &cl);
1284 		closure_sync(&cl);
1285 	} else {
1286 		u->last_reg = rtime;
1287 		bch_uuid_write(c);
1288 	}
1289 
1290 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1291 	list_move(&dc->list, &c->cached_devs);
1292 	calc_cached_dev_sectors(c);
1293 
1294 	/*
1295 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1296 	 * cached_dev_get()
1297 	 */
1298 	smp_wmb();
1299 	refcount_set(&dc->count, 1);
1300 
1301 	/* Block writeback thread, but spawn it */
1302 	down_write(&dc->writeback_lock);
1303 	if (bch_cached_dev_writeback_start(dc)) {
1304 		up_write(&dc->writeback_lock);
1305 		pr_err("Couldn't start writeback facilities for %s\n",
1306 		       dc->disk.disk->disk_name);
1307 		return -ENOMEM;
1308 	}
1309 
1310 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1311 		atomic_set(&dc->has_dirty, 1);
1312 		bch_writeback_queue(dc);
1313 	}
1314 
1315 	bch_sectors_dirty_init(&dc->disk);
1316 
1317 	ret = bch_cached_dev_run(dc);
1318 	if (ret && (ret != -EBUSY)) {
1319 		up_write(&dc->writeback_lock);
1320 		/*
1321 		 * bch_register_lock is held, bcache_device_stop() is not
1322 		 * able to be directly called. The kthread and kworker
1323 		 * created previously in bch_cached_dev_writeback_start()
1324 		 * have to be stopped manually here.
1325 		 */
1326 		kthread_stop(dc->writeback_thread);
1327 		cancel_writeback_rate_update_dwork(dc);
1328 		pr_err("Couldn't run cached device %s\n",
1329 		       dc->backing_dev_name);
1330 		return ret;
1331 	}
1332 
1333 	bcache_device_link(&dc->disk, c, "bdev");
1334 	atomic_inc(&c->attached_dev_nr);
1335 
1336 	if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) {
1337 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1338 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1339 		set_disk_ro(dc->disk.disk, 1);
1340 	}
1341 
1342 	/* Allow the writeback thread to proceed */
1343 	up_write(&dc->writeback_lock);
1344 
1345 	pr_info("Caching %s as %s on set %pU\n",
1346 		dc->backing_dev_name,
1347 		dc->disk.disk->disk_name,
1348 		dc->disk.c->set_uuid);
1349 	return 0;
1350 }
1351 
1352 /* when dc->disk.kobj released */
1353 void bch_cached_dev_release(struct kobject *kobj)
1354 {
1355 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1356 					     disk.kobj);
1357 	kfree(dc);
1358 	module_put(THIS_MODULE);
1359 }
1360 
1361 static void cached_dev_free(struct closure *cl)
1362 {
1363 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1364 
1365 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1366 		cancel_writeback_rate_update_dwork(dc);
1367 
1368 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1369 		kthread_stop(dc->writeback_thread);
1370 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1371 		kthread_stop(dc->status_update_thread);
1372 
1373 	mutex_lock(&bch_register_lock);
1374 
1375 	if (atomic_read(&dc->running))
1376 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1377 	bcache_device_free(&dc->disk);
1378 	list_del(&dc->list);
1379 
1380 	mutex_unlock(&bch_register_lock);
1381 
1382 	if (dc->sb_disk)
1383 		put_page(virt_to_page(dc->sb_disk));
1384 
1385 	if (!IS_ERR_OR_NULL(dc->bdev))
1386 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1387 
1388 	wake_up(&unregister_wait);
1389 
1390 	kobject_put(&dc->disk.kobj);
1391 }
1392 
1393 static void cached_dev_flush(struct closure *cl)
1394 {
1395 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1396 	struct bcache_device *d = &dc->disk;
1397 
1398 	mutex_lock(&bch_register_lock);
1399 	bcache_device_unlink(d);
1400 	mutex_unlock(&bch_register_lock);
1401 
1402 	bch_cache_accounting_destroy(&dc->accounting);
1403 	kobject_del(&d->kobj);
1404 
1405 	continue_at(cl, cached_dev_free, system_wq);
1406 }
1407 
1408 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1409 {
1410 	int ret;
1411 	struct io *io;
1412 	struct request_queue *q = bdev_get_queue(dc->bdev);
1413 
1414 	__module_get(THIS_MODULE);
1415 	INIT_LIST_HEAD(&dc->list);
1416 	closure_init(&dc->disk.cl, NULL);
1417 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1418 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1419 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1420 	sema_init(&dc->sb_write_mutex, 1);
1421 	INIT_LIST_HEAD(&dc->io_lru);
1422 	spin_lock_init(&dc->io_lock);
1423 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1424 
1425 	dc->sequential_cutoff		= 4 << 20;
1426 
1427 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1428 		list_add(&io->lru, &dc->io_lru);
1429 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1430 	}
1431 
1432 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1433 
1434 	if (dc->disk.stripe_size)
1435 		dc->partial_stripes_expensive =
1436 			q->limits.raid_partial_stripes_expensive;
1437 
1438 	ret = bcache_device_init(&dc->disk, block_size,
1439 			 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset,
1440 			 dc->bdev, &bcache_cached_ops);
1441 	if (ret)
1442 		return ret;
1443 
1444 	blk_queue_io_opt(dc->disk.disk->queue,
1445 		max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q)));
1446 
1447 	atomic_set(&dc->io_errors, 0);
1448 	dc->io_disable = false;
1449 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1450 	/* default to auto */
1451 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1452 
1453 	bch_cached_dev_request_init(dc);
1454 	bch_cached_dev_writeback_init(dc);
1455 	return 0;
1456 }
1457 
1458 /* Cached device - bcache superblock */
1459 
1460 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1461 				 struct block_device *bdev,
1462 				 struct cached_dev *dc)
1463 {
1464 	const char *err = "cannot allocate memory";
1465 	struct cache_set *c;
1466 	int ret = -ENOMEM;
1467 
1468 	bdevname(bdev, dc->backing_dev_name);
1469 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1470 	dc->bdev = bdev;
1471 	dc->bdev->bd_holder = dc;
1472 	dc->sb_disk = sb_disk;
1473 
1474 	if (cached_dev_init(dc, sb->block_size << 9))
1475 		goto err;
1476 
1477 	err = "error creating kobject";
1478 	if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache"))
1479 		goto err;
1480 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1481 		goto err;
1482 
1483 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1484 
1485 	list_add(&dc->list, &uncached_devices);
1486 	/* attach to a matched cache set if it exists */
1487 	list_for_each_entry(c, &bch_cache_sets, list)
1488 		bch_cached_dev_attach(dc, c, NULL);
1489 
1490 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1491 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1492 		err = "failed to run cached device";
1493 		ret = bch_cached_dev_run(dc);
1494 		if (ret)
1495 			goto err;
1496 	}
1497 
1498 	return 0;
1499 err:
1500 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1501 	bcache_device_stop(&dc->disk);
1502 	return ret;
1503 }
1504 
1505 /* Flash only volumes */
1506 
1507 /* When d->kobj released */
1508 void bch_flash_dev_release(struct kobject *kobj)
1509 {
1510 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1511 					       kobj);
1512 	kfree(d);
1513 }
1514 
1515 static void flash_dev_free(struct closure *cl)
1516 {
1517 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1518 
1519 	mutex_lock(&bch_register_lock);
1520 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1521 			&d->c->flash_dev_dirty_sectors);
1522 	bcache_device_free(d);
1523 	mutex_unlock(&bch_register_lock);
1524 	kobject_put(&d->kobj);
1525 }
1526 
1527 static void flash_dev_flush(struct closure *cl)
1528 {
1529 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1530 
1531 	mutex_lock(&bch_register_lock);
1532 	bcache_device_unlink(d);
1533 	mutex_unlock(&bch_register_lock);
1534 	kobject_del(&d->kobj);
1535 	continue_at(cl, flash_dev_free, system_wq);
1536 }
1537 
1538 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1539 {
1540 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1541 					  GFP_KERNEL);
1542 	if (!d)
1543 		return -ENOMEM;
1544 
1545 	closure_init(&d->cl, NULL);
1546 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1547 
1548 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1549 
1550 	if (bcache_device_init(d, block_bytes(c->cache), u->sectors,
1551 			NULL, &bcache_flash_ops))
1552 		goto err;
1553 
1554 	bcache_device_attach(d, c, u - c->uuids);
1555 	bch_sectors_dirty_init(d);
1556 	bch_flash_dev_request_init(d);
1557 	add_disk(d->disk);
1558 
1559 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1560 		goto err;
1561 
1562 	bcache_device_link(d, c, "volume");
1563 
1564 	if (bch_has_feature_obso_large_bucket(&c->cache->sb)) {
1565 		pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n");
1566 		pr_err("Please update to the latest bcache-tools to create the cache device\n");
1567 		set_disk_ro(d->disk, 1);
1568 	}
1569 
1570 	return 0;
1571 err:
1572 	kobject_put(&d->kobj);
1573 	return -ENOMEM;
1574 }
1575 
1576 static int flash_devs_run(struct cache_set *c)
1577 {
1578 	int ret = 0;
1579 	struct uuid_entry *u;
1580 
1581 	for (u = c->uuids;
1582 	     u < c->uuids + c->nr_uuids && !ret;
1583 	     u++)
1584 		if (UUID_FLASH_ONLY(u))
1585 			ret = flash_dev_run(c, u);
1586 
1587 	return ret;
1588 }
1589 
1590 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1591 {
1592 	struct uuid_entry *u;
1593 
1594 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1595 		return -EINTR;
1596 
1597 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1598 		return -EPERM;
1599 
1600 	u = uuid_find_empty(c);
1601 	if (!u) {
1602 		pr_err("Can't create volume, no room for UUID\n");
1603 		return -EINVAL;
1604 	}
1605 
1606 	get_random_bytes(u->uuid, 16);
1607 	memset(u->label, 0, 32);
1608 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1609 
1610 	SET_UUID_FLASH_ONLY(u, 1);
1611 	u->sectors = size >> 9;
1612 
1613 	bch_uuid_write(c);
1614 
1615 	return flash_dev_run(c, u);
1616 }
1617 
1618 bool bch_cached_dev_error(struct cached_dev *dc)
1619 {
1620 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1621 		return false;
1622 
1623 	dc->io_disable = true;
1624 	/* make others know io_disable is true earlier */
1625 	smp_mb();
1626 
1627 	pr_err("stop %s: too many IO errors on backing device %s\n",
1628 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1629 
1630 	bcache_device_stop(&dc->disk);
1631 	return true;
1632 }
1633 
1634 /* Cache set */
1635 
1636 __printf(2, 3)
1637 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1638 {
1639 	struct va_format vaf;
1640 	va_list args;
1641 
1642 	if (c->on_error != ON_ERROR_PANIC &&
1643 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1644 		return false;
1645 
1646 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1647 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1648 
1649 	/*
1650 	 * XXX: we can be called from atomic context
1651 	 * acquire_console_sem();
1652 	 */
1653 
1654 	va_start(args, fmt);
1655 
1656 	vaf.fmt = fmt;
1657 	vaf.va = &args;
1658 
1659 	pr_err("error on %pU: %pV, disabling caching\n",
1660 	       c->set_uuid, &vaf);
1661 
1662 	va_end(args);
1663 
1664 	if (c->on_error == ON_ERROR_PANIC)
1665 		panic("panic forced after error\n");
1666 
1667 	bch_cache_set_unregister(c);
1668 	return true;
1669 }
1670 
1671 /* When c->kobj released */
1672 void bch_cache_set_release(struct kobject *kobj)
1673 {
1674 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1675 
1676 	kfree(c);
1677 	module_put(THIS_MODULE);
1678 }
1679 
1680 static void cache_set_free(struct closure *cl)
1681 {
1682 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1683 	struct cache *ca;
1684 
1685 	debugfs_remove(c->debug);
1686 
1687 	bch_open_buckets_free(c);
1688 	bch_btree_cache_free(c);
1689 	bch_journal_free(c);
1690 
1691 	mutex_lock(&bch_register_lock);
1692 	bch_bset_sort_state_free(&c->sort);
1693 	free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb)));
1694 
1695 	ca = c->cache;
1696 	if (ca) {
1697 		ca->set = NULL;
1698 		c->cache = NULL;
1699 		kobject_put(&ca->kobj);
1700 	}
1701 
1702 
1703 	if (c->moving_gc_wq)
1704 		destroy_workqueue(c->moving_gc_wq);
1705 	bioset_exit(&c->bio_split);
1706 	mempool_exit(&c->fill_iter);
1707 	mempool_exit(&c->bio_meta);
1708 	mempool_exit(&c->search);
1709 	kfree(c->devices);
1710 
1711 	list_del(&c->list);
1712 	mutex_unlock(&bch_register_lock);
1713 
1714 	pr_info("Cache set %pU unregistered\n", c->set_uuid);
1715 	wake_up(&unregister_wait);
1716 
1717 	closure_debug_destroy(&c->cl);
1718 	kobject_put(&c->kobj);
1719 }
1720 
1721 static void cache_set_flush(struct closure *cl)
1722 {
1723 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1724 	struct cache *ca = c->cache;
1725 	struct btree *b;
1726 
1727 	bch_cache_accounting_destroy(&c->accounting);
1728 
1729 	kobject_put(&c->internal);
1730 	kobject_del(&c->kobj);
1731 
1732 	if (!IS_ERR_OR_NULL(c->gc_thread))
1733 		kthread_stop(c->gc_thread);
1734 
1735 	if (!IS_ERR_OR_NULL(c->root))
1736 		list_add(&c->root->list, &c->btree_cache);
1737 
1738 	/*
1739 	 * Avoid flushing cached nodes if cache set is retiring
1740 	 * due to too many I/O errors detected.
1741 	 */
1742 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1743 		list_for_each_entry(b, &c->btree_cache, list) {
1744 			mutex_lock(&b->write_lock);
1745 			if (btree_node_dirty(b))
1746 				__bch_btree_node_write(b, NULL);
1747 			mutex_unlock(&b->write_lock);
1748 		}
1749 
1750 	if (ca->alloc_thread)
1751 		kthread_stop(ca->alloc_thread);
1752 
1753 	if (c->journal.cur) {
1754 		cancel_delayed_work_sync(&c->journal.work);
1755 		/* flush last journal entry if needed */
1756 		c->journal.work.work.func(&c->journal.work.work);
1757 	}
1758 
1759 	closure_return(cl);
1760 }
1761 
1762 /*
1763  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1764  * cache set is unregistering due to too many I/O errors. In this condition,
1765  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1766  * value and whether the broken cache has dirty data:
1767  *
1768  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1769  *  BCH_CACHED_STOP_AUTO               0               NO
1770  *  BCH_CACHED_STOP_AUTO               1               YES
1771  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1772  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1773  *
1774  * The expected behavior is, if stop_when_cache_set_failed is configured to
1775  * "auto" via sysfs interface, the bcache device will not be stopped if the
1776  * backing device is clean on the broken cache device.
1777  */
1778 static void conditional_stop_bcache_device(struct cache_set *c,
1779 					   struct bcache_device *d,
1780 					   struct cached_dev *dc)
1781 {
1782 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1783 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1784 			d->disk->disk_name, c->set_uuid);
1785 		bcache_device_stop(d);
1786 	} else if (atomic_read(&dc->has_dirty)) {
1787 		/*
1788 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1789 		 * and dc->has_dirty == 1
1790 		 */
1791 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1792 			d->disk->disk_name);
1793 		/*
1794 		 * There might be a small time gap that cache set is
1795 		 * released but bcache device is not. Inside this time
1796 		 * gap, regular I/O requests will directly go into
1797 		 * backing device as no cache set attached to. This
1798 		 * behavior may also introduce potential inconsistence
1799 		 * data in writeback mode while cache is dirty.
1800 		 * Therefore before calling bcache_device_stop() due
1801 		 * to a broken cache device, dc->io_disable should be
1802 		 * explicitly set to true.
1803 		 */
1804 		dc->io_disable = true;
1805 		/* make others know io_disable is true earlier */
1806 		smp_mb();
1807 		bcache_device_stop(d);
1808 	} else {
1809 		/*
1810 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1811 		 * and dc->has_dirty == 0
1812 		 */
1813 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1814 			d->disk->disk_name);
1815 	}
1816 }
1817 
1818 static void __cache_set_unregister(struct closure *cl)
1819 {
1820 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1821 	struct cached_dev *dc;
1822 	struct bcache_device *d;
1823 	size_t i;
1824 
1825 	mutex_lock(&bch_register_lock);
1826 
1827 	for (i = 0; i < c->devices_max_used; i++) {
1828 		d = c->devices[i];
1829 		if (!d)
1830 			continue;
1831 
1832 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1833 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1834 			dc = container_of(d, struct cached_dev, disk);
1835 			bch_cached_dev_detach(dc);
1836 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1837 				conditional_stop_bcache_device(c, d, dc);
1838 		} else {
1839 			bcache_device_stop(d);
1840 		}
1841 	}
1842 
1843 	mutex_unlock(&bch_register_lock);
1844 
1845 	continue_at(cl, cache_set_flush, system_wq);
1846 }
1847 
1848 void bch_cache_set_stop(struct cache_set *c)
1849 {
1850 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1851 		/* closure_fn set to __cache_set_unregister() */
1852 		closure_queue(&c->caching);
1853 }
1854 
1855 void bch_cache_set_unregister(struct cache_set *c)
1856 {
1857 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1858 	bch_cache_set_stop(c);
1859 }
1860 
1861 #define alloc_meta_bucket_pages(gfp, sb)		\
1862 	((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb))))
1863 
1864 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1865 {
1866 	int iter_size;
1867 	struct cache *ca = container_of(sb, struct cache, sb);
1868 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1869 
1870 	if (!c)
1871 		return NULL;
1872 
1873 	__module_get(THIS_MODULE);
1874 	closure_init(&c->cl, NULL);
1875 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1876 
1877 	closure_init(&c->caching, &c->cl);
1878 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1879 
1880 	/* Maybe create continue_at_noreturn() and use it here? */
1881 	closure_set_stopped(&c->cl);
1882 	closure_put(&c->cl);
1883 
1884 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1885 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1886 
1887 	bch_cache_accounting_init(&c->accounting, &c->cl);
1888 
1889 	memcpy(c->set_uuid, sb->set_uuid, 16);
1890 
1891 	c->cache		= ca;
1892 	c->cache->set		= c;
1893 	c->bucket_bits		= ilog2(sb->bucket_size);
1894 	c->block_bits		= ilog2(sb->block_size);
1895 	c->nr_uuids		= meta_bucket_bytes(sb) / sizeof(struct uuid_entry);
1896 	c->devices_max_used	= 0;
1897 	atomic_set(&c->attached_dev_nr, 0);
1898 	c->btree_pages		= meta_bucket_pages(sb);
1899 	if (c->btree_pages > BTREE_MAX_PAGES)
1900 		c->btree_pages = max_t(int, c->btree_pages / 4,
1901 				       BTREE_MAX_PAGES);
1902 
1903 	sema_init(&c->sb_write_mutex, 1);
1904 	mutex_init(&c->bucket_lock);
1905 	init_waitqueue_head(&c->btree_cache_wait);
1906 	spin_lock_init(&c->btree_cannibalize_lock);
1907 	init_waitqueue_head(&c->bucket_wait);
1908 	init_waitqueue_head(&c->gc_wait);
1909 	sema_init(&c->uuid_write_mutex, 1);
1910 
1911 	spin_lock_init(&c->btree_gc_time.lock);
1912 	spin_lock_init(&c->btree_split_time.lock);
1913 	spin_lock_init(&c->btree_read_time.lock);
1914 
1915 	bch_moving_init_cache_set(c);
1916 
1917 	INIT_LIST_HEAD(&c->list);
1918 	INIT_LIST_HEAD(&c->cached_devs);
1919 	INIT_LIST_HEAD(&c->btree_cache);
1920 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1921 	INIT_LIST_HEAD(&c->btree_cache_freed);
1922 	INIT_LIST_HEAD(&c->data_buckets);
1923 
1924 	iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) *
1925 		sizeof(struct btree_iter_set);
1926 
1927 	c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL);
1928 	if (!c->devices)
1929 		goto err;
1930 
1931 	if (mempool_init_slab_pool(&c->search, 32, bch_search_cache))
1932 		goto err;
1933 
1934 	if (mempool_init_kmalloc_pool(&c->bio_meta, 2,
1935 			sizeof(struct bbio) +
1936 			sizeof(struct bio_vec) * meta_bucket_pages(sb)))
1937 		goto err;
1938 
1939 	if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size))
1940 		goto err;
1941 
1942 	if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1943 			BIOSET_NEED_RESCUER))
1944 		goto err;
1945 
1946 	c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb);
1947 	if (!c->uuids)
1948 		goto err;
1949 
1950 	c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0);
1951 	if (!c->moving_gc_wq)
1952 		goto err;
1953 
1954 	if (bch_journal_alloc(c))
1955 		goto err;
1956 
1957 	if (bch_btree_cache_alloc(c))
1958 		goto err;
1959 
1960 	if (bch_open_buckets_alloc(c))
1961 		goto err;
1962 
1963 	if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1964 		goto err;
1965 
1966 	c->congested_read_threshold_us	= 2000;
1967 	c->congested_write_threshold_us	= 20000;
1968 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1969 	c->idle_max_writeback_rate_enabled = 1;
1970 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1971 
1972 	return c;
1973 err:
1974 	bch_cache_set_unregister(c);
1975 	return NULL;
1976 }
1977 
1978 static int run_cache_set(struct cache_set *c)
1979 {
1980 	const char *err = "cannot allocate memory";
1981 	struct cached_dev *dc, *t;
1982 	struct cache *ca = c->cache;
1983 	struct closure cl;
1984 	LIST_HEAD(journal);
1985 	struct journal_replay *l;
1986 
1987 	closure_init_stack(&cl);
1988 
1989 	c->nbuckets = ca->sb.nbuckets;
1990 	set_gc_sectors(c);
1991 
1992 	if (CACHE_SYNC(&c->cache->sb)) {
1993 		struct bkey *k;
1994 		struct jset *j;
1995 
1996 		err = "cannot allocate memory for journal";
1997 		if (bch_journal_read(c, &journal))
1998 			goto err;
1999 
2000 		pr_debug("btree_journal_read() done\n");
2001 
2002 		err = "no journal entries found";
2003 		if (list_empty(&journal))
2004 			goto err;
2005 
2006 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
2007 
2008 		err = "IO error reading priorities";
2009 		if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
2010 			goto err;
2011 
2012 		/*
2013 		 * If prio_read() fails it'll call cache_set_error and we'll
2014 		 * tear everything down right away, but if we perhaps checked
2015 		 * sooner we could avoid journal replay.
2016 		 */
2017 
2018 		k = &j->btree_root;
2019 
2020 		err = "bad btree root";
2021 		if (__bch_btree_ptr_invalid(c, k))
2022 			goto err;
2023 
2024 		err = "error reading btree root";
2025 		c->root = bch_btree_node_get(c, NULL, k,
2026 					     j->btree_level,
2027 					     true, NULL);
2028 		if (IS_ERR_OR_NULL(c->root))
2029 			goto err;
2030 
2031 		list_del_init(&c->root->list);
2032 		rw_unlock(true, c->root);
2033 
2034 		err = uuid_read(c, j, &cl);
2035 		if (err)
2036 			goto err;
2037 
2038 		err = "error in recovery";
2039 		if (bch_btree_check(c))
2040 			goto err;
2041 
2042 		bch_journal_mark(c, &journal);
2043 		bch_initial_gc_finish(c);
2044 		pr_debug("btree_check() done\n");
2045 
2046 		/*
2047 		 * bcache_journal_next() can't happen sooner, or
2048 		 * btree_gc_finish() will give spurious errors about last_gc >
2049 		 * gc_gen - this is a hack but oh well.
2050 		 */
2051 		bch_journal_next(&c->journal);
2052 
2053 		err = "error starting allocator thread";
2054 		if (bch_cache_allocator_start(ca))
2055 			goto err;
2056 
2057 		/*
2058 		 * First place it's safe to allocate: btree_check() and
2059 		 * btree_gc_finish() have to run before we have buckets to
2060 		 * allocate, and bch_bucket_alloc_set() might cause a journal
2061 		 * entry to be written so bcache_journal_next() has to be called
2062 		 * first.
2063 		 *
2064 		 * If the uuids were in the old format we have to rewrite them
2065 		 * before the next journal entry is written:
2066 		 */
2067 		if (j->version < BCACHE_JSET_VERSION_UUID)
2068 			__uuid_write(c);
2069 
2070 		err = "bcache: replay journal failed";
2071 		if (bch_journal_replay(c, &journal))
2072 			goto err;
2073 	} else {
2074 		unsigned int j;
2075 
2076 		pr_notice("invalidating existing data\n");
2077 		ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
2078 					2, SB_JOURNAL_BUCKETS);
2079 
2080 		for (j = 0; j < ca->sb.keys; j++)
2081 			ca->sb.d[j] = ca->sb.first_bucket + j;
2082 
2083 		bch_initial_gc_finish(c);
2084 
2085 		err = "error starting allocator thread";
2086 		if (bch_cache_allocator_start(ca))
2087 			goto err;
2088 
2089 		mutex_lock(&c->bucket_lock);
2090 		bch_prio_write(ca, true);
2091 		mutex_unlock(&c->bucket_lock);
2092 
2093 		err = "cannot allocate new UUID bucket";
2094 		if (__uuid_write(c))
2095 			goto err;
2096 
2097 		err = "cannot allocate new btree root";
2098 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2099 		if (IS_ERR_OR_NULL(c->root))
2100 			goto err;
2101 
2102 		mutex_lock(&c->root->write_lock);
2103 		bkey_copy_key(&c->root->key, &MAX_KEY);
2104 		bch_btree_node_write(c->root, &cl);
2105 		mutex_unlock(&c->root->write_lock);
2106 
2107 		bch_btree_set_root(c->root);
2108 		rw_unlock(true, c->root);
2109 
2110 		/*
2111 		 * We don't want to write the first journal entry until
2112 		 * everything is set up - fortunately journal entries won't be
2113 		 * written until the SET_CACHE_SYNC() here:
2114 		 */
2115 		SET_CACHE_SYNC(&c->cache->sb, true);
2116 
2117 		bch_journal_next(&c->journal);
2118 		bch_journal_meta(c, &cl);
2119 	}
2120 
2121 	err = "error starting gc thread";
2122 	if (bch_gc_thread_start(c))
2123 		goto err;
2124 
2125 	closure_sync(&cl);
2126 	c->cache->sb.last_mount = (u32)ktime_get_real_seconds();
2127 	bcache_write_super(c);
2128 
2129 	if (bch_has_feature_obso_large_bucket(&c->cache->sb))
2130 		pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n");
2131 
2132 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2133 		bch_cached_dev_attach(dc, c, NULL);
2134 
2135 	flash_devs_run(c);
2136 
2137 	set_bit(CACHE_SET_RUNNING, &c->flags);
2138 	return 0;
2139 err:
2140 	while (!list_empty(&journal)) {
2141 		l = list_first_entry(&journal, struct journal_replay, list);
2142 		list_del(&l->list);
2143 		kfree(l);
2144 	}
2145 
2146 	closure_sync(&cl);
2147 
2148 	bch_cache_set_error(c, "%s", err);
2149 
2150 	return -EIO;
2151 }
2152 
2153 static const char *register_cache_set(struct cache *ca)
2154 {
2155 	char buf[12];
2156 	const char *err = "cannot allocate memory";
2157 	struct cache_set *c;
2158 
2159 	list_for_each_entry(c, &bch_cache_sets, list)
2160 		if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) {
2161 			if (c->cache)
2162 				return "duplicate cache set member";
2163 
2164 			goto found;
2165 		}
2166 
2167 	c = bch_cache_set_alloc(&ca->sb);
2168 	if (!c)
2169 		return err;
2170 
2171 	err = "error creating kobject";
2172 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) ||
2173 	    kobject_add(&c->internal, &c->kobj, "internal"))
2174 		goto err;
2175 
2176 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2177 		goto err;
2178 
2179 	bch_debug_init_cache_set(c);
2180 
2181 	list_add(&c->list, &bch_cache_sets);
2182 found:
2183 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2184 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2185 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2186 		goto err;
2187 
2188 	kobject_get(&ca->kobj);
2189 	ca->set = c;
2190 	ca->set->cache = ca;
2191 
2192 	err = "failed to run cache set";
2193 	if (run_cache_set(c) < 0)
2194 		goto err;
2195 
2196 	return NULL;
2197 err:
2198 	bch_cache_set_unregister(c);
2199 	return err;
2200 }
2201 
2202 /* Cache device */
2203 
2204 /* When ca->kobj released */
2205 void bch_cache_release(struct kobject *kobj)
2206 {
2207 	struct cache *ca = container_of(kobj, struct cache, kobj);
2208 	unsigned int i;
2209 
2210 	if (ca->set) {
2211 		BUG_ON(ca->set->cache != ca);
2212 		ca->set->cache = NULL;
2213 	}
2214 
2215 	free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb)));
2216 	kfree(ca->prio_buckets);
2217 	vfree(ca->buckets);
2218 
2219 	free_heap(&ca->heap);
2220 	free_fifo(&ca->free_inc);
2221 
2222 	for (i = 0; i < RESERVE_NR; i++)
2223 		free_fifo(&ca->free[i]);
2224 
2225 	if (ca->sb_disk)
2226 		put_page(virt_to_page(ca->sb_disk));
2227 
2228 	if (!IS_ERR_OR_NULL(ca->bdev))
2229 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2230 
2231 	kfree(ca);
2232 	module_put(THIS_MODULE);
2233 }
2234 
2235 static int cache_alloc(struct cache *ca)
2236 {
2237 	size_t free;
2238 	size_t btree_buckets;
2239 	struct bucket *b;
2240 	int ret = -ENOMEM;
2241 	const char *err = NULL;
2242 
2243 	__module_get(THIS_MODULE);
2244 	kobject_init(&ca->kobj, &bch_cache_ktype);
2245 
2246 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2247 
2248 	/*
2249 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2250 	 * and in bch_journal_replay(), tree node may split,
2251 	 * so bucket of RESERVE_BTREE type is needed,
2252 	 * the worst situation is all journal buckets are valid journal,
2253 	 * and all the keys need to replay,
2254 	 * so the number of  RESERVE_BTREE type buckets should be as much
2255 	 * as journal buckets
2256 	 */
2257 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2258 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2259 	if (!free) {
2260 		ret = -EPERM;
2261 		err = "ca->sb.nbuckets is too small";
2262 		goto err_free;
2263 	}
2264 
2265 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2266 						GFP_KERNEL)) {
2267 		err = "ca->free[RESERVE_BTREE] alloc failed";
2268 		goto err_btree_alloc;
2269 	}
2270 
2271 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2272 							GFP_KERNEL)) {
2273 		err = "ca->free[RESERVE_PRIO] alloc failed";
2274 		goto err_prio_alloc;
2275 	}
2276 
2277 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2278 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2279 		goto err_movinggc_alloc;
2280 	}
2281 
2282 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2283 		err = "ca->free[RESERVE_NONE] alloc failed";
2284 		goto err_none_alloc;
2285 	}
2286 
2287 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2288 		err = "ca->free_inc alloc failed";
2289 		goto err_free_inc_alloc;
2290 	}
2291 
2292 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2293 		err = "ca->heap alloc failed";
2294 		goto err_heap_alloc;
2295 	}
2296 
2297 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2298 			      ca->sb.nbuckets));
2299 	if (!ca->buckets) {
2300 		err = "ca->buckets alloc failed";
2301 		goto err_buckets_alloc;
2302 	}
2303 
2304 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2305 				   prio_buckets(ca), 2),
2306 				   GFP_KERNEL);
2307 	if (!ca->prio_buckets) {
2308 		err = "ca->prio_buckets alloc failed";
2309 		goto err_prio_buckets_alloc;
2310 	}
2311 
2312 	ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb);
2313 	if (!ca->disk_buckets) {
2314 		err = "ca->disk_buckets alloc failed";
2315 		goto err_disk_buckets_alloc;
2316 	}
2317 
2318 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2319 
2320 	for_each_bucket(b, ca)
2321 		atomic_set(&b->pin, 0);
2322 	return 0;
2323 
2324 err_disk_buckets_alloc:
2325 	kfree(ca->prio_buckets);
2326 err_prio_buckets_alloc:
2327 	vfree(ca->buckets);
2328 err_buckets_alloc:
2329 	free_heap(&ca->heap);
2330 err_heap_alloc:
2331 	free_fifo(&ca->free_inc);
2332 err_free_inc_alloc:
2333 	free_fifo(&ca->free[RESERVE_NONE]);
2334 err_none_alloc:
2335 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2336 err_movinggc_alloc:
2337 	free_fifo(&ca->free[RESERVE_PRIO]);
2338 err_prio_alloc:
2339 	free_fifo(&ca->free[RESERVE_BTREE]);
2340 err_btree_alloc:
2341 err_free:
2342 	module_put(THIS_MODULE);
2343 	if (err)
2344 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2345 	return ret;
2346 }
2347 
2348 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2349 				struct block_device *bdev, struct cache *ca)
2350 {
2351 	const char *err = NULL; /* must be set for any error case */
2352 	int ret = 0;
2353 
2354 	bdevname(bdev, ca->cache_dev_name);
2355 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2356 	ca->bdev = bdev;
2357 	ca->bdev->bd_holder = ca;
2358 	ca->sb_disk = sb_disk;
2359 
2360 	if (blk_queue_discard(bdev_get_queue(bdev)))
2361 		ca->discard = CACHE_DISCARD(&ca->sb);
2362 
2363 	ret = cache_alloc(ca);
2364 	if (ret != 0) {
2365 		/*
2366 		 * If we failed here, it means ca->kobj is not initialized yet,
2367 		 * kobject_put() won't be called and there is no chance to
2368 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2369 		 * explicitly call blkdev_put() here.
2370 		 */
2371 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2372 		if (ret == -ENOMEM)
2373 			err = "cache_alloc(): -ENOMEM";
2374 		else if (ret == -EPERM)
2375 			err = "cache_alloc(): cache device is too small";
2376 		else
2377 			err = "cache_alloc(): unknown error";
2378 		goto err;
2379 	}
2380 
2381 	if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) {
2382 		err = "error calling kobject_add";
2383 		ret = -ENOMEM;
2384 		goto out;
2385 	}
2386 
2387 	mutex_lock(&bch_register_lock);
2388 	err = register_cache_set(ca);
2389 	mutex_unlock(&bch_register_lock);
2390 
2391 	if (err) {
2392 		ret = -ENODEV;
2393 		goto out;
2394 	}
2395 
2396 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2397 
2398 out:
2399 	kobject_put(&ca->kobj);
2400 
2401 err:
2402 	if (err)
2403 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2404 
2405 	return ret;
2406 }
2407 
2408 /* Global interfaces/init */
2409 
2410 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2411 			       const char *buffer, size_t size);
2412 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2413 					 struct kobj_attribute *attr,
2414 					 const char *buffer, size_t size);
2415 
2416 kobj_attribute_write(register,		register_bcache);
2417 kobj_attribute_write(register_quiet,	register_bcache);
2418 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2419 
2420 static bool bch_is_open_backing(dev_t dev)
2421 {
2422 	struct cache_set *c, *tc;
2423 	struct cached_dev *dc, *t;
2424 
2425 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2426 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2427 			if (dc->bdev->bd_dev == dev)
2428 				return true;
2429 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2430 		if (dc->bdev->bd_dev == dev)
2431 			return true;
2432 	return false;
2433 }
2434 
2435 static bool bch_is_open_cache(dev_t dev)
2436 {
2437 	struct cache_set *c, *tc;
2438 
2439 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2440 		struct cache *ca = c->cache;
2441 
2442 		if (ca->bdev->bd_dev == dev)
2443 			return true;
2444 	}
2445 
2446 	return false;
2447 }
2448 
2449 static bool bch_is_open(dev_t dev)
2450 {
2451 	return bch_is_open_cache(dev) || bch_is_open_backing(dev);
2452 }
2453 
2454 struct async_reg_args {
2455 	struct delayed_work reg_work;
2456 	char *path;
2457 	struct cache_sb *sb;
2458 	struct cache_sb_disk *sb_disk;
2459 	struct block_device *bdev;
2460 };
2461 
2462 static void register_bdev_worker(struct work_struct *work)
2463 {
2464 	int fail = false;
2465 	struct async_reg_args *args =
2466 		container_of(work, struct async_reg_args, reg_work.work);
2467 	struct cached_dev *dc;
2468 
2469 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2470 	if (!dc) {
2471 		fail = true;
2472 		put_page(virt_to_page(args->sb_disk));
2473 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2474 		goto out;
2475 	}
2476 
2477 	mutex_lock(&bch_register_lock);
2478 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2479 		fail = true;
2480 	mutex_unlock(&bch_register_lock);
2481 
2482 out:
2483 	if (fail)
2484 		pr_info("error %s: fail to register backing device\n",
2485 			args->path);
2486 	kfree(args->sb);
2487 	kfree(args->path);
2488 	kfree(args);
2489 	module_put(THIS_MODULE);
2490 }
2491 
2492 static void register_cache_worker(struct work_struct *work)
2493 {
2494 	int fail = false;
2495 	struct async_reg_args *args =
2496 		container_of(work, struct async_reg_args, reg_work.work);
2497 	struct cache *ca;
2498 
2499 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2500 	if (!ca) {
2501 		fail = true;
2502 		put_page(virt_to_page(args->sb_disk));
2503 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2504 		goto out;
2505 	}
2506 
2507 	/* blkdev_put() will be called in bch_cache_release() */
2508 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2509 		fail = true;
2510 
2511 out:
2512 	if (fail)
2513 		pr_info("error %s: fail to register cache device\n",
2514 			args->path);
2515 	kfree(args->sb);
2516 	kfree(args->path);
2517 	kfree(args);
2518 	module_put(THIS_MODULE);
2519 }
2520 
2521 static void register_device_async(struct async_reg_args *args)
2522 {
2523 	if (SB_IS_BDEV(args->sb))
2524 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2525 	else
2526 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2527 
2528 	/* 10 jiffies is enough for a delay */
2529 	queue_delayed_work(system_wq, &args->reg_work, 10);
2530 }
2531 
2532 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2533 			       const char *buffer, size_t size)
2534 {
2535 	const char *err;
2536 	char *path = NULL;
2537 	struct cache_sb *sb;
2538 	struct cache_sb_disk *sb_disk;
2539 	struct block_device *bdev;
2540 	ssize_t ret;
2541 	bool async_registration = false;
2542 
2543 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION
2544 	async_registration = true;
2545 #endif
2546 
2547 	ret = -EBUSY;
2548 	err = "failed to reference bcache module";
2549 	if (!try_module_get(THIS_MODULE))
2550 		goto out;
2551 
2552 	/* For latest state of bcache_is_reboot */
2553 	smp_mb();
2554 	err = "bcache is in reboot";
2555 	if (bcache_is_reboot)
2556 		goto out_module_put;
2557 
2558 	ret = -ENOMEM;
2559 	err = "cannot allocate memory";
2560 	path = kstrndup(buffer, size, GFP_KERNEL);
2561 	if (!path)
2562 		goto out_module_put;
2563 
2564 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2565 	if (!sb)
2566 		goto out_free_path;
2567 
2568 	ret = -EINVAL;
2569 	err = "failed to open device";
2570 	bdev = blkdev_get_by_path(strim(path),
2571 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2572 				  sb);
2573 	if (IS_ERR(bdev)) {
2574 		if (bdev == ERR_PTR(-EBUSY)) {
2575 			dev_t dev;
2576 
2577 			mutex_lock(&bch_register_lock);
2578 			if (lookup_bdev(strim(path), &dev) == 0 &&
2579 			    bch_is_open(dev))
2580 				err = "device already registered";
2581 			else
2582 				err = "device busy";
2583 			mutex_unlock(&bch_register_lock);
2584 			if (attr == &ksysfs_register_quiet)
2585 				goto done;
2586 		}
2587 		goto out_free_sb;
2588 	}
2589 
2590 	err = "failed to set blocksize";
2591 	if (set_blocksize(bdev, 4096))
2592 		goto out_blkdev_put;
2593 
2594 	err = read_super(sb, bdev, &sb_disk);
2595 	if (err)
2596 		goto out_blkdev_put;
2597 
2598 	err = "failed to register device";
2599 
2600 	if (async_registration) {
2601 		/* register in asynchronous way */
2602 		struct async_reg_args *args =
2603 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2604 
2605 		if (!args) {
2606 			ret = -ENOMEM;
2607 			err = "cannot allocate memory";
2608 			goto out_put_sb_page;
2609 		}
2610 
2611 		args->path	= path;
2612 		args->sb	= sb;
2613 		args->sb_disk	= sb_disk;
2614 		args->bdev	= bdev;
2615 		register_device_async(args);
2616 		/* No wait and returns to user space */
2617 		goto async_done;
2618 	}
2619 
2620 	if (SB_IS_BDEV(sb)) {
2621 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2622 
2623 		if (!dc)
2624 			goto out_put_sb_page;
2625 
2626 		mutex_lock(&bch_register_lock);
2627 		ret = register_bdev(sb, sb_disk, bdev, dc);
2628 		mutex_unlock(&bch_register_lock);
2629 		/* blkdev_put() will be called in cached_dev_free() */
2630 		if (ret < 0)
2631 			goto out_free_sb;
2632 	} else {
2633 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2634 
2635 		if (!ca)
2636 			goto out_put_sb_page;
2637 
2638 		/* blkdev_put() will be called in bch_cache_release() */
2639 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2640 			goto out_free_sb;
2641 	}
2642 
2643 done:
2644 	kfree(sb);
2645 	kfree(path);
2646 	module_put(THIS_MODULE);
2647 async_done:
2648 	return size;
2649 
2650 out_put_sb_page:
2651 	put_page(virt_to_page(sb_disk));
2652 out_blkdev_put:
2653 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2654 out_free_sb:
2655 	kfree(sb);
2656 out_free_path:
2657 	kfree(path);
2658 	path = NULL;
2659 out_module_put:
2660 	module_put(THIS_MODULE);
2661 out:
2662 	pr_info("error %s: %s\n", path?path:"", err);
2663 	return ret;
2664 }
2665 
2666 
2667 struct pdev {
2668 	struct list_head list;
2669 	struct cached_dev *dc;
2670 };
2671 
2672 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2673 					 struct kobj_attribute *attr,
2674 					 const char *buffer,
2675 					 size_t size)
2676 {
2677 	LIST_HEAD(pending_devs);
2678 	ssize_t ret = size;
2679 	struct cached_dev *dc, *tdc;
2680 	struct pdev *pdev, *tpdev;
2681 	struct cache_set *c, *tc;
2682 
2683 	mutex_lock(&bch_register_lock);
2684 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2685 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2686 		if (!pdev)
2687 			break;
2688 		pdev->dc = dc;
2689 		list_add(&pdev->list, &pending_devs);
2690 	}
2691 
2692 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2693 		char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2694 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2695 			char *set_uuid = c->set_uuid;
2696 
2697 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2698 				list_del(&pdev->list);
2699 				kfree(pdev);
2700 				break;
2701 			}
2702 		}
2703 	}
2704 	mutex_unlock(&bch_register_lock);
2705 
2706 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2707 		pr_info("delete pdev %p\n", pdev);
2708 		list_del(&pdev->list);
2709 		bcache_device_stop(&pdev->dc->disk);
2710 		kfree(pdev);
2711 	}
2712 
2713 	return ret;
2714 }
2715 
2716 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2717 {
2718 	if (bcache_is_reboot)
2719 		return NOTIFY_DONE;
2720 
2721 	if (code == SYS_DOWN ||
2722 	    code == SYS_HALT ||
2723 	    code == SYS_POWER_OFF) {
2724 		DEFINE_WAIT(wait);
2725 		unsigned long start = jiffies;
2726 		bool stopped = false;
2727 
2728 		struct cache_set *c, *tc;
2729 		struct cached_dev *dc, *tdc;
2730 
2731 		mutex_lock(&bch_register_lock);
2732 
2733 		if (bcache_is_reboot)
2734 			goto out;
2735 
2736 		/* New registration is rejected since now */
2737 		bcache_is_reboot = true;
2738 		/*
2739 		 * Make registering caller (if there is) on other CPU
2740 		 * core know bcache_is_reboot set to true earlier
2741 		 */
2742 		smp_mb();
2743 
2744 		if (list_empty(&bch_cache_sets) &&
2745 		    list_empty(&uncached_devices))
2746 			goto out;
2747 
2748 		mutex_unlock(&bch_register_lock);
2749 
2750 		pr_info("Stopping all devices:\n");
2751 
2752 		/*
2753 		 * The reason bch_register_lock is not held to call
2754 		 * bch_cache_set_stop() and bcache_device_stop() is to
2755 		 * avoid potential deadlock during reboot, because cache
2756 		 * set or bcache device stopping process will acqurie
2757 		 * bch_register_lock too.
2758 		 *
2759 		 * We are safe here because bcache_is_reboot sets to
2760 		 * true already, register_bcache() will reject new
2761 		 * registration now. bcache_is_reboot also makes sure
2762 		 * bcache_reboot() won't be re-entered on by other thread,
2763 		 * so there is no race in following list iteration by
2764 		 * list_for_each_entry_safe().
2765 		 */
2766 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2767 			bch_cache_set_stop(c);
2768 
2769 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2770 			bcache_device_stop(&dc->disk);
2771 
2772 
2773 		/*
2774 		 * Give an early chance for other kthreads and
2775 		 * kworkers to stop themselves
2776 		 */
2777 		schedule();
2778 
2779 		/* What's a condition variable? */
2780 		while (1) {
2781 			long timeout = start + 10 * HZ - jiffies;
2782 
2783 			mutex_lock(&bch_register_lock);
2784 			stopped = list_empty(&bch_cache_sets) &&
2785 				list_empty(&uncached_devices);
2786 
2787 			if (timeout < 0 || stopped)
2788 				break;
2789 
2790 			prepare_to_wait(&unregister_wait, &wait,
2791 					TASK_UNINTERRUPTIBLE);
2792 
2793 			mutex_unlock(&bch_register_lock);
2794 			schedule_timeout(timeout);
2795 		}
2796 
2797 		finish_wait(&unregister_wait, &wait);
2798 
2799 		if (stopped)
2800 			pr_info("All devices stopped\n");
2801 		else
2802 			pr_notice("Timeout waiting for devices to be closed\n");
2803 out:
2804 		mutex_unlock(&bch_register_lock);
2805 	}
2806 
2807 	return NOTIFY_DONE;
2808 }
2809 
2810 static struct notifier_block reboot = {
2811 	.notifier_call	= bcache_reboot,
2812 	.priority	= INT_MAX, /* before any real devices */
2813 };
2814 
2815 static void bcache_exit(void)
2816 {
2817 	bch_debug_exit();
2818 	bch_request_exit();
2819 	if (bcache_kobj)
2820 		kobject_put(bcache_kobj);
2821 	if (bcache_wq)
2822 		destroy_workqueue(bcache_wq);
2823 	if (bch_journal_wq)
2824 		destroy_workqueue(bch_journal_wq);
2825 	if (bch_flush_wq)
2826 		destroy_workqueue(bch_flush_wq);
2827 	bch_btree_exit();
2828 
2829 	if (bcache_major)
2830 		unregister_blkdev(bcache_major, "bcache");
2831 	unregister_reboot_notifier(&reboot);
2832 	mutex_destroy(&bch_register_lock);
2833 }
2834 
2835 /* Check and fixup module parameters */
2836 static void check_module_parameters(void)
2837 {
2838 	if (bch_cutoff_writeback_sync == 0)
2839 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2840 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2841 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2842 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2843 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2844 	}
2845 
2846 	if (bch_cutoff_writeback == 0)
2847 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2848 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2849 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2850 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2851 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2852 	}
2853 
2854 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2855 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2856 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2857 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2858 	}
2859 }
2860 
2861 static int __init bcache_init(void)
2862 {
2863 	static const struct attribute *files[] = {
2864 		&ksysfs_register.attr,
2865 		&ksysfs_register_quiet.attr,
2866 		&ksysfs_pendings_cleanup.attr,
2867 		NULL
2868 	};
2869 
2870 	check_module_parameters();
2871 
2872 	mutex_init(&bch_register_lock);
2873 	init_waitqueue_head(&unregister_wait);
2874 	register_reboot_notifier(&reboot);
2875 
2876 	bcache_major = register_blkdev(0, "bcache");
2877 	if (bcache_major < 0) {
2878 		unregister_reboot_notifier(&reboot);
2879 		mutex_destroy(&bch_register_lock);
2880 		return bcache_major;
2881 	}
2882 
2883 	if (bch_btree_init())
2884 		goto err;
2885 
2886 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2887 	if (!bcache_wq)
2888 		goto err;
2889 
2890 	/*
2891 	 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons:
2892 	 *
2893 	 * 1. It used `system_wq` before which also does no memory reclaim.
2894 	 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and
2895 	 *    reduced throughput can be observed.
2896 	 *
2897 	 * We still want to user our own queue to not congest the `system_wq`.
2898 	 */
2899 	bch_flush_wq = alloc_workqueue("bch_flush", 0, 0);
2900 	if (!bch_flush_wq)
2901 		goto err;
2902 
2903 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2904 	if (!bch_journal_wq)
2905 		goto err;
2906 
2907 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2908 	if (!bcache_kobj)
2909 		goto err;
2910 
2911 	if (bch_request_init() ||
2912 	    sysfs_create_files(bcache_kobj, files))
2913 		goto err;
2914 
2915 	bch_debug_init();
2916 	closure_debug_init();
2917 
2918 	bcache_is_reboot = false;
2919 
2920 	return 0;
2921 err:
2922 	bcache_exit();
2923 	return -ENOMEM;
2924 }
2925 
2926 /*
2927  * Module hooks
2928  */
2929 module_exit(bcache_exit);
2930 module_init(bcache_init);
2931 
2932 module_param(bch_cutoff_writeback, uint, 0);
2933 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2934 
2935 module_param(bch_cutoff_writeback_sync, uint, 0);
2936 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2937 
2938 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2939 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2940 MODULE_LICENSE("GPL");
2941