xref: /openbmc/linux/drivers/md/bcache/super.c (revision afb46f79)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 	"default",
43 	"writethrough",
44 	"writeback",
45 	"writearound",
46 	"none",
47 	NULL
48 };
49 
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54 
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59 
60 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
61 
62 static void bio_split_pool_free(struct bio_split_pool *p)
63 {
64 	if (p->bio_split_hook)
65 		mempool_destroy(p->bio_split_hook);
66 
67 	if (p->bio_split)
68 		bioset_free(p->bio_split);
69 }
70 
71 static int bio_split_pool_init(struct bio_split_pool *p)
72 {
73 	p->bio_split = bioset_create(4, 0);
74 	if (!p->bio_split)
75 		return -ENOMEM;
76 
77 	p->bio_split_hook = mempool_create_kmalloc_pool(4,
78 				sizeof(struct bio_split_hook));
79 	if (!p->bio_split_hook)
80 		return -ENOMEM;
81 
82 	return 0;
83 }
84 
85 /* Superblock */
86 
87 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
88 			      struct page **res)
89 {
90 	const char *err;
91 	struct cache_sb *s;
92 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
93 	unsigned i;
94 
95 	if (!bh)
96 		return "IO error";
97 
98 	s = (struct cache_sb *) bh->b_data;
99 
100 	sb->offset		= le64_to_cpu(s->offset);
101 	sb->version		= le64_to_cpu(s->version);
102 
103 	memcpy(sb->magic,	s->magic, 16);
104 	memcpy(sb->uuid,	s->uuid, 16);
105 	memcpy(sb->set_uuid,	s->set_uuid, 16);
106 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
107 
108 	sb->flags		= le64_to_cpu(s->flags);
109 	sb->seq			= le64_to_cpu(s->seq);
110 	sb->last_mount		= le32_to_cpu(s->last_mount);
111 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
112 	sb->keys		= le16_to_cpu(s->keys);
113 
114 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
115 		sb->d[i] = le64_to_cpu(s->d[i]);
116 
117 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
118 		 sb->version, sb->flags, sb->seq, sb->keys);
119 
120 	err = "Not a bcache superblock";
121 	if (sb->offset != SB_SECTOR)
122 		goto err;
123 
124 	if (memcmp(sb->magic, bcache_magic, 16))
125 		goto err;
126 
127 	err = "Too many journal buckets";
128 	if (sb->keys > SB_JOURNAL_BUCKETS)
129 		goto err;
130 
131 	err = "Bad checksum";
132 	if (s->csum != csum_set(s))
133 		goto err;
134 
135 	err = "Bad UUID";
136 	if (bch_is_zero(sb->uuid, 16))
137 		goto err;
138 
139 	sb->block_size	= le16_to_cpu(s->block_size);
140 
141 	err = "Superblock block size smaller than device block size";
142 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
143 		goto err;
144 
145 	switch (sb->version) {
146 	case BCACHE_SB_VERSION_BDEV:
147 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
148 		break;
149 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
150 		sb->data_offset	= le64_to_cpu(s->data_offset);
151 
152 		err = "Bad data offset";
153 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
154 			goto err;
155 
156 		break;
157 	case BCACHE_SB_VERSION_CDEV:
158 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
159 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
160 		sb->block_size	= le16_to_cpu(s->block_size);
161 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
162 
163 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
164 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
165 
166 		err = "Too many buckets";
167 		if (sb->nbuckets > LONG_MAX)
168 			goto err;
169 
170 		err = "Not enough buckets";
171 		if (sb->nbuckets < 1 << 7)
172 			goto err;
173 
174 		err = "Bad block/bucket size";
175 		if (!is_power_of_2(sb->block_size) ||
176 		    sb->block_size > PAGE_SECTORS ||
177 		    !is_power_of_2(sb->bucket_size) ||
178 		    sb->bucket_size < PAGE_SECTORS)
179 			goto err;
180 
181 		err = "Invalid superblock: device too small";
182 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
183 			goto err;
184 
185 		err = "Bad UUID";
186 		if (bch_is_zero(sb->set_uuid, 16))
187 			goto err;
188 
189 		err = "Bad cache device number in set";
190 		if (!sb->nr_in_set ||
191 		    sb->nr_in_set <= sb->nr_this_dev ||
192 		    sb->nr_in_set > MAX_CACHES_PER_SET)
193 			goto err;
194 
195 		err = "Journal buckets not sequential";
196 		for (i = 0; i < sb->keys; i++)
197 			if (sb->d[i] != sb->first_bucket + i)
198 				goto err;
199 
200 		err = "Too many journal buckets";
201 		if (sb->first_bucket + sb->keys > sb->nbuckets)
202 			goto err;
203 
204 		err = "Invalid superblock: first bucket comes before end of super";
205 		if (sb->first_bucket * sb->bucket_size < 16)
206 			goto err;
207 
208 		break;
209 	default:
210 		err = "Unsupported superblock version";
211 		goto err;
212 	}
213 
214 	sb->last_mount = get_seconds();
215 	err = NULL;
216 
217 	get_page(bh->b_page);
218 	*res = bh->b_page;
219 err:
220 	put_bh(bh);
221 	return err;
222 }
223 
224 static void write_bdev_super_endio(struct bio *bio, int error)
225 {
226 	struct cached_dev *dc = bio->bi_private;
227 	/* XXX: error checking */
228 
229 	closure_put(&dc->sb_write);
230 }
231 
232 static void __write_super(struct cache_sb *sb, struct bio *bio)
233 {
234 	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
235 	unsigned i;
236 
237 	bio->bi_iter.bi_sector	= SB_SECTOR;
238 	bio->bi_rw		= REQ_SYNC|REQ_META;
239 	bio->bi_iter.bi_size	= SB_SIZE;
240 	bch_bio_map(bio, NULL);
241 
242 	out->offset		= cpu_to_le64(sb->offset);
243 	out->version		= cpu_to_le64(sb->version);
244 
245 	memcpy(out->uuid,	sb->uuid, 16);
246 	memcpy(out->set_uuid,	sb->set_uuid, 16);
247 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
248 
249 	out->flags		= cpu_to_le64(sb->flags);
250 	out->seq		= cpu_to_le64(sb->seq);
251 
252 	out->last_mount		= cpu_to_le32(sb->last_mount);
253 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
254 	out->keys		= cpu_to_le16(sb->keys);
255 
256 	for (i = 0; i < sb->keys; i++)
257 		out->d[i] = cpu_to_le64(sb->d[i]);
258 
259 	out->csum = csum_set(out);
260 
261 	pr_debug("ver %llu, flags %llu, seq %llu",
262 		 sb->version, sb->flags, sb->seq);
263 
264 	submit_bio(REQ_WRITE, bio);
265 }
266 
267 static void bch_write_bdev_super_unlock(struct closure *cl)
268 {
269 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
270 
271 	up(&dc->sb_write_mutex);
272 }
273 
274 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
275 {
276 	struct closure *cl = &dc->sb_write;
277 	struct bio *bio = &dc->sb_bio;
278 
279 	down(&dc->sb_write_mutex);
280 	closure_init(cl, parent);
281 
282 	bio_reset(bio);
283 	bio->bi_bdev	= dc->bdev;
284 	bio->bi_end_io	= write_bdev_super_endio;
285 	bio->bi_private = dc;
286 
287 	closure_get(cl);
288 	__write_super(&dc->sb, bio);
289 
290 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
291 }
292 
293 static void write_super_endio(struct bio *bio, int error)
294 {
295 	struct cache *ca = bio->bi_private;
296 
297 	bch_count_io_errors(ca, error, "writing superblock");
298 	closure_put(&ca->set->sb_write);
299 }
300 
301 static void bcache_write_super_unlock(struct closure *cl)
302 {
303 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
304 
305 	up(&c->sb_write_mutex);
306 }
307 
308 void bcache_write_super(struct cache_set *c)
309 {
310 	struct closure *cl = &c->sb_write;
311 	struct cache *ca;
312 	unsigned i;
313 
314 	down(&c->sb_write_mutex);
315 	closure_init(cl, &c->cl);
316 
317 	c->sb.seq++;
318 
319 	for_each_cache(ca, c, i) {
320 		struct bio *bio = &ca->sb_bio;
321 
322 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
323 		ca->sb.seq		= c->sb.seq;
324 		ca->sb.last_mount	= c->sb.last_mount;
325 
326 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
327 
328 		bio_reset(bio);
329 		bio->bi_bdev	= ca->bdev;
330 		bio->bi_end_io	= write_super_endio;
331 		bio->bi_private = ca;
332 
333 		closure_get(cl);
334 		__write_super(&ca->sb, bio);
335 	}
336 
337 	closure_return_with_destructor(cl, bcache_write_super_unlock);
338 }
339 
340 /* UUID io */
341 
342 static void uuid_endio(struct bio *bio, int error)
343 {
344 	struct closure *cl = bio->bi_private;
345 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346 
347 	cache_set_err_on(error, c, "accessing uuids");
348 	bch_bbio_free(bio, c);
349 	closure_put(cl);
350 }
351 
352 static void uuid_io_unlock(struct closure *cl)
353 {
354 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
355 
356 	up(&c->uuid_write_mutex);
357 }
358 
359 static void uuid_io(struct cache_set *c, unsigned long rw,
360 		    struct bkey *k, struct closure *parent)
361 {
362 	struct closure *cl = &c->uuid_write;
363 	struct uuid_entry *u;
364 	unsigned i;
365 	char buf[80];
366 
367 	BUG_ON(!parent);
368 	down(&c->uuid_write_mutex);
369 	closure_init(cl, parent);
370 
371 	for (i = 0; i < KEY_PTRS(k); i++) {
372 		struct bio *bio = bch_bbio_alloc(c);
373 
374 		bio->bi_rw	= REQ_SYNC|REQ_META|rw;
375 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
376 
377 		bio->bi_end_io	= uuid_endio;
378 		bio->bi_private = cl;
379 		bch_bio_map(bio, c->uuids);
380 
381 		bch_submit_bbio(bio, c, k, i);
382 
383 		if (!(rw & WRITE))
384 			break;
385 	}
386 
387 	bch_extent_to_text(buf, sizeof(buf), k);
388 	pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
389 
390 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
391 		if (!bch_is_zero(u->uuid, 16))
392 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
393 				 u - c->uuids, u->uuid, u->label,
394 				 u->first_reg, u->last_reg, u->invalidated);
395 
396 	closure_return_with_destructor(cl, uuid_io_unlock);
397 }
398 
399 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
400 {
401 	struct bkey *k = &j->uuid_bucket;
402 
403 	if (__bch_btree_ptr_invalid(c, k))
404 		return "bad uuid pointer";
405 
406 	bkey_copy(&c->uuid_bucket, k);
407 	uuid_io(c, READ_SYNC, k, cl);
408 
409 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
410 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
411 		struct uuid_entry	*u1 = (void *) c->uuids;
412 		int i;
413 
414 		closure_sync(cl);
415 
416 		/*
417 		 * Since the new uuid entry is bigger than the old, we have to
418 		 * convert starting at the highest memory address and work down
419 		 * in order to do it in place
420 		 */
421 
422 		for (i = c->nr_uuids - 1;
423 		     i >= 0;
424 		     --i) {
425 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
426 			memcpy(u1[i].label,	u0[i].label, 32);
427 
428 			u1[i].first_reg		= u0[i].first_reg;
429 			u1[i].last_reg		= u0[i].last_reg;
430 			u1[i].invalidated	= u0[i].invalidated;
431 
432 			u1[i].flags	= 0;
433 			u1[i].sectors	= 0;
434 		}
435 	}
436 
437 	return NULL;
438 }
439 
440 static int __uuid_write(struct cache_set *c)
441 {
442 	BKEY_PADDED(key) k;
443 	struct closure cl;
444 	closure_init_stack(&cl);
445 
446 	lockdep_assert_held(&bch_register_lock);
447 
448 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
449 		return 1;
450 
451 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
452 	uuid_io(c, REQ_WRITE, &k.key, &cl);
453 	closure_sync(&cl);
454 
455 	bkey_copy(&c->uuid_bucket, &k.key);
456 	bkey_put(c, &k.key);
457 	return 0;
458 }
459 
460 int bch_uuid_write(struct cache_set *c)
461 {
462 	int ret = __uuid_write(c);
463 
464 	if (!ret)
465 		bch_journal_meta(c, NULL);
466 
467 	return ret;
468 }
469 
470 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
471 {
472 	struct uuid_entry *u;
473 
474 	for (u = c->uuids;
475 	     u < c->uuids + c->nr_uuids; u++)
476 		if (!memcmp(u->uuid, uuid, 16))
477 			return u;
478 
479 	return NULL;
480 }
481 
482 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
483 {
484 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
485 	return uuid_find(c, zero_uuid);
486 }
487 
488 /*
489  * Bucket priorities/gens:
490  *
491  * For each bucket, we store on disk its
492    * 8 bit gen
493    * 16 bit priority
494  *
495  * See alloc.c for an explanation of the gen. The priority is used to implement
496  * lru (and in the future other) cache replacement policies; for most purposes
497  * it's just an opaque integer.
498  *
499  * The gens and the priorities don't have a whole lot to do with each other, and
500  * it's actually the gens that must be written out at specific times - it's no
501  * big deal if the priorities don't get written, if we lose them we just reuse
502  * buckets in suboptimal order.
503  *
504  * On disk they're stored in a packed array, and in as many buckets are required
505  * to fit them all. The buckets we use to store them form a list; the journal
506  * header points to the first bucket, the first bucket points to the second
507  * bucket, et cetera.
508  *
509  * This code is used by the allocation code; periodically (whenever it runs out
510  * of buckets to allocate from) the allocation code will invalidate some
511  * buckets, but it can't use those buckets until their new gens are safely on
512  * disk.
513  */
514 
515 static void prio_endio(struct bio *bio, int error)
516 {
517 	struct cache *ca = bio->bi_private;
518 
519 	cache_set_err_on(error, ca->set, "accessing priorities");
520 	bch_bbio_free(bio, ca->set);
521 	closure_put(&ca->prio);
522 }
523 
524 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
525 {
526 	struct closure *cl = &ca->prio;
527 	struct bio *bio = bch_bbio_alloc(ca->set);
528 
529 	closure_init_stack(cl);
530 
531 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
532 	bio->bi_bdev		= ca->bdev;
533 	bio->bi_rw		= REQ_SYNC|REQ_META|rw;
534 	bio->bi_iter.bi_size	= bucket_bytes(ca);
535 
536 	bio->bi_end_io	= prio_endio;
537 	bio->bi_private = ca;
538 	bch_bio_map(bio, ca->disk_buckets);
539 
540 	closure_bio_submit(bio, &ca->prio, ca);
541 	closure_sync(cl);
542 }
543 
544 void bch_prio_write(struct cache *ca)
545 {
546 	int i;
547 	struct bucket *b;
548 	struct closure cl;
549 
550 	closure_init_stack(&cl);
551 
552 	lockdep_assert_held(&ca->set->bucket_lock);
553 
554 	ca->disk_buckets->seq++;
555 
556 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
557 			&ca->meta_sectors_written);
558 
559 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
560 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
561 
562 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
563 		long bucket;
564 		struct prio_set *p = ca->disk_buckets;
565 		struct bucket_disk *d = p->data;
566 		struct bucket_disk *end = d + prios_per_bucket(ca);
567 
568 		for (b = ca->buckets + i * prios_per_bucket(ca);
569 		     b < ca->buckets + ca->sb.nbuckets && d < end;
570 		     b++, d++) {
571 			d->prio = cpu_to_le16(b->prio);
572 			d->gen = b->gen;
573 		}
574 
575 		p->next_bucket	= ca->prio_buckets[i + 1];
576 		p->magic	= pset_magic(&ca->sb);
577 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
578 
579 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
580 		BUG_ON(bucket == -1);
581 
582 		mutex_unlock(&ca->set->bucket_lock);
583 		prio_io(ca, bucket, REQ_WRITE);
584 		mutex_lock(&ca->set->bucket_lock);
585 
586 		ca->prio_buckets[i] = bucket;
587 		atomic_dec_bug(&ca->buckets[bucket].pin);
588 	}
589 
590 	mutex_unlock(&ca->set->bucket_lock);
591 
592 	bch_journal_meta(ca->set, &cl);
593 	closure_sync(&cl);
594 
595 	mutex_lock(&ca->set->bucket_lock);
596 
597 	/*
598 	 * Don't want the old priorities to get garbage collected until after we
599 	 * finish writing the new ones, and they're journalled
600 	 */
601 	for (i = 0; i < prio_buckets(ca); i++) {
602 		if (ca->prio_last_buckets[i])
603 			__bch_bucket_free(ca,
604 				&ca->buckets[ca->prio_last_buckets[i]]);
605 
606 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
607 	}
608 }
609 
610 static void prio_read(struct cache *ca, uint64_t bucket)
611 {
612 	struct prio_set *p = ca->disk_buckets;
613 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
614 	struct bucket *b;
615 	unsigned bucket_nr = 0;
616 
617 	for (b = ca->buckets;
618 	     b < ca->buckets + ca->sb.nbuckets;
619 	     b++, d++) {
620 		if (d == end) {
621 			ca->prio_buckets[bucket_nr] = bucket;
622 			ca->prio_last_buckets[bucket_nr] = bucket;
623 			bucket_nr++;
624 
625 			prio_io(ca, bucket, READ_SYNC);
626 
627 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
628 				pr_warn("bad csum reading priorities");
629 
630 			if (p->magic != pset_magic(&ca->sb))
631 				pr_warn("bad magic reading priorities");
632 
633 			bucket = p->next_bucket;
634 			d = p->data;
635 		}
636 
637 		b->prio = le16_to_cpu(d->prio);
638 		b->gen = b->last_gc = d->gen;
639 	}
640 }
641 
642 /* Bcache device */
643 
644 static int open_dev(struct block_device *b, fmode_t mode)
645 {
646 	struct bcache_device *d = b->bd_disk->private_data;
647 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
648 		return -ENXIO;
649 
650 	closure_get(&d->cl);
651 	return 0;
652 }
653 
654 static void release_dev(struct gendisk *b, fmode_t mode)
655 {
656 	struct bcache_device *d = b->private_data;
657 	closure_put(&d->cl);
658 }
659 
660 static int ioctl_dev(struct block_device *b, fmode_t mode,
661 		     unsigned int cmd, unsigned long arg)
662 {
663 	struct bcache_device *d = b->bd_disk->private_data;
664 	return d->ioctl(d, mode, cmd, arg);
665 }
666 
667 static const struct block_device_operations bcache_ops = {
668 	.open		= open_dev,
669 	.release	= release_dev,
670 	.ioctl		= ioctl_dev,
671 	.owner		= THIS_MODULE,
672 };
673 
674 void bcache_device_stop(struct bcache_device *d)
675 {
676 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
677 		closure_queue(&d->cl);
678 }
679 
680 static void bcache_device_unlink(struct bcache_device *d)
681 {
682 	lockdep_assert_held(&bch_register_lock);
683 
684 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
685 		unsigned i;
686 		struct cache *ca;
687 
688 		sysfs_remove_link(&d->c->kobj, d->name);
689 		sysfs_remove_link(&d->kobj, "cache");
690 
691 		for_each_cache(ca, d->c, i)
692 			bd_unlink_disk_holder(ca->bdev, d->disk);
693 	}
694 }
695 
696 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
697 			       const char *name)
698 {
699 	unsigned i;
700 	struct cache *ca;
701 
702 	for_each_cache(ca, d->c, i)
703 		bd_link_disk_holder(ca->bdev, d->disk);
704 
705 	snprintf(d->name, BCACHEDEVNAME_SIZE,
706 		 "%s%u", name, d->id);
707 
708 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
709 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
710 	     "Couldn't create device <-> cache set symlinks");
711 }
712 
713 static void bcache_device_detach(struct bcache_device *d)
714 {
715 	lockdep_assert_held(&bch_register_lock);
716 
717 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
718 		struct uuid_entry *u = d->c->uuids + d->id;
719 
720 		SET_UUID_FLASH_ONLY(u, 0);
721 		memcpy(u->uuid, invalid_uuid, 16);
722 		u->invalidated = cpu_to_le32(get_seconds());
723 		bch_uuid_write(d->c);
724 	}
725 
726 	bcache_device_unlink(d);
727 
728 	d->c->devices[d->id] = NULL;
729 	closure_put(&d->c->caching);
730 	d->c = NULL;
731 }
732 
733 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
734 				 unsigned id)
735 {
736 	BUG_ON(test_bit(CACHE_SET_STOPPING, &c->flags));
737 
738 	d->id = id;
739 	d->c = c;
740 	c->devices[id] = d;
741 
742 	closure_get(&c->caching);
743 }
744 
745 static void bcache_device_free(struct bcache_device *d)
746 {
747 	lockdep_assert_held(&bch_register_lock);
748 
749 	pr_info("%s stopped", d->disk->disk_name);
750 
751 	if (d->c)
752 		bcache_device_detach(d);
753 	if (d->disk && d->disk->flags & GENHD_FL_UP)
754 		del_gendisk(d->disk);
755 	if (d->disk && d->disk->queue)
756 		blk_cleanup_queue(d->disk->queue);
757 	if (d->disk) {
758 		ida_simple_remove(&bcache_minor, d->disk->first_minor);
759 		put_disk(d->disk);
760 	}
761 
762 	bio_split_pool_free(&d->bio_split_hook);
763 	if (d->bio_split)
764 		bioset_free(d->bio_split);
765 	if (is_vmalloc_addr(d->full_dirty_stripes))
766 		vfree(d->full_dirty_stripes);
767 	else
768 		kfree(d->full_dirty_stripes);
769 	if (is_vmalloc_addr(d->stripe_sectors_dirty))
770 		vfree(d->stripe_sectors_dirty);
771 	else
772 		kfree(d->stripe_sectors_dirty);
773 
774 	closure_debug_destroy(&d->cl);
775 }
776 
777 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
778 			      sector_t sectors)
779 {
780 	struct request_queue *q;
781 	size_t n;
782 	int minor;
783 
784 	if (!d->stripe_size)
785 		d->stripe_size = 1 << 31;
786 
787 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
788 
789 	if (!d->nr_stripes ||
790 	    d->nr_stripes > INT_MAX ||
791 	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
792 		pr_err("nr_stripes too large");
793 		return -ENOMEM;
794 	}
795 
796 	n = d->nr_stripes * sizeof(atomic_t);
797 	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
798 		? kzalloc(n, GFP_KERNEL)
799 		: vzalloc(n);
800 	if (!d->stripe_sectors_dirty)
801 		return -ENOMEM;
802 
803 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
804 	d->full_dirty_stripes = n < PAGE_SIZE << 6
805 		? kzalloc(n, GFP_KERNEL)
806 		: vzalloc(n);
807 	if (!d->full_dirty_stripes)
808 		return -ENOMEM;
809 
810 	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
811 	if (minor < 0)
812 		return minor;
813 
814 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
815 	    bio_split_pool_init(&d->bio_split_hook) ||
816 	    !(d->disk = alloc_disk(1))) {
817 		ida_simple_remove(&bcache_minor, minor);
818 		return -ENOMEM;
819 	}
820 
821 	set_capacity(d->disk, sectors);
822 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
823 
824 	d->disk->major		= bcache_major;
825 	d->disk->first_minor	= minor;
826 	d->disk->fops		= &bcache_ops;
827 	d->disk->private_data	= d;
828 
829 	q = blk_alloc_queue(GFP_KERNEL);
830 	if (!q)
831 		return -ENOMEM;
832 
833 	blk_queue_make_request(q, NULL);
834 	d->disk->queue			= q;
835 	q->queuedata			= d;
836 	q->backing_dev_info.congested_data = d;
837 	q->limits.max_hw_sectors	= UINT_MAX;
838 	q->limits.max_sectors		= UINT_MAX;
839 	q->limits.max_segment_size	= UINT_MAX;
840 	q->limits.max_segments		= BIO_MAX_PAGES;
841 	q->limits.max_discard_sectors	= UINT_MAX;
842 	q->limits.discard_granularity	= 512;
843 	q->limits.io_min		= block_size;
844 	q->limits.logical_block_size	= block_size;
845 	q->limits.physical_block_size	= block_size;
846 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
847 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
848 
849 	blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
850 
851 	return 0;
852 }
853 
854 /* Cached device */
855 
856 static void calc_cached_dev_sectors(struct cache_set *c)
857 {
858 	uint64_t sectors = 0;
859 	struct cached_dev *dc;
860 
861 	list_for_each_entry(dc, &c->cached_devs, list)
862 		sectors += bdev_sectors(dc->bdev);
863 
864 	c->cached_dev_sectors = sectors;
865 }
866 
867 void bch_cached_dev_run(struct cached_dev *dc)
868 {
869 	struct bcache_device *d = &dc->disk;
870 	char buf[SB_LABEL_SIZE + 1];
871 	char *env[] = {
872 		"DRIVER=bcache",
873 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
874 		NULL,
875 		NULL,
876 	};
877 
878 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
879 	buf[SB_LABEL_SIZE] = '\0';
880 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
881 
882 	if (atomic_xchg(&dc->running, 1))
883 		return;
884 
885 	if (!d->c &&
886 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
887 		struct closure cl;
888 		closure_init_stack(&cl);
889 
890 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
891 		bch_write_bdev_super(dc, &cl);
892 		closure_sync(&cl);
893 	}
894 
895 	add_disk(d->disk);
896 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
897 	/* won't show up in the uevent file, use udevadm monitor -e instead
898 	 * only class / kset properties are persistent */
899 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
900 	kfree(env[1]);
901 	kfree(env[2]);
902 
903 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
904 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
905 		pr_debug("error creating sysfs link");
906 }
907 
908 static void cached_dev_detach_finish(struct work_struct *w)
909 {
910 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
911 	char buf[BDEVNAME_SIZE];
912 	struct closure cl;
913 	closure_init_stack(&cl);
914 
915 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
916 	BUG_ON(atomic_read(&dc->count));
917 
918 	mutex_lock(&bch_register_lock);
919 
920 	memset(&dc->sb.set_uuid, 0, 16);
921 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
922 
923 	bch_write_bdev_super(dc, &cl);
924 	closure_sync(&cl);
925 
926 	bcache_device_detach(&dc->disk);
927 	list_move(&dc->list, &uncached_devices);
928 
929 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
930 
931 	mutex_unlock(&bch_register_lock);
932 
933 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
934 
935 	/* Drop ref we took in cached_dev_detach() */
936 	closure_put(&dc->disk.cl);
937 }
938 
939 void bch_cached_dev_detach(struct cached_dev *dc)
940 {
941 	lockdep_assert_held(&bch_register_lock);
942 
943 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
944 		return;
945 
946 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
947 		return;
948 
949 	/*
950 	 * Block the device from being closed and freed until we're finished
951 	 * detaching
952 	 */
953 	closure_get(&dc->disk.cl);
954 
955 	bch_writeback_queue(dc);
956 	cached_dev_put(dc);
957 }
958 
959 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
960 {
961 	uint32_t rtime = cpu_to_le32(get_seconds());
962 	struct uuid_entry *u;
963 	char buf[BDEVNAME_SIZE];
964 
965 	bdevname(dc->bdev, buf);
966 
967 	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
968 		return -ENOENT;
969 
970 	if (dc->disk.c) {
971 		pr_err("Can't attach %s: already attached", buf);
972 		return -EINVAL;
973 	}
974 
975 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
976 		pr_err("Can't attach %s: shutting down", buf);
977 		return -EINVAL;
978 	}
979 
980 	if (dc->sb.block_size < c->sb.block_size) {
981 		/* Will die */
982 		pr_err("Couldn't attach %s: block size less than set's block size",
983 		       buf);
984 		return -EINVAL;
985 	}
986 
987 	u = uuid_find(c, dc->sb.uuid);
988 
989 	if (u &&
990 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
991 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
992 		memcpy(u->uuid, invalid_uuid, 16);
993 		u->invalidated = cpu_to_le32(get_seconds());
994 		u = NULL;
995 	}
996 
997 	if (!u) {
998 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
999 			pr_err("Couldn't find uuid for %s in set", buf);
1000 			return -ENOENT;
1001 		}
1002 
1003 		u = uuid_find_empty(c);
1004 		if (!u) {
1005 			pr_err("Not caching %s, no room for UUID", buf);
1006 			return -EINVAL;
1007 		}
1008 	}
1009 
1010 	/* Deadlocks since we're called via sysfs...
1011 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1012 	 */
1013 
1014 	if (bch_is_zero(u->uuid, 16)) {
1015 		struct closure cl;
1016 		closure_init_stack(&cl);
1017 
1018 		memcpy(u->uuid, dc->sb.uuid, 16);
1019 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1020 		u->first_reg = u->last_reg = rtime;
1021 		bch_uuid_write(c);
1022 
1023 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1024 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1025 
1026 		bch_write_bdev_super(dc, &cl);
1027 		closure_sync(&cl);
1028 	} else {
1029 		u->last_reg = rtime;
1030 		bch_uuid_write(c);
1031 	}
1032 
1033 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1034 	list_move(&dc->list, &c->cached_devs);
1035 	calc_cached_dev_sectors(c);
1036 
1037 	smp_wmb();
1038 	/*
1039 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1040 	 * cached_dev_get()
1041 	 */
1042 	atomic_set(&dc->count, 1);
1043 
1044 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1045 		bch_sectors_dirty_init(dc);
1046 		atomic_set(&dc->has_dirty, 1);
1047 		atomic_inc(&dc->count);
1048 		bch_writeback_queue(dc);
1049 	}
1050 
1051 	bch_cached_dev_run(dc);
1052 	bcache_device_link(&dc->disk, c, "bdev");
1053 
1054 	pr_info("Caching %s as %s on set %pU",
1055 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1056 		dc->disk.c->sb.set_uuid);
1057 	return 0;
1058 }
1059 
1060 void bch_cached_dev_release(struct kobject *kobj)
1061 {
1062 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1063 					     disk.kobj);
1064 	kfree(dc);
1065 	module_put(THIS_MODULE);
1066 }
1067 
1068 static void cached_dev_free(struct closure *cl)
1069 {
1070 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1071 
1072 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1073 	kthread_stop(dc->writeback_thread);
1074 
1075 	mutex_lock(&bch_register_lock);
1076 
1077 	if (atomic_read(&dc->running))
1078 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1079 	bcache_device_free(&dc->disk);
1080 	list_del(&dc->list);
1081 
1082 	mutex_unlock(&bch_register_lock);
1083 
1084 	if (!IS_ERR_OR_NULL(dc->bdev)) {
1085 		if (dc->bdev->bd_disk)
1086 			blk_sync_queue(bdev_get_queue(dc->bdev));
1087 
1088 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1089 	}
1090 
1091 	wake_up(&unregister_wait);
1092 
1093 	kobject_put(&dc->disk.kobj);
1094 }
1095 
1096 static void cached_dev_flush(struct closure *cl)
1097 {
1098 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1099 	struct bcache_device *d = &dc->disk;
1100 
1101 	mutex_lock(&bch_register_lock);
1102 	bcache_device_unlink(d);
1103 	mutex_unlock(&bch_register_lock);
1104 
1105 	bch_cache_accounting_destroy(&dc->accounting);
1106 	kobject_del(&d->kobj);
1107 
1108 	continue_at(cl, cached_dev_free, system_wq);
1109 }
1110 
1111 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1112 {
1113 	int ret;
1114 	struct io *io;
1115 	struct request_queue *q = bdev_get_queue(dc->bdev);
1116 
1117 	__module_get(THIS_MODULE);
1118 	INIT_LIST_HEAD(&dc->list);
1119 	closure_init(&dc->disk.cl, NULL);
1120 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1121 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1122 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1123 	sema_init(&dc->sb_write_mutex, 1);
1124 	INIT_LIST_HEAD(&dc->io_lru);
1125 	spin_lock_init(&dc->io_lock);
1126 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1127 
1128 	dc->sequential_cutoff		= 4 << 20;
1129 
1130 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1131 		list_add(&io->lru, &dc->io_lru);
1132 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1133 	}
1134 
1135 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1136 
1137 	if (dc->disk.stripe_size)
1138 		dc->partial_stripes_expensive =
1139 			q->limits.raid_partial_stripes_expensive;
1140 
1141 	ret = bcache_device_init(&dc->disk, block_size,
1142 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1143 	if (ret)
1144 		return ret;
1145 
1146 	set_capacity(dc->disk.disk,
1147 		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1148 
1149 	dc->disk.disk->queue->backing_dev_info.ra_pages =
1150 		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1151 		    q->backing_dev_info.ra_pages);
1152 
1153 	bch_cached_dev_request_init(dc);
1154 	bch_cached_dev_writeback_init(dc);
1155 	return 0;
1156 }
1157 
1158 /* Cached device - bcache superblock */
1159 
1160 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1161 				 struct block_device *bdev,
1162 				 struct cached_dev *dc)
1163 {
1164 	char name[BDEVNAME_SIZE];
1165 	const char *err = "cannot allocate memory";
1166 	struct cache_set *c;
1167 
1168 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1169 	dc->bdev = bdev;
1170 	dc->bdev->bd_holder = dc;
1171 
1172 	bio_init(&dc->sb_bio);
1173 	dc->sb_bio.bi_max_vecs	= 1;
1174 	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1175 	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1176 	get_page(sb_page);
1177 
1178 	if (cached_dev_init(dc, sb->block_size << 9))
1179 		goto err;
1180 
1181 	err = "error creating kobject";
1182 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1183 			"bcache"))
1184 		goto err;
1185 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1186 		goto err;
1187 
1188 	pr_info("registered backing device %s", bdevname(bdev, name));
1189 
1190 	list_add(&dc->list, &uncached_devices);
1191 	list_for_each_entry(c, &bch_cache_sets, list)
1192 		bch_cached_dev_attach(dc, c);
1193 
1194 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1195 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1196 		bch_cached_dev_run(dc);
1197 
1198 	return;
1199 err:
1200 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1201 	bcache_device_stop(&dc->disk);
1202 }
1203 
1204 /* Flash only volumes */
1205 
1206 void bch_flash_dev_release(struct kobject *kobj)
1207 {
1208 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1209 					       kobj);
1210 	kfree(d);
1211 }
1212 
1213 static void flash_dev_free(struct closure *cl)
1214 {
1215 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1216 	bcache_device_free(d);
1217 	kobject_put(&d->kobj);
1218 }
1219 
1220 static void flash_dev_flush(struct closure *cl)
1221 {
1222 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1223 
1224 	bcache_device_unlink(d);
1225 	kobject_del(&d->kobj);
1226 	continue_at(cl, flash_dev_free, system_wq);
1227 }
1228 
1229 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1230 {
1231 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1232 					  GFP_KERNEL);
1233 	if (!d)
1234 		return -ENOMEM;
1235 
1236 	closure_init(&d->cl, NULL);
1237 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1238 
1239 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1240 
1241 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1242 		goto err;
1243 
1244 	bcache_device_attach(d, c, u - c->uuids);
1245 	bch_flash_dev_request_init(d);
1246 	add_disk(d->disk);
1247 
1248 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1249 		goto err;
1250 
1251 	bcache_device_link(d, c, "volume");
1252 
1253 	return 0;
1254 err:
1255 	kobject_put(&d->kobj);
1256 	return -ENOMEM;
1257 }
1258 
1259 static int flash_devs_run(struct cache_set *c)
1260 {
1261 	int ret = 0;
1262 	struct uuid_entry *u;
1263 
1264 	for (u = c->uuids;
1265 	     u < c->uuids + c->nr_uuids && !ret;
1266 	     u++)
1267 		if (UUID_FLASH_ONLY(u))
1268 			ret = flash_dev_run(c, u);
1269 
1270 	return ret;
1271 }
1272 
1273 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1274 {
1275 	struct uuid_entry *u;
1276 
1277 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1278 		return -EINTR;
1279 
1280 	u = uuid_find_empty(c);
1281 	if (!u) {
1282 		pr_err("Can't create volume, no room for UUID");
1283 		return -EINVAL;
1284 	}
1285 
1286 	get_random_bytes(u->uuid, 16);
1287 	memset(u->label, 0, 32);
1288 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1289 
1290 	SET_UUID_FLASH_ONLY(u, 1);
1291 	u->sectors = size >> 9;
1292 
1293 	bch_uuid_write(c);
1294 
1295 	return flash_dev_run(c, u);
1296 }
1297 
1298 /* Cache set */
1299 
1300 __printf(2, 3)
1301 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1302 {
1303 	va_list args;
1304 
1305 	if (c->on_error != ON_ERROR_PANIC &&
1306 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1307 		return false;
1308 
1309 	/* XXX: we can be called from atomic context
1310 	acquire_console_sem();
1311 	*/
1312 
1313 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1314 
1315 	va_start(args, fmt);
1316 	vprintk(fmt, args);
1317 	va_end(args);
1318 
1319 	printk(", disabling caching\n");
1320 
1321 	if (c->on_error == ON_ERROR_PANIC)
1322 		panic("panic forced after error\n");
1323 
1324 	bch_cache_set_unregister(c);
1325 	return true;
1326 }
1327 
1328 void bch_cache_set_release(struct kobject *kobj)
1329 {
1330 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1331 	kfree(c);
1332 	module_put(THIS_MODULE);
1333 }
1334 
1335 static void cache_set_free(struct closure *cl)
1336 {
1337 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1338 	struct cache *ca;
1339 	unsigned i;
1340 
1341 	if (!IS_ERR_OR_NULL(c->debug))
1342 		debugfs_remove(c->debug);
1343 
1344 	bch_open_buckets_free(c);
1345 	bch_btree_cache_free(c);
1346 	bch_journal_free(c);
1347 
1348 	for_each_cache(ca, c, i)
1349 		if (ca)
1350 			kobject_put(&ca->kobj);
1351 
1352 	bch_bset_sort_state_free(&c->sort);
1353 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1354 
1355 	if (c->moving_gc_wq)
1356 		destroy_workqueue(c->moving_gc_wq);
1357 	if (c->bio_split)
1358 		bioset_free(c->bio_split);
1359 	if (c->fill_iter)
1360 		mempool_destroy(c->fill_iter);
1361 	if (c->bio_meta)
1362 		mempool_destroy(c->bio_meta);
1363 	if (c->search)
1364 		mempool_destroy(c->search);
1365 	kfree(c->devices);
1366 
1367 	mutex_lock(&bch_register_lock);
1368 	list_del(&c->list);
1369 	mutex_unlock(&bch_register_lock);
1370 
1371 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1372 	wake_up(&unregister_wait);
1373 
1374 	closure_debug_destroy(&c->cl);
1375 	kobject_put(&c->kobj);
1376 }
1377 
1378 static void cache_set_flush(struct closure *cl)
1379 {
1380 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1381 	struct cache *ca;
1382 	struct btree *b;
1383 	unsigned i;
1384 
1385 	bch_cache_accounting_destroy(&c->accounting);
1386 
1387 	kobject_put(&c->internal);
1388 	kobject_del(&c->kobj);
1389 
1390 	if (c->gc_thread)
1391 		kthread_stop(c->gc_thread);
1392 
1393 	if (!IS_ERR_OR_NULL(c->root))
1394 		list_add(&c->root->list, &c->btree_cache);
1395 
1396 	/* Should skip this if we're unregistering because of an error */
1397 	list_for_each_entry(b, &c->btree_cache, list) {
1398 		mutex_lock(&b->write_lock);
1399 		if (btree_node_dirty(b))
1400 			__bch_btree_node_write(b, NULL);
1401 		mutex_unlock(&b->write_lock);
1402 	}
1403 
1404 	for_each_cache(ca, c, i)
1405 		if (ca->alloc_thread)
1406 			kthread_stop(ca->alloc_thread);
1407 
1408 	cancel_delayed_work_sync(&c->journal.work);
1409 	/* flush last journal entry if needed */
1410 	c->journal.work.work.func(&c->journal.work.work);
1411 
1412 	closure_return(cl);
1413 }
1414 
1415 static void __cache_set_unregister(struct closure *cl)
1416 {
1417 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1418 	struct cached_dev *dc;
1419 	size_t i;
1420 
1421 	mutex_lock(&bch_register_lock);
1422 
1423 	for (i = 0; i < c->nr_uuids; i++)
1424 		if (c->devices[i]) {
1425 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1426 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1427 				dc = container_of(c->devices[i],
1428 						  struct cached_dev, disk);
1429 				bch_cached_dev_detach(dc);
1430 			} else {
1431 				bcache_device_stop(c->devices[i]);
1432 			}
1433 		}
1434 
1435 	mutex_unlock(&bch_register_lock);
1436 
1437 	continue_at(cl, cache_set_flush, system_wq);
1438 }
1439 
1440 void bch_cache_set_stop(struct cache_set *c)
1441 {
1442 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1443 		closure_queue(&c->caching);
1444 }
1445 
1446 void bch_cache_set_unregister(struct cache_set *c)
1447 {
1448 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1449 	bch_cache_set_stop(c);
1450 }
1451 
1452 #define alloc_bucket_pages(gfp, c)			\
1453 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1454 
1455 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1456 {
1457 	int iter_size;
1458 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1459 	if (!c)
1460 		return NULL;
1461 
1462 	__module_get(THIS_MODULE);
1463 	closure_init(&c->cl, NULL);
1464 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1465 
1466 	closure_init(&c->caching, &c->cl);
1467 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1468 
1469 	/* Maybe create continue_at_noreturn() and use it here? */
1470 	closure_set_stopped(&c->cl);
1471 	closure_put(&c->cl);
1472 
1473 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1474 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1475 
1476 	bch_cache_accounting_init(&c->accounting, &c->cl);
1477 
1478 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1479 	c->sb.block_size	= sb->block_size;
1480 	c->sb.bucket_size	= sb->bucket_size;
1481 	c->sb.nr_in_set		= sb->nr_in_set;
1482 	c->sb.last_mount	= sb->last_mount;
1483 	c->bucket_bits		= ilog2(sb->bucket_size);
1484 	c->block_bits		= ilog2(sb->block_size);
1485 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1486 
1487 	c->btree_pages		= bucket_pages(c);
1488 	if (c->btree_pages > BTREE_MAX_PAGES)
1489 		c->btree_pages = max_t(int, c->btree_pages / 4,
1490 				       BTREE_MAX_PAGES);
1491 
1492 	sema_init(&c->sb_write_mutex, 1);
1493 	mutex_init(&c->bucket_lock);
1494 	init_waitqueue_head(&c->btree_cache_wait);
1495 	init_waitqueue_head(&c->bucket_wait);
1496 	sema_init(&c->uuid_write_mutex, 1);
1497 
1498 	spin_lock_init(&c->btree_gc_time.lock);
1499 	spin_lock_init(&c->btree_split_time.lock);
1500 	spin_lock_init(&c->btree_read_time.lock);
1501 
1502 	bch_moving_init_cache_set(c);
1503 
1504 	INIT_LIST_HEAD(&c->list);
1505 	INIT_LIST_HEAD(&c->cached_devs);
1506 	INIT_LIST_HEAD(&c->btree_cache);
1507 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1508 	INIT_LIST_HEAD(&c->btree_cache_freed);
1509 	INIT_LIST_HEAD(&c->data_buckets);
1510 
1511 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1512 	if (!c->search)
1513 		goto err;
1514 
1515 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1516 		sizeof(struct btree_iter_set);
1517 
1518 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1519 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1520 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1521 				bucket_pages(c))) ||
1522 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1523 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1524 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1525 	    !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1526 	    bch_journal_alloc(c) ||
1527 	    bch_btree_cache_alloc(c) ||
1528 	    bch_open_buckets_alloc(c) ||
1529 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1530 		goto err;
1531 
1532 	c->congested_read_threshold_us	= 2000;
1533 	c->congested_write_threshold_us	= 20000;
1534 	c->error_limit	= 8 << IO_ERROR_SHIFT;
1535 
1536 	return c;
1537 err:
1538 	bch_cache_set_unregister(c);
1539 	return NULL;
1540 }
1541 
1542 static void run_cache_set(struct cache_set *c)
1543 {
1544 	const char *err = "cannot allocate memory";
1545 	struct cached_dev *dc, *t;
1546 	struct cache *ca;
1547 	struct closure cl;
1548 	unsigned i;
1549 
1550 	closure_init_stack(&cl);
1551 
1552 	for_each_cache(ca, c, i)
1553 		c->nbuckets += ca->sb.nbuckets;
1554 
1555 	if (CACHE_SYNC(&c->sb)) {
1556 		LIST_HEAD(journal);
1557 		struct bkey *k;
1558 		struct jset *j;
1559 
1560 		err = "cannot allocate memory for journal";
1561 		if (bch_journal_read(c, &journal))
1562 			goto err;
1563 
1564 		pr_debug("btree_journal_read() done");
1565 
1566 		err = "no journal entries found";
1567 		if (list_empty(&journal))
1568 			goto err;
1569 
1570 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1571 
1572 		err = "IO error reading priorities";
1573 		for_each_cache(ca, c, i)
1574 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1575 
1576 		/*
1577 		 * If prio_read() fails it'll call cache_set_error and we'll
1578 		 * tear everything down right away, but if we perhaps checked
1579 		 * sooner we could avoid journal replay.
1580 		 */
1581 
1582 		k = &j->btree_root;
1583 
1584 		err = "bad btree root";
1585 		if (__bch_btree_ptr_invalid(c, k))
1586 			goto err;
1587 
1588 		err = "error reading btree root";
1589 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true);
1590 		if (IS_ERR_OR_NULL(c->root))
1591 			goto err;
1592 
1593 		list_del_init(&c->root->list);
1594 		rw_unlock(true, c->root);
1595 
1596 		err = uuid_read(c, j, &cl);
1597 		if (err)
1598 			goto err;
1599 
1600 		err = "error in recovery";
1601 		if (bch_btree_check(c))
1602 			goto err;
1603 
1604 		bch_journal_mark(c, &journal);
1605 		bch_initial_gc_finish(c);
1606 		pr_debug("btree_check() done");
1607 
1608 		/*
1609 		 * bcache_journal_next() can't happen sooner, or
1610 		 * btree_gc_finish() will give spurious errors about last_gc >
1611 		 * gc_gen - this is a hack but oh well.
1612 		 */
1613 		bch_journal_next(&c->journal);
1614 
1615 		err = "error starting allocator thread";
1616 		for_each_cache(ca, c, i)
1617 			if (bch_cache_allocator_start(ca))
1618 				goto err;
1619 
1620 		/*
1621 		 * First place it's safe to allocate: btree_check() and
1622 		 * btree_gc_finish() have to run before we have buckets to
1623 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1624 		 * entry to be written so bcache_journal_next() has to be called
1625 		 * first.
1626 		 *
1627 		 * If the uuids were in the old format we have to rewrite them
1628 		 * before the next journal entry is written:
1629 		 */
1630 		if (j->version < BCACHE_JSET_VERSION_UUID)
1631 			__uuid_write(c);
1632 
1633 		bch_journal_replay(c, &journal);
1634 	} else {
1635 		pr_notice("invalidating existing data");
1636 
1637 		for_each_cache(ca, c, i) {
1638 			unsigned j;
1639 
1640 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1641 					      2, SB_JOURNAL_BUCKETS);
1642 
1643 			for (j = 0; j < ca->sb.keys; j++)
1644 				ca->sb.d[j] = ca->sb.first_bucket + j;
1645 		}
1646 
1647 		bch_initial_gc_finish(c);
1648 
1649 		err = "error starting allocator thread";
1650 		for_each_cache(ca, c, i)
1651 			if (bch_cache_allocator_start(ca))
1652 				goto err;
1653 
1654 		mutex_lock(&c->bucket_lock);
1655 		for_each_cache(ca, c, i)
1656 			bch_prio_write(ca);
1657 		mutex_unlock(&c->bucket_lock);
1658 
1659 		err = "cannot allocate new UUID bucket";
1660 		if (__uuid_write(c))
1661 			goto err;
1662 
1663 		err = "cannot allocate new btree root";
1664 		c->root = bch_btree_node_alloc(c, NULL, 0);
1665 		if (IS_ERR_OR_NULL(c->root))
1666 			goto err;
1667 
1668 		mutex_lock(&c->root->write_lock);
1669 		bkey_copy_key(&c->root->key, &MAX_KEY);
1670 		bch_btree_node_write(c->root, &cl);
1671 		mutex_unlock(&c->root->write_lock);
1672 
1673 		bch_btree_set_root(c->root);
1674 		rw_unlock(true, c->root);
1675 
1676 		/*
1677 		 * We don't want to write the first journal entry until
1678 		 * everything is set up - fortunately journal entries won't be
1679 		 * written until the SET_CACHE_SYNC() here:
1680 		 */
1681 		SET_CACHE_SYNC(&c->sb, true);
1682 
1683 		bch_journal_next(&c->journal);
1684 		bch_journal_meta(c, &cl);
1685 	}
1686 
1687 	err = "error starting gc thread";
1688 	if (bch_gc_thread_start(c))
1689 		goto err;
1690 
1691 	closure_sync(&cl);
1692 	c->sb.last_mount = get_seconds();
1693 	bcache_write_super(c);
1694 
1695 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1696 		bch_cached_dev_attach(dc, c);
1697 
1698 	flash_devs_run(c);
1699 
1700 	return;
1701 err:
1702 	closure_sync(&cl);
1703 	/* XXX: test this, it's broken */
1704 	bch_cache_set_error(c, "%s", err);
1705 }
1706 
1707 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1708 {
1709 	return ca->sb.block_size	== c->sb.block_size &&
1710 		ca->sb.bucket_size	== c->sb.bucket_size &&
1711 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1712 }
1713 
1714 static const char *register_cache_set(struct cache *ca)
1715 {
1716 	char buf[12];
1717 	const char *err = "cannot allocate memory";
1718 	struct cache_set *c;
1719 
1720 	list_for_each_entry(c, &bch_cache_sets, list)
1721 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1722 			if (c->cache[ca->sb.nr_this_dev])
1723 				return "duplicate cache set member";
1724 
1725 			if (!can_attach_cache(ca, c))
1726 				return "cache sb does not match set";
1727 
1728 			if (!CACHE_SYNC(&ca->sb))
1729 				SET_CACHE_SYNC(&c->sb, false);
1730 
1731 			goto found;
1732 		}
1733 
1734 	c = bch_cache_set_alloc(&ca->sb);
1735 	if (!c)
1736 		return err;
1737 
1738 	err = "error creating kobject";
1739 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1740 	    kobject_add(&c->internal, &c->kobj, "internal"))
1741 		goto err;
1742 
1743 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1744 		goto err;
1745 
1746 	bch_debug_init_cache_set(c);
1747 
1748 	list_add(&c->list, &bch_cache_sets);
1749 found:
1750 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1751 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1752 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1753 		goto err;
1754 
1755 	if (ca->sb.seq > c->sb.seq) {
1756 		c->sb.version		= ca->sb.version;
1757 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1758 		c->sb.flags             = ca->sb.flags;
1759 		c->sb.seq		= ca->sb.seq;
1760 		pr_debug("set version = %llu", c->sb.version);
1761 	}
1762 
1763 	ca->set = c;
1764 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1765 	c->cache_by_alloc[c->caches_loaded++] = ca;
1766 
1767 	if (c->caches_loaded == c->sb.nr_in_set)
1768 		run_cache_set(c);
1769 
1770 	return NULL;
1771 err:
1772 	bch_cache_set_unregister(c);
1773 	return err;
1774 }
1775 
1776 /* Cache device */
1777 
1778 void bch_cache_release(struct kobject *kobj)
1779 {
1780 	struct cache *ca = container_of(kobj, struct cache, kobj);
1781 	unsigned i;
1782 
1783 	if (ca->set)
1784 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1785 
1786 	bio_split_pool_free(&ca->bio_split_hook);
1787 
1788 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1789 	kfree(ca->prio_buckets);
1790 	vfree(ca->buckets);
1791 
1792 	free_heap(&ca->heap);
1793 	free_fifo(&ca->free_inc);
1794 
1795 	for (i = 0; i < RESERVE_NR; i++)
1796 		free_fifo(&ca->free[i]);
1797 
1798 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1799 		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1800 
1801 	if (!IS_ERR_OR_NULL(ca->bdev)) {
1802 		blk_sync_queue(bdev_get_queue(ca->bdev));
1803 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1804 	}
1805 
1806 	kfree(ca);
1807 	module_put(THIS_MODULE);
1808 }
1809 
1810 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1811 {
1812 	size_t free;
1813 	struct bucket *b;
1814 
1815 	__module_get(THIS_MODULE);
1816 	kobject_init(&ca->kobj, &bch_cache_ktype);
1817 
1818 	bio_init(&ca->journal.bio);
1819 	ca->journal.bio.bi_max_vecs = 8;
1820 	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1821 
1822 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1823 
1824 	if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1825 	    !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1826 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1827 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1828 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1829 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1830 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1831 					  ca->sb.nbuckets)) ||
1832 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1833 					  2, GFP_KERNEL)) ||
1834 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)) ||
1835 	    bio_split_pool_init(&ca->bio_split_hook))
1836 		return -ENOMEM;
1837 
1838 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1839 
1840 	for_each_bucket(b, ca)
1841 		atomic_set(&b->pin, 0);
1842 
1843 	return 0;
1844 }
1845 
1846 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1847 				  struct block_device *bdev, struct cache *ca)
1848 {
1849 	char name[BDEVNAME_SIZE];
1850 	const char *err = "cannot allocate memory";
1851 
1852 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1853 	ca->bdev = bdev;
1854 	ca->bdev->bd_holder = ca;
1855 
1856 	bio_init(&ca->sb_bio);
1857 	ca->sb_bio.bi_max_vecs	= 1;
1858 	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1859 	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1860 	get_page(sb_page);
1861 
1862 	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1863 		ca->discard = CACHE_DISCARD(&ca->sb);
1864 
1865 	if (cache_alloc(sb, ca) != 0)
1866 		goto err;
1867 
1868 	err = "error creating kobject";
1869 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1870 		goto err;
1871 
1872 	mutex_lock(&bch_register_lock);
1873 	err = register_cache_set(ca);
1874 	mutex_unlock(&bch_register_lock);
1875 
1876 	if (err)
1877 		goto err;
1878 
1879 	pr_info("registered cache device %s", bdevname(bdev, name));
1880 	return;
1881 err:
1882 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1883 	kobject_put(&ca->kobj);
1884 }
1885 
1886 /* Global interfaces/init */
1887 
1888 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1889 			       const char *, size_t);
1890 
1891 kobj_attribute_write(register,		register_bcache);
1892 kobj_attribute_write(register_quiet,	register_bcache);
1893 
1894 static bool bch_is_open_backing(struct block_device *bdev) {
1895 	struct cache_set *c, *tc;
1896 	struct cached_dev *dc, *t;
1897 
1898 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1899 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1900 			if (dc->bdev == bdev)
1901 				return true;
1902 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1903 		if (dc->bdev == bdev)
1904 			return true;
1905 	return false;
1906 }
1907 
1908 static bool bch_is_open_cache(struct block_device *bdev) {
1909 	struct cache_set *c, *tc;
1910 	struct cache *ca;
1911 	unsigned i;
1912 
1913 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1914 		for_each_cache(ca, c, i)
1915 			if (ca->bdev == bdev)
1916 				return true;
1917 	return false;
1918 }
1919 
1920 static bool bch_is_open(struct block_device *bdev) {
1921 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1922 }
1923 
1924 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1925 			       const char *buffer, size_t size)
1926 {
1927 	ssize_t ret = size;
1928 	const char *err = "cannot allocate memory";
1929 	char *path = NULL;
1930 	struct cache_sb *sb = NULL;
1931 	struct block_device *bdev = NULL;
1932 	struct page *sb_page = NULL;
1933 
1934 	if (!try_module_get(THIS_MODULE))
1935 		return -EBUSY;
1936 
1937 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1938 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1939 		goto err;
1940 
1941 	err = "failed to open device";
1942 	bdev = blkdev_get_by_path(strim(path),
1943 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1944 				  sb);
1945 	if (IS_ERR(bdev)) {
1946 		if (bdev == ERR_PTR(-EBUSY)) {
1947 			bdev = lookup_bdev(strim(path));
1948 			if (!IS_ERR(bdev) && bch_is_open(bdev))
1949 				err = "device already registered";
1950 			else
1951 				err = "device busy";
1952 		}
1953 		goto err;
1954 	}
1955 
1956 	err = "failed to set blocksize";
1957 	if (set_blocksize(bdev, 4096))
1958 		goto err_close;
1959 
1960 	err = read_super(sb, bdev, &sb_page);
1961 	if (err)
1962 		goto err_close;
1963 
1964 	if (SB_IS_BDEV(sb)) {
1965 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1966 		if (!dc)
1967 			goto err_close;
1968 
1969 		mutex_lock(&bch_register_lock);
1970 		register_bdev(sb, sb_page, bdev, dc);
1971 		mutex_unlock(&bch_register_lock);
1972 	} else {
1973 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1974 		if (!ca)
1975 			goto err_close;
1976 
1977 		register_cache(sb, sb_page, bdev, ca);
1978 	}
1979 out:
1980 	if (sb_page)
1981 		put_page(sb_page);
1982 	kfree(sb);
1983 	kfree(path);
1984 	module_put(THIS_MODULE);
1985 	return ret;
1986 
1987 err_close:
1988 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1989 err:
1990 	if (attr != &ksysfs_register_quiet)
1991 		pr_info("error opening %s: %s", path, err);
1992 	ret = -EINVAL;
1993 	goto out;
1994 }
1995 
1996 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1997 {
1998 	if (code == SYS_DOWN ||
1999 	    code == SYS_HALT ||
2000 	    code == SYS_POWER_OFF) {
2001 		DEFINE_WAIT(wait);
2002 		unsigned long start = jiffies;
2003 		bool stopped = false;
2004 
2005 		struct cache_set *c, *tc;
2006 		struct cached_dev *dc, *tdc;
2007 
2008 		mutex_lock(&bch_register_lock);
2009 
2010 		if (list_empty(&bch_cache_sets) &&
2011 		    list_empty(&uncached_devices))
2012 			goto out;
2013 
2014 		pr_info("Stopping all devices:");
2015 
2016 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2017 			bch_cache_set_stop(c);
2018 
2019 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2020 			bcache_device_stop(&dc->disk);
2021 
2022 		/* What's a condition variable? */
2023 		while (1) {
2024 			long timeout = start + 2 * HZ - jiffies;
2025 
2026 			stopped = list_empty(&bch_cache_sets) &&
2027 				list_empty(&uncached_devices);
2028 
2029 			if (timeout < 0 || stopped)
2030 				break;
2031 
2032 			prepare_to_wait(&unregister_wait, &wait,
2033 					TASK_UNINTERRUPTIBLE);
2034 
2035 			mutex_unlock(&bch_register_lock);
2036 			schedule_timeout(timeout);
2037 			mutex_lock(&bch_register_lock);
2038 		}
2039 
2040 		finish_wait(&unregister_wait, &wait);
2041 
2042 		if (stopped)
2043 			pr_info("All devices stopped");
2044 		else
2045 			pr_notice("Timeout waiting for devices to be closed");
2046 out:
2047 		mutex_unlock(&bch_register_lock);
2048 	}
2049 
2050 	return NOTIFY_DONE;
2051 }
2052 
2053 static struct notifier_block reboot = {
2054 	.notifier_call	= bcache_reboot,
2055 	.priority	= INT_MAX, /* before any real devices */
2056 };
2057 
2058 static void bcache_exit(void)
2059 {
2060 	bch_debug_exit();
2061 	bch_request_exit();
2062 	if (bcache_kobj)
2063 		kobject_put(bcache_kobj);
2064 	if (bcache_wq)
2065 		destroy_workqueue(bcache_wq);
2066 	if (bcache_major)
2067 		unregister_blkdev(bcache_major, "bcache");
2068 	unregister_reboot_notifier(&reboot);
2069 }
2070 
2071 static int __init bcache_init(void)
2072 {
2073 	static const struct attribute *files[] = {
2074 		&ksysfs_register.attr,
2075 		&ksysfs_register_quiet.attr,
2076 		NULL
2077 	};
2078 
2079 	mutex_init(&bch_register_lock);
2080 	init_waitqueue_head(&unregister_wait);
2081 	register_reboot_notifier(&reboot);
2082 	closure_debug_init();
2083 
2084 	bcache_major = register_blkdev(0, "bcache");
2085 	if (bcache_major < 0)
2086 		return bcache_major;
2087 
2088 	if (!(bcache_wq = create_workqueue("bcache")) ||
2089 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2090 	    sysfs_create_files(bcache_kobj, files) ||
2091 	    bch_request_init() ||
2092 	    bch_debug_init(bcache_kobj))
2093 		goto err;
2094 
2095 	return 0;
2096 err:
2097 	bcache_exit();
2098 	return -ENOMEM;
2099 }
2100 
2101 module_exit(bcache_exit);
2102 module_init(bcache_init);
2103