xref: /openbmc/linux/drivers/md/bcache/super.c (revision a8da474e)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 	"default",
43 	"writethrough",
44 	"writeback",
45 	"writearound",
46 	"none",
47 	NULL
48 };
49 
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54 
55 static int bcache_major;
56 static DEFINE_IDA(bcache_minor);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59 
60 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
61 
62 /* Superblock */
63 
64 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
65 			      struct page **res)
66 {
67 	const char *err;
68 	struct cache_sb *s;
69 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
70 	unsigned i;
71 
72 	if (!bh)
73 		return "IO error";
74 
75 	s = (struct cache_sb *) bh->b_data;
76 
77 	sb->offset		= le64_to_cpu(s->offset);
78 	sb->version		= le64_to_cpu(s->version);
79 
80 	memcpy(sb->magic,	s->magic, 16);
81 	memcpy(sb->uuid,	s->uuid, 16);
82 	memcpy(sb->set_uuid,	s->set_uuid, 16);
83 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
84 
85 	sb->flags		= le64_to_cpu(s->flags);
86 	sb->seq			= le64_to_cpu(s->seq);
87 	sb->last_mount		= le32_to_cpu(s->last_mount);
88 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
89 	sb->keys		= le16_to_cpu(s->keys);
90 
91 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
92 		sb->d[i] = le64_to_cpu(s->d[i]);
93 
94 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
95 		 sb->version, sb->flags, sb->seq, sb->keys);
96 
97 	err = "Not a bcache superblock";
98 	if (sb->offset != SB_SECTOR)
99 		goto err;
100 
101 	if (memcmp(sb->magic, bcache_magic, 16))
102 		goto err;
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Bad checksum";
109 	if (s->csum != csum_set(s))
110 		goto err;
111 
112 	err = "Bad UUID";
113 	if (bch_is_zero(sb->uuid, 16))
114 		goto err;
115 
116 	sb->block_size	= le16_to_cpu(s->block_size);
117 
118 	err = "Superblock block size smaller than device block size";
119 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 		goto err;
121 
122 	switch (sb->version) {
123 	case BCACHE_SB_VERSION_BDEV:
124 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
125 		break;
126 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 		sb->data_offset	= le64_to_cpu(s->data_offset);
128 
129 		err = "Bad data offset";
130 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 			goto err;
132 
133 		break;
134 	case BCACHE_SB_VERSION_CDEV:
135 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
137 		sb->block_size	= le16_to_cpu(s->block_size);
138 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
139 
140 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
141 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
142 
143 		err = "Too many buckets";
144 		if (sb->nbuckets > LONG_MAX)
145 			goto err;
146 
147 		err = "Not enough buckets";
148 		if (sb->nbuckets < 1 << 7)
149 			goto err;
150 
151 		err = "Bad block/bucket size";
152 		if (!is_power_of_2(sb->block_size) ||
153 		    sb->block_size > PAGE_SECTORS ||
154 		    !is_power_of_2(sb->bucket_size) ||
155 		    sb->bucket_size < PAGE_SECTORS)
156 			goto err;
157 
158 		err = "Invalid superblock: device too small";
159 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
160 			goto err;
161 
162 		err = "Bad UUID";
163 		if (bch_is_zero(sb->set_uuid, 16))
164 			goto err;
165 
166 		err = "Bad cache device number in set";
167 		if (!sb->nr_in_set ||
168 		    sb->nr_in_set <= sb->nr_this_dev ||
169 		    sb->nr_in_set > MAX_CACHES_PER_SET)
170 			goto err;
171 
172 		err = "Journal buckets not sequential";
173 		for (i = 0; i < sb->keys; i++)
174 			if (sb->d[i] != sb->first_bucket + i)
175 				goto err;
176 
177 		err = "Too many journal buckets";
178 		if (sb->first_bucket + sb->keys > sb->nbuckets)
179 			goto err;
180 
181 		err = "Invalid superblock: first bucket comes before end of super";
182 		if (sb->first_bucket * sb->bucket_size < 16)
183 			goto err;
184 
185 		break;
186 	default:
187 		err = "Unsupported superblock version";
188 		goto err;
189 	}
190 
191 	sb->last_mount = get_seconds();
192 	err = NULL;
193 
194 	get_page(bh->b_page);
195 	*res = bh->b_page;
196 err:
197 	put_bh(bh);
198 	return err;
199 }
200 
201 static void write_bdev_super_endio(struct bio *bio)
202 {
203 	struct cached_dev *dc = bio->bi_private;
204 	/* XXX: error checking */
205 
206 	closure_put(&dc->sb_write);
207 }
208 
209 static void __write_super(struct cache_sb *sb, struct bio *bio)
210 {
211 	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
212 	unsigned i;
213 
214 	bio->bi_iter.bi_sector	= SB_SECTOR;
215 	bio->bi_rw		= REQ_SYNC|REQ_META;
216 	bio->bi_iter.bi_size	= SB_SIZE;
217 	bch_bio_map(bio, NULL);
218 
219 	out->offset		= cpu_to_le64(sb->offset);
220 	out->version		= cpu_to_le64(sb->version);
221 
222 	memcpy(out->uuid,	sb->uuid, 16);
223 	memcpy(out->set_uuid,	sb->set_uuid, 16);
224 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
225 
226 	out->flags		= cpu_to_le64(sb->flags);
227 	out->seq		= cpu_to_le64(sb->seq);
228 
229 	out->last_mount		= cpu_to_le32(sb->last_mount);
230 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
231 	out->keys		= cpu_to_le16(sb->keys);
232 
233 	for (i = 0; i < sb->keys; i++)
234 		out->d[i] = cpu_to_le64(sb->d[i]);
235 
236 	out->csum = csum_set(out);
237 
238 	pr_debug("ver %llu, flags %llu, seq %llu",
239 		 sb->version, sb->flags, sb->seq);
240 
241 	submit_bio(REQ_WRITE, bio);
242 }
243 
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247 
248 	up(&dc->sb_write_mutex);
249 }
250 
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 	struct closure *cl = &dc->sb_write;
254 	struct bio *bio = &dc->sb_bio;
255 
256 	down(&dc->sb_write_mutex);
257 	closure_init(cl, parent);
258 
259 	bio_reset(bio);
260 	bio->bi_bdev	= dc->bdev;
261 	bio->bi_end_io	= write_bdev_super_endio;
262 	bio->bi_private = dc;
263 
264 	closure_get(cl);
265 	__write_super(&dc->sb, bio);
266 
267 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269 
270 static void write_super_endio(struct bio *bio)
271 {
272 	struct cache *ca = bio->bi_private;
273 
274 	bch_count_io_errors(ca, bio->bi_error, "writing superblock");
275 	closure_put(&ca->set->sb_write);
276 }
277 
278 static void bcache_write_super_unlock(struct closure *cl)
279 {
280 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
281 
282 	up(&c->sb_write_mutex);
283 }
284 
285 void bcache_write_super(struct cache_set *c)
286 {
287 	struct closure *cl = &c->sb_write;
288 	struct cache *ca;
289 	unsigned i;
290 
291 	down(&c->sb_write_mutex);
292 	closure_init(cl, &c->cl);
293 
294 	c->sb.seq++;
295 
296 	for_each_cache(ca, c, i) {
297 		struct bio *bio = &ca->sb_bio;
298 
299 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
300 		ca->sb.seq		= c->sb.seq;
301 		ca->sb.last_mount	= c->sb.last_mount;
302 
303 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
304 
305 		bio_reset(bio);
306 		bio->bi_bdev	= ca->bdev;
307 		bio->bi_end_io	= write_super_endio;
308 		bio->bi_private = ca;
309 
310 		closure_get(cl);
311 		__write_super(&ca->sb, bio);
312 	}
313 
314 	closure_return_with_destructor(cl, bcache_write_super_unlock);
315 }
316 
317 /* UUID io */
318 
319 static void uuid_endio(struct bio *bio)
320 {
321 	struct closure *cl = bio->bi_private;
322 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
323 
324 	cache_set_err_on(bio->bi_error, c, "accessing uuids");
325 	bch_bbio_free(bio, c);
326 	closure_put(cl);
327 }
328 
329 static void uuid_io_unlock(struct closure *cl)
330 {
331 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
332 
333 	up(&c->uuid_write_mutex);
334 }
335 
336 static void uuid_io(struct cache_set *c, unsigned long rw,
337 		    struct bkey *k, struct closure *parent)
338 {
339 	struct closure *cl = &c->uuid_write;
340 	struct uuid_entry *u;
341 	unsigned i;
342 	char buf[80];
343 
344 	BUG_ON(!parent);
345 	down(&c->uuid_write_mutex);
346 	closure_init(cl, parent);
347 
348 	for (i = 0; i < KEY_PTRS(k); i++) {
349 		struct bio *bio = bch_bbio_alloc(c);
350 
351 		bio->bi_rw	= REQ_SYNC|REQ_META|rw;
352 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
353 
354 		bio->bi_end_io	= uuid_endio;
355 		bio->bi_private = cl;
356 		bch_bio_map(bio, c->uuids);
357 
358 		bch_submit_bbio(bio, c, k, i);
359 
360 		if (!(rw & WRITE))
361 			break;
362 	}
363 
364 	bch_extent_to_text(buf, sizeof(buf), k);
365 	pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
366 
367 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 		if (!bch_is_zero(u->uuid, 16))
369 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 				 u - c->uuids, u->uuid, u->label,
371 				 u->first_reg, u->last_reg, u->invalidated);
372 
373 	closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375 
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 	struct bkey *k = &j->uuid_bucket;
379 
380 	if (__bch_btree_ptr_invalid(c, k))
381 		return "bad uuid pointer";
382 
383 	bkey_copy(&c->uuid_bucket, k);
384 	uuid_io(c, READ_SYNC, k, cl);
385 
386 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
388 		struct uuid_entry	*u1 = (void *) c->uuids;
389 		int i;
390 
391 		closure_sync(cl);
392 
393 		/*
394 		 * Since the new uuid entry is bigger than the old, we have to
395 		 * convert starting at the highest memory address and work down
396 		 * in order to do it in place
397 		 */
398 
399 		for (i = c->nr_uuids - 1;
400 		     i >= 0;
401 		     --i) {
402 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
403 			memcpy(u1[i].label,	u0[i].label, 32);
404 
405 			u1[i].first_reg		= u0[i].first_reg;
406 			u1[i].last_reg		= u0[i].last_reg;
407 			u1[i].invalidated	= u0[i].invalidated;
408 
409 			u1[i].flags	= 0;
410 			u1[i].sectors	= 0;
411 		}
412 	}
413 
414 	return NULL;
415 }
416 
417 static int __uuid_write(struct cache_set *c)
418 {
419 	BKEY_PADDED(key) k;
420 	struct closure cl;
421 	closure_init_stack(&cl);
422 
423 	lockdep_assert_held(&bch_register_lock);
424 
425 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426 		return 1;
427 
428 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429 	uuid_io(c, REQ_WRITE, &k.key, &cl);
430 	closure_sync(&cl);
431 
432 	bkey_copy(&c->uuid_bucket, &k.key);
433 	bkey_put(c, &k.key);
434 	return 0;
435 }
436 
437 int bch_uuid_write(struct cache_set *c)
438 {
439 	int ret = __uuid_write(c);
440 
441 	if (!ret)
442 		bch_journal_meta(c, NULL);
443 
444 	return ret;
445 }
446 
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449 	struct uuid_entry *u;
450 
451 	for (u = c->uuids;
452 	     u < c->uuids + c->nr_uuids; u++)
453 		if (!memcmp(u->uuid, uuid, 16))
454 			return u;
455 
456 	return NULL;
457 }
458 
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462 	return uuid_find(c, zero_uuid);
463 }
464 
465 /*
466  * Bucket priorities/gens:
467  *
468  * For each bucket, we store on disk its
469    * 8 bit gen
470    * 16 bit priority
471  *
472  * See alloc.c for an explanation of the gen. The priority is used to implement
473  * lru (and in the future other) cache replacement policies; for most purposes
474  * it's just an opaque integer.
475  *
476  * The gens and the priorities don't have a whole lot to do with each other, and
477  * it's actually the gens that must be written out at specific times - it's no
478  * big deal if the priorities don't get written, if we lose them we just reuse
479  * buckets in suboptimal order.
480  *
481  * On disk they're stored in a packed array, and in as many buckets are required
482  * to fit them all. The buckets we use to store them form a list; the journal
483  * header points to the first bucket, the first bucket points to the second
484  * bucket, et cetera.
485  *
486  * This code is used by the allocation code; periodically (whenever it runs out
487  * of buckets to allocate from) the allocation code will invalidate some
488  * buckets, but it can't use those buckets until their new gens are safely on
489  * disk.
490  */
491 
492 static void prio_endio(struct bio *bio)
493 {
494 	struct cache *ca = bio->bi_private;
495 
496 	cache_set_err_on(bio->bi_error, ca->set, "accessing priorities");
497 	bch_bbio_free(bio, ca->set);
498 	closure_put(&ca->prio);
499 }
500 
501 static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
502 {
503 	struct closure *cl = &ca->prio;
504 	struct bio *bio = bch_bbio_alloc(ca->set);
505 
506 	closure_init_stack(cl);
507 
508 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
509 	bio->bi_bdev		= ca->bdev;
510 	bio->bi_rw		= REQ_SYNC|REQ_META|rw;
511 	bio->bi_iter.bi_size	= bucket_bytes(ca);
512 
513 	bio->bi_end_io	= prio_endio;
514 	bio->bi_private = ca;
515 	bch_bio_map(bio, ca->disk_buckets);
516 
517 	closure_bio_submit(bio, &ca->prio);
518 	closure_sync(cl);
519 }
520 
521 void bch_prio_write(struct cache *ca)
522 {
523 	int i;
524 	struct bucket *b;
525 	struct closure cl;
526 
527 	closure_init_stack(&cl);
528 
529 	lockdep_assert_held(&ca->set->bucket_lock);
530 
531 	ca->disk_buckets->seq++;
532 
533 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
534 			&ca->meta_sectors_written);
535 
536 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
537 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
538 
539 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
540 		long bucket;
541 		struct prio_set *p = ca->disk_buckets;
542 		struct bucket_disk *d = p->data;
543 		struct bucket_disk *end = d + prios_per_bucket(ca);
544 
545 		for (b = ca->buckets + i * prios_per_bucket(ca);
546 		     b < ca->buckets + ca->sb.nbuckets && d < end;
547 		     b++, d++) {
548 			d->prio = cpu_to_le16(b->prio);
549 			d->gen = b->gen;
550 		}
551 
552 		p->next_bucket	= ca->prio_buckets[i + 1];
553 		p->magic	= pset_magic(&ca->sb);
554 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
555 
556 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
557 		BUG_ON(bucket == -1);
558 
559 		mutex_unlock(&ca->set->bucket_lock);
560 		prio_io(ca, bucket, REQ_WRITE);
561 		mutex_lock(&ca->set->bucket_lock);
562 
563 		ca->prio_buckets[i] = bucket;
564 		atomic_dec_bug(&ca->buckets[bucket].pin);
565 	}
566 
567 	mutex_unlock(&ca->set->bucket_lock);
568 
569 	bch_journal_meta(ca->set, &cl);
570 	closure_sync(&cl);
571 
572 	mutex_lock(&ca->set->bucket_lock);
573 
574 	/*
575 	 * Don't want the old priorities to get garbage collected until after we
576 	 * finish writing the new ones, and they're journalled
577 	 */
578 	for (i = 0; i < prio_buckets(ca); i++) {
579 		if (ca->prio_last_buckets[i])
580 			__bch_bucket_free(ca,
581 				&ca->buckets[ca->prio_last_buckets[i]]);
582 
583 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
584 	}
585 }
586 
587 static void prio_read(struct cache *ca, uint64_t bucket)
588 {
589 	struct prio_set *p = ca->disk_buckets;
590 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
591 	struct bucket *b;
592 	unsigned bucket_nr = 0;
593 
594 	for (b = ca->buckets;
595 	     b < ca->buckets + ca->sb.nbuckets;
596 	     b++, d++) {
597 		if (d == end) {
598 			ca->prio_buckets[bucket_nr] = bucket;
599 			ca->prio_last_buckets[bucket_nr] = bucket;
600 			bucket_nr++;
601 
602 			prio_io(ca, bucket, READ_SYNC);
603 
604 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
605 				pr_warn("bad csum reading priorities");
606 
607 			if (p->magic != pset_magic(&ca->sb))
608 				pr_warn("bad magic reading priorities");
609 
610 			bucket = p->next_bucket;
611 			d = p->data;
612 		}
613 
614 		b->prio = le16_to_cpu(d->prio);
615 		b->gen = b->last_gc = d->gen;
616 	}
617 }
618 
619 /* Bcache device */
620 
621 static int open_dev(struct block_device *b, fmode_t mode)
622 {
623 	struct bcache_device *d = b->bd_disk->private_data;
624 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
625 		return -ENXIO;
626 
627 	closure_get(&d->cl);
628 	return 0;
629 }
630 
631 static void release_dev(struct gendisk *b, fmode_t mode)
632 {
633 	struct bcache_device *d = b->private_data;
634 	closure_put(&d->cl);
635 }
636 
637 static int ioctl_dev(struct block_device *b, fmode_t mode,
638 		     unsigned int cmd, unsigned long arg)
639 {
640 	struct bcache_device *d = b->bd_disk->private_data;
641 	return d->ioctl(d, mode, cmd, arg);
642 }
643 
644 static const struct block_device_operations bcache_ops = {
645 	.open		= open_dev,
646 	.release	= release_dev,
647 	.ioctl		= ioctl_dev,
648 	.owner		= THIS_MODULE,
649 };
650 
651 void bcache_device_stop(struct bcache_device *d)
652 {
653 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
654 		closure_queue(&d->cl);
655 }
656 
657 static void bcache_device_unlink(struct bcache_device *d)
658 {
659 	lockdep_assert_held(&bch_register_lock);
660 
661 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
662 		unsigned i;
663 		struct cache *ca;
664 
665 		sysfs_remove_link(&d->c->kobj, d->name);
666 		sysfs_remove_link(&d->kobj, "cache");
667 
668 		for_each_cache(ca, d->c, i)
669 			bd_unlink_disk_holder(ca->bdev, d->disk);
670 	}
671 }
672 
673 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
674 			       const char *name)
675 {
676 	unsigned i;
677 	struct cache *ca;
678 
679 	for_each_cache(ca, d->c, i)
680 		bd_link_disk_holder(ca->bdev, d->disk);
681 
682 	snprintf(d->name, BCACHEDEVNAME_SIZE,
683 		 "%s%u", name, d->id);
684 
685 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
686 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
687 	     "Couldn't create device <-> cache set symlinks");
688 }
689 
690 static void bcache_device_detach(struct bcache_device *d)
691 {
692 	lockdep_assert_held(&bch_register_lock);
693 
694 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
695 		struct uuid_entry *u = d->c->uuids + d->id;
696 
697 		SET_UUID_FLASH_ONLY(u, 0);
698 		memcpy(u->uuid, invalid_uuid, 16);
699 		u->invalidated = cpu_to_le32(get_seconds());
700 		bch_uuid_write(d->c);
701 	}
702 
703 	bcache_device_unlink(d);
704 
705 	d->c->devices[d->id] = NULL;
706 	closure_put(&d->c->caching);
707 	d->c = NULL;
708 }
709 
710 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
711 				 unsigned id)
712 {
713 	d->id = id;
714 	d->c = c;
715 	c->devices[id] = d;
716 
717 	closure_get(&c->caching);
718 }
719 
720 static void bcache_device_free(struct bcache_device *d)
721 {
722 	lockdep_assert_held(&bch_register_lock);
723 
724 	pr_info("%s stopped", d->disk->disk_name);
725 
726 	if (d->c)
727 		bcache_device_detach(d);
728 	if (d->disk && d->disk->flags & GENHD_FL_UP)
729 		del_gendisk(d->disk);
730 	if (d->disk && d->disk->queue)
731 		blk_cleanup_queue(d->disk->queue);
732 	if (d->disk) {
733 		ida_simple_remove(&bcache_minor, d->disk->first_minor);
734 		put_disk(d->disk);
735 	}
736 
737 	if (d->bio_split)
738 		bioset_free(d->bio_split);
739 	kvfree(d->full_dirty_stripes);
740 	kvfree(d->stripe_sectors_dirty);
741 
742 	closure_debug_destroy(&d->cl);
743 }
744 
745 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
746 			      sector_t sectors)
747 {
748 	struct request_queue *q;
749 	size_t n;
750 	int minor;
751 
752 	if (!d->stripe_size)
753 		d->stripe_size = 1 << 31;
754 
755 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
756 
757 	if (!d->nr_stripes ||
758 	    d->nr_stripes > INT_MAX ||
759 	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
760 		pr_err("nr_stripes too large");
761 		return -ENOMEM;
762 	}
763 
764 	n = d->nr_stripes * sizeof(atomic_t);
765 	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
766 		? kzalloc(n, GFP_KERNEL)
767 		: vzalloc(n);
768 	if (!d->stripe_sectors_dirty)
769 		return -ENOMEM;
770 
771 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
772 	d->full_dirty_stripes = n < PAGE_SIZE << 6
773 		? kzalloc(n, GFP_KERNEL)
774 		: vzalloc(n);
775 	if (!d->full_dirty_stripes)
776 		return -ENOMEM;
777 
778 	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
779 	if (minor < 0)
780 		return minor;
781 
782 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
783 	    !(d->disk = alloc_disk(1))) {
784 		ida_simple_remove(&bcache_minor, minor);
785 		return -ENOMEM;
786 	}
787 
788 	set_capacity(d->disk, sectors);
789 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
790 
791 	d->disk->major		= bcache_major;
792 	d->disk->first_minor	= minor;
793 	d->disk->fops		= &bcache_ops;
794 	d->disk->private_data	= d;
795 
796 	q = blk_alloc_queue(GFP_KERNEL);
797 	if (!q)
798 		return -ENOMEM;
799 
800 	blk_queue_make_request(q, NULL);
801 	d->disk->queue			= q;
802 	q->queuedata			= d;
803 	q->backing_dev_info.congested_data = d;
804 	q->limits.max_hw_sectors	= UINT_MAX;
805 	q->limits.max_sectors		= UINT_MAX;
806 	q->limits.max_segment_size	= UINT_MAX;
807 	q->limits.max_segments		= BIO_MAX_PAGES;
808 	blk_queue_max_discard_sectors(q, UINT_MAX);
809 	q->limits.discard_granularity	= 512;
810 	q->limits.io_min		= block_size;
811 	q->limits.logical_block_size	= block_size;
812 	q->limits.physical_block_size	= block_size;
813 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
814 	clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
815 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
816 
817 	blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
818 
819 	return 0;
820 }
821 
822 /* Cached device */
823 
824 static void calc_cached_dev_sectors(struct cache_set *c)
825 {
826 	uint64_t sectors = 0;
827 	struct cached_dev *dc;
828 
829 	list_for_each_entry(dc, &c->cached_devs, list)
830 		sectors += bdev_sectors(dc->bdev);
831 
832 	c->cached_dev_sectors = sectors;
833 }
834 
835 void bch_cached_dev_run(struct cached_dev *dc)
836 {
837 	struct bcache_device *d = &dc->disk;
838 	char buf[SB_LABEL_SIZE + 1];
839 	char *env[] = {
840 		"DRIVER=bcache",
841 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
842 		NULL,
843 		NULL,
844 	};
845 
846 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
847 	buf[SB_LABEL_SIZE] = '\0';
848 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
849 
850 	if (atomic_xchg(&dc->running, 1))
851 		return;
852 
853 	if (!d->c &&
854 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
855 		struct closure cl;
856 		closure_init_stack(&cl);
857 
858 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
859 		bch_write_bdev_super(dc, &cl);
860 		closure_sync(&cl);
861 	}
862 
863 	add_disk(d->disk);
864 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
865 	/* won't show up in the uevent file, use udevadm monitor -e instead
866 	 * only class / kset properties are persistent */
867 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
868 	kfree(env[1]);
869 	kfree(env[2]);
870 
871 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
872 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
873 		pr_debug("error creating sysfs link");
874 }
875 
876 static void cached_dev_detach_finish(struct work_struct *w)
877 {
878 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
879 	char buf[BDEVNAME_SIZE];
880 	struct closure cl;
881 	closure_init_stack(&cl);
882 
883 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
884 	BUG_ON(atomic_read(&dc->count));
885 
886 	mutex_lock(&bch_register_lock);
887 
888 	memset(&dc->sb.set_uuid, 0, 16);
889 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
890 
891 	bch_write_bdev_super(dc, &cl);
892 	closure_sync(&cl);
893 
894 	bcache_device_detach(&dc->disk);
895 	list_move(&dc->list, &uncached_devices);
896 
897 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
898 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
899 
900 	mutex_unlock(&bch_register_lock);
901 
902 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
903 
904 	/* Drop ref we took in cached_dev_detach() */
905 	closure_put(&dc->disk.cl);
906 }
907 
908 void bch_cached_dev_detach(struct cached_dev *dc)
909 {
910 	lockdep_assert_held(&bch_register_lock);
911 
912 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
913 		return;
914 
915 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
916 		return;
917 
918 	/*
919 	 * Block the device from being closed and freed until we're finished
920 	 * detaching
921 	 */
922 	closure_get(&dc->disk.cl);
923 
924 	bch_writeback_queue(dc);
925 	cached_dev_put(dc);
926 }
927 
928 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
929 {
930 	uint32_t rtime = cpu_to_le32(get_seconds());
931 	struct uuid_entry *u;
932 	char buf[BDEVNAME_SIZE];
933 
934 	bdevname(dc->bdev, buf);
935 
936 	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
937 		return -ENOENT;
938 
939 	if (dc->disk.c) {
940 		pr_err("Can't attach %s: already attached", buf);
941 		return -EINVAL;
942 	}
943 
944 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
945 		pr_err("Can't attach %s: shutting down", buf);
946 		return -EINVAL;
947 	}
948 
949 	if (dc->sb.block_size < c->sb.block_size) {
950 		/* Will die */
951 		pr_err("Couldn't attach %s: block size less than set's block size",
952 		       buf);
953 		return -EINVAL;
954 	}
955 
956 	u = uuid_find(c, dc->sb.uuid);
957 
958 	if (u &&
959 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
960 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
961 		memcpy(u->uuid, invalid_uuid, 16);
962 		u->invalidated = cpu_to_le32(get_seconds());
963 		u = NULL;
964 	}
965 
966 	if (!u) {
967 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
968 			pr_err("Couldn't find uuid for %s in set", buf);
969 			return -ENOENT;
970 		}
971 
972 		u = uuid_find_empty(c);
973 		if (!u) {
974 			pr_err("Not caching %s, no room for UUID", buf);
975 			return -EINVAL;
976 		}
977 	}
978 
979 	/* Deadlocks since we're called via sysfs...
980 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
981 	 */
982 
983 	if (bch_is_zero(u->uuid, 16)) {
984 		struct closure cl;
985 		closure_init_stack(&cl);
986 
987 		memcpy(u->uuid, dc->sb.uuid, 16);
988 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
989 		u->first_reg = u->last_reg = rtime;
990 		bch_uuid_write(c);
991 
992 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
993 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
994 
995 		bch_write_bdev_super(dc, &cl);
996 		closure_sync(&cl);
997 	} else {
998 		u->last_reg = rtime;
999 		bch_uuid_write(c);
1000 	}
1001 
1002 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1003 	list_move(&dc->list, &c->cached_devs);
1004 	calc_cached_dev_sectors(c);
1005 
1006 	smp_wmb();
1007 	/*
1008 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1009 	 * cached_dev_get()
1010 	 */
1011 	atomic_set(&dc->count, 1);
1012 
1013 	if (bch_cached_dev_writeback_start(dc))
1014 		return -ENOMEM;
1015 
1016 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1017 		bch_sectors_dirty_init(dc);
1018 		atomic_set(&dc->has_dirty, 1);
1019 		atomic_inc(&dc->count);
1020 		bch_writeback_queue(dc);
1021 	}
1022 
1023 	bch_cached_dev_run(dc);
1024 	bcache_device_link(&dc->disk, c, "bdev");
1025 
1026 	pr_info("Caching %s as %s on set %pU",
1027 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1028 		dc->disk.c->sb.set_uuid);
1029 	return 0;
1030 }
1031 
1032 void bch_cached_dev_release(struct kobject *kobj)
1033 {
1034 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1035 					     disk.kobj);
1036 	kfree(dc);
1037 	module_put(THIS_MODULE);
1038 }
1039 
1040 static void cached_dev_free(struct closure *cl)
1041 {
1042 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1043 
1044 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1045 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1046 		kthread_stop(dc->writeback_thread);
1047 
1048 	mutex_lock(&bch_register_lock);
1049 
1050 	if (atomic_read(&dc->running))
1051 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1052 	bcache_device_free(&dc->disk);
1053 	list_del(&dc->list);
1054 
1055 	mutex_unlock(&bch_register_lock);
1056 
1057 	if (!IS_ERR_OR_NULL(dc->bdev))
1058 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1059 
1060 	wake_up(&unregister_wait);
1061 
1062 	kobject_put(&dc->disk.kobj);
1063 }
1064 
1065 static void cached_dev_flush(struct closure *cl)
1066 {
1067 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1068 	struct bcache_device *d = &dc->disk;
1069 
1070 	mutex_lock(&bch_register_lock);
1071 	bcache_device_unlink(d);
1072 	mutex_unlock(&bch_register_lock);
1073 
1074 	bch_cache_accounting_destroy(&dc->accounting);
1075 	kobject_del(&d->kobj);
1076 
1077 	continue_at(cl, cached_dev_free, system_wq);
1078 }
1079 
1080 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1081 {
1082 	int ret;
1083 	struct io *io;
1084 	struct request_queue *q = bdev_get_queue(dc->bdev);
1085 
1086 	__module_get(THIS_MODULE);
1087 	INIT_LIST_HEAD(&dc->list);
1088 	closure_init(&dc->disk.cl, NULL);
1089 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1090 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1091 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1092 	sema_init(&dc->sb_write_mutex, 1);
1093 	INIT_LIST_HEAD(&dc->io_lru);
1094 	spin_lock_init(&dc->io_lock);
1095 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1096 
1097 	dc->sequential_cutoff		= 4 << 20;
1098 
1099 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1100 		list_add(&io->lru, &dc->io_lru);
1101 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1102 	}
1103 
1104 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1105 
1106 	if (dc->disk.stripe_size)
1107 		dc->partial_stripes_expensive =
1108 			q->limits.raid_partial_stripes_expensive;
1109 
1110 	ret = bcache_device_init(&dc->disk, block_size,
1111 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1112 	if (ret)
1113 		return ret;
1114 
1115 	set_capacity(dc->disk.disk,
1116 		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1117 
1118 	dc->disk.disk->queue->backing_dev_info.ra_pages =
1119 		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1120 		    q->backing_dev_info.ra_pages);
1121 
1122 	bch_cached_dev_request_init(dc);
1123 	bch_cached_dev_writeback_init(dc);
1124 	return 0;
1125 }
1126 
1127 /* Cached device - bcache superblock */
1128 
1129 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1130 				 struct block_device *bdev,
1131 				 struct cached_dev *dc)
1132 {
1133 	char name[BDEVNAME_SIZE];
1134 	const char *err = "cannot allocate memory";
1135 	struct cache_set *c;
1136 
1137 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1138 	dc->bdev = bdev;
1139 	dc->bdev->bd_holder = dc;
1140 
1141 	bio_init(&dc->sb_bio);
1142 	dc->sb_bio.bi_max_vecs	= 1;
1143 	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1144 	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1145 	get_page(sb_page);
1146 
1147 	if (cached_dev_init(dc, sb->block_size << 9))
1148 		goto err;
1149 
1150 	err = "error creating kobject";
1151 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1152 			"bcache"))
1153 		goto err;
1154 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1155 		goto err;
1156 
1157 	pr_info("registered backing device %s", bdevname(bdev, name));
1158 
1159 	list_add(&dc->list, &uncached_devices);
1160 	list_for_each_entry(c, &bch_cache_sets, list)
1161 		bch_cached_dev_attach(dc, c);
1162 
1163 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1164 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1165 		bch_cached_dev_run(dc);
1166 
1167 	return;
1168 err:
1169 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1170 	bcache_device_stop(&dc->disk);
1171 }
1172 
1173 /* Flash only volumes */
1174 
1175 void bch_flash_dev_release(struct kobject *kobj)
1176 {
1177 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1178 					       kobj);
1179 	kfree(d);
1180 }
1181 
1182 static void flash_dev_free(struct closure *cl)
1183 {
1184 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1185 	mutex_lock(&bch_register_lock);
1186 	bcache_device_free(d);
1187 	mutex_unlock(&bch_register_lock);
1188 	kobject_put(&d->kobj);
1189 }
1190 
1191 static void flash_dev_flush(struct closure *cl)
1192 {
1193 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1194 
1195 	mutex_lock(&bch_register_lock);
1196 	bcache_device_unlink(d);
1197 	mutex_unlock(&bch_register_lock);
1198 	kobject_del(&d->kobj);
1199 	continue_at(cl, flash_dev_free, system_wq);
1200 }
1201 
1202 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1203 {
1204 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1205 					  GFP_KERNEL);
1206 	if (!d)
1207 		return -ENOMEM;
1208 
1209 	closure_init(&d->cl, NULL);
1210 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1211 
1212 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1213 
1214 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1215 		goto err;
1216 
1217 	bcache_device_attach(d, c, u - c->uuids);
1218 	bch_flash_dev_request_init(d);
1219 	add_disk(d->disk);
1220 
1221 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1222 		goto err;
1223 
1224 	bcache_device_link(d, c, "volume");
1225 
1226 	return 0;
1227 err:
1228 	kobject_put(&d->kobj);
1229 	return -ENOMEM;
1230 }
1231 
1232 static int flash_devs_run(struct cache_set *c)
1233 {
1234 	int ret = 0;
1235 	struct uuid_entry *u;
1236 
1237 	for (u = c->uuids;
1238 	     u < c->uuids + c->nr_uuids && !ret;
1239 	     u++)
1240 		if (UUID_FLASH_ONLY(u))
1241 			ret = flash_dev_run(c, u);
1242 
1243 	return ret;
1244 }
1245 
1246 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1247 {
1248 	struct uuid_entry *u;
1249 
1250 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1251 		return -EINTR;
1252 
1253 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1254 		return -EPERM;
1255 
1256 	u = uuid_find_empty(c);
1257 	if (!u) {
1258 		pr_err("Can't create volume, no room for UUID");
1259 		return -EINVAL;
1260 	}
1261 
1262 	get_random_bytes(u->uuid, 16);
1263 	memset(u->label, 0, 32);
1264 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1265 
1266 	SET_UUID_FLASH_ONLY(u, 1);
1267 	u->sectors = size >> 9;
1268 
1269 	bch_uuid_write(c);
1270 
1271 	return flash_dev_run(c, u);
1272 }
1273 
1274 /* Cache set */
1275 
1276 __printf(2, 3)
1277 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1278 {
1279 	va_list args;
1280 
1281 	if (c->on_error != ON_ERROR_PANIC &&
1282 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1283 		return false;
1284 
1285 	/* XXX: we can be called from atomic context
1286 	acquire_console_sem();
1287 	*/
1288 
1289 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1290 
1291 	va_start(args, fmt);
1292 	vprintk(fmt, args);
1293 	va_end(args);
1294 
1295 	printk(", disabling caching\n");
1296 
1297 	if (c->on_error == ON_ERROR_PANIC)
1298 		panic("panic forced after error\n");
1299 
1300 	bch_cache_set_unregister(c);
1301 	return true;
1302 }
1303 
1304 void bch_cache_set_release(struct kobject *kobj)
1305 {
1306 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1307 	kfree(c);
1308 	module_put(THIS_MODULE);
1309 }
1310 
1311 static void cache_set_free(struct closure *cl)
1312 {
1313 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1314 	struct cache *ca;
1315 	unsigned i;
1316 
1317 	if (!IS_ERR_OR_NULL(c->debug))
1318 		debugfs_remove(c->debug);
1319 
1320 	bch_open_buckets_free(c);
1321 	bch_btree_cache_free(c);
1322 	bch_journal_free(c);
1323 
1324 	for_each_cache(ca, c, i)
1325 		if (ca) {
1326 			ca->set = NULL;
1327 			c->cache[ca->sb.nr_this_dev] = NULL;
1328 			kobject_put(&ca->kobj);
1329 		}
1330 
1331 	bch_bset_sort_state_free(&c->sort);
1332 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1333 
1334 	if (c->moving_gc_wq)
1335 		destroy_workqueue(c->moving_gc_wq);
1336 	if (c->bio_split)
1337 		bioset_free(c->bio_split);
1338 	if (c->fill_iter)
1339 		mempool_destroy(c->fill_iter);
1340 	if (c->bio_meta)
1341 		mempool_destroy(c->bio_meta);
1342 	if (c->search)
1343 		mempool_destroy(c->search);
1344 	kfree(c->devices);
1345 
1346 	mutex_lock(&bch_register_lock);
1347 	list_del(&c->list);
1348 	mutex_unlock(&bch_register_lock);
1349 
1350 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1351 	wake_up(&unregister_wait);
1352 
1353 	closure_debug_destroy(&c->cl);
1354 	kobject_put(&c->kobj);
1355 }
1356 
1357 static void cache_set_flush(struct closure *cl)
1358 {
1359 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1360 	struct cache *ca;
1361 	struct btree *b;
1362 	unsigned i;
1363 
1364 	bch_cache_accounting_destroy(&c->accounting);
1365 
1366 	kobject_put(&c->internal);
1367 	kobject_del(&c->kobj);
1368 
1369 	if (c->gc_thread)
1370 		kthread_stop(c->gc_thread);
1371 
1372 	if (!IS_ERR_OR_NULL(c->root))
1373 		list_add(&c->root->list, &c->btree_cache);
1374 
1375 	/* Should skip this if we're unregistering because of an error */
1376 	list_for_each_entry(b, &c->btree_cache, list) {
1377 		mutex_lock(&b->write_lock);
1378 		if (btree_node_dirty(b))
1379 			__bch_btree_node_write(b, NULL);
1380 		mutex_unlock(&b->write_lock);
1381 	}
1382 
1383 	for_each_cache(ca, c, i)
1384 		if (ca->alloc_thread)
1385 			kthread_stop(ca->alloc_thread);
1386 
1387 	if (c->journal.cur) {
1388 		cancel_delayed_work_sync(&c->journal.work);
1389 		/* flush last journal entry if needed */
1390 		c->journal.work.work.func(&c->journal.work.work);
1391 	}
1392 
1393 	closure_return(cl);
1394 }
1395 
1396 static void __cache_set_unregister(struct closure *cl)
1397 {
1398 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1399 	struct cached_dev *dc;
1400 	size_t i;
1401 
1402 	mutex_lock(&bch_register_lock);
1403 
1404 	for (i = 0; i < c->nr_uuids; i++)
1405 		if (c->devices[i]) {
1406 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1407 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1408 				dc = container_of(c->devices[i],
1409 						  struct cached_dev, disk);
1410 				bch_cached_dev_detach(dc);
1411 			} else {
1412 				bcache_device_stop(c->devices[i]);
1413 			}
1414 		}
1415 
1416 	mutex_unlock(&bch_register_lock);
1417 
1418 	continue_at(cl, cache_set_flush, system_wq);
1419 }
1420 
1421 void bch_cache_set_stop(struct cache_set *c)
1422 {
1423 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1424 		closure_queue(&c->caching);
1425 }
1426 
1427 void bch_cache_set_unregister(struct cache_set *c)
1428 {
1429 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1430 	bch_cache_set_stop(c);
1431 }
1432 
1433 #define alloc_bucket_pages(gfp, c)			\
1434 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1435 
1436 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1437 {
1438 	int iter_size;
1439 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1440 	if (!c)
1441 		return NULL;
1442 
1443 	__module_get(THIS_MODULE);
1444 	closure_init(&c->cl, NULL);
1445 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1446 
1447 	closure_init(&c->caching, &c->cl);
1448 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1449 
1450 	/* Maybe create continue_at_noreturn() and use it here? */
1451 	closure_set_stopped(&c->cl);
1452 	closure_put(&c->cl);
1453 
1454 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1455 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1456 
1457 	bch_cache_accounting_init(&c->accounting, &c->cl);
1458 
1459 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1460 	c->sb.block_size	= sb->block_size;
1461 	c->sb.bucket_size	= sb->bucket_size;
1462 	c->sb.nr_in_set		= sb->nr_in_set;
1463 	c->sb.last_mount	= sb->last_mount;
1464 	c->bucket_bits		= ilog2(sb->bucket_size);
1465 	c->block_bits		= ilog2(sb->block_size);
1466 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1467 
1468 	c->btree_pages		= bucket_pages(c);
1469 	if (c->btree_pages > BTREE_MAX_PAGES)
1470 		c->btree_pages = max_t(int, c->btree_pages / 4,
1471 				       BTREE_MAX_PAGES);
1472 
1473 	sema_init(&c->sb_write_mutex, 1);
1474 	mutex_init(&c->bucket_lock);
1475 	init_waitqueue_head(&c->btree_cache_wait);
1476 	init_waitqueue_head(&c->bucket_wait);
1477 	sema_init(&c->uuid_write_mutex, 1);
1478 
1479 	spin_lock_init(&c->btree_gc_time.lock);
1480 	spin_lock_init(&c->btree_split_time.lock);
1481 	spin_lock_init(&c->btree_read_time.lock);
1482 
1483 	bch_moving_init_cache_set(c);
1484 
1485 	INIT_LIST_HEAD(&c->list);
1486 	INIT_LIST_HEAD(&c->cached_devs);
1487 	INIT_LIST_HEAD(&c->btree_cache);
1488 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1489 	INIT_LIST_HEAD(&c->btree_cache_freed);
1490 	INIT_LIST_HEAD(&c->data_buckets);
1491 
1492 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1493 	if (!c->search)
1494 		goto err;
1495 
1496 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1497 		sizeof(struct btree_iter_set);
1498 
1499 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1500 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1501 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1502 				bucket_pages(c))) ||
1503 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1504 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1505 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1506 	    !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1507 	    bch_journal_alloc(c) ||
1508 	    bch_btree_cache_alloc(c) ||
1509 	    bch_open_buckets_alloc(c) ||
1510 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1511 		goto err;
1512 
1513 	c->congested_read_threshold_us	= 2000;
1514 	c->congested_write_threshold_us	= 20000;
1515 	c->error_limit	= 8 << IO_ERROR_SHIFT;
1516 
1517 	return c;
1518 err:
1519 	bch_cache_set_unregister(c);
1520 	return NULL;
1521 }
1522 
1523 static void run_cache_set(struct cache_set *c)
1524 {
1525 	const char *err = "cannot allocate memory";
1526 	struct cached_dev *dc, *t;
1527 	struct cache *ca;
1528 	struct closure cl;
1529 	unsigned i;
1530 
1531 	closure_init_stack(&cl);
1532 
1533 	for_each_cache(ca, c, i)
1534 		c->nbuckets += ca->sb.nbuckets;
1535 
1536 	if (CACHE_SYNC(&c->sb)) {
1537 		LIST_HEAD(journal);
1538 		struct bkey *k;
1539 		struct jset *j;
1540 
1541 		err = "cannot allocate memory for journal";
1542 		if (bch_journal_read(c, &journal))
1543 			goto err;
1544 
1545 		pr_debug("btree_journal_read() done");
1546 
1547 		err = "no journal entries found";
1548 		if (list_empty(&journal))
1549 			goto err;
1550 
1551 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1552 
1553 		err = "IO error reading priorities";
1554 		for_each_cache(ca, c, i)
1555 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1556 
1557 		/*
1558 		 * If prio_read() fails it'll call cache_set_error and we'll
1559 		 * tear everything down right away, but if we perhaps checked
1560 		 * sooner we could avoid journal replay.
1561 		 */
1562 
1563 		k = &j->btree_root;
1564 
1565 		err = "bad btree root";
1566 		if (__bch_btree_ptr_invalid(c, k))
1567 			goto err;
1568 
1569 		err = "error reading btree root";
1570 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1571 		if (IS_ERR_OR_NULL(c->root))
1572 			goto err;
1573 
1574 		list_del_init(&c->root->list);
1575 		rw_unlock(true, c->root);
1576 
1577 		err = uuid_read(c, j, &cl);
1578 		if (err)
1579 			goto err;
1580 
1581 		err = "error in recovery";
1582 		if (bch_btree_check(c))
1583 			goto err;
1584 
1585 		bch_journal_mark(c, &journal);
1586 		bch_initial_gc_finish(c);
1587 		pr_debug("btree_check() done");
1588 
1589 		/*
1590 		 * bcache_journal_next() can't happen sooner, or
1591 		 * btree_gc_finish() will give spurious errors about last_gc >
1592 		 * gc_gen - this is a hack but oh well.
1593 		 */
1594 		bch_journal_next(&c->journal);
1595 
1596 		err = "error starting allocator thread";
1597 		for_each_cache(ca, c, i)
1598 			if (bch_cache_allocator_start(ca))
1599 				goto err;
1600 
1601 		/*
1602 		 * First place it's safe to allocate: btree_check() and
1603 		 * btree_gc_finish() have to run before we have buckets to
1604 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1605 		 * entry to be written so bcache_journal_next() has to be called
1606 		 * first.
1607 		 *
1608 		 * If the uuids were in the old format we have to rewrite them
1609 		 * before the next journal entry is written:
1610 		 */
1611 		if (j->version < BCACHE_JSET_VERSION_UUID)
1612 			__uuid_write(c);
1613 
1614 		bch_journal_replay(c, &journal);
1615 	} else {
1616 		pr_notice("invalidating existing data");
1617 
1618 		for_each_cache(ca, c, i) {
1619 			unsigned j;
1620 
1621 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1622 					      2, SB_JOURNAL_BUCKETS);
1623 
1624 			for (j = 0; j < ca->sb.keys; j++)
1625 				ca->sb.d[j] = ca->sb.first_bucket + j;
1626 		}
1627 
1628 		bch_initial_gc_finish(c);
1629 
1630 		err = "error starting allocator thread";
1631 		for_each_cache(ca, c, i)
1632 			if (bch_cache_allocator_start(ca))
1633 				goto err;
1634 
1635 		mutex_lock(&c->bucket_lock);
1636 		for_each_cache(ca, c, i)
1637 			bch_prio_write(ca);
1638 		mutex_unlock(&c->bucket_lock);
1639 
1640 		err = "cannot allocate new UUID bucket";
1641 		if (__uuid_write(c))
1642 			goto err;
1643 
1644 		err = "cannot allocate new btree root";
1645 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1646 		if (IS_ERR_OR_NULL(c->root))
1647 			goto err;
1648 
1649 		mutex_lock(&c->root->write_lock);
1650 		bkey_copy_key(&c->root->key, &MAX_KEY);
1651 		bch_btree_node_write(c->root, &cl);
1652 		mutex_unlock(&c->root->write_lock);
1653 
1654 		bch_btree_set_root(c->root);
1655 		rw_unlock(true, c->root);
1656 
1657 		/*
1658 		 * We don't want to write the first journal entry until
1659 		 * everything is set up - fortunately journal entries won't be
1660 		 * written until the SET_CACHE_SYNC() here:
1661 		 */
1662 		SET_CACHE_SYNC(&c->sb, true);
1663 
1664 		bch_journal_next(&c->journal);
1665 		bch_journal_meta(c, &cl);
1666 	}
1667 
1668 	err = "error starting gc thread";
1669 	if (bch_gc_thread_start(c))
1670 		goto err;
1671 
1672 	closure_sync(&cl);
1673 	c->sb.last_mount = get_seconds();
1674 	bcache_write_super(c);
1675 
1676 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1677 		bch_cached_dev_attach(dc, c);
1678 
1679 	flash_devs_run(c);
1680 
1681 	set_bit(CACHE_SET_RUNNING, &c->flags);
1682 	return;
1683 err:
1684 	closure_sync(&cl);
1685 	/* XXX: test this, it's broken */
1686 	bch_cache_set_error(c, "%s", err);
1687 }
1688 
1689 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1690 {
1691 	return ca->sb.block_size	== c->sb.block_size &&
1692 		ca->sb.bucket_size	== c->sb.bucket_size &&
1693 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1694 }
1695 
1696 static const char *register_cache_set(struct cache *ca)
1697 {
1698 	char buf[12];
1699 	const char *err = "cannot allocate memory";
1700 	struct cache_set *c;
1701 
1702 	list_for_each_entry(c, &bch_cache_sets, list)
1703 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1704 			if (c->cache[ca->sb.nr_this_dev])
1705 				return "duplicate cache set member";
1706 
1707 			if (!can_attach_cache(ca, c))
1708 				return "cache sb does not match set";
1709 
1710 			if (!CACHE_SYNC(&ca->sb))
1711 				SET_CACHE_SYNC(&c->sb, false);
1712 
1713 			goto found;
1714 		}
1715 
1716 	c = bch_cache_set_alloc(&ca->sb);
1717 	if (!c)
1718 		return err;
1719 
1720 	err = "error creating kobject";
1721 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1722 	    kobject_add(&c->internal, &c->kobj, "internal"))
1723 		goto err;
1724 
1725 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1726 		goto err;
1727 
1728 	bch_debug_init_cache_set(c);
1729 
1730 	list_add(&c->list, &bch_cache_sets);
1731 found:
1732 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1733 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1734 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1735 		goto err;
1736 
1737 	if (ca->sb.seq > c->sb.seq) {
1738 		c->sb.version		= ca->sb.version;
1739 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1740 		c->sb.flags             = ca->sb.flags;
1741 		c->sb.seq		= ca->sb.seq;
1742 		pr_debug("set version = %llu", c->sb.version);
1743 	}
1744 
1745 	kobject_get(&ca->kobj);
1746 	ca->set = c;
1747 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1748 	c->cache_by_alloc[c->caches_loaded++] = ca;
1749 
1750 	if (c->caches_loaded == c->sb.nr_in_set)
1751 		run_cache_set(c);
1752 
1753 	return NULL;
1754 err:
1755 	bch_cache_set_unregister(c);
1756 	return err;
1757 }
1758 
1759 /* Cache device */
1760 
1761 void bch_cache_release(struct kobject *kobj)
1762 {
1763 	struct cache *ca = container_of(kobj, struct cache, kobj);
1764 	unsigned i;
1765 
1766 	if (ca->set) {
1767 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1768 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1769 	}
1770 
1771 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1772 	kfree(ca->prio_buckets);
1773 	vfree(ca->buckets);
1774 
1775 	free_heap(&ca->heap);
1776 	free_fifo(&ca->free_inc);
1777 
1778 	for (i = 0; i < RESERVE_NR; i++)
1779 		free_fifo(&ca->free[i]);
1780 
1781 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1782 		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1783 
1784 	if (!IS_ERR_OR_NULL(ca->bdev))
1785 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1786 
1787 	kfree(ca);
1788 	module_put(THIS_MODULE);
1789 }
1790 
1791 static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1792 {
1793 	size_t free;
1794 	struct bucket *b;
1795 
1796 	__module_get(THIS_MODULE);
1797 	kobject_init(&ca->kobj, &bch_cache_ktype);
1798 
1799 	bio_init(&ca->journal.bio);
1800 	ca->journal.bio.bi_max_vecs = 8;
1801 	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1802 
1803 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1804 
1805 	if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1806 	    !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1807 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1808 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1809 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1810 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1811 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1812 					  ca->sb.nbuckets)) ||
1813 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1814 					  2, GFP_KERNEL)) ||
1815 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
1816 		return -ENOMEM;
1817 
1818 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1819 
1820 	for_each_bucket(b, ca)
1821 		atomic_set(&b->pin, 0);
1822 
1823 	return 0;
1824 }
1825 
1826 static void register_cache(struct cache_sb *sb, struct page *sb_page,
1827 				struct block_device *bdev, struct cache *ca)
1828 {
1829 	char name[BDEVNAME_SIZE];
1830 	const char *err = "cannot allocate memory";
1831 
1832 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1833 	ca->bdev = bdev;
1834 	ca->bdev->bd_holder = ca;
1835 
1836 	bio_init(&ca->sb_bio);
1837 	ca->sb_bio.bi_max_vecs	= 1;
1838 	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1839 	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1840 	get_page(sb_page);
1841 
1842 	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1843 		ca->discard = CACHE_DISCARD(&ca->sb);
1844 
1845 	if (cache_alloc(sb, ca) != 0)
1846 		goto err;
1847 
1848 	err = "error creating kobject";
1849 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache"))
1850 		goto err;
1851 
1852 	mutex_lock(&bch_register_lock);
1853 	err = register_cache_set(ca);
1854 	mutex_unlock(&bch_register_lock);
1855 
1856 	if (err)
1857 		goto err;
1858 
1859 	pr_info("registered cache device %s", bdevname(bdev, name));
1860 out:
1861 	kobject_put(&ca->kobj);
1862 	return;
1863 err:
1864 	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1865 	goto out;
1866 }
1867 
1868 /* Global interfaces/init */
1869 
1870 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1871 			       const char *, size_t);
1872 
1873 kobj_attribute_write(register,		register_bcache);
1874 kobj_attribute_write(register_quiet,	register_bcache);
1875 
1876 static bool bch_is_open_backing(struct block_device *bdev) {
1877 	struct cache_set *c, *tc;
1878 	struct cached_dev *dc, *t;
1879 
1880 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1881 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1882 			if (dc->bdev == bdev)
1883 				return true;
1884 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1885 		if (dc->bdev == bdev)
1886 			return true;
1887 	return false;
1888 }
1889 
1890 static bool bch_is_open_cache(struct block_device *bdev) {
1891 	struct cache_set *c, *tc;
1892 	struct cache *ca;
1893 	unsigned i;
1894 
1895 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1896 		for_each_cache(ca, c, i)
1897 			if (ca->bdev == bdev)
1898 				return true;
1899 	return false;
1900 }
1901 
1902 static bool bch_is_open(struct block_device *bdev) {
1903 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1904 }
1905 
1906 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1907 			       const char *buffer, size_t size)
1908 {
1909 	ssize_t ret = size;
1910 	const char *err = "cannot allocate memory";
1911 	char *path = NULL;
1912 	struct cache_sb *sb = NULL;
1913 	struct block_device *bdev = NULL;
1914 	struct page *sb_page = NULL;
1915 
1916 	if (!try_module_get(THIS_MODULE))
1917 		return -EBUSY;
1918 
1919 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1920 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1921 		goto err;
1922 
1923 	err = "failed to open device";
1924 	bdev = blkdev_get_by_path(strim(path),
1925 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1926 				  sb);
1927 	if (IS_ERR(bdev)) {
1928 		if (bdev == ERR_PTR(-EBUSY)) {
1929 			bdev = lookup_bdev(strim(path));
1930 			mutex_lock(&bch_register_lock);
1931 			if (!IS_ERR(bdev) && bch_is_open(bdev))
1932 				err = "device already registered";
1933 			else
1934 				err = "device busy";
1935 			mutex_unlock(&bch_register_lock);
1936 		}
1937 		goto err;
1938 	}
1939 
1940 	err = "failed to set blocksize";
1941 	if (set_blocksize(bdev, 4096))
1942 		goto err_close;
1943 
1944 	err = read_super(sb, bdev, &sb_page);
1945 	if (err)
1946 		goto err_close;
1947 
1948 	if (SB_IS_BDEV(sb)) {
1949 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1950 		if (!dc)
1951 			goto err_close;
1952 
1953 		mutex_lock(&bch_register_lock);
1954 		register_bdev(sb, sb_page, bdev, dc);
1955 		mutex_unlock(&bch_register_lock);
1956 	} else {
1957 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1958 		if (!ca)
1959 			goto err_close;
1960 
1961 		register_cache(sb, sb_page, bdev, ca);
1962 	}
1963 out:
1964 	if (sb_page)
1965 		put_page(sb_page);
1966 	kfree(sb);
1967 	kfree(path);
1968 	module_put(THIS_MODULE);
1969 	return ret;
1970 
1971 err_close:
1972 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1973 err:
1974 	if (attr != &ksysfs_register_quiet)
1975 		pr_info("error opening %s: %s", path, err);
1976 	ret = -EINVAL;
1977 	goto out;
1978 }
1979 
1980 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
1981 {
1982 	if (code == SYS_DOWN ||
1983 	    code == SYS_HALT ||
1984 	    code == SYS_POWER_OFF) {
1985 		DEFINE_WAIT(wait);
1986 		unsigned long start = jiffies;
1987 		bool stopped = false;
1988 
1989 		struct cache_set *c, *tc;
1990 		struct cached_dev *dc, *tdc;
1991 
1992 		mutex_lock(&bch_register_lock);
1993 
1994 		if (list_empty(&bch_cache_sets) &&
1995 		    list_empty(&uncached_devices))
1996 			goto out;
1997 
1998 		pr_info("Stopping all devices:");
1999 
2000 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2001 			bch_cache_set_stop(c);
2002 
2003 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2004 			bcache_device_stop(&dc->disk);
2005 
2006 		/* What's a condition variable? */
2007 		while (1) {
2008 			long timeout = start + 2 * HZ - jiffies;
2009 
2010 			stopped = list_empty(&bch_cache_sets) &&
2011 				list_empty(&uncached_devices);
2012 
2013 			if (timeout < 0 || stopped)
2014 				break;
2015 
2016 			prepare_to_wait(&unregister_wait, &wait,
2017 					TASK_UNINTERRUPTIBLE);
2018 
2019 			mutex_unlock(&bch_register_lock);
2020 			schedule_timeout(timeout);
2021 			mutex_lock(&bch_register_lock);
2022 		}
2023 
2024 		finish_wait(&unregister_wait, &wait);
2025 
2026 		if (stopped)
2027 			pr_info("All devices stopped");
2028 		else
2029 			pr_notice("Timeout waiting for devices to be closed");
2030 out:
2031 		mutex_unlock(&bch_register_lock);
2032 	}
2033 
2034 	return NOTIFY_DONE;
2035 }
2036 
2037 static struct notifier_block reboot = {
2038 	.notifier_call	= bcache_reboot,
2039 	.priority	= INT_MAX, /* before any real devices */
2040 };
2041 
2042 static void bcache_exit(void)
2043 {
2044 	bch_debug_exit();
2045 	bch_request_exit();
2046 	if (bcache_kobj)
2047 		kobject_put(bcache_kobj);
2048 	if (bcache_wq)
2049 		destroy_workqueue(bcache_wq);
2050 	if (bcache_major)
2051 		unregister_blkdev(bcache_major, "bcache");
2052 	unregister_reboot_notifier(&reboot);
2053 }
2054 
2055 static int __init bcache_init(void)
2056 {
2057 	static const struct attribute *files[] = {
2058 		&ksysfs_register.attr,
2059 		&ksysfs_register_quiet.attr,
2060 		NULL
2061 	};
2062 
2063 	mutex_init(&bch_register_lock);
2064 	init_waitqueue_head(&unregister_wait);
2065 	register_reboot_notifier(&reboot);
2066 	closure_debug_init();
2067 
2068 	bcache_major = register_blkdev(0, "bcache");
2069 	if (bcache_major < 0)
2070 		return bcache_major;
2071 
2072 	if (!(bcache_wq = create_workqueue("bcache")) ||
2073 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2074 	    sysfs_create_files(bcache_kobj, files) ||
2075 	    bch_request_init() ||
2076 	    bch_debug_init(bcache_kobj))
2077 		goto err;
2078 
2079 	return 0;
2080 err:
2081 	bcache_exit();
2082 	return -ENOMEM;
2083 }
2084 
2085 module_exit(bcache_exit);
2086 module_init(bcache_init);
2087