1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 17 #include <linux/blkdev.h> 18 #include <linux/debugfs.h> 19 #include <linux/genhd.h> 20 #include <linux/idr.h> 21 #include <linux/kthread.h> 22 #include <linux/module.h> 23 #include <linux/random.h> 24 #include <linux/reboot.h> 25 #include <linux/sysfs.h> 26 27 unsigned int bch_cutoff_writeback; 28 unsigned int bch_cutoff_writeback_sync; 29 30 static const char bcache_magic[] = { 31 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 32 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 33 }; 34 35 static const char invalid_uuid[] = { 36 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 37 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 38 }; 39 40 static struct kobject *bcache_kobj; 41 struct mutex bch_register_lock; 42 bool bcache_is_reboot; 43 LIST_HEAD(bch_cache_sets); 44 static LIST_HEAD(uncached_devices); 45 46 static int bcache_major; 47 static DEFINE_IDA(bcache_device_idx); 48 static wait_queue_head_t unregister_wait; 49 struct workqueue_struct *bcache_wq; 50 struct workqueue_struct *bch_journal_wq; 51 52 53 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 54 /* limitation of partitions number on single bcache device */ 55 #define BCACHE_MINORS 128 56 /* limitation of bcache devices number on single system */ 57 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 58 59 /* Superblock */ 60 61 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 62 struct cache_sb_disk **res) 63 { 64 const char *err; 65 struct cache_sb_disk *s; 66 struct page *page; 67 unsigned int i; 68 69 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 70 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 71 if (IS_ERR(page)) 72 return "IO error"; 73 s = page_address(page) + offset_in_page(SB_OFFSET); 74 75 sb->offset = le64_to_cpu(s->offset); 76 sb->version = le64_to_cpu(s->version); 77 78 memcpy(sb->magic, s->magic, 16); 79 memcpy(sb->uuid, s->uuid, 16); 80 memcpy(sb->set_uuid, s->set_uuid, 16); 81 memcpy(sb->label, s->label, SB_LABEL_SIZE); 82 83 sb->flags = le64_to_cpu(s->flags); 84 sb->seq = le64_to_cpu(s->seq); 85 sb->last_mount = le32_to_cpu(s->last_mount); 86 sb->first_bucket = le16_to_cpu(s->first_bucket); 87 sb->keys = le16_to_cpu(s->keys); 88 89 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 90 sb->d[i] = le64_to_cpu(s->d[i]); 91 92 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u", 93 sb->version, sb->flags, sb->seq, sb->keys); 94 95 err = "Not a bcache superblock (bad offset)"; 96 if (sb->offset != SB_SECTOR) 97 goto err; 98 99 err = "Not a bcache superblock (bad magic)"; 100 if (memcmp(sb->magic, bcache_magic, 16)) 101 goto err; 102 103 err = "Too many journal buckets"; 104 if (sb->keys > SB_JOURNAL_BUCKETS) 105 goto err; 106 107 err = "Bad checksum"; 108 if (s->csum != csum_set(s)) 109 goto err; 110 111 err = "Bad UUID"; 112 if (bch_is_zero(sb->uuid, 16)) 113 goto err; 114 115 sb->block_size = le16_to_cpu(s->block_size); 116 117 err = "Superblock block size smaller than device block size"; 118 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 119 goto err; 120 121 switch (sb->version) { 122 case BCACHE_SB_VERSION_BDEV: 123 sb->data_offset = BDEV_DATA_START_DEFAULT; 124 break; 125 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 126 sb->data_offset = le64_to_cpu(s->data_offset); 127 128 err = "Bad data offset"; 129 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 130 goto err; 131 132 break; 133 case BCACHE_SB_VERSION_CDEV: 134 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 135 sb->nbuckets = le64_to_cpu(s->nbuckets); 136 sb->bucket_size = le16_to_cpu(s->bucket_size); 137 138 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 139 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 140 141 err = "Too many buckets"; 142 if (sb->nbuckets > LONG_MAX) 143 goto err; 144 145 err = "Not enough buckets"; 146 if (sb->nbuckets < 1 << 7) 147 goto err; 148 149 err = "Bad block/bucket size"; 150 if (!is_power_of_2(sb->block_size) || 151 sb->block_size > PAGE_SECTORS || 152 !is_power_of_2(sb->bucket_size) || 153 sb->bucket_size < PAGE_SECTORS) 154 goto err; 155 156 err = "Invalid superblock: device too small"; 157 if (get_capacity(bdev->bd_disk) < 158 sb->bucket_size * sb->nbuckets) 159 goto err; 160 161 err = "Bad UUID"; 162 if (bch_is_zero(sb->set_uuid, 16)) 163 goto err; 164 165 err = "Bad cache device number in set"; 166 if (!sb->nr_in_set || 167 sb->nr_in_set <= sb->nr_this_dev || 168 sb->nr_in_set > MAX_CACHES_PER_SET) 169 goto err; 170 171 err = "Journal buckets not sequential"; 172 for (i = 0; i < sb->keys; i++) 173 if (sb->d[i] != sb->first_bucket + i) 174 goto err; 175 176 err = "Too many journal buckets"; 177 if (sb->first_bucket + sb->keys > sb->nbuckets) 178 goto err; 179 180 err = "Invalid superblock: first bucket comes before end of super"; 181 if (sb->first_bucket * sb->bucket_size < 16) 182 goto err; 183 184 break; 185 default: 186 err = "Unsupported superblock version"; 187 goto err; 188 } 189 190 sb->last_mount = (u32)ktime_get_real_seconds(); 191 *res = s; 192 return NULL; 193 err: 194 put_page(page); 195 return err; 196 } 197 198 static void write_bdev_super_endio(struct bio *bio) 199 { 200 struct cached_dev *dc = bio->bi_private; 201 202 if (bio->bi_status) 203 bch_count_backing_io_errors(dc, bio); 204 205 closure_put(&dc->sb_write); 206 } 207 208 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 209 struct bio *bio) 210 { 211 unsigned int i; 212 213 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 214 bio->bi_iter.bi_sector = SB_SECTOR; 215 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 216 offset_in_page(out)); 217 218 out->offset = cpu_to_le64(sb->offset); 219 out->version = cpu_to_le64(sb->version); 220 221 memcpy(out->uuid, sb->uuid, 16); 222 memcpy(out->set_uuid, sb->set_uuid, 16); 223 memcpy(out->label, sb->label, SB_LABEL_SIZE); 224 225 out->flags = cpu_to_le64(sb->flags); 226 out->seq = cpu_to_le64(sb->seq); 227 228 out->last_mount = cpu_to_le32(sb->last_mount); 229 out->first_bucket = cpu_to_le16(sb->first_bucket); 230 out->keys = cpu_to_le16(sb->keys); 231 232 for (i = 0; i < sb->keys; i++) 233 out->d[i] = cpu_to_le64(sb->d[i]); 234 235 out->csum = csum_set(out); 236 237 pr_debug("ver %llu, flags %llu, seq %llu", 238 sb->version, sb->flags, sb->seq); 239 240 submit_bio(bio); 241 } 242 243 static void bch_write_bdev_super_unlock(struct closure *cl) 244 { 245 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 246 247 up(&dc->sb_write_mutex); 248 } 249 250 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 251 { 252 struct closure *cl = &dc->sb_write; 253 struct bio *bio = &dc->sb_bio; 254 255 down(&dc->sb_write_mutex); 256 closure_init(cl, parent); 257 258 bio_init(bio, dc->sb_bv, 1); 259 bio_set_dev(bio, dc->bdev); 260 bio->bi_end_io = write_bdev_super_endio; 261 bio->bi_private = dc; 262 263 closure_get(cl); 264 /* I/O request sent to backing device */ 265 __write_super(&dc->sb, dc->sb_disk, bio); 266 267 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 268 } 269 270 static void write_super_endio(struct bio *bio) 271 { 272 struct cache *ca = bio->bi_private; 273 274 /* is_read = 0 */ 275 bch_count_io_errors(ca, bio->bi_status, 0, 276 "writing superblock"); 277 closure_put(&ca->set->sb_write); 278 } 279 280 static void bcache_write_super_unlock(struct closure *cl) 281 { 282 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 283 284 up(&c->sb_write_mutex); 285 } 286 287 void bcache_write_super(struct cache_set *c) 288 { 289 struct closure *cl = &c->sb_write; 290 struct cache *ca; 291 unsigned int i; 292 293 down(&c->sb_write_mutex); 294 closure_init(cl, &c->cl); 295 296 c->sb.seq++; 297 298 for_each_cache(ca, c, i) { 299 struct bio *bio = &ca->sb_bio; 300 301 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 302 ca->sb.seq = c->sb.seq; 303 ca->sb.last_mount = c->sb.last_mount; 304 305 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 306 307 bio_init(bio, ca->sb_bv, 1); 308 bio_set_dev(bio, ca->bdev); 309 bio->bi_end_io = write_super_endio; 310 bio->bi_private = ca; 311 312 closure_get(cl); 313 __write_super(&ca->sb, ca->sb_disk, bio); 314 } 315 316 closure_return_with_destructor(cl, bcache_write_super_unlock); 317 } 318 319 /* UUID io */ 320 321 static void uuid_endio(struct bio *bio) 322 { 323 struct closure *cl = bio->bi_private; 324 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 325 326 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 327 bch_bbio_free(bio, c); 328 closure_put(cl); 329 } 330 331 static void uuid_io_unlock(struct closure *cl) 332 { 333 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 334 335 up(&c->uuid_write_mutex); 336 } 337 338 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 339 struct bkey *k, struct closure *parent) 340 { 341 struct closure *cl = &c->uuid_write; 342 struct uuid_entry *u; 343 unsigned int i; 344 char buf[80]; 345 346 BUG_ON(!parent); 347 down(&c->uuid_write_mutex); 348 closure_init(cl, parent); 349 350 for (i = 0; i < KEY_PTRS(k); i++) { 351 struct bio *bio = bch_bbio_alloc(c); 352 353 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 354 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 355 356 bio->bi_end_io = uuid_endio; 357 bio->bi_private = cl; 358 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 359 bch_bio_map(bio, c->uuids); 360 361 bch_submit_bbio(bio, c, k, i); 362 363 if (op != REQ_OP_WRITE) 364 break; 365 } 366 367 bch_extent_to_text(buf, sizeof(buf), k); 368 pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf); 369 370 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 371 if (!bch_is_zero(u->uuid, 16)) 372 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u", 373 u - c->uuids, u->uuid, u->label, 374 u->first_reg, u->last_reg, u->invalidated); 375 376 closure_return_with_destructor(cl, uuid_io_unlock); 377 } 378 379 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 380 { 381 struct bkey *k = &j->uuid_bucket; 382 383 if (__bch_btree_ptr_invalid(c, k)) 384 return "bad uuid pointer"; 385 386 bkey_copy(&c->uuid_bucket, k); 387 uuid_io(c, REQ_OP_READ, 0, k, cl); 388 389 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 390 struct uuid_entry_v0 *u0 = (void *) c->uuids; 391 struct uuid_entry *u1 = (void *) c->uuids; 392 int i; 393 394 closure_sync(cl); 395 396 /* 397 * Since the new uuid entry is bigger than the old, we have to 398 * convert starting at the highest memory address and work down 399 * in order to do it in place 400 */ 401 402 for (i = c->nr_uuids - 1; 403 i >= 0; 404 --i) { 405 memcpy(u1[i].uuid, u0[i].uuid, 16); 406 memcpy(u1[i].label, u0[i].label, 32); 407 408 u1[i].first_reg = u0[i].first_reg; 409 u1[i].last_reg = u0[i].last_reg; 410 u1[i].invalidated = u0[i].invalidated; 411 412 u1[i].flags = 0; 413 u1[i].sectors = 0; 414 } 415 } 416 417 return NULL; 418 } 419 420 static int __uuid_write(struct cache_set *c) 421 { 422 BKEY_PADDED(key) k; 423 struct closure cl; 424 struct cache *ca; 425 426 closure_init_stack(&cl); 427 lockdep_assert_held(&bch_register_lock); 428 429 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 430 return 1; 431 432 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 433 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 434 closure_sync(&cl); 435 436 /* Only one bucket used for uuid write */ 437 ca = PTR_CACHE(c, &k.key, 0); 438 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 439 440 bkey_copy(&c->uuid_bucket, &k.key); 441 bkey_put(c, &k.key); 442 return 0; 443 } 444 445 int bch_uuid_write(struct cache_set *c) 446 { 447 int ret = __uuid_write(c); 448 449 if (!ret) 450 bch_journal_meta(c, NULL); 451 452 return ret; 453 } 454 455 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 456 { 457 struct uuid_entry *u; 458 459 for (u = c->uuids; 460 u < c->uuids + c->nr_uuids; u++) 461 if (!memcmp(u->uuid, uuid, 16)) 462 return u; 463 464 return NULL; 465 } 466 467 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 468 { 469 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 470 471 return uuid_find(c, zero_uuid); 472 } 473 474 /* 475 * Bucket priorities/gens: 476 * 477 * For each bucket, we store on disk its 478 * 8 bit gen 479 * 16 bit priority 480 * 481 * See alloc.c for an explanation of the gen. The priority is used to implement 482 * lru (and in the future other) cache replacement policies; for most purposes 483 * it's just an opaque integer. 484 * 485 * The gens and the priorities don't have a whole lot to do with each other, and 486 * it's actually the gens that must be written out at specific times - it's no 487 * big deal if the priorities don't get written, if we lose them we just reuse 488 * buckets in suboptimal order. 489 * 490 * On disk they're stored in a packed array, and in as many buckets are required 491 * to fit them all. The buckets we use to store them form a list; the journal 492 * header points to the first bucket, the first bucket points to the second 493 * bucket, et cetera. 494 * 495 * This code is used by the allocation code; periodically (whenever it runs out 496 * of buckets to allocate from) the allocation code will invalidate some 497 * buckets, but it can't use those buckets until their new gens are safely on 498 * disk. 499 */ 500 501 static void prio_endio(struct bio *bio) 502 { 503 struct cache *ca = bio->bi_private; 504 505 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 506 bch_bbio_free(bio, ca->set); 507 closure_put(&ca->prio); 508 } 509 510 static void prio_io(struct cache *ca, uint64_t bucket, int op, 511 unsigned long op_flags) 512 { 513 struct closure *cl = &ca->prio; 514 struct bio *bio = bch_bbio_alloc(ca->set); 515 516 closure_init_stack(cl); 517 518 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 519 bio_set_dev(bio, ca->bdev); 520 bio->bi_iter.bi_size = bucket_bytes(ca); 521 522 bio->bi_end_io = prio_endio; 523 bio->bi_private = ca; 524 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 525 bch_bio_map(bio, ca->disk_buckets); 526 527 closure_bio_submit(ca->set, bio, &ca->prio); 528 closure_sync(cl); 529 } 530 531 int bch_prio_write(struct cache *ca, bool wait) 532 { 533 int i; 534 struct bucket *b; 535 struct closure cl; 536 537 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu", 538 fifo_used(&ca->free[RESERVE_PRIO]), 539 fifo_used(&ca->free[RESERVE_NONE]), 540 fifo_used(&ca->free_inc)); 541 542 /* 543 * Pre-check if there are enough free buckets. In the non-blocking 544 * scenario it's better to fail early rather than starting to allocate 545 * buckets and do a cleanup later in case of failure. 546 */ 547 if (!wait) { 548 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 549 fifo_used(&ca->free[RESERVE_NONE]); 550 if (prio_buckets(ca) > avail) 551 return -ENOMEM; 552 } 553 554 closure_init_stack(&cl); 555 556 lockdep_assert_held(&ca->set->bucket_lock); 557 558 ca->disk_buckets->seq++; 559 560 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 561 &ca->meta_sectors_written); 562 563 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 564 long bucket; 565 struct prio_set *p = ca->disk_buckets; 566 struct bucket_disk *d = p->data; 567 struct bucket_disk *end = d + prios_per_bucket(ca); 568 569 for (b = ca->buckets + i * prios_per_bucket(ca); 570 b < ca->buckets + ca->sb.nbuckets && d < end; 571 b++, d++) { 572 d->prio = cpu_to_le16(b->prio); 573 d->gen = b->gen; 574 } 575 576 p->next_bucket = ca->prio_buckets[i + 1]; 577 p->magic = pset_magic(&ca->sb); 578 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 579 580 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 581 BUG_ON(bucket == -1); 582 583 mutex_unlock(&ca->set->bucket_lock); 584 prio_io(ca, bucket, REQ_OP_WRITE, 0); 585 mutex_lock(&ca->set->bucket_lock); 586 587 ca->prio_buckets[i] = bucket; 588 atomic_dec_bug(&ca->buckets[bucket].pin); 589 } 590 591 mutex_unlock(&ca->set->bucket_lock); 592 593 bch_journal_meta(ca->set, &cl); 594 closure_sync(&cl); 595 596 mutex_lock(&ca->set->bucket_lock); 597 598 /* 599 * Don't want the old priorities to get garbage collected until after we 600 * finish writing the new ones, and they're journalled 601 */ 602 for (i = 0; i < prio_buckets(ca); i++) { 603 if (ca->prio_last_buckets[i]) 604 __bch_bucket_free(ca, 605 &ca->buckets[ca->prio_last_buckets[i]]); 606 607 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 608 } 609 return 0; 610 } 611 612 static void prio_read(struct cache *ca, uint64_t bucket) 613 { 614 struct prio_set *p = ca->disk_buckets; 615 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 616 struct bucket *b; 617 unsigned int bucket_nr = 0; 618 619 for (b = ca->buckets; 620 b < ca->buckets + ca->sb.nbuckets; 621 b++, d++) { 622 if (d == end) { 623 ca->prio_buckets[bucket_nr] = bucket; 624 ca->prio_last_buckets[bucket_nr] = bucket; 625 bucket_nr++; 626 627 prio_io(ca, bucket, REQ_OP_READ, 0); 628 629 if (p->csum != 630 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) 631 pr_warn("bad csum reading priorities"); 632 633 if (p->magic != pset_magic(&ca->sb)) 634 pr_warn("bad magic reading priorities"); 635 636 bucket = p->next_bucket; 637 d = p->data; 638 } 639 640 b->prio = le16_to_cpu(d->prio); 641 b->gen = b->last_gc = d->gen; 642 } 643 } 644 645 /* Bcache device */ 646 647 static int open_dev(struct block_device *b, fmode_t mode) 648 { 649 struct bcache_device *d = b->bd_disk->private_data; 650 651 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 652 return -ENXIO; 653 654 closure_get(&d->cl); 655 return 0; 656 } 657 658 static void release_dev(struct gendisk *b, fmode_t mode) 659 { 660 struct bcache_device *d = b->private_data; 661 662 closure_put(&d->cl); 663 } 664 665 static int ioctl_dev(struct block_device *b, fmode_t mode, 666 unsigned int cmd, unsigned long arg) 667 { 668 struct bcache_device *d = b->bd_disk->private_data; 669 670 return d->ioctl(d, mode, cmd, arg); 671 } 672 673 static const struct block_device_operations bcache_ops = { 674 .open = open_dev, 675 .release = release_dev, 676 .ioctl = ioctl_dev, 677 .owner = THIS_MODULE, 678 }; 679 680 void bcache_device_stop(struct bcache_device *d) 681 { 682 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 683 /* 684 * closure_fn set to 685 * - cached device: cached_dev_flush() 686 * - flash dev: flash_dev_flush() 687 */ 688 closure_queue(&d->cl); 689 } 690 691 static void bcache_device_unlink(struct bcache_device *d) 692 { 693 lockdep_assert_held(&bch_register_lock); 694 695 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 696 unsigned int i; 697 struct cache *ca; 698 699 sysfs_remove_link(&d->c->kobj, d->name); 700 sysfs_remove_link(&d->kobj, "cache"); 701 702 for_each_cache(ca, d->c, i) 703 bd_unlink_disk_holder(ca->bdev, d->disk); 704 } 705 } 706 707 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 708 const char *name) 709 { 710 unsigned int i; 711 struct cache *ca; 712 int ret; 713 714 for_each_cache(ca, d->c, i) 715 bd_link_disk_holder(ca->bdev, d->disk); 716 717 snprintf(d->name, BCACHEDEVNAME_SIZE, 718 "%s%u", name, d->id); 719 720 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 721 if (ret < 0) 722 pr_err("Couldn't create device -> cache set symlink"); 723 724 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 725 if (ret < 0) 726 pr_err("Couldn't create cache set -> device symlink"); 727 728 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 729 } 730 731 static void bcache_device_detach(struct bcache_device *d) 732 { 733 lockdep_assert_held(&bch_register_lock); 734 735 atomic_dec(&d->c->attached_dev_nr); 736 737 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 738 struct uuid_entry *u = d->c->uuids + d->id; 739 740 SET_UUID_FLASH_ONLY(u, 0); 741 memcpy(u->uuid, invalid_uuid, 16); 742 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 743 bch_uuid_write(d->c); 744 } 745 746 bcache_device_unlink(d); 747 748 d->c->devices[d->id] = NULL; 749 closure_put(&d->c->caching); 750 d->c = NULL; 751 } 752 753 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 754 unsigned int id) 755 { 756 d->id = id; 757 d->c = c; 758 c->devices[id] = d; 759 760 if (id >= c->devices_max_used) 761 c->devices_max_used = id + 1; 762 763 closure_get(&c->caching); 764 } 765 766 static inline int first_minor_to_idx(int first_minor) 767 { 768 return (first_minor/BCACHE_MINORS); 769 } 770 771 static inline int idx_to_first_minor(int idx) 772 { 773 return (idx * BCACHE_MINORS); 774 } 775 776 static void bcache_device_free(struct bcache_device *d) 777 { 778 struct gendisk *disk = d->disk; 779 780 lockdep_assert_held(&bch_register_lock); 781 782 if (disk) 783 pr_info("%s stopped", disk->disk_name); 784 else 785 pr_err("bcache device (NULL gendisk) stopped"); 786 787 if (d->c) 788 bcache_device_detach(d); 789 790 if (disk) { 791 if (disk->flags & GENHD_FL_UP) 792 del_gendisk(disk); 793 794 if (disk->queue) 795 blk_cleanup_queue(disk->queue); 796 797 ida_simple_remove(&bcache_device_idx, 798 first_minor_to_idx(disk->first_minor)); 799 put_disk(disk); 800 } 801 802 bioset_exit(&d->bio_split); 803 kvfree(d->full_dirty_stripes); 804 kvfree(d->stripe_sectors_dirty); 805 806 closure_debug_destroy(&d->cl); 807 } 808 809 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 810 sector_t sectors) 811 { 812 struct request_queue *q; 813 const size_t max_stripes = min_t(size_t, INT_MAX, 814 SIZE_MAX / sizeof(atomic_t)); 815 size_t n; 816 int idx; 817 818 if (!d->stripe_size) 819 d->stripe_size = 1 << 31; 820 821 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 822 823 if (!d->nr_stripes || d->nr_stripes > max_stripes) { 824 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)", 825 (unsigned int)d->nr_stripes); 826 return -ENOMEM; 827 } 828 829 n = d->nr_stripes * sizeof(atomic_t); 830 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 831 if (!d->stripe_sectors_dirty) 832 return -ENOMEM; 833 834 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 835 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 836 if (!d->full_dirty_stripes) 837 return -ENOMEM; 838 839 idx = ida_simple_get(&bcache_device_idx, 0, 840 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 841 if (idx < 0) 842 return idx; 843 844 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 845 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 846 goto err; 847 848 d->disk = alloc_disk(BCACHE_MINORS); 849 if (!d->disk) 850 goto err; 851 852 set_capacity(d->disk, sectors); 853 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 854 855 d->disk->major = bcache_major; 856 d->disk->first_minor = idx_to_first_minor(idx); 857 d->disk->fops = &bcache_ops; 858 d->disk->private_data = d; 859 860 q = blk_alloc_queue(GFP_KERNEL); 861 if (!q) 862 return -ENOMEM; 863 864 blk_queue_make_request(q, NULL); 865 d->disk->queue = q; 866 q->queuedata = d; 867 q->backing_dev_info->congested_data = d; 868 q->limits.max_hw_sectors = UINT_MAX; 869 q->limits.max_sectors = UINT_MAX; 870 q->limits.max_segment_size = UINT_MAX; 871 q->limits.max_segments = BIO_MAX_PAGES; 872 blk_queue_max_discard_sectors(q, UINT_MAX); 873 q->limits.discard_granularity = 512; 874 q->limits.io_min = block_size; 875 q->limits.logical_block_size = block_size; 876 q->limits.physical_block_size = block_size; 877 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 878 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 879 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 880 881 blk_queue_write_cache(q, true, true); 882 883 return 0; 884 885 err: 886 ida_simple_remove(&bcache_device_idx, idx); 887 return -ENOMEM; 888 889 } 890 891 /* Cached device */ 892 893 static void calc_cached_dev_sectors(struct cache_set *c) 894 { 895 uint64_t sectors = 0; 896 struct cached_dev *dc; 897 898 list_for_each_entry(dc, &c->cached_devs, list) 899 sectors += bdev_sectors(dc->bdev); 900 901 c->cached_dev_sectors = sectors; 902 } 903 904 #define BACKING_DEV_OFFLINE_TIMEOUT 5 905 static int cached_dev_status_update(void *arg) 906 { 907 struct cached_dev *dc = arg; 908 struct request_queue *q; 909 910 /* 911 * If this delayed worker is stopping outside, directly quit here. 912 * dc->io_disable might be set via sysfs interface, so check it 913 * here too. 914 */ 915 while (!kthread_should_stop() && !dc->io_disable) { 916 q = bdev_get_queue(dc->bdev); 917 if (blk_queue_dying(q)) 918 dc->offline_seconds++; 919 else 920 dc->offline_seconds = 0; 921 922 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 923 pr_err("%s: device offline for %d seconds", 924 dc->backing_dev_name, 925 BACKING_DEV_OFFLINE_TIMEOUT); 926 pr_err("%s: disable I/O request due to backing " 927 "device offline", dc->disk.name); 928 dc->io_disable = true; 929 /* let others know earlier that io_disable is true */ 930 smp_mb(); 931 bcache_device_stop(&dc->disk); 932 break; 933 } 934 schedule_timeout_interruptible(HZ); 935 } 936 937 wait_for_kthread_stop(); 938 return 0; 939 } 940 941 942 int bch_cached_dev_run(struct cached_dev *dc) 943 { 944 struct bcache_device *d = &dc->disk; 945 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 946 char *env[] = { 947 "DRIVER=bcache", 948 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 949 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 950 NULL, 951 }; 952 953 if (dc->io_disable) { 954 pr_err("I/O disabled on cached dev %s", 955 dc->backing_dev_name); 956 kfree(env[1]); 957 kfree(env[2]); 958 kfree(buf); 959 return -EIO; 960 } 961 962 if (atomic_xchg(&dc->running, 1)) { 963 kfree(env[1]); 964 kfree(env[2]); 965 kfree(buf); 966 pr_info("cached dev %s is running already", 967 dc->backing_dev_name); 968 return -EBUSY; 969 } 970 971 if (!d->c && 972 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 973 struct closure cl; 974 975 closure_init_stack(&cl); 976 977 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 978 bch_write_bdev_super(dc, &cl); 979 closure_sync(&cl); 980 } 981 982 add_disk(d->disk); 983 bd_link_disk_holder(dc->bdev, dc->disk.disk); 984 /* 985 * won't show up in the uevent file, use udevadm monitor -e instead 986 * only class / kset properties are persistent 987 */ 988 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 989 kfree(env[1]); 990 kfree(env[2]); 991 kfree(buf); 992 993 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 994 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 995 &d->kobj, "bcache")) { 996 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks"); 997 return -ENOMEM; 998 } 999 1000 dc->status_update_thread = kthread_run(cached_dev_status_update, 1001 dc, "bcache_status_update"); 1002 if (IS_ERR(dc->status_update_thread)) { 1003 pr_warn("failed to create bcache_status_update kthread, " 1004 "continue to run without monitoring backing " 1005 "device status"); 1006 } 1007 1008 return 0; 1009 } 1010 1011 /* 1012 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1013 * work dc->writeback_rate_update is running. Wait until the routine 1014 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1015 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1016 * seconds, give up waiting here and continue to cancel it too. 1017 */ 1018 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1019 { 1020 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1021 1022 do { 1023 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1024 &dc->disk.flags)) 1025 break; 1026 time_out--; 1027 schedule_timeout_interruptible(1); 1028 } while (time_out > 0); 1029 1030 if (time_out == 0) 1031 pr_warn("give up waiting for dc->writeback_write_update to quit"); 1032 1033 cancel_delayed_work_sync(&dc->writeback_rate_update); 1034 } 1035 1036 static void cached_dev_detach_finish(struct work_struct *w) 1037 { 1038 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1039 struct closure cl; 1040 1041 closure_init_stack(&cl); 1042 1043 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1044 BUG_ON(refcount_read(&dc->count)); 1045 1046 1047 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1048 cancel_writeback_rate_update_dwork(dc); 1049 1050 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1051 kthread_stop(dc->writeback_thread); 1052 dc->writeback_thread = NULL; 1053 } 1054 1055 memset(&dc->sb.set_uuid, 0, 16); 1056 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1057 1058 bch_write_bdev_super(dc, &cl); 1059 closure_sync(&cl); 1060 1061 mutex_lock(&bch_register_lock); 1062 1063 calc_cached_dev_sectors(dc->disk.c); 1064 bcache_device_detach(&dc->disk); 1065 list_move(&dc->list, &uncached_devices); 1066 1067 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1068 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1069 1070 mutex_unlock(&bch_register_lock); 1071 1072 pr_info("Caching disabled for %s", dc->backing_dev_name); 1073 1074 /* Drop ref we took in cached_dev_detach() */ 1075 closure_put(&dc->disk.cl); 1076 } 1077 1078 void bch_cached_dev_detach(struct cached_dev *dc) 1079 { 1080 lockdep_assert_held(&bch_register_lock); 1081 1082 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1083 return; 1084 1085 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1086 return; 1087 1088 /* 1089 * Block the device from being closed and freed until we're finished 1090 * detaching 1091 */ 1092 closure_get(&dc->disk.cl); 1093 1094 bch_writeback_queue(dc); 1095 1096 cached_dev_put(dc); 1097 } 1098 1099 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1100 uint8_t *set_uuid) 1101 { 1102 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1103 struct uuid_entry *u; 1104 struct cached_dev *exist_dc, *t; 1105 int ret = 0; 1106 1107 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1108 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1109 return -ENOENT; 1110 1111 if (dc->disk.c) { 1112 pr_err("Can't attach %s: already attached", 1113 dc->backing_dev_name); 1114 return -EINVAL; 1115 } 1116 1117 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1118 pr_err("Can't attach %s: shutting down", 1119 dc->backing_dev_name); 1120 return -EINVAL; 1121 } 1122 1123 if (dc->sb.block_size < c->sb.block_size) { 1124 /* Will die */ 1125 pr_err("Couldn't attach %s: block size less than set's block size", 1126 dc->backing_dev_name); 1127 return -EINVAL; 1128 } 1129 1130 /* Check whether already attached */ 1131 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1132 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1133 pr_err("Tried to attach %s but duplicate UUID already attached", 1134 dc->backing_dev_name); 1135 1136 return -EINVAL; 1137 } 1138 } 1139 1140 u = uuid_find(c, dc->sb.uuid); 1141 1142 if (u && 1143 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1144 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1145 memcpy(u->uuid, invalid_uuid, 16); 1146 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1147 u = NULL; 1148 } 1149 1150 if (!u) { 1151 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1152 pr_err("Couldn't find uuid for %s in set", 1153 dc->backing_dev_name); 1154 return -ENOENT; 1155 } 1156 1157 u = uuid_find_empty(c); 1158 if (!u) { 1159 pr_err("Not caching %s, no room for UUID", 1160 dc->backing_dev_name); 1161 return -EINVAL; 1162 } 1163 } 1164 1165 /* 1166 * Deadlocks since we're called via sysfs... 1167 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1168 */ 1169 1170 if (bch_is_zero(u->uuid, 16)) { 1171 struct closure cl; 1172 1173 closure_init_stack(&cl); 1174 1175 memcpy(u->uuid, dc->sb.uuid, 16); 1176 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1177 u->first_reg = u->last_reg = rtime; 1178 bch_uuid_write(c); 1179 1180 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1181 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1182 1183 bch_write_bdev_super(dc, &cl); 1184 closure_sync(&cl); 1185 } else { 1186 u->last_reg = rtime; 1187 bch_uuid_write(c); 1188 } 1189 1190 bcache_device_attach(&dc->disk, c, u - c->uuids); 1191 list_move(&dc->list, &c->cached_devs); 1192 calc_cached_dev_sectors(c); 1193 1194 /* 1195 * dc->c must be set before dc->count != 0 - paired with the mb in 1196 * cached_dev_get() 1197 */ 1198 smp_wmb(); 1199 refcount_set(&dc->count, 1); 1200 1201 /* Block writeback thread, but spawn it */ 1202 down_write(&dc->writeback_lock); 1203 if (bch_cached_dev_writeback_start(dc)) { 1204 up_write(&dc->writeback_lock); 1205 pr_err("Couldn't start writeback facilities for %s", 1206 dc->disk.disk->disk_name); 1207 return -ENOMEM; 1208 } 1209 1210 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1211 atomic_set(&dc->has_dirty, 1); 1212 bch_writeback_queue(dc); 1213 } 1214 1215 bch_sectors_dirty_init(&dc->disk); 1216 1217 ret = bch_cached_dev_run(dc); 1218 if (ret && (ret != -EBUSY)) { 1219 up_write(&dc->writeback_lock); 1220 /* 1221 * bch_register_lock is held, bcache_device_stop() is not 1222 * able to be directly called. The kthread and kworker 1223 * created previously in bch_cached_dev_writeback_start() 1224 * have to be stopped manually here. 1225 */ 1226 kthread_stop(dc->writeback_thread); 1227 cancel_writeback_rate_update_dwork(dc); 1228 pr_err("Couldn't run cached device %s", 1229 dc->backing_dev_name); 1230 return ret; 1231 } 1232 1233 bcache_device_link(&dc->disk, c, "bdev"); 1234 atomic_inc(&c->attached_dev_nr); 1235 1236 /* Allow the writeback thread to proceed */ 1237 up_write(&dc->writeback_lock); 1238 1239 pr_info("Caching %s as %s on set %pU", 1240 dc->backing_dev_name, 1241 dc->disk.disk->disk_name, 1242 dc->disk.c->sb.set_uuid); 1243 return 0; 1244 } 1245 1246 /* when dc->disk.kobj released */ 1247 void bch_cached_dev_release(struct kobject *kobj) 1248 { 1249 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1250 disk.kobj); 1251 kfree(dc); 1252 module_put(THIS_MODULE); 1253 } 1254 1255 static void cached_dev_free(struct closure *cl) 1256 { 1257 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1258 1259 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1260 cancel_writeback_rate_update_dwork(dc); 1261 1262 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1263 kthread_stop(dc->writeback_thread); 1264 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1265 kthread_stop(dc->status_update_thread); 1266 1267 mutex_lock(&bch_register_lock); 1268 1269 if (atomic_read(&dc->running)) 1270 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1271 bcache_device_free(&dc->disk); 1272 list_del(&dc->list); 1273 1274 mutex_unlock(&bch_register_lock); 1275 1276 if (dc->sb_disk) 1277 put_page(virt_to_page(dc->sb_disk)); 1278 1279 if (!IS_ERR_OR_NULL(dc->bdev)) 1280 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1281 1282 wake_up(&unregister_wait); 1283 1284 kobject_put(&dc->disk.kobj); 1285 } 1286 1287 static void cached_dev_flush(struct closure *cl) 1288 { 1289 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1290 struct bcache_device *d = &dc->disk; 1291 1292 mutex_lock(&bch_register_lock); 1293 bcache_device_unlink(d); 1294 mutex_unlock(&bch_register_lock); 1295 1296 bch_cache_accounting_destroy(&dc->accounting); 1297 kobject_del(&d->kobj); 1298 1299 continue_at(cl, cached_dev_free, system_wq); 1300 } 1301 1302 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1303 { 1304 int ret; 1305 struct io *io; 1306 struct request_queue *q = bdev_get_queue(dc->bdev); 1307 1308 __module_get(THIS_MODULE); 1309 INIT_LIST_HEAD(&dc->list); 1310 closure_init(&dc->disk.cl, NULL); 1311 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1312 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1313 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1314 sema_init(&dc->sb_write_mutex, 1); 1315 INIT_LIST_HEAD(&dc->io_lru); 1316 spin_lock_init(&dc->io_lock); 1317 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1318 1319 dc->sequential_cutoff = 4 << 20; 1320 1321 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1322 list_add(&io->lru, &dc->io_lru); 1323 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1324 } 1325 1326 dc->disk.stripe_size = q->limits.io_opt >> 9; 1327 1328 if (dc->disk.stripe_size) 1329 dc->partial_stripes_expensive = 1330 q->limits.raid_partial_stripes_expensive; 1331 1332 ret = bcache_device_init(&dc->disk, block_size, 1333 dc->bdev->bd_part->nr_sects - dc->sb.data_offset); 1334 if (ret) 1335 return ret; 1336 1337 dc->disk.disk->queue->backing_dev_info->ra_pages = 1338 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1339 q->backing_dev_info->ra_pages); 1340 1341 atomic_set(&dc->io_errors, 0); 1342 dc->io_disable = false; 1343 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1344 /* default to auto */ 1345 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1346 1347 bch_cached_dev_request_init(dc); 1348 bch_cached_dev_writeback_init(dc); 1349 return 0; 1350 } 1351 1352 /* Cached device - bcache superblock */ 1353 1354 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1355 struct block_device *bdev, 1356 struct cached_dev *dc) 1357 { 1358 const char *err = "cannot allocate memory"; 1359 struct cache_set *c; 1360 int ret = -ENOMEM; 1361 1362 bdevname(bdev, dc->backing_dev_name); 1363 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1364 dc->bdev = bdev; 1365 dc->bdev->bd_holder = dc; 1366 dc->sb_disk = sb_disk; 1367 1368 if (cached_dev_init(dc, sb->block_size << 9)) 1369 goto err; 1370 1371 err = "error creating kobject"; 1372 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1373 "bcache")) 1374 goto err; 1375 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1376 goto err; 1377 1378 pr_info("registered backing device %s", dc->backing_dev_name); 1379 1380 list_add(&dc->list, &uncached_devices); 1381 /* attach to a matched cache set if it exists */ 1382 list_for_each_entry(c, &bch_cache_sets, list) 1383 bch_cached_dev_attach(dc, c, NULL); 1384 1385 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1386 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1387 err = "failed to run cached device"; 1388 ret = bch_cached_dev_run(dc); 1389 if (ret) 1390 goto err; 1391 } 1392 1393 return 0; 1394 err: 1395 pr_notice("error %s: %s", dc->backing_dev_name, err); 1396 bcache_device_stop(&dc->disk); 1397 return ret; 1398 } 1399 1400 /* Flash only volumes */ 1401 1402 /* When d->kobj released */ 1403 void bch_flash_dev_release(struct kobject *kobj) 1404 { 1405 struct bcache_device *d = container_of(kobj, struct bcache_device, 1406 kobj); 1407 kfree(d); 1408 } 1409 1410 static void flash_dev_free(struct closure *cl) 1411 { 1412 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1413 1414 mutex_lock(&bch_register_lock); 1415 atomic_long_sub(bcache_dev_sectors_dirty(d), 1416 &d->c->flash_dev_dirty_sectors); 1417 bcache_device_free(d); 1418 mutex_unlock(&bch_register_lock); 1419 kobject_put(&d->kobj); 1420 } 1421 1422 static void flash_dev_flush(struct closure *cl) 1423 { 1424 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1425 1426 mutex_lock(&bch_register_lock); 1427 bcache_device_unlink(d); 1428 mutex_unlock(&bch_register_lock); 1429 kobject_del(&d->kobj); 1430 continue_at(cl, flash_dev_free, system_wq); 1431 } 1432 1433 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1434 { 1435 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1436 GFP_KERNEL); 1437 if (!d) 1438 return -ENOMEM; 1439 1440 closure_init(&d->cl, NULL); 1441 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1442 1443 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1444 1445 if (bcache_device_init(d, block_bytes(c), u->sectors)) 1446 goto err; 1447 1448 bcache_device_attach(d, c, u - c->uuids); 1449 bch_sectors_dirty_init(d); 1450 bch_flash_dev_request_init(d); 1451 add_disk(d->disk); 1452 1453 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1454 goto err; 1455 1456 bcache_device_link(d, c, "volume"); 1457 1458 return 0; 1459 err: 1460 kobject_put(&d->kobj); 1461 return -ENOMEM; 1462 } 1463 1464 static int flash_devs_run(struct cache_set *c) 1465 { 1466 int ret = 0; 1467 struct uuid_entry *u; 1468 1469 for (u = c->uuids; 1470 u < c->uuids + c->nr_uuids && !ret; 1471 u++) 1472 if (UUID_FLASH_ONLY(u)) 1473 ret = flash_dev_run(c, u); 1474 1475 return ret; 1476 } 1477 1478 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1479 { 1480 struct uuid_entry *u; 1481 1482 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1483 return -EINTR; 1484 1485 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1486 return -EPERM; 1487 1488 u = uuid_find_empty(c); 1489 if (!u) { 1490 pr_err("Can't create volume, no room for UUID"); 1491 return -EINVAL; 1492 } 1493 1494 get_random_bytes(u->uuid, 16); 1495 memset(u->label, 0, 32); 1496 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1497 1498 SET_UUID_FLASH_ONLY(u, 1); 1499 u->sectors = size >> 9; 1500 1501 bch_uuid_write(c); 1502 1503 return flash_dev_run(c, u); 1504 } 1505 1506 bool bch_cached_dev_error(struct cached_dev *dc) 1507 { 1508 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1509 return false; 1510 1511 dc->io_disable = true; 1512 /* make others know io_disable is true earlier */ 1513 smp_mb(); 1514 1515 pr_err("stop %s: too many IO errors on backing device %s\n", 1516 dc->disk.disk->disk_name, dc->backing_dev_name); 1517 1518 bcache_device_stop(&dc->disk); 1519 return true; 1520 } 1521 1522 /* Cache set */ 1523 1524 __printf(2, 3) 1525 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1526 { 1527 va_list args; 1528 1529 if (c->on_error != ON_ERROR_PANIC && 1530 test_bit(CACHE_SET_STOPPING, &c->flags)) 1531 return false; 1532 1533 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1534 pr_info("CACHE_SET_IO_DISABLE already set"); 1535 1536 /* 1537 * XXX: we can be called from atomic context 1538 * acquire_console_sem(); 1539 */ 1540 1541 pr_err("bcache: error on %pU: ", c->sb.set_uuid); 1542 1543 va_start(args, fmt); 1544 vprintk(fmt, args); 1545 va_end(args); 1546 1547 pr_err(", disabling caching\n"); 1548 1549 if (c->on_error == ON_ERROR_PANIC) 1550 panic("panic forced after error\n"); 1551 1552 bch_cache_set_unregister(c); 1553 return true; 1554 } 1555 1556 /* When c->kobj released */ 1557 void bch_cache_set_release(struct kobject *kobj) 1558 { 1559 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1560 1561 kfree(c); 1562 module_put(THIS_MODULE); 1563 } 1564 1565 static void cache_set_free(struct closure *cl) 1566 { 1567 struct cache_set *c = container_of(cl, struct cache_set, cl); 1568 struct cache *ca; 1569 unsigned int i; 1570 1571 debugfs_remove(c->debug); 1572 1573 bch_open_buckets_free(c); 1574 bch_btree_cache_free(c); 1575 bch_journal_free(c); 1576 1577 mutex_lock(&bch_register_lock); 1578 for_each_cache(ca, c, i) 1579 if (ca) { 1580 ca->set = NULL; 1581 c->cache[ca->sb.nr_this_dev] = NULL; 1582 kobject_put(&ca->kobj); 1583 } 1584 1585 bch_bset_sort_state_free(&c->sort); 1586 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1587 1588 if (c->moving_gc_wq) 1589 destroy_workqueue(c->moving_gc_wq); 1590 bioset_exit(&c->bio_split); 1591 mempool_exit(&c->fill_iter); 1592 mempool_exit(&c->bio_meta); 1593 mempool_exit(&c->search); 1594 kfree(c->devices); 1595 1596 list_del(&c->list); 1597 mutex_unlock(&bch_register_lock); 1598 1599 pr_info("Cache set %pU unregistered", c->sb.set_uuid); 1600 wake_up(&unregister_wait); 1601 1602 closure_debug_destroy(&c->cl); 1603 kobject_put(&c->kobj); 1604 } 1605 1606 static void cache_set_flush(struct closure *cl) 1607 { 1608 struct cache_set *c = container_of(cl, struct cache_set, caching); 1609 struct cache *ca; 1610 struct btree *b; 1611 unsigned int i; 1612 1613 bch_cache_accounting_destroy(&c->accounting); 1614 1615 kobject_put(&c->internal); 1616 kobject_del(&c->kobj); 1617 1618 if (!IS_ERR_OR_NULL(c->gc_thread)) 1619 kthread_stop(c->gc_thread); 1620 1621 if (!IS_ERR_OR_NULL(c->root)) 1622 list_add(&c->root->list, &c->btree_cache); 1623 1624 /* 1625 * Avoid flushing cached nodes if cache set is retiring 1626 * due to too many I/O errors detected. 1627 */ 1628 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1629 list_for_each_entry(b, &c->btree_cache, list) { 1630 mutex_lock(&b->write_lock); 1631 if (btree_node_dirty(b)) 1632 __bch_btree_node_write(b, NULL); 1633 mutex_unlock(&b->write_lock); 1634 } 1635 1636 for_each_cache(ca, c, i) 1637 if (ca->alloc_thread) 1638 kthread_stop(ca->alloc_thread); 1639 1640 if (c->journal.cur) { 1641 cancel_delayed_work_sync(&c->journal.work); 1642 /* flush last journal entry if needed */ 1643 c->journal.work.work.func(&c->journal.work.work); 1644 } 1645 1646 closure_return(cl); 1647 } 1648 1649 /* 1650 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1651 * cache set is unregistering due to too many I/O errors. In this condition, 1652 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1653 * value and whether the broken cache has dirty data: 1654 * 1655 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1656 * BCH_CACHED_STOP_AUTO 0 NO 1657 * BCH_CACHED_STOP_AUTO 1 YES 1658 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1659 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1660 * 1661 * The expected behavior is, if stop_when_cache_set_failed is configured to 1662 * "auto" via sysfs interface, the bcache device will not be stopped if the 1663 * backing device is clean on the broken cache device. 1664 */ 1665 static void conditional_stop_bcache_device(struct cache_set *c, 1666 struct bcache_device *d, 1667 struct cached_dev *dc) 1668 { 1669 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1670 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.", 1671 d->disk->disk_name, c->sb.set_uuid); 1672 bcache_device_stop(d); 1673 } else if (atomic_read(&dc->has_dirty)) { 1674 /* 1675 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1676 * and dc->has_dirty == 1 1677 */ 1678 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.", 1679 d->disk->disk_name); 1680 /* 1681 * There might be a small time gap that cache set is 1682 * released but bcache device is not. Inside this time 1683 * gap, regular I/O requests will directly go into 1684 * backing device as no cache set attached to. This 1685 * behavior may also introduce potential inconsistence 1686 * data in writeback mode while cache is dirty. 1687 * Therefore before calling bcache_device_stop() due 1688 * to a broken cache device, dc->io_disable should be 1689 * explicitly set to true. 1690 */ 1691 dc->io_disable = true; 1692 /* make others know io_disable is true earlier */ 1693 smp_mb(); 1694 bcache_device_stop(d); 1695 } else { 1696 /* 1697 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1698 * and dc->has_dirty == 0 1699 */ 1700 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.", 1701 d->disk->disk_name); 1702 } 1703 } 1704 1705 static void __cache_set_unregister(struct closure *cl) 1706 { 1707 struct cache_set *c = container_of(cl, struct cache_set, caching); 1708 struct cached_dev *dc; 1709 struct bcache_device *d; 1710 size_t i; 1711 1712 mutex_lock(&bch_register_lock); 1713 1714 for (i = 0; i < c->devices_max_used; i++) { 1715 d = c->devices[i]; 1716 if (!d) 1717 continue; 1718 1719 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1720 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1721 dc = container_of(d, struct cached_dev, disk); 1722 bch_cached_dev_detach(dc); 1723 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1724 conditional_stop_bcache_device(c, d, dc); 1725 } else { 1726 bcache_device_stop(d); 1727 } 1728 } 1729 1730 mutex_unlock(&bch_register_lock); 1731 1732 continue_at(cl, cache_set_flush, system_wq); 1733 } 1734 1735 void bch_cache_set_stop(struct cache_set *c) 1736 { 1737 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1738 /* closure_fn set to __cache_set_unregister() */ 1739 closure_queue(&c->caching); 1740 } 1741 1742 void bch_cache_set_unregister(struct cache_set *c) 1743 { 1744 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1745 bch_cache_set_stop(c); 1746 } 1747 1748 #define alloc_bucket_pages(gfp, c) \ 1749 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1750 1751 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1752 { 1753 int iter_size; 1754 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1755 1756 if (!c) 1757 return NULL; 1758 1759 __module_get(THIS_MODULE); 1760 closure_init(&c->cl, NULL); 1761 set_closure_fn(&c->cl, cache_set_free, system_wq); 1762 1763 closure_init(&c->caching, &c->cl); 1764 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1765 1766 /* Maybe create continue_at_noreturn() and use it here? */ 1767 closure_set_stopped(&c->cl); 1768 closure_put(&c->cl); 1769 1770 kobject_init(&c->kobj, &bch_cache_set_ktype); 1771 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1772 1773 bch_cache_accounting_init(&c->accounting, &c->cl); 1774 1775 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1776 c->sb.block_size = sb->block_size; 1777 c->sb.bucket_size = sb->bucket_size; 1778 c->sb.nr_in_set = sb->nr_in_set; 1779 c->sb.last_mount = sb->last_mount; 1780 c->bucket_bits = ilog2(sb->bucket_size); 1781 c->block_bits = ilog2(sb->block_size); 1782 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1783 c->devices_max_used = 0; 1784 atomic_set(&c->attached_dev_nr, 0); 1785 c->btree_pages = bucket_pages(c); 1786 if (c->btree_pages > BTREE_MAX_PAGES) 1787 c->btree_pages = max_t(int, c->btree_pages / 4, 1788 BTREE_MAX_PAGES); 1789 1790 sema_init(&c->sb_write_mutex, 1); 1791 mutex_init(&c->bucket_lock); 1792 init_waitqueue_head(&c->btree_cache_wait); 1793 spin_lock_init(&c->btree_cannibalize_lock); 1794 init_waitqueue_head(&c->bucket_wait); 1795 init_waitqueue_head(&c->gc_wait); 1796 sema_init(&c->uuid_write_mutex, 1); 1797 1798 spin_lock_init(&c->btree_gc_time.lock); 1799 spin_lock_init(&c->btree_split_time.lock); 1800 spin_lock_init(&c->btree_read_time.lock); 1801 1802 bch_moving_init_cache_set(c); 1803 1804 INIT_LIST_HEAD(&c->list); 1805 INIT_LIST_HEAD(&c->cached_devs); 1806 INIT_LIST_HEAD(&c->btree_cache); 1807 INIT_LIST_HEAD(&c->btree_cache_freeable); 1808 INIT_LIST_HEAD(&c->btree_cache_freed); 1809 INIT_LIST_HEAD(&c->data_buckets); 1810 1811 iter_size = (sb->bucket_size / sb->block_size + 1) * 1812 sizeof(struct btree_iter_set); 1813 1814 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || 1815 mempool_init_slab_pool(&c->search, 32, bch_search_cache) || 1816 mempool_init_kmalloc_pool(&c->bio_meta, 2, 1817 sizeof(struct bbio) + sizeof(struct bio_vec) * 1818 bucket_pages(c)) || 1819 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 1820 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1821 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || 1822 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1823 !(c->moving_gc_wq = alloc_workqueue("bcache_gc", 1824 WQ_MEM_RECLAIM, 0)) || 1825 bch_journal_alloc(c) || 1826 bch_btree_cache_alloc(c) || 1827 bch_open_buckets_alloc(c) || 1828 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1829 goto err; 1830 1831 c->congested_read_threshold_us = 2000; 1832 c->congested_write_threshold_us = 20000; 1833 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1834 c->idle_max_writeback_rate_enabled = 1; 1835 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1836 1837 return c; 1838 err: 1839 bch_cache_set_unregister(c); 1840 return NULL; 1841 } 1842 1843 static int run_cache_set(struct cache_set *c) 1844 { 1845 const char *err = "cannot allocate memory"; 1846 struct cached_dev *dc, *t; 1847 struct cache *ca; 1848 struct closure cl; 1849 unsigned int i; 1850 LIST_HEAD(journal); 1851 struct journal_replay *l; 1852 1853 closure_init_stack(&cl); 1854 1855 for_each_cache(ca, c, i) 1856 c->nbuckets += ca->sb.nbuckets; 1857 set_gc_sectors(c); 1858 1859 if (CACHE_SYNC(&c->sb)) { 1860 struct bkey *k; 1861 struct jset *j; 1862 1863 err = "cannot allocate memory for journal"; 1864 if (bch_journal_read(c, &journal)) 1865 goto err; 1866 1867 pr_debug("btree_journal_read() done"); 1868 1869 err = "no journal entries found"; 1870 if (list_empty(&journal)) 1871 goto err; 1872 1873 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1874 1875 err = "IO error reading priorities"; 1876 for_each_cache(ca, c, i) 1877 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]); 1878 1879 /* 1880 * If prio_read() fails it'll call cache_set_error and we'll 1881 * tear everything down right away, but if we perhaps checked 1882 * sooner we could avoid journal replay. 1883 */ 1884 1885 k = &j->btree_root; 1886 1887 err = "bad btree root"; 1888 if (__bch_btree_ptr_invalid(c, k)) 1889 goto err; 1890 1891 err = "error reading btree root"; 1892 c->root = bch_btree_node_get(c, NULL, k, 1893 j->btree_level, 1894 true, NULL); 1895 if (IS_ERR_OR_NULL(c->root)) 1896 goto err; 1897 1898 list_del_init(&c->root->list); 1899 rw_unlock(true, c->root); 1900 1901 err = uuid_read(c, j, &cl); 1902 if (err) 1903 goto err; 1904 1905 err = "error in recovery"; 1906 if (bch_btree_check(c)) 1907 goto err; 1908 1909 /* 1910 * bch_btree_check() may occupy too much system memory which 1911 * has negative effects to user space application (e.g. data 1912 * base) performance. Shrink the mca cache memory proactively 1913 * here to avoid competing memory with user space workloads.. 1914 */ 1915 if (!c->shrinker_disabled) { 1916 struct shrink_control sc; 1917 1918 sc.gfp_mask = GFP_KERNEL; 1919 sc.nr_to_scan = c->btree_cache_used * c->btree_pages; 1920 /* first run to clear b->accessed tag */ 1921 c->shrink.scan_objects(&c->shrink, &sc); 1922 /* second run to reap non-accessed nodes */ 1923 c->shrink.scan_objects(&c->shrink, &sc); 1924 } 1925 1926 bch_journal_mark(c, &journal); 1927 bch_initial_gc_finish(c); 1928 pr_debug("btree_check() done"); 1929 1930 /* 1931 * bcache_journal_next() can't happen sooner, or 1932 * btree_gc_finish() will give spurious errors about last_gc > 1933 * gc_gen - this is a hack but oh well. 1934 */ 1935 bch_journal_next(&c->journal); 1936 1937 err = "error starting allocator thread"; 1938 for_each_cache(ca, c, i) 1939 if (bch_cache_allocator_start(ca)) 1940 goto err; 1941 1942 /* 1943 * First place it's safe to allocate: btree_check() and 1944 * btree_gc_finish() have to run before we have buckets to 1945 * allocate, and bch_bucket_alloc_set() might cause a journal 1946 * entry to be written so bcache_journal_next() has to be called 1947 * first. 1948 * 1949 * If the uuids were in the old format we have to rewrite them 1950 * before the next journal entry is written: 1951 */ 1952 if (j->version < BCACHE_JSET_VERSION_UUID) 1953 __uuid_write(c); 1954 1955 err = "bcache: replay journal failed"; 1956 if (bch_journal_replay(c, &journal)) 1957 goto err; 1958 } else { 1959 pr_notice("invalidating existing data"); 1960 1961 for_each_cache(ca, c, i) { 1962 unsigned int j; 1963 1964 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1965 2, SB_JOURNAL_BUCKETS); 1966 1967 for (j = 0; j < ca->sb.keys; j++) 1968 ca->sb.d[j] = ca->sb.first_bucket + j; 1969 } 1970 1971 bch_initial_gc_finish(c); 1972 1973 err = "error starting allocator thread"; 1974 for_each_cache(ca, c, i) 1975 if (bch_cache_allocator_start(ca)) 1976 goto err; 1977 1978 mutex_lock(&c->bucket_lock); 1979 for_each_cache(ca, c, i) 1980 bch_prio_write(ca, true); 1981 mutex_unlock(&c->bucket_lock); 1982 1983 err = "cannot allocate new UUID bucket"; 1984 if (__uuid_write(c)) 1985 goto err; 1986 1987 err = "cannot allocate new btree root"; 1988 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 1989 if (IS_ERR_OR_NULL(c->root)) 1990 goto err; 1991 1992 mutex_lock(&c->root->write_lock); 1993 bkey_copy_key(&c->root->key, &MAX_KEY); 1994 bch_btree_node_write(c->root, &cl); 1995 mutex_unlock(&c->root->write_lock); 1996 1997 bch_btree_set_root(c->root); 1998 rw_unlock(true, c->root); 1999 2000 /* 2001 * We don't want to write the first journal entry until 2002 * everything is set up - fortunately journal entries won't be 2003 * written until the SET_CACHE_SYNC() here: 2004 */ 2005 SET_CACHE_SYNC(&c->sb, true); 2006 2007 bch_journal_next(&c->journal); 2008 bch_journal_meta(c, &cl); 2009 } 2010 2011 err = "error starting gc thread"; 2012 if (bch_gc_thread_start(c)) 2013 goto err; 2014 2015 closure_sync(&cl); 2016 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2017 bcache_write_super(c); 2018 2019 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2020 bch_cached_dev_attach(dc, c, NULL); 2021 2022 flash_devs_run(c); 2023 2024 set_bit(CACHE_SET_RUNNING, &c->flags); 2025 return 0; 2026 err: 2027 while (!list_empty(&journal)) { 2028 l = list_first_entry(&journal, struct journal_replay, list); 2029 list_del(&l->list); 2030 kfree(l); 2031 } 2032 2033 closure_sync(&cl); 2034 2035 bch_cache_set_error(c, "%s", err); 2036 2037 return -EIO; 2038 } 2039 2040 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2041 { 2042 return ca->sb.block_size == c->sb.block_size && 2043 ca->sb.bucket_size == c->sb.bucket_size && 2044 ca->sb.nr_in_set == c->sb.nr_in_set; 2045 } 2046 2047 static const char *register_cache_set(struct cache *ca) 2048 { 2049 char buf[12]; 2050 const char *err = "cannot allocate memory"; 2051 struct cache_set *c; 2052 2053 list_for_each_entry(c, &bch_cache_sets, list) 2054 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2055 if (c->cache[ca->sb.nr_this_dev]) 2056 return "duplicate cache set member"; 2057 2058 if (!can_attach_cache(ca, c)) 2059 return "cache sb does not match set"; 2060 2061 if (!CACHE_SYNC(&ca->sb)) 2062 SET_CACHE_SYNC(&c->sb, false); 2063 2064 goto found; 2065 } 2066 2067 c = bch_cache_set_alloc(&ca->sb); 2068 if (!c) 2069 return err; 2070 2071 err = "error creating kobject"; 2072 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2073 kobject_add(&c->internal, &c->kobj, "internal")) 2074 goto err; 2075 2076 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2077 goto err; 2078 2079 bch_debug_init_cache_set(c); 2080 2081 list_add(&c->list, &bch_cache_sets); 2082 found: 2083 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2084 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2085 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2086 goto err; 2087 2088 if (ca->sb.seq > c->sb.seq) { 2089 c->sb.version = ca->sb.version; 2090 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2091 c->sb.flags = ca->sb.flags; 2092 c->sb.seq = ca->sb.seq; 2093 pr_debug("set version = %llu", c->sb.version); 2094 } 2095 2096 kobject_get(&ca->kobj); 2097 ca->set = c; 2098 ca->set->cache[ca->sb.nr_this_dev] = ca; 2099 c->cache_by_alloc[c->caches_loaded++] = ca; 2100 2101 if (c->caches_loaded == c->sb.nr_in_set) { 2102 err = "failed to run cache set"; 2103 if (run_cache_set(c) < 0) 2104 goto err; 2105 } 2106 2107 return NULL; 2108 err: 2109 bch_cache_set_unregister(c); 2110 return err; 2111 } 2112 2113 /* Cache device */ 2114 2115 /* When ca->kobj released */ 2116 void bch_cache_release(struct kobject *kobj) 2117 { 2118 struct cache *ca = container_of(kobj, struct cache, kobj); 2119 unsigned int i; 2120 2121 if (ca->set) { 2122 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2123 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2124 } 2125 2126 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 2127 kfree(ca->prio_buckets); 2128 vfree(ca->buckets); 2129 2130 free_heap(&ca->heap); 2131 free_fifo(&ca->free_inc); 2132 2133 for (i = 0; i < RESERVE_NR; i++) 2134 free_fifo(&ca->free[i]); 2135 2136 if (ca->sb_disk) 2137 put_page(virt_to_page(ca->sb_disk)); 2138 2139 if (!IS_ERR_OR_NULL(ca->bdev)) 2140 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2141 2142 kfree(ca); 2143 module_put(THIS_MODULE); 2144 } 2145 2146 static int cache_alloc(struct cache *ca) 2147 { 2148 size_t free; 2149 size_t btree_buckets; 2150 struct bucket *b; 2151 int ret = -ENOMEM; 2152 const char *err = NULL; 2153 2154 __module_get(THIS_MODULE); 2155 kobject_init(&ca->kobj, &bch_cache_ktype); 2156 2157 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2158 2159 /* 2160 * when ca->sb.njournal_buckets is not zero, journal exists, 2161 * and in bch_journal_replay(), tree node may split, 2162 * so bucket of RESERVE_BTREE type is needed, 2163 * the worst situation is all journal buckets are valid journal, 2164 * and all the keys need to replay, 2165 * so the number of RESERVE_BTREE type buckets should be as much 2166 * as journal buckets 2167 */ 2168 btree_buckets = ca->sb.njournal_buckets ?: 8; 2169 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2170 if (!free) { 2171 ret = -EPERM; 2172 err = "ca->sb.nbuckets is too small"; 2173 goto err_free; 2174 } 2175 2176 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2177 GFP_KERNEL)) { 2178 err = "ca->free[RESERVE_BTREE] alloc failed"; 2179 goto err_btree_alloc; 2180 } 2181 2182 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2183 GFP_KERNEL)) { 2184 err = "ca->free[RESERVE_PRIO] alloc failed"; 2185 goto err_prio_alloc; 2186 } 2187 2188 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2189 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2190 goto err_movinggc_alloc; 2191 } 2192 2193 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2194 err = "ca->free[RESERVE_NONE] alloc failed"; 2195 goto err_none_alloc; 2196 } 2197 2198 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2199 err = "ca->free_inc alloc failed"; 2200 goto err_free_inc_alloc; 2201 } 2202 2203 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2204 err = "ca->heap alloc failed"; 2205 goto err_heap_alloc; 2206 } 2207 2208 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2209 ca->sb.nbuckets)); 2210 if (!ca->buckets) { 2211 err = "ca->buckets alloc failed"; 2212 goto err_buckets_alloc; 2213 } 2214 2215 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2216 prio_buckets(ca), 2), 2217 GFP_KERNEL); 2218 if (!ca->prio_buckets) { 2219 err = "ca->prio_buckets alloc failed"; 2220 goto err_prio_buckets_alloc; 2221 } 2222 2223 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); 2224 if (!ca->disk_buckets) { 2225 err = "ca->disk_buckets alloc failed"; 2226 goto err_disk_buckets_alloc; 2227 } 2228 2229 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2230 2231 for_each_bucket(b, ca) 2232 atomic_set(&b->pin, 0); 2233 return 0; 2234 2235 err_disk_buckets_alloc: 2236 kfree(ca->prio_buckets); 2237 err_prio_buckets_alloc: 2238 vfree(ca->buckets); 2239 err_buckets_alloc: 2240 free_heap(&ca->heap); 2241 err_heap_alloc: 2242 free_fifo(&ca->free_inc); 2243 err_free_inc_alloc: 2244 free_fifo(&ca->free[RESERVE_NONE]); 2245 err_none_alloc: 2246 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2247 err_movinggc_alloc: 2248 free_fifo(&ca->free[RESERVE_PRIO]); 2249 err_prio_alloc: 2250 free_fifo(&ca->free[RESERVE_BTREE]); 2251 err_btree_alloc: 2252 err_free: 2253 module_put(THIS_MODULE); 2254 if (err) 2255 pr_notice("error %s: %s", ca->cache_dev_name, err); 2256 return ret; 2257 } 2258 2259 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2260 struct block_device *bdev, struct cache *ca) 2261 { 2262 const char *err = NULL; /* must be set for any error case */ 2263 int ret = 0; 2264 2265 bdevname(bdev, ca->cache_dev_name); 2266 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2267 ca->bdev = bdev; 2268 ca->bdev->bd_holder = ca; 2269 ca->sb_disk = sb_disk; 2270 2271 if (blk_queue_discard(bdev_get_queue(bdev))) 2272 ca->discard = CACHE_DISCARD(&ca->sb); 2273 2274 ret = cache_alloc(ca); 2275 if (ret != 0) { 2276 /* 2277 * If we failed here, it means ca->kobj is not initialized yet, 2278 * kobject_put() won't be called and there is no chance to 2279 * call blkdev_put() to bdev in bch_cache_release(). So we 2280 * explicitly call blkdev_put() here. 2281 */ 2282 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2283 if (ret == -ENOMEM) 2284 err = "cache_alloc(): -ENOMEM"; 2285 else if (ret == -EPERM) 2286 err = "cache_alloc(): cache device is too small"; 2287 else 2288 err = "cache_alloc(): unknown error"; 2289 goto err; 2290 } 2291 2292 if (kobject_add(&ca->kobj, 2293 &part_to_dev(bdev->bd_part)->kobj, 2294 "bcache")) { 2295 err = "error calling kobject_add"; 2296 ret = -ENOMEM; 2297 goto out; 2298 } 2299 2300 mutex_lock(&bch_register_lock); 2301 err = register_cache_set(ca); 2302 mutex_unlock(&bch_register_lock); 2303 2304 if (err) { 2305 ret = -ENODEV; 2306 goto out; 2307 } 2308 2309 pr_info("registered cache device %s", ca->cache_dev_name); 2310 2311 out: 2312 kobject_put(&ca->kobj); 2313 2314 err: 2315 if (err) 2316 pr_notice("error %s: %s", ca->cache_dev_name, err); 2317 2318 return ret; 2319 } 2320 2321 /* Global interfaces/init */ 2322 2323 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2324 const char *buffer, size_t size); 2325 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2326 struct kobj_attribute *attr, 2327 const char *buffer, size_t size); 2328 2329 kobj_attribute_write(register, register_bcache); 2330 kobj_attribute_write(register_quiet, register_bcache); 2331 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2332 2333 static bool bch_is_open_backing(struct block_device *bdev) 2334 { 2335 struct cache_set *c, *tc; 2336 struct cached_dev *dc, *t; 2337 2338 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2339 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2340 if (dc->bdev == bdev) 2341 return true; 2342 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2343 if (dc->bdev == bdev) 2344 return true; 2345 return false; 2346 } 2347 2348 static bool bch_is_open_cache(struct block_device *bdev) 2349 { 2350 struct cache_set *c, *tc; 2351 struct cache *ca; 2352 unsigned int i; 2353 2354 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2355 for_each_cache(ca, c, i) 2356 if (ca->bdev == bdev) 2357 return true; 2358 return false; 2359 } 2360 2361 static bool bch_is_open(struct block_device *bdev) 2362 { 2363 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2364 } 2365 2366 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2367 const char *buffer, size_t size) 2368 { 2369 const char *err; 2370 char *path = NULL; 2371 struct cache_sb *sb; 2372 struct cache_sb_disk *sb_disk; 2373 struct block_device *bdev; 2374 ssize_t ret; 2375 2376 ret = -EBUSY; 2377 err = "failed to reference bcache module"; 2378 if (!try_module_get(THIS_MODULE)) 2379 goto out; 2380 2381 /* For latest state of bcache_is_reboot */ 2382 smp_mb(); 2383 err = "bcache is in reboot"; 2384 if (bcache_is_reboot) 2385 goto out_module_put; 2386 2387 ret = -ENOMEM; 2388 err = "cannot allocate memory"; 2389 path = kstrndup(buffer, size, GFP_KERNEL); 2390 if (!path) 2391 goto out_module_put; 2392 2393 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2394 if (!sb) 2395 goto out_free_path; 2396 2397 ret = -EINVAL; 2398 err = "failed to open device"; 2399 bdev = blkdev_get_by_path(strim(path), 2400 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2401 sb); 2402 if (IS_ERR(bdev)) { 2403 if (bdev == ERR_PTR(-EBUSY)) { 2404 bdev = lookup_bdev(strim(path)); 2405 mutex_lock(&bch_register_lock); 2406 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2407 err = "device already registered"; 2408 else 2409 err = "device busy"; 2410 mutex_unlock(&bch_register_lock); 2411 if (!IS_ERR(bdev)) 2412 bdput(bdev); 2413 if (attr == &ksysfs_register_quiet) 2414 goto done; 2415 } 2416 goto out_free_sb; 2417 } 2418 2419 err = "failed to set blocksize"; 2420 if (set_blocksize(bdev, 4096)) 2421 goto out_blkdev_put; 2422 2423 err = read_super(sb, bdev, &sb_disk); 2424 if (err) 2425 goto out_blkdev_put; 2426 2427 err = "failed to register device"; 2428 if (SB_IS_BDEV(sb)) { 2429 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2430 2431 if (!dc) 2432 goto out_put_sb_page; 2433 2434 mutex_lock(&bch_register_lock); 2435 ret = register_bdev(sb, sb_disk, bdev, dc); 2436 mutex_unlock(&bch_register_lock); 2437 /* blkdev_put() will be called in cached_dev_free() */ 2438 if (ret < 0) 2439 goto out_free_sb; 2440 } else { 2441 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2442 2443 if (!ca) 2444 goto out_put_sb_page; 2445 2446 /* blkdev_put() will be called in bch_cache_release() */ 2447 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2448 goto out_free_sb; 2449 } 2450 2451 done: 2452 kfree(sb); 2453 kfree(path); 2454 module_put(THIS_MODULE); 2455 return size; 2456 2457 out_put_sb_page: 2458 put_page(virt_to_page(sb_disk)); 2459 out_blkdev_put: 2460 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2461 out_free_sb: 2462 kfree(sb); 2463 out_free_path: 2464 kfree(path); 2465 path = NULL; 2466 out_module_put: 2467 module_put(THIS_MODULE); 2468 out: 2469 pr_info("error %s: %s", path?path:"", err); 2470 return ret; 2471 } 2472 2473 2474 struct pdev { 2475 struct list_head list; 2476 struct cached_dev *dc; 2477 }; 2478 2479 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2480 struct kobj_attribute *attr, 2481 const char *buffer, 2482 size_t size) 2483 { 2484 LIST_HEAD(pending_devs); 2485 ssize_t ret = size; 2486 struct cached_dev *dc, *tdc; 2487 struct pdev *pdev, *tpdev; 2488 struct cache_set *c, *tc; 2489 2490 mutex_lock(&bch_register_lock); 2491 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2492 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2493 if (!pdev) 2494 break; 2495 pdev->dc = dc; 2496 list_add(&pdev->list, &pending_devs); 2497 } 2498 2499 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2500 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2501 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2502 char *set_uuid = c->sb.uuid; 2503 2504 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2505 list_del(&pdev->list); 2506 kfree(pdev); 2507 break; 2508 } 2509 } 2510 } 2511 mutex_unlock(&bch_register_lock); 2512 2513 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2514 pr_info("delete pdev %p", pdev); 2515 list_del(&pdev->list); 2516 bcache_device_stop(&pdev->dc->disk); 2517 kfree(pdev); 2518 } 2519 2520 return ret; 2521 } 2522 2523 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2524 { 2525 if (bcache_is_reboot) 2526 return NOTIFY_DONE; 2527 2528 if (code == SYS_DOWN || 2529 code == SYS_HALT || 2530 code == SYS_POWER_OFF) { 2531 DEFINE_WAIT(wait); 2532 unsigned long start = jiffies; 2533 bool stopped = false; 2534 2535 struct cache_set *c, *tc; 2536 struct cached_dev *dc, *tdc; 2537 2538 mutex_lock(&bch_register_lock); 2539 2540 if (bcache_is_reboot) 2541 goto out; 2542 2543 /* New registration is rejected since now */ 2544 bcache_is_reboot = true; 2545 /* 2546 * Make registering caller (if there is) on other CPU 2547 * core know bcache_is_reboot set to true earlier 2548 */ 2549 smp_mb(); 2550 2551 if (list_empty(&bch_cache_sets) && 2552 list_empty(&uncached_devices)) 2553 goto out; 2554 2555 mutex_unlock(&bch_register_lock); 2556 2557 pr_info("Stopping all devices:"); 2558 2559 /* 2560 * The reason bch_register_lock is not held to call 2561 * bch_cache_set_stop() and bcache_device_stop() is to 2562 * avoid potential deadlock during reboot, because cache 2563 * set or bcache device stopping process will acqurie 2564 * bch_register_lock too. 2565 * 2566 * We are safe here because bcache_is_reboot sets to 2567 * true already, register_bcache() will reject new 2568 * registration now. bcache_is_reboot also makes sure 2569 * bcache_reboot() won't be re-entered on by other thread, 2570 * so there is no race in following list iteration by 2571 * list_for_each_entry_safe(). 2572 */ 2573 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2574 bch_cache_set_stop(c); 2575 2576 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2577 bcache_device_stop(&dc->disk); 2578 2579 2580 /* 2581 * Give an early chance for other kthreads and 2582 * kworkers to stop themselves 2583 */ 2584 schedule(); 2585 2586 /* What's a condition variable? */ 2587 while (1) { 2588 long timeout = start + 10 * HZ - jiffies; 2589 2590 mutex_lock(&bch_register_lock); 2591 stopped = list_empty(&bch_cache_sets) && 2592 list_empty(&uncached_devices); 2593 2594 if (timeout < 0 || stopped) 2595 break; 2596 2597 prepare_to_wait(&unregister_wait, &wait, 2598 TASK_UNINTERRUPTIBLE); 2599 2600 mutex_unlock(&bch_register_lock); 2601 schedule_timeout(timeout); 2602 } 2603 2604 finish_wait(&unregister_wait, &wait); 2605 2606 if (stopped) 2607 pr_info("All devices stopped"); 2608 else 2609 pr_notice("Timeout waiting for devices to be closed"); 2610 out: 2611 mutex_unlock(&bch_register_lock); 2612 } 2613 2614 return NOTIFY_DONE; 2615 } 2616 2617 static struct notifier_block reboot = { 2618 .notifier_call = bcache_reboot, 2619 .priority = INT_MAX, /* before any real devices */ 2620 }; 2621 2622 static void bcache_exit(void) 2623 { 2624 bch_debug_exit(); 2625 bch_request_exit(); 2626 if (bcache_kobj) 2627 kobject_put(bcache_kobj); 2628 if (bcache_wq) 2629 destroy_workqueue(bcache_wq); 2630 if (bch_journal_wq) 2631 destroy_workqueue(bch_journal_wq); 2632 2633 if (bcache_major) 2634 unregister_blkdev(bcache_major, "bcache"); 2635 unregister_reboot_notifier(&reboot); 2636 mutex_destroy(&bch_register_lock); 2637 } 2638 2639 /* Check and fixup module parameters */ 2640 static void check_module_parameters(void) 2641 { 2642 if (bch_cutoff_writeback_sync == 0) 2643 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2644 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2645 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u", 2646 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2647 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2648 } 2649 2650 if (bch_cutoff_writeback == 0) 2651 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2652 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2653 pr_warn("set bch_cutoff_writeback (%u) to max value %u", 2654 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2655 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2656 } 2657 2658 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2659 pr_warn("set bch_cutoff_writeback (%u) to %u", 2660 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2661 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2662 } 2663 } 2664 2665 static int __init bcache_init(void) 2666 { 2667 static const struct attribute *files[] = { 2668 &ksysfs_register.attr, 2669 &ksysfs_register_quiet.attr, 2670 &ksysfs_pendings_cleanup.attr, 2671 NULL 2672 }; 2673 2674 check_module_parameters(); 2675 2676 mutex_init(&bch_register_lock); 2677 init_waitqueue_head(&unregister_wait); 2678 register_reboot_notifier(&reboot); 2679 2680 bcache_major = register_blkdev(0, "bcache"); 2681 if (bcache_major < 0) { 2682 unregister_reboot_notifier(&reboot); 2683 mutex_destroy(&bch_register_lock); 2684 return bcache_major; 2685 } 2686 2687 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2688 if (!bcache_wq) 2689 goto err; 2690 2691 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2692 if (!bch_journal_wq) 2693 goto err; 2694 2695 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2696 if (!bcache_kobj) 2697 goto err; 2698 2699 if (bch_request_init() || 2700 sysfs_create_files(bcache_kobj, files)) 2701 goto err; 2702 2703 bch_debug_init(); 2704 closure_debug_init(); 2705 2706 bcache_is_reboot = false; 2707 2708 return 0; 2709 err: 2710 bcache_exit(); 2711 return -ENOMEM; 2712 } 2713 2714 /* 2715 * Module hooks 2716 */ 2717 module_exit(bcache_exit); 2718 module_init(bcache_init); 2719 2720 module_param(bch_cutoff_writeback, uint, 0); 2721 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2722 2723 module_param(bch_cutoff_writeback_sync, uint, 0); 2724 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2725 2726 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2727 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2728 MODULE_LICENSE("GPL"); 2729