1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 17 #include <linux/blkdev.h> 18 #include <linux/debugfs.h> 19 #include <linux/genhd.h> 20 #include <linux/idr.h> 21 #include <linux/kthread.h> 22 #include <linux/workqueue.h> 23 #include <linux/module.h> 24 #include <linux/random.h> 25 #include <linux/reboot.h> 26 #include <linux/sysfs.h> 27 28 unsigned int bch_cutoff_writeback; 29 unsigned int bch_cutoff_writeback_sync; 30 31 static const char bcache_magic[] = { 32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 34 }; 35 36 static const char invalid_uuid[] = { 37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 39 }; 40 41 static struct kobject *bcache_kobj; 42 struct mutex bch_register_lock; 43 bool bcache_is_reboot; 44 LIST_HEAD(bch_cache_sets); 45 static LIST_HEAD(uncached_devices); 46 47 static int bcache_major; 48 static DEFINE_IDA(bcache_device_idx); 49 static wait_queue_head_t unregister_wait; 50 struct workqueue_struct *bcache_wq; 51 struct workqueue_struct *bch_journal_wq; 52 53 54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 55 /* limitation of partitions number on single bcache device */ 56 #define BCACHE_MINORS 128 57 /* limitation of bcache devices number on single system */ 58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 59 60 /* Superblock */ 61 62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 63 struct cache_sb_disk **res) 64 { 65 const char *err; 66 struct cache_sb_disk *s; 67 struct page *page; 68 unsigned int i; 69 70 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 71 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 72 if (IS_ERR(page)) 73 return "IO error"; 74 s = page_address(page) + offset_in_page(SB_OFFSET); 75 76 sb->offset = le64_to_cpu(s->offset); 77 sb->version = le64_to_cpu(s->version); 78 79 memcpy(sb->magic, s->magic, 16); 80 memcpy(sb->uuid, s->uuid, 16); 81 memcpy(sb->set_uuid, s->set_uuid, 16); 82 memcpy(sb->label, s->label, SB_LABEL_SIZE); 83 84 sb->flags = le64_to_cpu(s->flags); 85 sb->seq = le64_to_cpu(s->seq); 86 sb->last_mount = le32_to_cpu(s->last_mount); 87 sb->first_bucket = le16_to_cpu(s->first_bucket); 88 sb->keys = le16_to_cpu(s->keys); 89 90 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 91 sb->d[i] = le64_to_cpu(s->d[i]); 92 93 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 94 sb->version, sb->flags, sb->seq, sb->keys); 95 96 err = "Not a bcache superblock (bad offset)"; 97 if (sb->offset != SB_SECTOR) 98 goto err; 99 100 err = "Not a bcache superblock (bad magic)"; 101 if (memcmp(sb->magic, bcache_magic, 16)) 102 goto err; 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Bad checksum"; 109 if (s->csum != csum_set(s)) 110 goto err; 111 112 err = "Bad UUID"; 113 if (bch_is_zero(sb->uuid, 16)) 114 goto err; 115 116 sb->block_size = le16_to_cpu(s->block_size); 117 118 err = "Superblock block size smaller than device block size"; 119 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 120 goto err; 121 122 switch (sb->version) { 123 case BCACHE_SB_VERSION_BDEV: 124 sb->data_offset = BDEV_DATA_START_DEFAULT; 125 break; 126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 127 sb->data_offset = le64_to_cpu(s->data_offset); 128 129 err = "Bad data offset"; 130 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 131 goto err; 132 133 break; 134 case BCACHE_SB_VERSION_CDEV: 135 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 136 sb->nbuckets = le64_to_cpu(s->nbuckets); 137 sb->bucket_size = le16_to_cpu(s->bucket_size); 138 139 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 140 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 141 142 err = "Too many buckets"; 143 if (sb->nbuckets > LONG_MAX) 144 goto err; 145 146 err = "Not enough buckets"; 147 if (sb->nbuckets < 1 << 7) 148 goto err; 149 150 err = "Bad block/bucket size"; 151 if (!is_power_of_2(sb->block_size) || 152 sb->block_size > PAGE_SECTORS || 153 !is_power_of_2(sb->bucket_size) || 154 sb->bucket_size < PAGE_SECTORS) 155 goto err; 156 157 err = "Invalid superblock: device too small"; 158 if (get_capacity(bdev->bd_disk) < 159 sb->bucket_size * sb->nbuckets) 160 goto err; 161 162 err = "Bad UUID"; 163 if (bch_is_zero(sb->set_uuid, 16)) 164 goto err; 165 166 err = "Bad cache device number in set"; 167 if (!sb->nr_in_set || 168 sb->nr_in_set <= sb->nr_this_dev || 169 sb->nr_in_set > MAX_CACHES_PER_SET) 170 goto err; 171 172 err = "Journal buckets not sequential"; 173 for (i = 0; i < sb->keys; i++) 174 if (sb->d[i] != sb->first_bucket + i) 175 goto err; 176 177 err = "Too many journal buckets"; 178 if (sb->first_bucket + sb->keys > sb->nbuckets) 179 goto err; 180 181 err = "Invalid superblock: first bucket comes before end of super"; 182 if (sb->first_bucket * sb->bucket_size < 16) 183 goto err; 184 185 break; 186 default: 187 err = "Unsupported superblock version"; 188 goto err; 189 } 190 191 sb->last_mount = (u32)ktime_get_real_seconds(); 192 *res = s; 193 return NULL; 194 err: 195 put_page(page); 196 return err; 197 } 198 199 static void write_bdev_super_endio(struct bio *bio) 200 { 201 struct cached_dev *dc = bio->bi_private; 202 203 if (bio->bi_status) 204 bch_count_backing_io_errors(dc, bio); 205 206 closure_put(&dc->sb_write); 207 } 208 209 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 210 struct bio *bio) 211 { 212 unsigned int i; 213 214 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 215 bio->bi_iter.bi_sector = SB_SECTOR; 216 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 217 offset_in_page(out)); 218 219 out->offset = cpu_to_le64(sb->offset); 220 out->version = cpu_to_le64(sb->version); 221 222 memcpy(out->uuid, sb->uuid, 16); 223 memcpy(out->set_uuid, sb->set_uuid, 16); 224 memcpy(out->label, sb->label, SB_LABEL_SIZE); 225 226 out->flags = cpu_to_le64(sb->flags); 227 out->seq = cpu_to_le64(sb->seq); 228 229 out->last_mount = cpu_to_le32(sb->last_mount); 230 out->first_bucket = cpu_to_le16(sb->first_bucket); 231 out->keys = cpu_to_le16(sb->keys); 232 233 for (i = 0; i < sb->keys; i++) 234 out->d[i] = cpu_to_le64(sb->d[i]); 235 236 out->csum = csum_set(out); 237 238 pr_debug("ver %llu, flags %llu, seq %llu\n", 239 sb->version, sb->flags, sb->seq); 240 241 submit_bio(bio); 242 } 243 244 static void bch_write_bdev_super_unlock(struct closure *cl) 245 { 246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 247 248 up(&dc->sb_write_mutex); 249 } 250 251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 252 { 253 struct closure *cl = &dc->sb_write; 254 struct bio *bio = &dc->sb_bio; 255 256 down(&dc->sb_write_mutex); 257 closure_init(cl, parent); 258 259 bio_init(bio, dc->sb_bv, 1); 260 bio_set_dev(bio, dc->bdev); 261 bio->bi_end_io = write_bdev_super_endio; 262 bio->bi_private = dc; 263 264 closure_get(cl); 265 /* I/O request sent to backing device */ 266 __write_super(&dc->sb, dc->sb_disk, bio); 267 268 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 269 } 270 271 static void write_super_endio(struct bio *bio) 272 { 273 struct cache *ca = bio->bi_private; 274 275 /* is_read = 0 */ 276 bch_count_io_errors(ca, bio->bi_status, 0, 277 "writing superblock"); 278 closure_put(&ca->set->sb_write); 279 } 280 281 static void bcache_write_super_unlock(struct closure *cl) 282 { 283 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 284 285 up(&c->sb_write_mutex); 286 } 287 288 void bcache_write_super(struct cache_set *c) 289 { 290 struct closure *cl = &c->sb_write; 291 struct cache *ca; 292 unsigned int i; 293 294 down(&c->sb_write_mutex); 295 closure_init(cl, &c->cl); 296 297 c->sb.seq++; 298 299 for_each_cache(ca, c, i) { 300 struct bio *bio = &ca->sb_bio; 301 302 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 303 ca->sb.seq = c->sb.seq; 304 ca->sb.last_mount = c->sb.last_mount; 305 306 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 307 308 bio_init(bio, ca->sb_bv, 1); 309 bio_set_dev(bio, ca->bdev); 310 bio->bi_end_io = write_super_endio; 311 bio->bi_private = ca; 312 313 closure_get(cl); 314 __write_super(&ca->sb, ca->sb_disk, bio); 315 } 316 317 closure_return_with_destructor(cl, bcache_write_super_unlock); 318 } 319 320 /* UUID io */ 321 322 static void uuid_endio(struct bio *bio) 323 { 324 struct closure *cl = bio->bi_private; 325 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 326 327 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 328 bch_bbio_free(bio, c); 329 closure_put(cl); 330 } 331 332 static void uuid_io_unlock(struct closure *cl) 333 { 334 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 335 336 up(&c->uuid_write_mutex); 337 } 338 339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 340 struct bkey *k, struct closure *parent) 341 { 342 struct closure *cl = &c->uuid_write; 343 struct uuid_entry *u; 344 unsigned int i; 345 char buf[80]; 346 347 BUG_ON(!parent); 348 down(&c->uuid_write_mutex); 349 closure_init(cl, parent); 350 351 for (i = 0; i < KEY_PTRS(k); i++) { 352 struct bio *bio = bch_bbio_alloc(c); 353 354 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 355 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 356 357 bio->bi_end_io = uuid_endio; 358 bio->bi_private = cl; 359 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 360 bch_bio_map(bio, c->uuids); 361 362 bch_submit_bbio(bio, c, k, i); 363 364 if (op != REQ_OP_WRITE) 365 break; 366 } 367 368 bch_extent_to_text(buf, sizeof(buf), k); 369 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 370 371 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 372 if (!bch_is_zero(u->uuid, 16)) 373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 374 u - c->uuids, u->uuid, u->label, 375 u->first_reg, u->last_reg, u->invalidated); 376 377 closure_return_with_destructor(cl, uuid_io_unlock); 378 } 379 380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 381 { 382 struct bkey *k = &j->uuid_bucket; 383 384 if (__bch_btree_ptr_invalid(c, k)) 385 return "bad uuid pointer"; 386 387 bkey_copy(&c->uuid_bucket, k); 388 uuid_io(c, REQ_OP_READ, 0, k, cl); 389 390 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 391 struct uuid_entry_v0 *u0 = (void *) c->uuids; 392 struct uuid_entry *u1 = (void *) c->uuids; 393 int i; 394 395 closure_sync(cl); 396 397 /* 398 * Since the new uuid entry is bigger than the old, we have to 399 * convert starting at the highest memory address and work down 400 * in order to do it in place 401 */ 402 403 for (i = c->nr_uuids - 1; 404 i >= 0; 405 --i) { 406 memcpy(u1[i].uuid, u0[i].uuid, 16); 407 memcpy(u1[i].label, u0[i].label, 32); 408 409 u1[i].first_reg = u0[i].first_reg; 410 u1[i].last_reg = u0[i].last_reg; 411 u1[i].invalidated = u0[i].invalidated; 412 413 u1[i].flags = 0; 414 u1[i].sectors = 0; 415 } 416 } 417 418 return NULL; 419 } 420 421 static int __uuid_write(struct cache_set *c) 422 { 423 BKEY_PADDED(key) k; 424 struct closure cl; 425 struct cache *ca; 426 427 closure_init_stack(&cl); 428 lockdep_assert_held(&bch_register_lock); 429 430 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 431 return 1; 432 433 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 434 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 435 closure_sync(&cl); 436 437 /* Only one bucket used for uuid write */ 438 ca = PTR_CACHE(c, &k.key, 0); 439 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 440 441 bkey_copy(&c->uuid_bucket, &k.key); 442 bkey_put(c, &k.key); 443 return 0; 444 } 445 446 int bch_uuid_write(struct cache_set *c) 447 { 448 int ret = __uuid_write(c); 449 450 if (!ret) 451 bch_journal_meta(c, NULL); 452 453 return ret; 454 } 455 456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 457 { 458 struct uuid_entry *u; 459 460 for (u = c->uuids; 461 u < c->uuids + c->nr_uuids; u++) 462 if (!memcmp(u->uuid, uuid, 16)) 463 return u; 464 465 return NULL; 466 } 467 468 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 469 { 470 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 471 472 return uuid_find(c, zero_uuid); 473 } 474 475 /* 476 * Bucket priorities/gens: 477 * 478 * For each bucket, we store on disk its 479 * 8 bit gen 480 * 16 bit priority 481 * 482 * See alloc.c for an explanation of the gen. The priority is used to implement 483 * lru (and in the future other) cache replacement policies; for most purposes 484 * it's just an opaque integer. 485 * 486 * The gens and the priorities don't have a whole lot to do with each other, and 487 * it's actually the gens that must be written out at specific times - it's no 488 * big deal if the priorities don't get written, if we lose them we just reuse 489 * buckets in suboptimal order. 490 * 491 * On disk they're stored in a packed array, and in as many buckets are required 492 * to fit them all. The buckets we use to store them form a list; the journal 493 * header points to the first bucket, the first bucket points to the second 494 * bucket, et cetera. 495 * 496 * This code is used by the allocation code; periodically (whenever it runs out 497 * of buckets to allocate from) the allocation code will invalidate some 498 * buckets, but it can't use those buckets until their new gens are safely on 499 * disk. 500 */ 501 502 static void prio_endio(struct bio *bio) 503 { 504 struct cache *ca = bio->bi_private; 505 506 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 507 bch_bbio_free(bio, ca->set); 508 closure_put(&ca->prio); 509 } 510 511 static void prio_io(struct cache *ca, uint64_t bucket, int op, 512 unsigned long op_flags) 513 { 514 struct closure *cl = &ca->prio; 515 struct bio *bio = bch_bbio_alloc(ca->set); 516 517 closure_init_stack(cl); 518 519 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 520 bio_set_dev(bio, ca->bdev); 521 bio->bi_iter.bi_size = bucket_bytes(ca); 522 523 bio->bi_end_io = prio_endio; 524 bio->bi_private = ca; 525 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 526 bch_bio_map(bio, ca->disk_buckets); 527 528 closure_bio_submit(ca->set, bio, &ca->prio); 529 closure_sync(cl); 530 } 531 532 int bch_prio_write(struct cache *ca, bool wait) 533 { 534 int i; 535 struct bucket *b; 536 struct closure cl; 537 538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 539 fifo_used(&ca->free[RESERVE_PRIO]), 540 fifo_used(&ca->free[RESERVE_NONE]), 541 fifo_used(&ca->free_inc)); 542 543 /* 544 * Pre-check if there are enough free buckets. In the non-blocking 545 * scenario it's better to fail early rather than starting to allocate 546 * buckets and do a cleanup later in case of failure. 547 */ 548 if (!wait) { 549 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 550 fifo_used(&ca->free[RESERVE_NONE]); 551 if (prio_buckets(ca) > avail) 552 return -ENOMEM; 553 } 554 555 closure_init_stack(&cl); 556 557 lockdep_assert_held(&ca->set->bucket_lock); 558 559 ca->disk_buckets->seq++; 560 561 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 562 &ca->meta_sectors_written); 563 564 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 565 long bucket; 566 struct prio_set *p = ca->disk_buckets; 567 struct bucket_disk *d = p->data; 568 struct bucket_disk *end = d + prios_per_bucket(ca); 569 570 for (b = ca->buckets + i * prios_per_bucket(ca); 571 b < ca->buckets + ca->sb.nbuckets && d < end; 572 b++, d++) { 573 d->prio = cpu_to_le16(b->prio); 574 d->gen = b->gen; 575 } 576 577 p->next_bucket = ca->prio_buckets[i + 1]; 578 p->magic = pset_magic(&ca->sb); 579 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 580 581 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 582 BUG_ON(bucket == -1); 583 584 mutex_unlock(&ca->set->bucket_lock); 585 prio_io(ca, bucket, REQ_OP_WRITE, 0); 586 mutex_lock(&ca->set->bucket_lock); 587 588 ca->prio_buckets[i] = bucket; 589 atomic_dec_bug(&ca->buckets[bucket].pin); 590 } 591 592 mutex_unlock(&ca->set->bucket_lock); 593 594 bch_journal_meta(ca->set, &cl); 595 closure_sync(&cl); 596 597 mutex_lock(&ca->set->bucket_lock); 598 599 /* 600 * Don't want the old priorities to get garbage collected until after we 601 * finish writing the new ones, and they're journalled 602 */ 603 for (i = 0; i < prio_buckets(ca); i++) { 604 if (ca->prio_last_buckets[i]) 605 __bch_bucket_free(ca, 606 &ca->buckets[ca->prio_last_buckets[i]]); 607 608 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 609 } 610 return 0; 611 } 612 613 static int prio_read(struct cache *ca, uint64_t bucket) 614 { 615 struct prio_set *p = ca->disk_buckets; 616 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 617 struct bucket *b; 618 unsigned int bucket_nr = 0; 619 int ret = -EIO; 620 621 for (b = ca->buckets; 622 b < ca->buckets + ca->sb.nbuckets; 623 b++, d++) { 624 if (d == end) { 625 ca->prio_buckets[bucket_nr] = bucket; 626 ca->prio_last_buckets[bucket_nr] = bucket; 627 bucket_nr++; 628 629 prio_io(ca, bucket, REQ_OP_READ, 0); 630 631 if (p->csum != 632 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) { 633 pr_warn("bad csum reading priorities\n"); 634 goto out; 635 } 636 637 if (p->magic != pset_magic(&ca->sb)) { 638 pr_warn("bad magic reading priorities\n"); 639 goto out; 640 } 641 642 bucket = p->next_bucket; 643 d = p->data; 644 } 645 646 b->prio = le16_to_cpu(d->prio); 647 b->gen = b->last_gc = d->gen; 648 } 649 650 ret = 0; 651 out: 652 return ret; 653 } 654 655 /* Bcache device */ 656 657 static int open_dev(struct block_device *b, fmode_t mode) 658 { 659 struct bcache_device *d = b->bd_disk->private_data; 660 661 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 662 return -ENXIO; 663 664 closure_get(&d->cl); 665 return 0; 666 } 667 668 static void release_dev(struct gendisk *b, fmode_t mode) 669 { 670 struct bcache_device *d = b->private_data; 671 672 closure_put(&d->cl); 673 } 674 675 static int ioctl_dev(struct block_device *b, fmode_t mode, 676 unsigned int cmd, unsigned long arg) 677 { 678 struct bcache_device *d = b->bd_disk->private_data; 679 680 return d->ioctl(d, mode, cmd, arg); 681 } 682 683 static const struct block_device_operations bcache_ops = { 684 .open = open_dev, 685 .release = release_dev, 686 .ioctl = ioctl_dev, 687 .owner = THIS_MODULE, 688 }; 689 690 void bcache_device_stop(struct bcache_device *d) 691 { 692 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 693 /* 694 * closure_fn set to 695 * - cached device: cached_dev_flush() 696 * - flash dev: flash_dev_flush() 697 */ 698 closure_queue(&d->cl); 699 } 700 701 static void bcache_device_unlink(struct bcache_device *d) 702 { 703 lockdep_assert_held(&bch_register_lock); 704 705 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 706 unsigned int i; 707 struct cache *ca; 708 709 sysfs_remove_link(&d->c->kobj, d->name); 710 sysfs_remove_link(&d->kobj, "cache"); 711 712 for_each_cache(ca, d->c, i) 713 bd_unlink_disk_holder(ca->bdev, d->disk); 714 } 715 } 716 717 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 718 const char *name) 719 { 720 unsigned int i; 721 struct cache *ca; 722 int ret; 723 724 for_each_cache(ca, d->c, i) 725 bd_link_disk_holder(ca->bdev, d->disk); 726 727 snprintf(d->name, BCACHEDEVNAME_SIZE, 728 "%s%u", name, d->id); 729 730 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 731 if (ret < 0) 732 pr_err("Couldn't create device -> cache set symlink\n"); 733 734 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 735 if (ret < 0) 736 pr_err("Couldn't create cache set -> device symlink\n"); 737 738 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 739 } 740 741 static void bcache_device_detach(struct bcache_device *d) 742 { 743 lockdep_assert_held(&bch_register_lock); 744 745 atomic_dec(&d->c->attached_dev_nr); 746 747 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 748 struct uuid_entry *u = d->c->uuids + d->id; 749 750 SET_UUID_FLASH_ONLY(u, 0); 751 memcpy(u->uuid, invalid_uuid, 16); 752 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 753 bch_uuid_write(d->c); 754 } 755 756 bcache_device_unlink(d); 757 758 d->c->devices[d->id] = NULL; 759 closure_put(&d->c->caching); 760 d->c = NULL; 761 } 762 763 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 764 unsigned int id) 765 { 766 d->id = id; 767 d->c = c; 768 c->devices[id] = d; 769 770 if (id >= c->devices_max_used) 771 c->devices_max_used = id + 1; 772 773 closure_get(&c->caching); 774 } 775 776 static inline int first_minor_to_idx(int first_minor) 777 { 778 return (first_minor/BCACHE_MINORS); 779 } 780 781 static inline int idx_to_first_minor(int idx) 782 { 783 return (idx * BCACHE_MINORS); 784 } 785 786 static void bcache_device_free(struct bcache_device *d) 787 { 788 struct gendisk *disk = d->disk; 789 790 lockdep_assert_held(&bch_register_lock); 791 792 if (disk) 793 pr_info("%s stopped\n", disk->disk_name); 794 else 795 pr_err("bcache device (NULL gendisk) stopped\n"); 796 797 if (d->c) 798 bcache_device_detach(d); 799 800 if (disk) { 801 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 802 803 if (disk_added) 804 del_gendisk(disk); 805 806 if (disk->queue) 807 blk_cleanup_queue(disk->queue); 808 809 ida_simple_remove(&bcache_device_idx, 810 first_minor_to_idx(disk->first_minor)); 811 if (disk_added) 812 put_disk(disk); 813 } 814 815 bioset_exit(&d->bio_split); 816 kvfree(d->full_dirty_stripes); 817 kvfree(d->stripe_sectors_dirty); 818 819 closure_debug_destroy(&d->cl); 820 } 821 822 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 823 sector_t sectors, make_request_fn make_request_fn, 824 struct block_device *cached_bdev) 825 { 826 struct request_queue *q; 827 const size_t max_stripes = min_t(size_t, INT_MAX, 828 SIZE_MAX / sizeof(atomic_t)); 829 size_t n; 830 int idx; 831 832 if (!d->stripe_size) 833 d->stripe_size = 1 << 31; 834 835 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 836 837 if (!d->nr_stripes || d->nr_stripes > max_stripes) { 838 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n", 839 (unsigned int)d->nr_stripes); 840 return -ENOMEM; 841 } 842 843 n = d->nr_stripes * sizeof(atomic_t); 844 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 845 if (!d->stripe_sectors_dirty) 846 return -ENOMEM; 847 848 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 849 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 850 if (!d->full_dirty_stripes) 851 return -ENOMEM; 852 853 idx = ida_simple_get(&bcache_device_idx, 0, 854 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 855 if (idx < 0) 856 return idx; 857 858 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 859 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 860 goto err; 861 862 d->disk = alloc_disk(BCACHE_MINORS); 863 if (!d->disk) 864 goto err; 865 866 set_capacity(d->disk, sectors); 867 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 868 869 d->disk->major = bcache_major; 870 d->disk->first_minor = idx_to_first_minor(idx); 871 d->disk->fops = &bcache_ops; 872 d->disk->private_data = d; 873 874 q = blk_alloc_queue(make_request_fn, NUMA_NO_NODE); 875 if (!q) 876 return -ENOMEM; 877 878 d->disk->queue = q; 879 q->queuedata = d; 880 q->backing_dev_info->congested_data = d; 881 q->limits.max_hw_sectors = UINT_MAX; 882 q->limits.max_sectors = UINT_MAX; 883 q->limits.max_segment_size = UINT_MAX; 884 q->limits.max_segments = BIO_MAX_PAGES; 885 blk_queue_max_discard_sectors(q, UINT_MAX); 886 q->limits.discard_granularity = 512; 887 q->limits.io_min = block_size; 888 q->limits.logical_block_size = block_size; 889 q->limits.physical_block_size = block_size; 890 891 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 892 /* 893 * This should only happen with BCACHE_SB_VERSION_BDEV. 894 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 895 */ 896 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 897 d->disk->disk_name, q->limits.logical_block_size, 898 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 899 900 /* This also adjusts physical block size/min io size if needed */ 901 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 902 } 903 904 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 905 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 906 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 907 908 blk_queue_write_cache(q, true, true); 909 910 return 0; 911 912 err: 913 ida_simple_remove(&bcache_device_idx, idx); 914 return -ENOMEM; 915 916 } 917 918 /* Cached device */ 919 920 static void calc_cached_dev_sectors(struct cache_set *c) 921 { 922 uint64_t sectors = 0; 923 struct cached_dev *dc; 924 925 list_for_each_entry(dc, &c->cached_devs, list) 926 sectors += bdev_sectors(dc->bdev); 927 928 c->cached_dev_sectors = sectors; 929 } 930 931 #define BACKING_DEV_OFFLINE_TIMEOUT 5 932 static int cached_dev_status_update(void *arg) 933 { 934 struct cached_dev *dc = arg; 935 struct request_queue *q; 936 937 /* 938 * If this delayed worker is stopping outside, directly quit here. 939 * dc->io_disable might be set via sysfs interface, so check it 940 * here too. 941 */ 942 while (!kthread_should_stop() && !dc->io_disable) { 943 q = bdev_get_queue(dc->bdev); 944 if (blk_queue_dying(q)) 945 dc->offline_seconds++; 946 else 947 dc->offline_seconds = 0; 948 949 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 950 pr_err("%s: device offline for %d seconds\n", 951 dc->backing_dev_name, 952 BACKING_DEV_OFFLINE_TIMEOUT); 953 pr_err("%s: disable I/O request due to backing device offline\n", 954 dc->disk.name); 955 dc->io_disable = true; 956 /* let others know earlier that io_disable is true */ 957 smp_mb(); 958 bcache_device_stop(&dc->disk); 959 break; 960 } 961 schedule_timeout_interruptible(HZ); 962 } 963 964 wait_for_kthread_stop(); 965 return 0; 966 } 967 968 969 int bch_cached_dev_run(struct cached_dev *dc) 970 { 971 struct bcache_device *d = &dc->disk; 972 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 973 char *env[] = { 974 "DRIVER=bcache", 975 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 976 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 977 NULL, 978 }; 979 980 if (dc->io_disable) { 981 pr_err("I/O disabled on cached dev %s\n", 982 dc->backing_dev_name); 983 kfree(env[1]); 984 kfree(env[2]); 985 kfree(buf); 986 return -EIO; 987 } 988 989 if (atomic_xchg(&dc->running, 1)) { 990 kfree(env[1]); 991 kfree(env[2]); 992 kfree(buf); 993 pr_info("cached dev %s is running already\n", 994 dc->backing_dev_name); 995 return -EBUSY; 996 } 997 998 if (!d->c && 999 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1000 struct closure cl; 1001 1002 closure_init_stack(&cl); 1003 1004 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1005 bch_write_bdev_super(dc, &cl); 1006 closure_sync(&cl); 1007 } 1008 1009 add_disk(d->disk); 1010 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1011 /* 1012 * won't show up in the uevent file, use udevadm monitor -e instead 1013 * only class / kset properties are persistent 1014 */ 1015 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1016 kfree(env[1]); 1017 kfree(env[2]); 1018 kfree(buf); 1019 1020 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1021 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1022 &d->kobj, "bcache")) { 1023 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1024 return -ENOMEM; 1025 } 1026 1027 dc->status_update_thread = kthread_run(cached_dev_status_update, 1028 dc, "bcache_status_update"); 1029 if (IS_ERR(dc->status_update_thread)) { 1030 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1031 } 1032 1033 return 0; 1034 } 1035 1036 /* 1037 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1038 * work dc->writeback_rate_update is running. Wait until the routine 1039 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1040 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1041 * seconds, give up waiting here and continue to cancel it too. 1042 */ 1043 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1044 { 1045 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1046 1047 do { 1048 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1049 &dc->disk.flags)) 1050 break; 1051 time_out--; 1052 schedule_timeout_interruptible(1); 1053 } while (time_out > 0); 1054 1055 if (time_out == 0) 1056 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1057 1058 cancel_delayed_work_sync(&dc->writeback_rate_update); 1059 } 1060 1061 static void cached_dev_detach_finish(struct work_struct *w) 1062 { 1063 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1064 struct closure cl; 1065 1066 closure_init_stack(&cl); 1067 1068 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1069 BUG_ON(refcount_read(&dc->count)); 1070 1071 1072 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1073 cancel_writeback_rate_update_dwork(dc); 1074 1075 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1076 kthread_stop(dc->writeback_thread); 1077 dc->writeback_thread = NULL; 1078 } 1079 1080 memset(&dc->sb.set_uuid, 0, 16); 1081 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1082 1083 bch_write_bdev_super(dc, &cl); 1084 closure_sync(&cl); 1085 1086 mutex_lock(&bch_register_lock); 1087 1088 calc_cached_dev_sectors(dc->disk.c); 1089 bcache_device_detach(&dc->disk); 1090 list_move(&dc->list, &uncached_devices); 1091 1092 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1093 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1094 1095 mutex_unlock(&bch_register_lock); 1096 1097 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1098 1099 /* Drop ref we took in cached_dev_detach() */ 1100 closure_put(&dc->disk.cl); 1101 } 1102 1103 void bch_cached_dev_detach(struct cached_dev *dc) 1104 { 1105 lockdep_assert_held(&bch_register_lock); 1106 1107 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1108 return; 1109 1110 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1111 return; 1112 1113 /* 1114 * Block the device from being closed and freed until we're finished 1115 * detaching 1116 */ 1117 closure_get(&dc->disk.cl); 1118 1119 bch_writeback_queue(dc); 1120 1121 cached_dev_put(dc); 1122 } 1123 1124 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1125 uint8_t *set_uuid) 1126 { 1127 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1128 struct uuid_entry *u; 1129 struct cached_dev *exist_dc, *t; 1130 int ret = 0; 1131 1132 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1133 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1134 return -ENOENT; 1135 1136 if (dc->disk.c) { 1137 pr_err("Can't attach %s: already attached\n", 1138 dc->backing_dev_name); 1139 return -EINVAL; 1140 } 1141 1142 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1143 pr_err("Can't attach %s: shutting down\n", 1144 dc->backing_dev_name); 1145 return -EINVAL; 1146 } 1147 1148 if (dc->sb.block_size < c->sb.block_size) { 1149 /* Will die */ 1150 pr_err("Couldn't attach %s: block size less than set's block size\n", 1151 dc->backing_dev_name); 1152 return -EINVAL; 1153 } 1154 1155 /* Check whether already attached */ 1156 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1157 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1158 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1159 dc->backing_dev_name); 1160 1161 return -EINVAL; 1162 } 1163 } 1164 1165 u = uuid_find(c, dc->sb.uuid); 1166 1167 if (u && 1168 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1169 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1170 memcpy(u->uuid, invalid_uuid, 16); 1171 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1172 u = NULL; 1173 } 1174 1175 if (!u) { 1176 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1177 pr_err("Couldn't find uuid for %s in set\n", 1178 dc->backing_dev_name); 1179 return -ENOENT; 1180 } 1181 1182 u = uuid_find_empty(c); 1183 if (!u) { 1184 pr_err("Not caching %s, no room for UUID\n", 1185 dc->backing_dev_name); 1186 return -EINVAL; 1187 } 1188 } 1189 1190 /* 1191 * Deadlocks since we're called via sysfs... 1192 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1193 */ 1194 1195 if (bch_is_zero(u->uuid, 16)) { 1196 struct closure cl; 1197 1198 closure_init_stack(&cl); 1199 1200 memcpy(u->uuid, dc->sb.uuid, 16); 1201 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1202 u->first_reg = u->last_reg = rtime; 1203 bch_uuid_write(c); 1204 1205 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1206 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1207 1208 bch_write_bdev_super(dc, &cl); 1209 closure_sync(&cl); 1210 } else { 1211 u->last_reg = rtime; 1212 bch_uuid_write(c); 1213 } 1214 1215 bcache_device_attach(&dc->disk, c, u - c->uuids); 1216 list_move(&dc->list, &c->cached_devs); 1217 calc_cached_dev_sectors(c); 1218 1219 /* 1220 * dc->c must be set before dc->count != 0 - paired with the mb in 1221 * cached_dev_get() 1222 */ 1223 smp_wmb(); 1224 refcount_set(&dc->count, 1); 1225 1226 /* Block writeback thread, but spawn it */ 1227 down_write(&dc->writeback_lock); 1228 if (bch_cached_dev_writeback_start(dc)) { 1229 up_write(&dc->writeback_lock); 1230 pr_err("Couldn't start writeback facilities for %s\n", 1231 dc->disk.disk->disk_name); 1232 return -ENOMEM; 1233 } 1234 1235 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1236 atomic_set(&dc->has_dirty, 1); 1237 bch_writeback_queue(dc); 1238 } 1239 1240 bch_sectors_dirty_init(&dc->disk); 1241 1242 ret = bch_cached_dev_run(dc); 1243 if (ret && (ret != -EBUSY)) { 1244 up_write(&dc->writeback_lock); 1245 /* 1246 * bch_register_lock is held, bcache_device_stop() is not 1247 * able to be directly called. The kthread and kworker 1248 * created previously in bch_cached_dev_writeback_start() 1249 * have to be stopped manually here. 1250 */ 1251 kthread_stop(dc->writeback_thread); 1252 cancel_writeback_rate_update_dwork(dc); 1253 pr_err("Couldn't run cached device %s\n", 1254 dc->backing_dev_name); 1255 return ret; 1256 } 1257 1258 bcache_device_link(&dc->disk, c, "bdev"); 1259 atomic_inc(&c->attached_dev_nr); 1260 1261 /* Allow the writeback thread to proceed */ 1262 up_write(&dc->writeback_lock); 1263 1264 pr_info("Caching %s as %s on set %pU\n", 1265 dc->backing_dev_name, 1266 dc->disk.disk->disk_name, 1267 dc->disk.c->sb.set_uuid); 1268 return 0; 1269 } 1270 1271 /* when dc->disk.kobj released */ 1272 void bch_cached_dev_release(struct kobject *kobj) 1273 { 1274 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1275 disk.kobj); 1276 kfree(dc); 1277 module_put(THIS_MODULE); 1278 } 1279 1280 static void cached_dev_free(struct closure *cl) 1281 { 1282 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1283 1284 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1285 cancel_writeback_rate_update_dwork(dc); 1286 1287 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1288 kthread_stop(dc->writeback_thread); 1289 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1290 kthread_stop(dc->status_update_thread); 1291 1292 mutex_lock(&bch_register_lock); 1293 1294 if (atomic_read(&dc->running)) 1295 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1296 bcache_device_free(&dc->disk); 1297 list_del(&dc->list); 1298 1299 mutex_unlock(&bch_register_lock); 1300 1301 if (dc->sb_disk) 1302 put_page(virt_to_page(dc->sb_disk)); 1303 1304 if (!IS_ERR_OR_NULL(dc->bdev)) 1305 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1306 1307 wake_up(&unregister_wait); 1308 1309 kobject_put(&dc->disk.kobj); 1310 } 1311 1312 static void cached_dev_flush(struct closure *cl) 1313 { 1314 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1315 struct bcache_device *d = &dc->disk; 1316 1317 mutex_lock(&bch_register_lock); 1318 bcache_device_unlink(d); 1319 mutex_unlock(&bch_register_lock); 1320 1321 bch_cache_accounting_destroy(&dc->accounting); 1322 kobject_del(&d->kobj); 1323 1324 continue_at(cl, cached_dev_free, system_wq); 1325 } 1326 1327 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1328 { 1329 int ret; 1330 struct io *io; 1331 struct request_queue *q = bdev_get_queue(dc->bdev); 1332 1333 __module_get(THIS_MODULE); 1334 INIT_LIST_HEAD(&dc->list); 1335 closure_init(&dc->disk.cl, NULL); 1336 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1337 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1338 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1339 sema_init(&dc->sb_write_mutex, 1); 1340 INIT_LIST_HEAD(&dc->io_lru); 1341 spin_lock_init(&dc->io_lock); 1342 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1343 1344 dc->sequential_cutoff = 4 << 20; 1345 1346 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1347 list_add(&io->lru, &dc->io_lru); 1348 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1349 } 1350 1351 dc->disk.stripe_size = q->limits.io_opt >> 9; 1352 1353 if (dc->disk.stripe_size) 1354 dc->partial_stripes_expensive = 1355 q->limits.raid_partial_stripes_expensive; 1356 1357 ret = bcache_device_init(&dc->disk, block_size, 1358 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1359 cached_dev_make_request, dc->bdev); 1360 if (ret) 1361 return ret; 1362 1363 dc->disk.disk->queue->backing_dev_info->ra_pages = 1364 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1365 q->backing_dev_info->ra_pages); 1366 1367 atomic_set(&dc->io_errors, 0); 1368 dc->io_disable = false; 1369 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1370 /* default to auto */ 1371 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1372 1373 bch_cached_dev_request_init(dc); 1374 bch_cached_dev_writeback_init(dc); 1375 return 0; 1376 } 1377 1378 /* Cached device - bcache superblock */ 1379 1380 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1381 struct block_device *bdev, 1382 struct cached_dev *dc) 1383 { 1384 const char *err = "cannot allocate memory"; 1385 struct cache_set *c; 1386 int ret = -ENOMEM; 1387 1388 bdevname(bdev, dc->backing_dev_name); 1389 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1390 dc->bdev = bdev; 1391 dc->bdev->bd_holder = dc; 1392 dc->sb_disk = sb_disk; 1393 1394 if (cached_dev_init(dc, sb->block_size << 9)) 1395 goto err; 1396 1397 err = "error creating kobject"; 1398 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1399 "bcache")) 1400 goto err; 1401 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1402 goto err; 1403 1404 pr_info("registered backing device %s\n", dc->backing_dev_name); 1405 1406 list_add(&dc->list, &uncached_devices); 1407 /* attach to a matched cache set if it exists */ 1408 list_for_each_entry(c, &bch_cache_sets, list) 1409 bch_cached_dev_attach(dc, c, NULL); 1410 1411 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1412 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1413 err = "failed to run cached device"; 1414 ret = bch_cached_dev_run(dc); 1415 if (ret) 1416 goto err; 1417 } 1418 1419 return 0; 1420 err: 1421 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1422 bcache_device_stop(&dc->disk); 1423 return ret; 1424 } 1425 1426 /* Flash only volumes */ 1427 1428 /* When d->kobj released */ 1429 void bch_flash_dev_release(struct kobject *kobj) 1430 { 1431 struct bcache_device *d = container_of(kobj, struct bcache_device, 1432 kobj); 1433 kfree(d); 1434 } 1435 1436 static void flash_dev_free(struct closure *cl) 1437 { 1438 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1439 1440 mutex_lock(&bch_register_lock); 1441 atomic_long_sub(bcache_dev_sectors_dirty(d), 1442 &d->c->flash_dev_dirty_sectors); 1443 bcache_device_free(d); 1444 mutex_unlock(&bch_register_lock); 1445 kobject_put(&d->kobj); 1446 } 1447 1448 static void flash_dev_flush(struct closure *cl) 1449 { 1450 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1451 1452 mutex_lock(&bch_register_lock); 1453 bcache_device_unlink(d); 1454 mutex_unlock(&bch_register_lock); 1455 kobject_del(&d->kobj); 1456 continue_at(cl, flash_dev_free, system_wq); 1457 } 1458 1459 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1460 { 1461 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1462 GFP_KERNEL); 1463 if (!d) 1464 return -ENOMEM; 1465 1466 closure_init(&d->cl, NULL); 1467 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1468 1469 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1470 1471 if (bcache_device_init(d, block_bytes(c), u->sectors, 1472 flash_dev_make_request, NULL)) 1473 goto err; 1474 1475 bcache_device_attach(d, c, u - c->uuids); 1476 bch_sectors_dirty_init(d); 1477 bch_flash_dev_request_init(d); 1478 add_disk(d->disk); 1479 1480 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1481 goto err; 1482 1483 bcache_device_link(d, c, "volume"); 1484 1485 return 0; 1486 err: 1487 kobject_put(&d->kobj); 1488 return -ENOMEM; 1489 } 1490 1491 static int flash_devs_run(struct cache_set *c) 1492 { 1493 int ret = 0; 1494 struct uuid_entry *u; 1495 1496 for (u = c->uuids; 1497 u < c->uuids + c->nr_uuids && !ret; 1498 u++) 1499 if (UUID_FLASH_ONLY(u)) 1500 ret = flash_dev_run(c, u); 1501 1502 return ret; 1503 } 1504 1505 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1506 { 1507 struct uuid_entry *u; 1508 1509 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1510 return -EINTR; 1511 1512 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1513 return -EPERM; 1514 1515 u = uuid_find_empty(c); 1516 if (!u) { 1517 pr_err("Can't create volume, no room for UUID\n"); 1518 return -EINVAL; 1519 } 1520 1521 get_random_bytes(u->uuid, 16); 1522 memset(u->label, 0, 32); 1523 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1524 1525 SET_UUID_FLASH_ONLY(u, 1); 1526 u->sectors = size >> 9; 1527 1528 bch_uuid_write(c); 1529 1530 return flash_dev_run(c, u); 1531 } 1532 1533 bool bch_cached_dev_error(struct cached_dev *dc) 1534 { 1535 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1536 return false; 1537 1538 dc->io_disable = true; 1539 /* make others know io_disable is true earlier */ 1540 smp_mb(); 1541 1542 pr_err("stop %s: too many IO errors on backing device %s\n", 1543 dc->disk.disk->disk_name, dc->backing_dev_name); 1544 1545 bcache_device_stop(&dc->disk); 1546 return true; 1547 } 1548 1549 /* Cache set */ 1550 1551 __printf(2, 3) 1552 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1553 { 1554 struct va_format vaf; 1555 va_list args; 1556 1557 if (c->on_error != ON_ERROR_PANIC && 1558 test_bit(CACHE_SET_STOPPING, &c->flags)) 1559 return false; 1560 1561 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1562 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1563 1564 /* 1565 * XXX: we can be called from atomic context 1566 * acquire_console_sem(); 1567 */ 1568 1569 va_start(args, fmt); 1570 1571 vaf.fmt = fmt; 1572 vaf.va = &args; 1573 1574 pr_err("error on %pU: %pV, disabling caching\n", 1575 c->sb.set_uuid, &vaf); 1576 1577 va_end(args); 1578 1579 if (c->on_error == ON_ERROR_PANIC) 1580 panic("panic forced after error\n"); 1581 1582 bch_cache_set_unregister(c); 1583 return true; 1584 } 1585 1586 /* When c->kobj released */ 1587 void bch_cache_set_release(struct kobject *kobj) 1588 { 1589 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1590 1591 kfree(c); 1592 module_put(THIS_MODULE); 1593 } 1594 1595 static void cache_set_free(struct closure *cl) 1596 { 1597 struct cache_set *c = container_of(cl, struct cache_set, cl); 1598 struct cache *ca; 1599 unsigned int i; 1600 1601 debugfs_remove(c->debug); 1602 1603 bch_open_buckets_free(c); 1604 bch_btree_cache_free(c); 1605 bch_journal_free(c); 1606 1607 mutex_lock(&bch_register_lock); 1608 for_each_cache(ca, c, i) 1609 if (ca) { 1610 ca->set = NULL; 1611 c->cache[ca->sb.nr_this_dev] = NULL; 1612 kobject_put(&ca->kobj); 1613 } 1614 1615 bch_bset_sort_state_free(&c->sort); 1616 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1617 1618 if (c->moving_gc_wq) 1619 destroy_workqueue(c->moving_gc_wq); 1620 bioset_exit(&c->bio_split); 1621 mempool_exit(&c->fill_iter); 1622 mempool_exit(&c->bio_meta); 1623 mempool_exit(&c->search); 1624 kfree(c->devices); 1625 1626 list_del(&c->list); 1627 mutex_unlock(&bch_register_lock); 1628 1629 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid); 1630 wake_up(&unregister_wait); 1631 1632 closure_debug_destroy(&c->cl); 1633 kobject_put(&c->kobj); 1634 } 1635 1636 static void cache_set_flush(struct closure *cl) 1637 { 1638 struct cache_set *c = container_of(cl, struct cache_set, caching); 1639 struct cache *ca; 1640 struct btree *b; 1641 unsigned int i; 1642 1643 bch_cache_accounting_destroy(&c->accounting); 1644 1645 kobject_put(&c->internal); 1646 kobject_del(&c->kobj); 1647 1648 if (!IS_ERR_OR_NULL(c->gc_thread)) 1649 kthread_stop(c->gc_thread); 1650 1651 if (!IS_ERR_OR_NULL(c->root)) 1652 list_add(&c->root->list, &c->btree_cache); 1653 1654 /* 1655 * Avoid flushing cached nodes if cache set is retiring 1656 * due to too many I/O errors detected. 1657 */ 1658 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1659 list_for_each_entry(b, &c->btree_cache, list) { 1660 mutex_lock(&b->write_lock); 1661 if (btree_node_dirty(b)) 1662 __bch_btree_node_write(b, NULL); 1663 mutex_unlock(&b->write_lock); 1664 } 1665 1666 for_each_cache(ca, c, i) 1667 if (ca->alloc_thread) 1668 kthread_stop(ca->alloc_thread); 1669 1670 if (c->journal.cur) { 1671 cancel_delayed_work_sync(&c->journal.work); 1672 /* flush last journal entry if needed */ 1673 c->journal.work.work.func(&c->journal.work.work); 1674 } 1675 1676 closure_return(cl); 1677 } 1678 1679 /* 1680 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1681 * cache set is unregistering due to too many I/O errors. In this condition, 1682 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1683 * value and whether the broken cache has dirty data: 1684 * 1685 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1686 * BCH_CACHED_STOP_AUTO 0 NO 1687 * BCH_CACHED_STOP_AUTO 1 YES 1688 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1689 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1690 * 1691 * The expected behavior is, if stop_when_cache_set_failed is configured to 1692 * "auto" via sysfs interface, the bcache device will not be stopped if the 1693 * backing device is clean on the broken cache device. 1694 */ 1695 static void conditional_stop_bcache_device(struct cache_set *c, 1696 struct bcache_device *d, 1697 struct cached_dev *dc) 1698 { 1699 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1700 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1701 d->disk->disk_name, c->sb.set_uuid); 1702 bcache_device_stop(d); 1703 } else if (atomic_read(&dc->has_dirty)) { 1704 /* 1705 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1706 * and dc->has_dirty == 1 1707 */ 1708 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1709 d->disk->disk_name); 1710 /* 1711 * There might be a small time gap that cache set is 1712 * released but bcache device is not. Inside this time 1713 * gap, regular I/O requests will directly go into 1714 * backing device as no cache set attached to. This 1715 * behavior may also introduce potential inconsistence 1716 * data in writeback mode while cache is dirty. 1717 * Therefore before calling bcache_device_stop() due 1718 * to a broken cache device, dc->io_disable should be 1719 * explicitly set to true. 1720 */ 1721 dc->io_disable = true; 1722 /* make others know io_disable is true earlier */ 1723 smp_mb(); 1724 bcache_device_stop(d); 1725 } else { 1726 /* 1727 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1728 * and dc->has_dirty == 0 1729 */ 1730 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1731 d->disk->disk_name); 1732 } 1733 } 1734 1735 static void __cache_set_unregister(struct closure *cl) 1736 { 1737 struct cache_set *c = container_of(cl, struct cache_set, caching); 1738 struct cached_dev *dc; 1739 struct bcache_device *d; 1740 size_t i; 1741 1742 mutex_lock(&bch_register_lock); 1743 1744 for (i = 0; i < c->devices_max_used; i++) { 1745 d = c->devices[i]; 1746 if (!d) 1747 continue; 1748 1749 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1750 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1751 dc = container_of(d, struct cached_dev, disk); 1752 bch_cached_dev_detach(dc); 1753 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1754 conditional_stop_bcache_device(c, d, dc); 1755 } else { 1756 bcache_device_stop(d); 1757 } 1758 } 1759 1760 mutex_unlock(&bch_register_lock); 1761 1762 continue_at(cl, cache_set_flush, system_wq); 1763 } 1764 1765 void bch_cache_set_stop(struct cache_set *c) 1766 { 1767 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1768 /* closure_fn set to __cache_set_unregister() */ 1769 closure_queue(&c->caching); 1770 } 1771 1772 void bch_cache_set_unregister(struct cache_set *c) 1773 { 1774 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1775 bch_cache_set_stop(c); 1776 } 1777 1778 #define alloc_bucket_pages(gfp, c) \ 1779 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1780 1781 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1782 { 1783 int iter_size; 1784 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1785 1786 if (!c) 1787 return NULL; 1788 1789 __module_get(THIS_MODULE); 1790 closure_init(&c->cl, NULL); 1791 set_closure_fn(&c->cl, cache_set_free, system_wq); 1792 1793 closure_init(&c->caching, &c->cl); 1794 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1795 1796 /* Maybe create continue_at_noreturn() and use it here? */ 1797 closure_set_stopped(&c->cl); 1798 closure_put(&c->cl); 1799 1800 kobject_init(&c->kobj, &bch_cache_set_ktype); 1801 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1802 1803 bch_cache_accounting_init(&c->accounting, &c->cl); 1804 1805 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1806 c->sb.block_size = sb->block_size; 1807 c->sb.bucket_size = sb->bucket_size; 1808 c->sb.nr_in_set = sb->nr_in_set; 1809 c->sb.last_mount = sb->last_mount; 1810 c->bucket_bits = ilog2(sb->bucket_size); 1811 c->block_bits = ilog2(sb->block_size); 1812 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1813 c->devices_max_used = 0; 1814 atomic_set(&c->attached_dev_nr, 0); 1815 c->btree_pages = bucket_pages(c); 1816 if (c->btree_pages > BTREE_MAX_PAGES) 1817 c->btree_pages = max_t(int, c->btree_pages / 4, 1818 BTREE_MAX_PAGES); 1819 1820 sema_init(&c->sb_write_mutex, 1); 1821 mutex_init(&c->bucket_lock); 1822 init_waitqueue_head(&c->btree_cache_wait); 1823 spin_lock_init(&c->btree_cannibalize_lock); 1824 init_waitqueue_head(&c->bucket_wait); 1825 init_waitqueue_head(&c->gc_wait); 1826 sema_init(&c->uuid_write_mutex, 1); 1827 1828 spin_lock_init(&c->btree_gc_time.lock); 1829 spin_lock_init(&c->btree_split_time.lock); 1830 spin_lock_init(&c->btree_read_time.lock); 1831 1832 bch_moving_init_cache_set(c); 1833 1834 INIT_LIST_HEAD(&c->list); 1835 INIT_LIST_HEAD(&c->cached_devs); 1836 INIT_LIST_HEAD(&c->btree_cache); 1837 INIT_LIST_HEAD(&c->btree_cache_freeable); 1838 INIT_LIST_HEAD(&c->btree_cache_freed); 1839 INIT_LIST_HEAD(&c->data_buckets); 1840 1841 iter_size = (sb->bucket_size / sb->block_size + 1) * 1842 sizeof(struct btree_iter_set); 1843 1844 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || 1845 mempool_init_slab_pool(&c->search, 32, bch_search_cache) || 1846 mempool_init_kmalloc_pool(&c->bio_meta, 2, 1847 sizeof(struct bbio) + sizeof(struct bio_vec) * 1848 bucket_pages(c)) || 1849 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 1850 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1851 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || 1852 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1853 !(c->moving_gc_wq = alloc_workqueue("bcache_gc", 1854 WQ_MEM_RECLAIM, 0)) || 1855 bch_journal_alloc(c) || 1856 bch_btree_cache_alloc(c) || 1857 bch_open_buckets_alloc(c) || 1858 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1859 goto err; 1860 1861 c->congested_read_threshold_us = 2000; 1862 c->congested_write_threshold_us = 20000; 1863 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1864 c->idle_max_writeback_rate_enabled = 1; 1865 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1866 1867 return c; 1868 err: 1869 bch_cache_set_unregister(c); 1870 return NULL; 1871 } 1872 1873 static int run_cache_set(struct cache_set *c) 1874 { 1875 const char *err = "cannot allocate memory"; 1876 struct cached_dev *dc, *t; 1877 struct cache *ca; 1878 struct closure cl; 1879 unsigned int i; 1880 LIST_HEAD(journal); 1881 struct journal_replay *l; 1882 1883 closure_init_stack(&cl); 1884 1885 for_each_cache(ca, c, i) 1886 c->nbuckets += ca->sb.nbuckets; 1887 set_gc_sectors(c); 1888 1889 if (CACHE_SYNC(&c->sb)) { 1890 struct bkey *k; 1891 struct jset *j; 1892 1893 err = "cannot allocate memory for journal"; 1894 if (bch_journal_read(c, &journal)) 1895 goto err; 1896 1897 pr_debug("btree_journal_read() done\n"); 1898 1899 err = "no journal entries found"; 1900 if (list_empty(&journal)) 1901 goto err; 1902 1903 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1904 1905 err = "IO error reading priorities"; 1906 for_each_cache(ca, c, i) { 1907 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1908 goto err; 1909 } 1910 1911 /* 1912 * If prio_read() fails it'll call cache_set_error and we'll 1913 * tear everything down right away, but if we perhaps checked 1914 * sooner we could avoid journal replay. 1915 */ 1916 1917 k = &j->btree_root; 1918 1919 err = "bad btree root"; 1920 if (__bch_btree_ptr_invalid(c, k)) 1921 goto err; 1922 1923 err = "error reading btree root"; 1924 c->root = bch_btree_node_get(c, NULL, k, 1925 j->btree_level, 1926 true, NULL); 1927 if (IS_ERR_OR_NULL(c->root)) 1928 goto err; 1929 1930 list_del_init(&c->root->list); 1931 rw_unlock(true, c->root); 1932 1933 err = uuid_read(c, j, &cl); 1934 if (err) 1935 goto err; 1936 1937 err = "error in recovery"; 1938 if (bch_btree_check(c)) 1939 goto err; 1940 1941 bch_journal_mark(c, &journal); 1942 bch_initial_gc_finish(c); 1943 pr_debug("btree_check() done\n"); 1944 1945 /* 1946 * bcache_journal_next() can't happen sooner, or 1947 * btree_gc_finish() will give spurious errors about last_gc > 1948 * gc_gen - this is a hack but oh well. 1949 */ 1950 bch_journal_next(&c->journal); 1951 1952 err = "error starting allocator thread"; 1953 for_each_cache(ca, c, i) 1954 if (bch_cache_allocator_start(ca)) 1955 goto err; 1956 1957 /* 1958 * First place it's safe to allocate: btree_check() and 1959 * btree_gc_finish() have to run before we have buckets to 1960 * allocate, and bch_bucket_alloc_set() might cause a journal 1961 * entry to be written so bcache_journal_next() has to be called 1962 * first. 1963 * 1964 * If the uuids were in the old format we have to rewrite them 1965 * before the next journal entry is written: 1966 */ 1967 if (j->version < BCACHE_JSET_VERSION_UUID) 1968 __uuid_write(c); 1969 1970 err = "bcache: replay journal failed"; 1971 if (bch_journal_replay(c, &journal)) 1972 goto err; 1973 } else { 1974 pr_notice("invalidating existing data\n"); 1975 1976 for_each_cache(ca, c, i) { 1977 unsigned int j; 1978 1979 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1980 2, SB_JOURNAL_BUCKETS); 1981 1982 for (j = 0; j < ca->sb.keys; j++) 1983 ca->sb.d[j] = ca->sb.first_bucket + j; 1984 } 1985 1986 bch_initial_gc_finish(c); 1987 1988 err = "error starting allocator thread"; 1989 for_each_cache(ca, c, i) 1990 if (bch_cache_allocator_start(ca)) 1991 goto err; 1992 1993 mutex_lock(&c->bucket_lock); 1994 for_each_cache(ca, c, i) 1995 bch_prio_write(ca, true); 1996 mutex_unlock(&c->bucket_lock); 1997 1998 err = "cannot allocate new UUID bucket"; 1999 if (__uuid_write(c)) 2000 goto err; 2001 2002 err = "cannot allocate new btree root"; 2003 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2004 if (IS_ERR_OR_NULL(c->root)) 2005 goto err; 2006 2007 mutex_lock(&c->root->write_lock); 2008 bkey_copy_key(&c->root->key, &MAX_KEY); 2009 bch_btree_node_write(c->root, &cl); 2010 mutex_unlock(&c->root->write_lock); 2011 2012 bch_btree_set_root(c->root); 2013 rw_unlock(true, c->root); 2014 2015 /* 2016 * We don't want to write the first journal entry until 2017 * everything is set up - fortunately journal entries won't be 2018 * written until the SET_CACHE_SYNC() here: 2019 */ 2020 SET_CACHE_SYNC(&c->sb, true); 2021 2022 bch_journal_next(&c->journal); 2023 bch_journal_meta(c, &cl); 2024 } 2025 2026 err = "error starting gc thread"; 2027 if (bch_gc_thread_start(c)) 2028 goto err; 2029 2030 closure_sync(&cl); 2031 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2032 bcache_write_super(c); 2033 2034 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2035 bch_cached_dev_attach(dc, c, NULL); 2036 2037 flash_devs_run(c); 2038 2039 set_bit(CACHE_SET_RUNNING, &c->flags); 2040 return 0; 2041 err: 2042 while (!list_empty(&journal)) { 2043 l = list_first_entry(&journal, struct journal_replay, list); 2044 list_del(&l->list); 2045 kfree(l); 2046 } 2047 2048 closure_sync(&cl); 2049 2050 bch_cache_set_error(c, "%s", err); 2051 2052 return -EIO; 2053 } 2054 2055 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2056 { 2057 return ca->sb.block_size == c->sb.block_size && 2058 ca->sb.bucket_size == c->sb.bucket_size && 2059 ca->sb.nr_in_set == c->sb.nr_in_set; 2060 } 2061 2062 static const char *register_cache_set(struct cache *ca) 2063 { 2064 char buf[12]; 2065 const char *err = "cannot allocate memory"; 2066 struct cache_set *c; 2067 2068 list_for_each_entry(c, &bch_cache_sets, list) 2069 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2070 if (c->cache[ca->sb.nr_this_dev]) 2071 return "duplicate cache set member"; 2072 2073 if (!can_attach_cache(ca, c)) 2074 return "cache sb does not match set"; 2075 2076 if (!CACHE_SYNC(&ca->sb)) 2077 SET_CACHE_SYNC(&c->sb, false); 2078 2079 goto found; 2080 } 2081 2082 c = bch_cache_set_alloc(&ca->sb); 2083 if (!c) 2084 return err; 2085 2086 err = "error creating kobject"; 2087 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2088 kobject_add(&c->internal, &c->kobj, "internal")) 2089 goto err; 2090 2091 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2092 goto err; 2093 2094 bch_debug_init_cache_set(c); 2095 2096 list_add(&c->list, &bch_cache_sets); 2097 found: 2098 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2099 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2100 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2101 goto err; 2102 2103 if (ca->sb.seq > c->sb.seq) { 2104 c->sb.version = ca->sb.version; 2105 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2106 c->sb.flags = ca->sb.flags; 2107 c->sb.seq = ca->sb.seq; 2108 pr_debug("set version = %llu\n", c->sb.version); 2109 } 2110 2111 kobject_get(&ca->kobj); 2112 ca->set = c; 2113 ca->set->cache[ca->sb.nr_this_dev] = ca; 2114 c->cache_by_alloc[c->caches_loaded++] = ca; 2115 2116 if (c->caches_loaded == c->sb.nr_in_set) { 2117 err = "failed to run cache set"; 2118 if (run_cache_set(c) < 0) 2119 goto err; 2120 } 2121 2122 return NULL; 2123 err: 2124 bch_cache_set_unregister(c); 2125 return err; 2126 } 2127 2128 /* Cache device */ 2129 2130 /* When ca->kobj released */ 2131 void bch_cache_release(struct kobject *kobj) 2132 { 2133 struct cache *ca = container_of(kobj, struct cache, kobj); 2134 unsigned int i; 2135 2136 if (ca->set) { 2137 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2138 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2139 } 2140 2141 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 2142 kfree(ca->prio_buckets); 2143 vfree(ca->buckets); 2144 2145 free_heap(&ca->heap); 2146 free_fifo(&ca->free_inc); 2147 2148 for (i = 0; i < RESERVE_NR; i++) 2149 free_fifo(&ca->free[i]); 2150 2151 if (ca->sb_disk) 2152 put_page(virt_to_page(ca->sb_disk)); 2153 2154 if (!IS_ERR_OR_NULL(ca->bdev)) 2155 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2156 2157 kfree(ca); 2158 module_put(THIS_MODULE); 2159 } 2160 2161 static int cache_alloc(struct cache *ca) 2162 { 2163 size_t free; 2164 size_t btree_buckets; 2165 struct bucket *b; 2166 int ret = -ENOMEM; 2167 const char *err = NULL; 2168 2169 __module_get(THIS_MODULE); 2170 kobject_init(&ca->kobj, &bch_cache_ktype); 2171 2172 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2173 2174 /* 2175 * when ca->sb.njournal_buckets is not zero, journal exists, 2176 * and in bch_journal_replay(), tree node may split, 2177 * so bucket of RESERVE_BTREE type is needed, 2178 * the worst situation is all journal buckets are valid journal, 2179 * and all the keys need to replay, 2180 * so the number of RESERVE_BTREE type buckets should be as much 2181 * as journal buckets 2182 */ 2183 btree_buckets = ca->sb.njournal_buckets ?: 8; 2184 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2185 if (!free) { 2186 ret = -EPERM; 2187 err = "ca->sb.nbuckets is too small"; 2188 goto err_free; 2189 } 2190 2191 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2192 GFP_KERNEL)) { 2193 err = "ca->free[RESERVE_BTREE] alloc failed"; 2194 goto err_btree_alloc; 2195 } 2196 2197 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2198 GFP_KERNEL)) { 2199 err = "ca->free[RESERVE_PRIO] alloc failed"; 2200 goto err_prio_alloc; 2201 } 2202 2203 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2204 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2205 goto err_movinggc_alloc; 2206 } 2207 2208 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2209 err = "ca->free[RESERVE_NONE] alloc failed"; 2210 goto err_none_alloc; 2211 } 2212 2213 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2214 err = "ca->free_inc alloc failed"; 2215 goto err_free_inc_alloc; 2216 } 2217 2218 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2219 err = "ca->heap alloc failed"; 2220 goto err_heap_alloc; 2221 } 2222 2223 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2224 ca->sb.nbuckets)); 2225 if (!ca->buckets) { 2226 err = "ca->buckets alloc failed"; 2227 goto err_buckets_alloc; 2228 } 2229 2230 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2231 prio_buckets(ca), 2), 2232 GFP_KERNEL); 2233 if (!ca->prio_buckets) { 2234 err = "ca->prio_buckets alloc failed"; 2235 goto err_prio_buckets_alloc; 2236 } 2237 2238 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); 2239 if (!ca->disk_buckets) { 2240 err = "ca->disk_buckets alloc failed"; 2241 goto err_disk_buckets_alloc; 2242 } 2243 2244 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2245 2246 for_each_bucket(b, ca) 2247 atomic_set(&b->pin, 0); 2248 return 0; 2249 2250 err_disk_buckets_alloc: 2251 kfree(ca->prio_buckets); 2252 err_prio_buckets_alloc: 2253 vfree(ca->buckets); 2254 err_buckets_alloc: 2255 free_heap(&ca->heap); 2256 err_heap_alloc: 2257 free_fifo(&ca->free_inc); 2258 err_free_inc_alloc: 2259 free_fifo(&ca->free[RESERVE_NONE]); 2260 err_none_alloc: 2261 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2262 err_movinggc_alloc: 2263 free_fifo(&ca->free[RESERVE_PRIO]); 2264 err_prio_alloc: 2265 free_fifo(&ca->free[RESERVE_BTREE]); 2266 err_btree_alloc: 2267 err_free: 2268 module_put(THIS_MODULE); 2269 if (err) 2270 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2271 return ret; 2272 } 2273 2274 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2275 struct block_device *bdev, struct cache *ca) 2276 { 2277 const char *err = NULL; /* must be set for any error case */ 2278 int ret = 0; 2279 2280 bdevname(bdev, ca->cache_dev_name); 2281 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2282 ca->bdev = bdev; 2283 ca->bdev->bd_holder = ca; 2284 ca->sb_disk = sb_disk; 2285 2286 if (blk_queue_discard(bdev_get_queue(bdev))) 2287 ca->discard = CACHE_DISCARD(&ca->sb); 2288 2289 ret = cache_alloc(ca); 2290 if (ret != 0) { 2291 /* 2292 * If we failed here, it means ca->kobj is not initialized yet, 2293 * kobject_put() won't be called and there is no chance to 2294 * call blkdev_put() to bdev in bch_cache_release(). So we 2295 * explicitly call blkdev_put() here. 2296 */ 2297 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2298 if (ret == -ENOMEM) 2299 err = "cache_alloc(): -ENOMEM"; 2300 else if (ret == -EPERM) 2301 err = "cache_alloc(): cache device is too small"; 2302 else 2303 err = "cache_alloc(): unknown error"; 2304 goto err; 2305 } 2306 2307 if (kobject_add(&ca->kobj, 2308 &part_to_dev(bdev->bd_part)->kobj, 2309 "bcache")) { 2310 err = "error calling kobject_add"; 2311 ret = -ENOMEM; 2312 goto out; 2313 } 2314 2315 mutex_lock(&bch_register_lock); 2316 err = register_cache_set(ca); 2317 mutex_unlock(&bch_register_lock); 2318 2319 if (err) { 2320 ret = -ENODEV; 2321 goto out; 2322 } 2323 2324 pr_info("registered cache device %s\n", ca->cache_dev_name); 2325 2326 out: 2327 kobject_put(&ca->kobj); 2328 2329 err: 2330 if (err) 2331 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2332 2333 return ret; 2334 } 2335 2336 /* Global interfaces/init */ 2337 2338 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2339 const char *buffer, size_t size); 2340 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2341 struct kobj_attribute *attr, 2342 const char *buffer, size_t size); 2343 2344 kobj_attribute_write(register, register_bcache); 2345 kobj_attribute_write(register_quiet, register_bcache); 2346 kobj_attribute_write(register_async, register_bcache); 2347 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2348 2349 static bool bch_is_open_backing(struct block_device *bdev) 2350 { 2351 struct cache_set *c, *tc; 2352 struct cached_dev *dc, *t; 2353 2354 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2355 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2356 if (dc->bdev == bdev) 2357 return true; 2358 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2359 if (dc->bdev == bdev) 2360 return true; 2361 return false; 2362 } 2363 2364 static bool bch_is_open_cache(struct block_device *bdev) 2365 { 2366 struct cache_set *c, *tc; 2367 struct cache *ca; 2368 unsigned int i; 2369 2370 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2371 for_each_cache(ca, c, i) 2372 if (ca->bdev == bdev) 2373 return true; 2374 return false; 2375 } 2376 2377 static bool bch_is_open(struct block_device *bdev) 2378 { 2379 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2380 } 2381 2382 struct async_reg_args { 2383 struct delayed_work reg_work; 2384 char *path; 2385 struct cache_sb *sb; 2386 struct cache_sb_disk *sb_disk; 2387 struct block_device *bdev; 2388 }; 2389 2390 static void register_bdev_worker(struct work_struct *work) 2391 { 2392 int fail = false; 2393 struct async_reg_args *args = 2394 container_of(work, struct async_reg_args, reg_work.work); 2395 struct cached_dev *dc; 2396 2397 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2398 if (!dc) { 2399 fail = true; 2400 put_page(virt_to_page(args->sb_disk)); 2401 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2402 goto out; 2403 } 2404 2405 mutex_lock(&bch_register_lock); 2406 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2407 fail = true; 2408 mutex_unlock(&bch_register_lock); 2409 2410 out: 2411 if (fail) 2412 pr_info("error %s: fail to register backing device\n", 2413 args->path); 2414 kfree(args->sb); 2415 kfree(args->path); 2416 kfree(args); 2417 module_put(THIS_MODULE); 2418 } 2419 2420 static void register_cache_worker(struct work_struct *work) 2421 { 2422 int fail = false; 2423 struct async_reg_args *args = 2424 container_of(work, struct async_reg_args, reg_work.work); 2425 struct cache *ca; 2426 2427 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2428 if (!ca) { 2429 fail = true; 2430 put_page(virt_to_page(args->sb_disk)); 2431 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2432 goto out; 2433 } 2434 2435 /* blkdev_put() will be called in bch_cache_release() */ 2436 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2437 fail = true; 2438 2439 out: 2440 if (fail) 2441 pr_info("error %s: fail to register cache device\n", 2442 args->path); 2443 kfree(args->sb); 2444 kfree(args->path); 2445 kfree(args); 2446 module_put(THIS_MODULE); 2447 } 2448 2449 static void register_device_aync(struct async_reg_args *args) 2450 { 2451 if (SB_IS_BDEV(args->sb)) 2452 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2453 else 2454 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2455 2456 /* 10 jiffies is enough for a delay */ 2457 queue_delayed_work(system_wq, &args->reg_work, 10); 2458 } 2459 2460 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2461 const char *buffer, size_t size) 2462 { 2463 const char *err; 2464 char *path = NULL; 2465 struct cache_sb *sb; 2466 struct cache_sb_disk *sb_disk; 2467 struct block_device *bdev; 2468 ssize_t ret; 2469 2470 ret = -EBUSY; 2471 err = "failed to reference bcache module"; 2472 if (!try_module_get(THIS_MODULE)) 2473 goto out; 2474 2475 /* For latest state of bcache_is_reboot */ 2476 smp_mb(); 2477 err = "bcache is in reboot"; 2478 if (bcache_is_reboot) 2479 goto out_module_put; 2480 2481 ret = -ENOMEM; 2482 err = "cannot allocate memory"; 2483 path = kstrndup(buffer, size, GFP_KERNEL); 2484 if (!path) 2485 goto out_module_put; 2486 2487 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2488 if (!sb) 2489 goto out_free_path; 2490 2491 ret = -EINVAL; 2492 err = "failed to open device"; 2493 bdev = blkdev_get_by_path(strim(path), 2494 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2495 sb); 2496 if (IS_ERR(bdev)) { 2497 if (bdev == ERR_PTR(-EBUSY)) { 2498 bdev = lookup_bdev(strim(path)); 2499 mutex_lock(&bch_register_lock); 2500 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2501 err = "device already registered"; 2502 else 2503 err = "device busy"; 2504 mutex_unlock(&bch_register_lock); 2505 if (!IS_ERR(bdev)) 2506 bdput(bdev); 2507 if (attr == &ksysfs_register_quiet) 2508 goto done; 2509 } 2510 goto out_free_sb; 2511 } 2512 2513 err = "failed to set blocksize"; 2514 if (set_blocksize(bdev, 4096)) 2515 goto out_blkdev_put; 2516 2517 err = read_super(sb, bdev, &sb_disk); 2518 if (err) 2519 goto out_blkdev_put; 2520 2521 err = "failed to register device"; 2522 if (attr == &ksysfs_register_async) { 2523 /* register in asynchronous way */ 2524 struct async_reg_args *args = 2525 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2526 2527 if (!args) { 2528 ret = -ENOMEM; 2529 err = "cannot allocate memory"; 2530 goto out_put_sb_page; 2531 } 2532 2533 args->path = path; 2534 args->sb = sb; 2535 args->sb_disk = sb_disk; 2536 args->bdev = bdev; 2537 register_device_aync(args); 2538 /* No wait and returns to user space */ 2539 goto async_done; 2540 } 2541 2542 if (SB_IS_BDEV(sb)) { 2543 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2544 2545 if (!dc) 2546 goto out_put_sb_page; 2547 2548 mutex_lock(&bch_register_lock); 2549 ret = register_bdev(sb, sb_disk, bdev, dc); 2550 mutex_unlock(&bch_register_lock); 2551 /* blkdev_put() will be called in cached_dev_free() */ 2552 if (ret < 0) 2553 goto out_free_sb; 2554 } else { 2555 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2556 2557 if (!ca) 2558 goto out_put_sb_page; 2559 2560 /* blkdev_put() will be called in bch_cache_release() */ 2561 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2562 goto out_free_sb; 2563 } 2564 2565 done: 2566 kfree(sb); 2567 kfree(path); 2568 module_put(THIS_MODULE); 2569 async_done: 2570 return size; 2571 2572 out_put_sb_page: 2573 put_page(virt_to_page(sb_disk)); 2574 out_blkdev_put: 2575 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2576 out_free_sb: 2577 kfree(sb); 2578 out_free_path: 2579 kfree(path); 2580 path = NULL; 2581 out_module_put: 2582 module_put(THIS_MODULE); 2583 out: 2584 pr_info("error %s: %s\n", path?path:"", err); 2585 return ret; 2586 } 2587 2588 2589 struct pdev { 2590 struct list_head list; 2591 struct cached_dev *dc; 2592 }; 2593 2594 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2595 struct kobj_attribute *attr, 2596 const char *buffer, 2597 size_t size) 2598 { 2599 LIST_HEAD(pending_devs); 2600 ssize_t ret = size; 2601 struct cached_dev *dc, *tdc; 2602 struct pdev *pdev, *tpdev; 2603 struct cache_set *c, *tc; 2604 2605 mutex_lock(&bch_register_lock); 2606 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2607 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2608 if (!pdev) 2609 break; 2610 pdev->dc = dc; 2611 list_add(&pdev->list, &pending_devs); 2612 } 2613 2614 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2615 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2616 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2617 char *set_uuid = c->sb.uuid; 2618 2619 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2620 list_del(&pdev->list); 2621 kfree(pdev); 2622 break; 2623 } 2624 } 2625 } 2626 mutex_unlock(&bch_register_lock); 2627 2628 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2629 pr_info("delete pdev %p\n", pdev); 2630 list_del(&pdev->list); 2631 bcache_device_stop(&pdev->dc->disk); 2632 kfree(pdev); 2633 } 2634 2635 return ret; 2636 } 2637 2638 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2639 { 2640 if (bcache_is_reboot) 2641 return NOTIFY_DONE; 2642 2643 if (code == SYS_DOWN || 2644 code == SYS_HALT || 2645 code == SYS_POWER_OFF) { 2646 DEFINE_WAIT(wait); 2647 unsigned long start = jiffies; 2648 bool stopped = false; 2649 2650 struct cache_set *c, *tc; 2651 struct cached_dev *dc, *tdc; 2652 2653 mutex_lock(&bch_register_lock); 2654 2655 if (bcache_is_reboot) 2656 goto out; 2657 2658 /* New registration is rejected since now */ 2659 bcache_is_reboot = true; 2660 /* 2661 * Make registering caller (if there is) on other CPU 2662 * core know bcache_is_reboot set to true earlier 2663 */ 2664 smp_mb(); 2665 2666 if (list_empty(&bch_cache_sets) && 2667 list_empty(&uncached_devices)) 2668 goto out; 2669 2670 mutex_unlock(&bch_register_lock); 2671 2672 pr_info("Stopping all devices:\n"); 2673 2674 /* 2675 * The reason bch_register_lock is not held to call 2676 * bch_cache_set_stop() and bcache_device_stop() is to 2677 * avoid potential deadlock during reboot, because cache 2678 * set or bcache device stopping process will acqurie 2679 * bch_register_lock too. 2680 * 2681 * We are safe here because bcache_is_reboot sets to 2682 * true already, register_bcache() will reject new 2683 * registration now. bcache_is_reboot also makes sure 2684 * bcache_reboot() won't be re-entered on by other thread, 2685 * so there is no race in following list iteration by 2686 * list_for_each_entry_safe(). 2687 */ 2688 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2689 bch_cache_set_stop(c); 2690 2691 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2692 bcache_device_stop(&dc->disk); 2693 2694 2695 /* 2696 * Give an early chance for other kthreads and 2697 * kworkers to stop themselves 2698 */ 2699 schedule(); 2700 2701 /* What's a condition variable? */ 2702 while (1) { 2703 long timeout = start + 10 * HZ - jiffies; 2704 2705 mutex_lock(&bch_register_lock); 2706 stopped = list_empty(&bch_cache_sets) && 2707 list_empty(&uncached_devices); 2708 2709 if (timeout < 0 || stopped) 2710 break; 2711 2712 prepare_to_wait(&unregister_wait, &wait, 2713 TASK_UNINTERRUPTIBLE); 2714 2715 mutex_unlock(&bch_register_lock); 2716 schedule_timeout(timeout); 2717 } 2718 2719 finish_wait(&unregister_wait, &wait); 2720 2721 if (stopped) 2722 pr_info("All devices stopped\n"); 2723 else 2724 pr_notice("Timeout waiting for devices to be closed\n"); 2725 out: 2726 mutex_unlock(&bch_register_lock); 2727 } 2728 2729 return NOTIFY_DONE; 2730 } 2731 2732 static struct notifier_block reboot = { 2733 .notifier_call = bcache_reboot, 2734 .priority = INT_MAX, /* before any real devices */ 2735 }; 2736 2737 static void bcache_exit(void) 2738 { 2739 bch_debug_exit(); 2740 bch_request_exit(); 2741 if (bcache_kobj) 2742 kobject_put(bcache_kobj); 2743 if (bcache_wq) 2744 destroy_workqueue(bcache_wq); 2745 if (bch_journal_wq) 2746 destroy_workqueue(bch_journal_wq); 2747 2748 if (bcache_major) 2749 unregister_blkdev(bcache_major, "bcache"); 2750 unregister_reboot_notifier(&reboot); 2751 mutex_destroy(&bch_register_lock); 2752 } 2753 2754 /* Check and fixup module parameters */ 2755 static void check_module_parameters(void) 2756 { 2757 if (bch_cutoff_writeback_sync == 0) 2758 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2759 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2760 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2761 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2762 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2763 } 2764 2765 if (bch_cutoff_writeback == 0) 2766 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2767 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2768 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2769 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2770 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2771 } 2772 2773 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2774 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2775 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2776 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2777 } 2778 } 2779 2780 static int __init bcache_init(void) 2781 { 2782 static const struct attribute *files[] = { 2783 &ksysfs_register.attr, 2784 &ksysfs_register_quiet.attr, 2785 #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION 2786 &ksysfs_register_async.attr, 2787 #endif 2788 &ksysfs_pendings_cleanup.attr, 2789 NULL 2790 }; 2791 2792 check_module_parameters(); 2793 2794 mutex_init(&bch_register_lock); 2795 init_waitqueue_head(&unregister_wait); 2796 register_reboot_notifier(&reboot); 2797 2798 bcache_major = register_blkdev(0, "bcache"); 2799 if (bcache_major < 0) { 2800 unregister_reboot_notifier(&reboot); 2801 mutex_destroy(&bch_register_lock); 2802 return bcache_major; 2803 } 2804 2805 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2806 if (!bcache_wq) 2807 goto err; 2808 2809 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2810 if (!bch_journal_wq) 2811 goto err; 2812 2813 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2814 if (!bcache_kobj) 2815 goto err; 2816 2817 if (bch_request_init() || 2818 sysfs_create_files(bcache_kobj, files)) 2819 goto err; 2820 2821 bch_debug_init(); 2822 closure_debug_init(); 2823 2824 bcache_is_reboot = false; 2825 2826 return 0; 2827 err: 2828 bcache_exit(); 2829 return -ENOMEM; 2830 } 2831 2832 /* 2833 * Module hooks 2834 */ 2835 module_exit(bcache_exit); 2836 module_init(bcache_init); 2837 2838 module_param(bch_cutoff_writeback, uint, 0); 2839 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2840 2841 module_param(bch_cutoff_writeback_sync, uint, 0); 2842 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2843 2844 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2845 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2846 MODULE_LICENSE("GPL"); 2847