1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_flush_wq; 53 struct workqueue_struct *bch_journal_wq; 54 55 56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57 /* limitation of partitions number on single bcache device */ 58 #define BCACHE_MINORS 128 59 /* limitation of bcache devices number on single system */ 60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62 /* Superblock */ 63 64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65 { 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89 } 90 91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93 { 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161 err: 162 return err; 163 } 164 165 166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168 { 169 const char *err; 170 struct cache_sb_disk *s; 171 struct page *page; 172 unsigned int i; 173 174 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(page)) 177 return "IO error"; 178 s = page_address(page) + offset_in_page(SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274 err: 275 put_page(page); 276 return err; 277 } 278 279 static void write_bdev_super_endio(struct bio *bio) 280 { 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287 } 288 289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291 { 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 297 offset_in_page(out)); 298 299 out->offset = cpu_to_le64(sb->offset); 300 301 memcpy(out->uuid, sb->uuid, 16); 302 memcpy(out->set_uuid, sb->set_uuid, 16); 303 memcpy(out->label, sb->label, SB_LABEL_SIZE); 304 305 out->flags = cpu_to_le64(sb->flags); 306 out->seq = cpu_to_le64(sb->seq); 307 308 out->last_mount = cpu_to_le32(sb->last_mount); 309 out->first_bucket = cpu_to_le16(sb->first_bucket); 310 out->keys = cpu_to_le16(sb->keys); 311 312 for (i = 0; i < sb->keys; i++) 313 out->d[i] = cpu_to_le64(sb->d[i]); 314 315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 316 out->feature_compat = cpu_to_le64(sb->feature_compat); 317 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 319 } 320 321 out->version = cpu_to_le64(sb->version); 322 out->csum = csum_set(out); 323 324 pr_debug("ver %llu, flags %llu, seq %llu\n", 325 sb->version, sb->flags, sb->seq); 326 327 submit_bio(bio); 328 } 329 330 static void bch_write_bdev_super_unlock(struct closure *cl) 331 { 332 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 333 334 up(&dc->sb_write_mutex); 335 } 336 337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 338 { 339 struct closure *cl = &dc->sb_write; 340 struct bio *bio = &dc->sb_bio; 341 342 down(&dc->sb_write_mutex); 343 closure_init(cl, parent); 344 345 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0); 346 bio->bi_end_io = write_bdev_super_endio; 347 bio->bi_private = dc; 348 349 closure_get(cl); 350 /* I/O request sent to backing device */ 351 __write_super(&dc->sb, dc->sb_disk, bio); 352 353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 354 } 355 356 static void write_super_endio(struct bio *bio) 357 { 358 struct cache *ca = bio->bi_private; 359 360 /* is_read = 0 */ 361 bch_count_io_errors(ca, bio->bi_status, 0, 362 "writing superblock"); 363 closure_put(&ca->set->sb_write); 364 } 365 366 static void bcache_write_super_unlock(struct closure *cl) 367 { 368 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 369 370 up(&c->sb_write_mutex); 371 } 372 373 void bcache_write_super(struct cache_set *c) 374 { 375 struct closure *cl = &c->sb_write; 376 struct cache *ca = c->cache; 377 struct bio *bio = &ca->sb_bio; 378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 379 380 down(&c->sb_write_mutex); 381 closure_init(cl, &c->cl); 382 383 ca->sb.seq++; 384 385 if (ca->sb.version < version) 386 ca->sb.version = version; 387 388 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0); 389 bio->bi_end_io = write_super_endio; 390 bio->bi_private = ca; 391 392 closure_get(cl); 393 __write_super(&ca->sb, ca->sb_disk, bio); 394 395 closure_return_with_destructor(cl, bcache_write_super_unlock); 396 } 397 398 /* UUID io */ 399 400 static void uuid_endio(struct bio *bio) 401 { 402 struct closure *cl = bio->bi_private; 403 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 404 405 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 406 bch_bbio_free(bio, c); 407 closure_put(cl); 408 } 409 410 static void uuid_io_unlock(struct closure *cl) 411 { 412 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 413 414 up(&c->uuid_write_mutex); 415 } 416 417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k, 418 struct closure *parent) 419 { 420 struct closure *cl = &c->uuid_write; 421 struct uuid_entry *u; 422 unsigned int i; 423 char buf[80]; 424 425 BUG_ON(!parent); 426 down(&c->uuid_write_mutex); 427 closure_init(cl, parent); 428 429 for (i = 0; i < KEY_PTRS(k); i++) { 430 struct bio *bio = bch_bbio_alloc(c); 431 432 bio->bi_opf = opf | REQ_SYNC | REQ_META; 433 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 434 435 bio->bi_end_io = uuid_endio; 436 bio->bi_private = cl; 437 bch_bio_map(bio, c->uuids); 438 439 bch_submit_bbio(bio, c, k, i); 440 441 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE) 442 break; 443 } 444 445 bch_extent_to_text(buf, sizeof(buf), k); 446 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ? 447 "wrote" : "read", buf); 448 449 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 450 if (!bch_is_zero(u->uuid, 16)) 451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 452 u - c->uuids, u->uuid, u->label, 453 u->first_reg, u->last_reg, u->invalidated); 454 455 closure_return_with_destructor(cl, uuid_io_unlock); 456 } 457 458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 459 { 460 struct bkey *k = &j->uuid_bucket; 461 462 if (__bch_btree_ptr_invalid(c, k)) 463 return "bad uuid pointer"; 464 465 bkey_copy(&c->uuid_bucket, k); 466 uuid_io(c, REQ_OP_READ, k, cl); 467 468 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 469 struct uuid_entry_v0 *u0 = (void *) c->uuids; 470 struct uuid_entry *u1 = (void *) c->uuids; 471 int i; 472 473 closure_sync(cl); 474 475 /* 476 * Since the new uuid entry is bigger than the old, we have to 477 * convert starting at the highest memory address and work down 478 * in order to do it in place 479 */ 480 481 for (i = c->nr_uuids - 1; 482 i >= 0; 483 --i) { 484 memcpy(u1[i].uuid, u0[i].uuid, 16); 485 memcpy(u1[i].label, u0[i].label, 32); 486 487 u1[i].first_reg = u0[i].first_reg; 488 u1[i].last_reg = u0[i].last_reg; 489 u1[i].invalidated = u0[i].invalidated; 490 491 u1[i].flags = 0; 492 u1[i].sectors = 0; 493 } 494 } 495 496 return NULL; 497 } 498 499 static int __uuid_write(struct cache_set *c) 500 { 501 BKEY_PADDED(key) k; 502 struct closure cl; 503 struct cache *ca = c->cache; 504 unsigned int size; 505 506 closure_init_stack(&cl); 507 lockdep_assert_held(&bch_register_lock); 508 509 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 510 return 1; 511 512 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 513 SET_KEY_SIZE(&k.key, size); 514 uuid_io(c, REQ_OP_WRITE, &k.key, &cl); 515 closure_sync(&cl); 516 517 /* Only one bucket used for uuid write */ 518 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 519 520 bkey_copy(&c->uuid_bucket, &k.key); 521 bkey_put(c, &k.key); 522 return 0; 523 } 524 525 int bch_uuid_write(struct cache_set *c) 526 { 527 int ret = __uuid_write(c); 528 529 if (!ret) 530 bch_journal_meta(c, NULL); 531 532 return ret; 533 } 534 535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 536 { 537 struct uuid_entry *u; 538 539 for (u = c->uuids; 540 u < c->uuids + c->nr_uuids; u++) 541 if (!memcmp(u->uuid, uuid, 16)) 542 return u; 543 544 return NULL; 545 } 546 547 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 548 { 549 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 550 551 return uuid_find(c, zero_uuid); 552 } 553 554 /* 555 * Bucket priorities/gens: 556 * 557 * For each bucket, we store on disk its 558 * 8 bit gen 559 * 16 bit priority 560 * 561 * See alloc.c for an explanation of the gen. The priority is used to implement 562 * lru (and in the future other) cache replacement policies; for most purposes 563 * it's just an opaque integer. 564 * 565 * The gens and the priorities don't have a whole lot to do with each other, and 566 * it's actually the gens that must be written out at specific times - it's no 567 * big deal if the priorities don't get written, if we lose them we just reuse 568 * buckets in suboptimal order. 569 * 570 * On disk they're stored in a packed array, and in as many buckets are required 571 * to fit them all. The buckets we use to store them form a list; the journal 572 * header points to the first bucket, the first bucket points to the second 573 * bucket, et cetera. 574 * 575 * This code is used by the allocation code; periodically (whenever it runs out 576 * of buckets to allocate from) the allocation code will invalidate some 577 * buckets, but it can't use those buckets until their new gens are safely on 578 * disk. 579 */ 580 581 static void prio_endio(struct bio *bio) 582 { 583 struct cache *ca = bio->bi_private; 584 585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 586 bch_bbio_free(bio, ca->set); 587 closure_put(&ca->prio); 588 } 589 590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf) 591 { 592 struct closure *cl = &ca->prio; 593 struct bio *bio = bch_bbio_alloc(ca->set); 594 595 closure_init_stack(cl); 596 597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 598 bio_set_dev(bio, ca->bdev); 599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 600 601 bio->bi_end_io = prio_endio; 602 bio->bi_private = ca; 603 bio->bi_opf = opf | REQ_SYNC | REQ_META; 604 bch_bio_map(bio, ca->disk_buckets); 605 606 closure_bio_submit(ca->set, bio, &ca->prio); 607 closure_sync(cl); 608 } 609 610 int bch_prio_write(struct cache *ca, bool wait) 611 { 612 int i; 613 struct bucket *b; 614 struct closure cl; 615 616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 617 fifo_used(&ca->free[RESERVE_PRIO]), 618 fifo_used(&ca->free[RESERVE_NONE]), 619 fifo_used(&ca->free_inc)); 620 621 /* 622 * Pre-check if there are enough free buckets. In the non-blocking 623 * scenario it's better to fail early rather than starting to allocate 624 * buckets and do a cleanup later in case of failure. 625 */ 626 if (!wait) { 627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 628 fifo_used(&ca->free[RESERVE_NONE]); 629 if (prio_buckets(ca) > avail) 630 return -ENOMEM; 631 } 632 633 closure_init_stack(&cl); 634 635 lockdep_assert_held(&ca->set->bucket_lock); 636 637 ca->disk_buckets->seq++; 638 639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 640 &ca->meta_sectors_written); 641 642 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 643 long bucket; 644 struct prio_set *p = ca->disk_buckets; 645 struct bucket_disk *d = p->data; 646 struct bucket_disk *end = d + prios_per_bucket(ca); 647 648 for (b = ca->buckets + i * prios_per_bucket(ca); 649 b < ca->buckets + ca->sb.nbuckets && d < end; 650 b++, d++) { 651 d->prio = cpu_to_le16(b->prio); 652 d->gen = b->gen; 653 } 654 655 p->next_bucket = ca->prio_buckets[i + 1]; 656 p->magic = pset_magic(&ca->sb); 657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 658 659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 660 BUG_ON(bucket == -1); 661 662 mutex_unlock(&ca->set->bucket_lock); 663 prio_io(ca, bucket, REQ_OP_WRITE); 664 mutex_lock(&ca->set->bucket_lock); 665 666 ca->prio_buckets[i] = bucket; 667 atomic_dec_bug(&ca->buckets[bucket].pin); 668 } 669 670 mutex_unlock(&ca->set->bucket_lock); 671 672 bch_journal_meta(ca->set, &cl); 673 closure_sync(&cl); 674 675 mutex_lock(&ca->set->bucket_lock); 676 677 /* 678 * Don't want the old priorities to get garbage collected until after we 679 * finish writing the new ones, and they're journalled 680 */ 681 for (i = 0; i < prio_buckets(ca); i++) { 682 if (ca->prio_last_buckets[i]) 683 __bch_bucket_free(ca, 684 &ca->buckets[ca->prio_last_buckets[i]]); 685 686 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 687 } 688 return 0; 689 } 690 691 static int prio_read(struct cache *ca, uint64_t bucket) 692 { 693 struct prio_set *p = ca->disk_buckets; 694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 695 struct bucket *b; 696 unsigned int bucket_nr = 0; 697 int ret = -EIO; 698 699 for (b = ca->buckets; 700 b < ca->buckets + ca->sb.nbuckets; 701 b++, d++) { 702 if (d == end) { 703 ca->prio_buckets[bucket_nr] = bucket; 704 ca->prio_last_buckets[bucket_nr] = bucket; 705 bucket_nr++; 706 707 prio_io(ca, bucket, REQ_OP_READ); 708 709 if (p->csum != 710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 711 pr_warn("bad csum reading priorities\n"); 712 goto out; 713 } 714 715 if (p->magic != pset_magic(&ca->sb)) { 716 pr_warn("bad magic reading priorities\n"); 717 goto out; 718 } 719 720 bucket = p->next_bucket; 721 d = p->data; 722 } 723 724 b->prio = le16_to_cpu(d->prio); 725 b->gen = b->last_gc = d->gen; 726 } 727 728 ret = 0; 729 out: 730 return ret; 731 } 732 733 /* Bcache device */ 734 735 static int open_dev(struct gendisk *disk, blk_mode_t mode) 736 { 737 struct bcache_device *d = disk->private_data; 738 739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 740 return -ENXIO; 741 742 closure_get(&d->cl); 743 return 0; 744 } 745 746 static void release_dev(struct gendisk *b) 747 { 748 struct bcache_device *d = b->private_data; 749 750 closure_put(&d->cl); 751 } 752 753 static int ioctl_dev(struct block_device *b, blk_mode_t mode, 754 unsigned int cmd, unsigned long arg) 755 { 756 struct bcache_device *d = b->bd_disk->private_data; 757 758 return d->ioctl(d, mode, cmd, arg); 759 } 760 761 static const struct block_device_operations bcache_cached_ops = { 762 .submit_bio = cached_dev_submit_bio, 763 .open = open_dev, 764 .release = release_dev, 765 .ioctl = ioctl_dev, 766 .owner = THIS_MODULE, 767 }; 768 769 static const struct block_device_operations bcache_flash_ops = { 770 .submit_bio = flash_dev_submit_bio, 771 .open = open_dev, 772 .release = release_dev, 773 .ioctl = ioctl_dev, 774 .owner = THIS_MODULE, 775 }; 776 777 void bcache_device_stop(struct bcache_device *d) 778 { 779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 780 /* 781 * closure_fn set to 782 * - cached device: cached_dev_flush() 783 * - flash dev: flash_dev_flush() 784 */ 785 closure_queue(&d->cl); 786 } 787 788 static void bcache_device_unlink(struct bcache_device *d) 789 { 790 lockdep_assert_held(&bch_register_lock); 791 792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 793 struct cache *ca = d->c->cache; 794 795 sysfs_remove_link(&d->c->kobj, d->name); 796 sysfs_remove_link(&d->kobj, "cache"); 797 798 bd_unlink_disk_holder(ca->bdev, d->disk); 799 } 800 } 801 802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 803 const char *name) 804 { 805 struct cache *ca = c->cache; 806 int ret; 807 808 bd_link_disk_holder(ca->bdev, d->disk); 809 810 snprintf(d->name, BCACHEDEVNAME_SIZE, 811 "%s%u", name, d->id); 812 813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 814 if (ret < 0) 815 pr_err("Couldn't create device -> cache set symlink\n"); 816 817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 818 if (ret < 0) 819 pr_err("Couldn't create cache set -> device symlink\n"); 820 821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 822 } 823 824 static void bcache_device_detach(struct bcache_device *d) 825 { 826 lockdep_assert_held(&bch_register_lock); 827 828 atomic_dec(&d->c->attached_dev_nr); 829 830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 831 struct uuid_entry *u = d->c->uuids + d->id; 832 833 SET_UUID_FLASH_ONLY(u, 0); 834 memcpy(u->uuid, invalid_uuid, 16); 835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 836 bch_uuid_write(d->c); 837 } 838 839 bcache_device_unlink(d); 840 841 d->c->devices[d->id] = NULL; 842 closure_put(&d->c->caching); 843 d->c = NULL; 844 } 845 846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 847 unsigned int id) 848 { 849 d->id = id; 850 d->c = c; 851 c->devices[id] = d; 852 853 if (id >= c->devices_max_used) 854 c->devices_max_used = id + 1; 855 856 closure_get(&c->caching); 857 } 858 859 static inline int first_minor_to_idx(int first_minor) 860 { 861 return (first_minor/BCACHE_MINORS); 862 } 863 864 static inline int idx_to_first_minor(int idx) 865 { 866 return (idx * BCACHE_MINORS); 867 } 868 869 static void bcache_device_free(struct bcache_device *d) 870 { 871 struct gendisk *disk = d->disk; 872 873 lockdep_assert_held(&bch_register_lock); 874 875 if (disk) 876 pr_info("%s stopped\n", disk->disk_name); 877 else 878 pr_err("bcache device (NULL gendisk) stopped\n"); 879 880 if (d->c) 881 bcache_device_detach(d); 882 883 if (disk) { 884 ida_simple_remove(&bcache_device_idx, 885 first_minor_to_idx(disk->first_minor)); 886 put_disk(disk); 887 } 888 889 bioset_exit(&d->bio_split); 890 kvfree(d->full_dirty_stripes); 891 kvfree(d->stripe_sectors_dirty); 892 893 closure_debug_destroy(&d->cl); 894 } 895 896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 897 sector_t sectors, struct block_device *cached_bdev, 898 const struct block_device_operations *ops) 899 { 900 struct request_queue *q; 901 const size_t max_stripes = min_t(size_t, INT_MAX, 902 SIZE_MAX / sizeof(atomic_t)); 903 uint64_t n; 904 int idx; 905 906 if (!d->stripe_size) 907 d->stripe_size = 1 << 31; 908 else if (d->stripe_size < BCH_MIN_STRIPE_SZ) 909 d->stripe_size = roundup(BCH_MIN_STRIPE_SZ, d->stripe_size); 910 911 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 912 if (!n || n > max_stripes) { 913 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 914 n); 915 return -ENOMEM; 916 } 917 d->nr_stripes = n; 918 919 n = d->nr_stripes * sizeof(atomic_t); 920 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 921 if (!d->stripe_sectors_dirty) 922 return -ENOMEM; 923 924 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 925 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 926 if (!d->full_dirty_stripes) 927 goto out_free_stripe_sectors_dirty; 928 929 idx = ida_simple_get(&bcache_device_idx, 0, 930 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 931 if (idx < 0) 932 goto out_free_full_dirty_stripes; 933 934 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 935 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 936 goto out_ida_remove; 937 938 d->disk = blk_alloc_disk(NUMA_NO_NODE); 939 if (!d->disk) 940 goto out_bioset_exit; 941 942 set_capacity(d->disk, sectors); 943 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 944 945 d->disk->major = bcache_major; 946 d->disk->first_minor = idx_to_first_minor(idx); 947 d->disk->minors = BCACHE_MINORS; 948 d->disk->fops = ops; 949 d->disk->private_data = d; 950 951 q = d->disk->queue; 952 q->limits.max_hw_sectors = UINT_MAX; 953 q->limits.max_sectors = UINT_MAX; 954 q->limits.max_segment_size = UINT_MAX; 955 q->limits.max_segments = BIO_MAX_VECS; 956 blk_queue_max_discard_sectors(q, UINT_MAX); 957 q->limits.discard_granularity = 512; 958 q->limits.io_min = block_size; 959 q->limits.logical_block_size = block_size; 960 q->limits.physical_block_size = block_size; 961 962 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 963 /* 964 * This should only happen with BCACHE_SB_VERSION_BDEV. 965 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 966 */ 967 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 968 d->disk->disk_name, q->limits.logical_block_size, 969 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 970 971 /* This also adjusts physical block size/min io size if needed */ 972 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 973 } 974 975 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 976 977 blk_queue_write_cache(q, true, true); 978 979 return 0; 980 981 out_bioset_exit: 982 bioset_exit(&d->bio_split); 983 out_ida_remove: 984 ida_simple_remove(&bcache_device_idx, idx); 985 out_free_full_dirty_stripes: 986 kvfree(d->full_dirty_stripes); 987 out_free_stripe_sectors_dirty: 988 kvfree(d->stripe_sectors_dirty); 989 return -ENOMEM; 990 991 } 992 993 /* Cached device */ 994 995 static void calc_cached_dev_sectors(struct cache_set *c) 996 { 997 uint64_t sectors = 0; 998 struct cached_dev *dc; 999 1000 list_for_each_entry(dc, &c->cached_devs, list) 1001 sectors += bdev_nr_sectors(dc->bdev); 1002 1003 c->cached_dev_sectors = sectors; 1004 } 1005 1006 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1007 static int cached_dev_status_update(void *arg) 1008 { 1009 struct cached_dev *dc = arg; 1010 struct request_queue *q; 1011 1012 /* 1013 * If this delayed worker is stopping outside, directly quit here. 1014 * dc->io_disable might be set via sysfs interface, so check it 1015 * here too. 1016 */ 1017 while (!kthread_should_stop() && !dc->io_disable) { 1018 q = bdev_get_queue(dc->bdev); 1019 if (blk_queue_dying(q)) 1020 dc->offline_seconds++; 1021 else 1022 dc->offline_seconds = 0; 1023 1024 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1025 pr_err("%pg: device offline for %d seconds\n", 1026 dc->bdev, 1027 BACKING_DEV_OFFLINE_TIMEOUT); 1028 pr_err("%s: disable I/O request due to backing device offline\n", 1029 dc->disk.name); 1030 dc->io_disable = true; 1031 /* let others know earlier that io_disable is true */ 1032 smp_mb(); 1033 bcache_device_stop(&dc->disk); 1034 break; 1035 } 1036 schedule_timeout_interruptible(HZ); 1037 } 1038 1039 wait_for_kthread_stop(); 1040 return 0; 1041 } 1042 1043 1044 int bch_cached_dev_run(struct cached_dev *dc) 1045 { 1046 int ret = 0; 1047 struct bcache_device *d = &dc->disk; 1048 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1049 char *env[] = { 1050 "DRIVER=bcache", 1051 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1052 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1053 NULL, 1054 }; 1055 1056 if (dc->io_disable) { 1057 pr_err("I/O disabled on cached dev %pg\n", dc->bdev); 1058 ret = -EIO; 1059 goto out; 1060 } 1061 1062 if (atomic_xchg(&dc->running, 1)) { 1063 pr_info("cached dev %pg is running already\n", dc->bdev); 1064 ret = -EBUSY; 1065 goto out; 1066 } 1067 1068 if (!d->c && 1069 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1070 struct closure cl; 1071 1072 closure_init_stack(&cl); 1073 1074 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1075 bch_write_bdev_super(dc, &cl); 1076 closure_sync(&cl); 1077 } 1078 1079 ret = add_disk(d->disk); 1080 if (ret) 1081 goto out; 1082 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1083 /* 1084 * won't show up in the uevent file, use udevadm monitor -e instead 1085 * only class / kset properties are persistent 1086 */ 1087 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1088 1089 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1090 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1091 &d->kobj, "bcache")) { 1092 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1093 ret = -ENOMEM; 1094 goto out; 1095 } 1096 1097 dc->status_update_thread = kthread_run(cached_dev_status_update, 1098 dc, "bcache_status_update"); 1099 if (IS_ERR(dc->status_update_thread)) { 1100 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1101 } 1102 1103 out: 1104 kfree(env[1]); 1105 kfree(env[2]); 1106 kfree(buf); 1107 return ret; 1108 } 1109 1110 /* 1111 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1112 * work dc->writeback_rate_update is running. Wait until the routine 1113 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1114 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1115 * seconds, give up waiting here and continue to cancel it too. 1116 */ 1117 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1118 { 1119 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1120 1121 do { 1122 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1123 &dc->disk.flags)) 1124 break; 1125 time_out--; 1126 schedule_timeout_interruptible(1); 1127 } while (time_out > 0); 1128 1129 if (time_out == 0) 1130 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1131 1132 cancel_delayed_work_sync(&dc->writeback_rate_update); 1133 } 1134 1135 static void cached_dev_detach_finish(struct work_struct *w) 1136 { 1137 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1138 struct cache_set *c = dc->disk.c; 1139 1140 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1141 BUG_ON(refcount_read(&dc->count)); 1142 1143 1144 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1145 cancel_writeback_rate_update_dwork(dc); 1146 1147 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1148 kthread_stop(dc->writeback_thread); 1149 dc->writeback_thread = NULL; 1150 } 1151 1152 mutex_lock(&bch_register_lock); 1153 1154 bcache_device_detach(&dc->disk); 1155 list_move(&dc->list, &uncached_devices); 1156 calc_cached_dev_sectors(c); 1157 1158 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1159 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1160 1161 mutex_unlock(&bch_register_lock); 1162 1163 pr_info("Caching disabled for %pg\n", dc->bdev); 1164 1165 /* Drop ref we took in cached_dev_detach() */ 1166 closure_put(&dc->disk.cl); 1167 } 1168 1169 void bch_cached_dev_detach(struct cached_dev *dc) 1170 { 1171 lockdep_assert_held(&bch_register_lock); 1172 1173 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1174 return; 1175 1176 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1177 return; 1178 1179 /* 1180 * Block the device from being closed and freed until we're finished 1181 * detaching 1182 */ 1183 closure_get(&dc->disk.cl); 1184 1185 bch_writeback_queue(dc); 1186 1187 cached_dev_put(dc); 1188 } 1189 1190 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1191 uint8_t *set_uuid) 1192 { 1193 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1194 struct uuid_entry *u; 1195 struct cached_dev *exist_dc, *t; 1196 int ret = 0; 1197 1198 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1199 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1200 return -ENOENT; 1201 1202 if (dc->disk.c) { 1203 pr_err("Can't attach %pg: already attached\n", dc->bdev); 1204 return -EINVAL; 1205 } 1206 1207 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1208 pr_err("Can't attach %pg: shutting down\n", dc->bdev); 1209 return -EINVAL; 1210 } 1211 1212 if (dc->sb.block_size < c->cache->sb.block_size) { 1213 /* Will die */ 1214 pr_err("Couldn't attach %pg: block size less than set's block size\n", 1215 dc->bdev); 1216 return -EINVAL; 1217 } 1218 1219 /* Check whether already attached */ 1220 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1221 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1222 pr_err("Tried to attach %pg but duplicate UUID already attached\n", 1223 dc->bdev); 1224 1225 return -EINVAL; 1226 } 1227 } 1228 1229 u = uuid_find(c, dc->sb.uuid); 1230 1231 if (u && 1232 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1233 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1234 memcpy(u->uuid, invalid_uuid, 16); 1235 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1236 u = NULL; 1237 } 1238 1239 if (!u) { 1240 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1241 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev); 1242 return -ENOENT; 1243 } 1244 1245 u = uuid_find_empty(c); 1246 if (!u) { 1247 pr_err("Not caching %pg, no room for UUID\n", dc->bdev); 1248 return -EINVAL; 1249 } 1250 } 1251 1252 /* 1253 * Deadlocks since we're called via sysfs... 1254 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1255 */ 1256 1257 if (bch_is_zero(u->uuid, 16)) { 1258 struct closure cl; 1259 1260 closure_init_stack(&cl); 1261 1262 memcpy(u->uuid, dc->sb.uuid, 16); 1263 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1264 u->first_reg = u->last_reg = rtime; 1265 bch_uuid_write(c); 1266 1267 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1268 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1269 1270 bch_write_bdev_super(dc, &cl); 1271 closure_sync(&cl); 1272 } else { 1273 u->last_reg = rtime; 1274 bch_uuid_write(c); 1275 } 1276 1277 bcache_device_attach(&dc->disk, c, u - c->uuids); 1278 list_move(&dc->list, &c->cached_devs); 1279 calc_cached_dev_sectors(c); 1280 1281 /* 1282 * dc->c must be set before dc->count != 0 - paired with the mb in 1283 * cached_dev_get() 1284 */ 1285 smp_wmb(); 1286 refcount_set(&dc->count, 1); 1287 1288 /* Block writeback thread, but spawn it */ 1289 down_write(&dc->writeback_lock); 1290 if (bch_cached_dev_writeback_start(dc)) { 1291 up_write(&dc->writeback_lock); 1292 pr_err("Couldn't start writeback facilities for %s\n", 1293 dc->disk.disk->disk_name); 1294 return -ENOMEM; 1295 } 1296 1297 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1298 atomic_set(&dc->has_dirty, 1); 1299 bch_writeback_queue(dc); 1300 } 1301 1302 bch_sectors_dirty_init(&dc->disk); 1303 1304 ret = bch_cached_dev_run(dc); 1305 if (ret && (ret != -EBUSY)) { 1306 up_write(&dc->writeback_lock); 1307 /* 1308 * bch_register_lock is held, bcache_device_stop() is not 1309 * able to be directly called. The kthread and kworker 1310 * created previously in bch_cached_dev_writeback_start() 1311 * have to be stopped manually here. 1312 */ 1313 kthread_stop(dc->writeback_thread); 1314 cancel_writeback_rate_update_dwork(dc); 1315 pr_err("Couldn't run cached device %pg\n", dc->bdev); 1316 return ret; 1317 } 1318 1319 bcache_device_link(&dc->disk, c, "bdev"); 1320 atomic_inc(&c->attached_dev_nr); 1321 1322 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1323 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1324 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1325 set_disk_ro(dc->disk.disk, 1); 1326 } 1327 1328 /* Allow the writeback thread to proceed */ 1329 up_write(&dc->writeback_lock); 1330 1331 pr_info("Caching %pg as %s on set %pU\n", 1332 dc->bdev, 1333 dc->disk.disk->disk_name, 1334 dc->disk.c->set_uuid); 1335 return 0; 1336 } 1337 1338 /* when dc->disk.kobj released */ 1339 void bch_cached_dev_release(struct kobject *kobj) 1340 { 1341 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1342 disk.kobj); 1343 kfree(dc); 1344 module_put(THIS_MODULE); 1345 } 1346 1347 static void cached_dev_free(struct closure *cl) 1348 { 1349 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1350 1351 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1352 cancel_writeback_rate_update_dwork(dc); 1353 1354 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1355 kthread_stop(dc->writeback_thread); 1356 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1357 kthread_stop(dc->status_update_thread); 1358 1359 mutex_lock(&bch_register_lock); 1360 1361 if (atomic_read(&dc->running)) { 1362 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1363 del_gendisk(dc->disk.disk); 1364 } 1365 bcache_device_free(&dc->disk); 1366 list_del(&dc->list); 1367 1368 mutex_unlock(&bch_register_lock); 1369 1370 if (dc->sb_disk) 1371 put_page(virt_to_page(dc->sb_disk)); 1372 1373 if (!IS_ERR_OR_NULL(dc->bdev)) 1374 blkdev_put(dc->bdev, dc); 1375 1376 wake_up(&unregister_wait); 1377 1378 kobject_put(&dc->disk.kobj); 1379 } 1380 1381 static void cached_dev_flush(struct closure *cl) 1382 { 1383 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1384 struct bcache_device *d = &dc->disk; 1385 1386 mutex_lock(&bch_register_lock); 1387 bcache_device_unlink(d); 1388 mutex_unlock(&bch_register_lock); 1389 1390 bch_cache_accounting_destroy(&dc->accounting); 1391 kobject_del(&d->kobj); 1392 1393 continue_at(cl, cached_dev_free, system_wq); 1394 } 1395 1396 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1397 { 1398 int ret; 1399 struct io *io; 1400 struct request_queue *q = bdev_get_queue(dc->bdev); 1401 1402 __module_get(THIS_MODULE); 1403 INIT_LIST_HEAD(&dc->list); 1404 closure_init(&dc->disk.cl, NULL); 1405 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1406 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1407 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1408 sema_init(&dc->sb_write_mutex, 1); 1409 INIT_LIST_HEAD(&dc->io_lru); 1410 spin_lock_init(&dc->io_lock); 1411 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1412 1413 dc->sequential_cutoff = 4 << 20; 1414 1415 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1416 list_add(&io->lru, &dc->io_lru); 1417 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1418 } 1419 1420 dc->disk.stripe_size = q->limits.io_opt >> 9; 1421 1422 if (dc->disk.stripe_size) 1423 dc->partial_stripes_expensive = 1424 q->limits.raid_partial_stripes_expensive; 1425 1426 ret = bcache_device_init(&dc->disk, block_size, 1427 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1428 dc->bdev, &bcache_cached_ops); 1429 if (ret) 1430 return ret; 1431 1432 blk_queue_io_opt(dc->disk.disk->queue, 1433 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1434 1435 atomic_set(&dc->io_errors, 0); 1436 dc->io_disable = false; 1437 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1438 /* default to auto */ 1439 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1440 1441 bch_cached_dev_request_init(dc); 1442 bch_cached_dev_writeback_init(dc); 1443 return 0; 1444 } 1445 1446 /* Cached device - bcache superblock */ 1447 1448 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1449 struct block_device *bdev, 1450 struct cached_dev *dc) 1451 { 1452 const char *err = "cannot allocate memory"; 1453 struct cache_set *c; 1454 int ret = -ENOMEM; 1455 1456 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1457 dc->bdev = bdev; 1458 dc->sb_disk = sb_disk; 1459 1460 if (cached_dev_init(dc, sb->block_size << 9)) 1461 goto err; 1462 1463 err = "error creating kobject"; 1464 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1465 goto err; 1466 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1467 goto err; 1468 1469 pr_info("registered backing device %pg\n", dc->bdev); 1470 1471 list_add(&dc->list, &uncached_devices); 1472 /* attach to a matched cache set if it exists */ 1473 list_for_each_entry(c, &bch_cache_sets, list) 1474 bch_cached_dev_attach(dc, c, NULL); 1475 1476 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1477 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1478 err = "failed to run cached device"; 1479 ret = bch_cached_dev_run(dc); 1480 if (ret) 1481 goto err; 1482 } 1483 1484 return 0; 1485 err: 1486 pr_notice("error %pg: %s\n", dc->bdev, err); 1487 bcache_device_stop(&dc->disk); 1488 return ret; 1489 } 1490 1491 /* Flash only volumes */ 1492 1493 /* When d->kobj released */ 1494 void bch_flash_dev_release(struct kobject *kobj) 1495 { 1496 struct bcache_device *d = container_of(kobj, struct bcache_device, 1497 kobj); 1498 kfree(d); 1499 } 1500 1501 static void flash_dev_free(struct closure *cl) 1502 { 1503 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1504 1505 mutex_lock(&bch_register_lock); 1506 atomic_long_sub(bcache_dev_sectors_dirty(d), 1507 &d->c->flash_dev_dirty_sectors); 1508 del_gendisk(d->disk); 1509 bcache_device_free(d); 1510 mutex_unlock(&bch_register_lock); 1511 kobject_put(&d->kobj); 1512 } 1513 1514 static void flash_dev_flush(struct closure *cl) 1515 { 1516 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1517 1518 mutex_lock(&bch_register_lock); 1519 bcache_device_unlink(d); 1520 mutex_unlock(&bch_register_lock); 1521 kobject_del(&d->kobj); 1522 continue_at(cl, flash_dev_free, system_wq); 1523 } 1524 1525 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1526 { 1527 int err = -ENOMEM; 1528 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1529 GFP_KERNEL); 1530 if (!d) 1531 goto err_ret; 1532 1533 closure_init(&d->cl, NULL); 1534 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1535 1536 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1537 1538 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1539 NULL, &bcache_flash_ops)) 1540 goto err; 1541 1542 bcache_device_attach(d, c, u - c->uuids); 1543 bch_sectors_dirty_init(d); 1544 bch_flash_dev_request_init(d); 1545 err = add_disk(d->disk); 1546 if (err) 1547 goto err; 1548 1549 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"); 1550 if (err) 1551 goto err; 1552 1553 bcache_device_link(d, c, "volume"); 1554 1555 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1556 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1557 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1558 set_disk_ro(d->disk, 1); 1559 } 1560 1561 return 0; 1562 err: 1563 kobject_put(&d->kobj); 1564 err_ret: 1565 return err; 1566 } 1567 1568 static int flash_devs_run(struct cache_set *c) 1569 { 1570 int ret = 0; 1571 struct uuid_entry *u; 1572 1573 for (u = c->uuids; 1574 u < c->uuids + c->nr_uuids && !ret; 1575 u++) 1576 if (UUID_FLASH_ONLY(u)) 1577 ret = flash_dev_run(c, u); 1578 1579 return ret; 1580 } 1581 1582 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1583 { 1584 struct uuid_entry *u; 1585 1586 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1587 return -EINTR; 1588 1589 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1590 return -EPERM; 1591 1592 u = uuid_find_empty(c); 1593 if (!u) { 1594 pr_err("Can't create volume, no room for UUID\n"); 1595 return -EINVAL; 1596 } 1597 1598 get_random_bytes(u->uuid, 16); 1599 memset(u->label, 0, 32); 1600 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1601 1602 SET_UUID_FLASH_ONLY(u, 1); 1603 u->sectors = size >> 9; 1604 1605 bch_uuid_write(c); 1606 1607 return flash_dev_run(c, u); 1608 } 1609 1610 bool bch_cached_dev_error(struct cached_dev *dc) 1611 { 1612 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1613 return false; 1614 1615 dc->io_disable = true; 1616 /* make others know io_disable is true earlier */ 1617 smp_mb(); 1618 1619 pr_err("stop %s: too many IO errors on backing device %pg\n", 1620 dc->disk.disk->disk_name, dc->bdev); 1621 1622 bcache_device_stop(&dc->disk); 1623 return true; 1624 } 1625 1626 /* Cache set */ 1627 1628 __printf(2, 3) 1629 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1630 { 1631 struct va_format vaf; 1632 va_list args; 1633 1634 if (c->on_error != ON_ERROR_PANIC && 1635 test_bit(CACHE_SET_STOPPING, &c->flags)) 1636 return false; 1637 1638 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1639 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1640 1641 /* 1642 * XXX: we can be called from atomic context 1643 * acquire_console_sem(); 1644 */ 1645 1646 va_start(args, fmt); 1647 1648 vaf.fmt = fmt; 1649 vaf.va = &args; 1650 1651 pr_err("error on %pU: %pV, disabling caching\n", 1652 c->set_uuid, &vaf); 1653 1654 va_end(args); 1655 1656 if (c->on_error == ON_ERROR_PANIC) 1657 panic("panic forced after error\n"); 1658 1659 bch_cache_set_unregister(c); 1660 return true; 1661 } 1662 1663 /* When c->kobj released */ 1664 void bch_cache_set_release(struct kobject *kobj) 1665 { 1666 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1667 1668 kfree(c); 1669 module_put(THIS_MODULE); 1670 } 1671 1672 static void cache_set_free(struct closure *cl) 1673 { 1674 struct cache_set *c = container_of(cl, struct cache_set, cl); 1675 struct cache *ca; 1676 1677 debugfs_remove(c->debug); 1678 1679 bch_open_buckets_free(c); 1680 bch_btree_cache_free(c); 1681 bch_journal_free(c); 1682 1683 mutex_lock(&bch_register_lock); 1684 bch_bset_sort_state_free(&c->sort); 1685 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1686 1687 ca = c->cache; 1688 if (ca) { 1689 ca->set = NULL; 1690 c->cache = NULL; 1691 kobject_put(&ca->kobj); 1692 } 1693 1694 1695 if (c->moving_gc_wq) 1696 destroy_workqueue(c->moving_gc_wq); 1697 bioset_exit(&c->bio_split); 1698 mempool_exit(&c->fill_iter); 1699 mempool_exit(&c->bio_meta); 1700 mempool_exit(&c->search); 1701 kfree(c->devices); 1702 1703 list_del(&c->list); 1704 mutex_unlock(&bch_register_lock); 1705 1706 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1707 wake_up(&unregister_wait); 1708 1709 closure_debug_destroy(&c->cl); 1710 kobject_put(&c->kobj); 1711 } 1712 1713 static void cache_set_flush(struct closure *cl) 1714 { 1715 struct cache_set *c = container_of(cl, struct cache_set, caching); 1716 struct cache *ca = c->cache; 1717 struct btree *b; 1718 1719 bch_cache_accounting_destroy(&c->accounting); 1720 1721 kobject_put(&c->internal); 1722 kobject_del(&c->kobj); 1723 1724 if (!IS_ERR_OR_NULL(c->gc_thread)) 1725 kthread_stop(c->gc_thread); 1726 1727 if (!IS_ERR(c->root)) 1728 list_add(&c->root->list, &c->btree_cache); 1729 1730 /* 1731 * Avoid flushing cached nodes if cache set is retiring 1732 * due to too many I/O errors detected. 1733 */ 1734 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1735 list_for_each_entry(b, &c->btree_cache, list) { 1736 mutex_lock(&b->write_lock); 1737 if (btree_node_dirty(b)) 1738 __bch_btree_node_write(b, NULL); 1739 mutex_unlock(&b->write_lock); 1740 } 1741 1742 if (ca->alloc_thread) 1743 kthread_stop(ca->alloc_thread); 1744 1745 if (c->journal.cur) { 1746 cancel_delayed_work_sync(&c->journal.work); 1747 /* flush last journal entry if needed */ 1748 c->journal.work.work.func(&c->journal.work.work); 1749 } 1750 1751 closure_return(cl); 1752 } 1753 1754 /* 1755 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1756 * cache set is unregistering due to too many I/O errors. In this condition, 1757 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1758 * value and whether the broken cache has dirty data: 1759 * 1760 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1761 * BCH_CACHED_STOP_AUTO 0 NO 1762 * BCH_CACHED_STOP_AUTO 1 YES 1763 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1764 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1765 * 1766 * The expected behavior is, if stop_when_cache_set_failed is configured to 1767 * "auto" via sysfs interface, the bcache device will not be stopped if the 1768 * backing device is clean on the broken cache device. 1769 */ 1770 static void conditional_stop_bcache_device(struct cache_set *c, 1771 struct bcache_device *d, 1772 struct cached_dev *dc) 1773 { 1774 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1775 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1776 d->disk->disk_name, c->set_uuid); 1777 bcache_device_stop(d); 1778 } else if (atomic_read(&dc->has_dirty)) { 1779 /* 1780 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1781 * and dc->has_dirty == 1 1782 */ 1783 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1784 d->disk->disk_name); 1785 /* 1786 * There might be a small time gap that cache set is 1787 * released but bcache device is not. Inside this time 1788 * gap, regular I/O requests will directly go into 1789 * backing device as no cache set attached to. This 1790 * behavior may also introduce potential inconsistence 1791 * data in writeback mode while cache is dirty. 1792 * Therefore before calling bcache_device_stop() due 1793 * to a broken cache device, dc->io_disable should be 1794 * explicitly set to true. 1795 */ 1796 dc->io_disable = true; 1797 /* make others know io_disable is true earlier */ 1798 smp_mb(); 1799 bcache_device_stop(d); 1800 } else { 1801 /* 1802 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1803 * and dc->has_dirty == 0 1804 */ 1805 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1806 d->disk->disk_name); 1807 } 1808 } 1809 1810 static void __cache_set_unregister(struct closure *cl) 1811 { 1812 struct cache_set *c = container_of(cl, struct cache_set, caching); 1813 struct cached_dev *dc; 1814 struct bcache_device *d; 1815 size_t i; 1816 1817 mutex_lock(&bch_register_lock); 1818 1819 for (i = 0; i < c->devices_max_used; i++) { 1820 d = c->devices[i]; 1821 if (!d) 1822 continue; 1823 1824 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1825 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1826 dc = container_of(d, struct cached_dev, disk); 1827 bch_cached_dev_detach(dc); 1828 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1829 conditional_stop_bcache_device(c, d, dc); 1830 } else { 1831 bcache_device_stop(d); 1832 } 1833 } 1834 1835 mutex_unlock(&bch_register_lock); 1836 1837 continue_at(cl, cache_set_flush, system_wq); 1838 } 1839 1840 void bch_cache_set_stop(struct cache_set *c) 1841 { 1842 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1843 /* closure_fn set to __cache_set_unregister() */ 1844 closure_queue(&c->caching); 1845 } 1846 1847 void bch_cache_set_unregister(struct cache_set *c) 1848 { 1849 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1850 bch_cache_set_stop(c); 1851 } 1852 1853 #define alloc_meta_bucket_pages(gfp, sb) \ 1854 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1855 1856 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1857 { 1858 int iter_size; 1859 struct cache *ca = container_of(sb, struct cache, sb); 1860 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1861 1862 if (!c) 1863 return NULL; 1864 1865 __module_get(THIS_MODULE); 1866 closure_init(&c->cl, NULL); 1867 set_closure_fn(&c->cl, cache_set_free, system_wq); 1868 1869 closure_init(&c->caching, &c->cl); 1870 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1871 1872 /* Maybe create continue_at_noreturn() and use it here? */ 1873 closure_set_stopped(&c->cl); 1874 closure_put(&c->cl); 1875 1876 kobject_init(&c->kobj, &bch_cache_set_ktype); 1877 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1878 1879 bch_cache_accounting_init(&c->accounting, &c->cl); 1880 1881 memcpy(c->set_uuid, sb->set_uuid, 16); 1882 1883 c->cache = ca; 1884 c->cache->set = c; 1885 c->bucket_bits = ilog2(sb->bucket_size); 1886 c->block_bits = ilog2(sb->block_size); 1887 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1888 c->devices_max_used = 0; 1889 atomic_set(&c->attached_dev_nr, 0); 1890 c->btree_pages = meta_bucket_pages(sb); 1891 if (c->btree_pages > BTREE_MAX_PAGES) 1892 c->btree_pages = max_t(int, c->btree_pages / 4, 1893 BTREE_MAX_PAGES); 1894 1895 sema_init(&c->sb_write_mutex, 1); 1896 mutex_init(&c->bucket_lock); 1897 init_waitqueue_head(&c->btree_cache_wait); 1898 spin_lock_init(&c->btree_cannibalize_lock); 1899 init_waitqueue_head(&c->bucket_wait); 1900 init_waitqueue_head(&c->gc_wait); 1901 sema_init(&c->uuid_write_mutex, 1); 1902 1903 spin_lock_init(&c->btree_gc_time.lock); 1904 spin_lock_init(&c->btree_split_time.lock); 1905 spin_lock_init(&c->btree_read_time.lock); 1906 1907 bch_moving_init_cache_set(c); 1908 1909 INIT_LIST_HEAD(&c->list); 1910 INIT_LIST_HEAD(&c->cached_devs); 1911 INIT_LIST_HEAD(&c->btree_cache); 1912 INIT_LIST_HEAD(&c->btree_cache_freeable); 1913 INIT_LIST_HEAD(&c->btree_cache_freed); 1914 INIT_LIST_HEAD(&c->data_buckets); 1915 1916 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1917 sizeof(struct btree_iter_set); 1918 1919 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1920 if (!c->devices) 1921 goto err; 1922 1923 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1924 goto err; 1925 1926 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1927 sizeof(struct bbio) + 1928 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1929 goto err; 1930 1931 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1932 goto err; 1933 1934 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1935 BIOSET_NEED_RESCUER)) 1936 goto err; 1937 1938 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1939 if (!c->uuids) 1940 goto err; 1941 1942 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1943 if (!c->moving_gc_wq) 1944 goto err; 1945 1946 if (bch_journal_alloc(c)) 1947 goto err; 1948 1949 if (bch_btree_cache_alloc(c)) 1950 goto err; 1951 1952 if (bch_open_buckets_alloc(c)) 1953 goto err; 1954 1955 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1956 goto err; 1957 1958 c->congested_read_threshold_us = 2000; 1959 c->congested_write_threshold_us = 20000; 1960 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1961 c->idle_max_writeback_rate_enabled = 1; 1962 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1963 1964 return c; 1965 err: 1966 bch_cache_set_unregister(c); 1967 return NULL; 1968 } 1969 1970 static int run_cache_set(struct cache_set *c) 1971 { 1972 const char *err = "cannot allocate memory"; 1973 struct cached_dev *dc, *t; 1974 struct cache *ca = c->cache; 1975 struct closure cl; 1976 LIST_HEAD(journal); 1977 struct journal_replay *l; 1978 1979 closure_init_stack(&cl); 1980 1981 c->nbuckets = ca->sb.nbuckets; 1982 set_gc_sectors(c); 1983 1984 if (CACHE_SYNC(&c->cache->sb)) { 1985 struct bkey *k; 1986 struct jset *j; 1987 1988 err = "cannot allocate memory for journal"; 1989 if (bch_journal_read(c, &journal)) 1990 goto err; 1991 1992 pr_debug("btree_journal_read() done\n"); 1993 1994 err = "no journal entries found"; 1995 if (list_empty(&journal)) 1996 goto err; 1997 1998 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1999 2000 err = "IO error reading priorities"; 2001 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2002 goto err; 2003 2004 /* 2005 * If prio_read() fails it'll call cache_set_error and we'll 2006 * tear everything down right away, but if we perhaps checked 2007 * sooner we could avoid journal replay. 2008 */ 2009 2010 k = &j->btree_root; 2011 2012 err = "bad btree root"; 2013 if (__bch_btree_ptr_invalid(c, k)) 2014 goto err; 2015 2016 err = "error reading btree root"; 2017 c->root = bch_btree_node_get(c, NULL, k, 2018 j->btree_level, 2019 true, NULL); 2020 if (IS_ERR(c->root)) 2021 goto err; 2022 2023 list_del_init(&c->root->list); 2024 rw_unlock(true, c->root); 2025 2026 err = uuid_read(c, j, &cl); 2027 if (err) 2028 goto err; 2029 2030 err = "error in recovery"; 2031 if (bch_btree_check(c)) 2032 goto err; 2033 2034 bch_journal_mark(c, &journal); 2035 bch_initial_gc_finish(c); 2036 pr_debug("btree_check() done\n"); 2037 2038 /* 2039 * bcache_journal_next() can't happen sooner, or 2040 * btree_gc_finish() will give spurious errors about last_gc > 2041 * gc_gen - this is a hack but oh well. 2042 */ 2043 bch_journal_next(&c->journal); 2044 2045 err = "error starting allocator thread"; 2046 if (bch_cache_allocator_start(ca)) 2047 goto err; 2048 2049 /* 2050 * First place it's safe to allocate: btree_check() and 2051 * btree_gc_finish() have to run before we have buckets to 2052 * allocate, and bch_bucket_alloc_set() might cause a journal 2053 * entry to be written so bcache_journal_next() has to be called 2054 * first. 2055 * 2056 * If the uuids were in the old format we have to rewrite them 2057 * before the next journal entry is written: 2058 */ 2059 if (j->version < BCACHE_JSET_VERSION_UUID) 2060 __uuid_write(c); 2061 2062 err = "bcache: replay journal failed"; 2063 if (bch_journal_replay(c, &journal)) 2064 goto err; 2065 } else { 2066 unsigned int j; 2067 2068 pr_notice("invalidating existing data\n"); 2069 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2070 2, SB_JOURNAL_BUCKETS); 2071 2072 for (j = 0; j < ca->sb.keys; j++) 2073 ca->sb.d[j] = ca->sb.first_bucket + j; 2074 2075 bch_initial_gc_finish(c); 2076 2077 err = "error starting allocator thread"; 2078 if (bch_cache_allocator_start(ca)) 2079 goto err; 2080 2081 mutex_lock(&c->bucket_lock); 2082 bch_prio_write(ca, true); 2083 mutex_unlock(&c->bucket_lock); 2084 2085 err = "cannot allocate new UUID bucket"; 2086 if (__uuid_write(c)) 2087 goto err; 2088 2089 err = "cannot allocate new btree root"; 2090 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2091 if (IS_ERR(c->root)) 2092 goto err; 2093 2094 mutex_lock(&c->root->write_lock); 2095 bkey_copy_key(&c->root->key, &MAX_KEY); 2096 bch_btree_node_write(c->root, &cl); 2097 mutex_unlock(&c->root->write_lock); 2098 2099 bch_btree_set_root(c->root); 2100 rw_unlock(true, c->root); 2101 2102 /* 2103 * We don't want to write the first journal entry until 2104 * everything is set up - fortunately journal entries won't be 2105 * written until the SET_CACHE_SYNC() here: 2106 */ 2107 SET_CACHE_SYNC(&c->cache->sb, true); 2108 2109 bch_journal_next(&c->journal); 2110 bch_journal_meta(c, &cl); 2111 } 2112 2113 err = "error starting gc thread"; 2114 if (bch_gc_thread_start(c)) 2115 goto err; 2116 2117 closure_sync(&cl); 2118 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2119 bcache_write_super(c); 2120 2121 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2122 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2123 2124 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2125 bch_cached_dev_attach(dc, c, NULL); 2126 2127 flash_devs_run(c); 2128 2129 bch_journal_space_reserve(&c->journal); 2130 set_bit(CACHE_SET_RUNNING, &c->flags); 2131 return 0; 2132 err: 2133 while (!list_empty(&journal)) { 2134 l = list_first_entry(&journal, struct journal_replay, list); 2135 list_del(&l->list); 2136 kfree(l); 2137 } 2138 2139 closure_sync(&cl); 2140 2141 bch_cache_set_error(c, "%s", err); 2142 2143 return -EIO; 2144 } 2145 2146 static const char *register_cache_set(struct cache *ca) 2147 { 2148 char buf[12]; 2149 const char *err = "cannot allocate memory"; 2150 struct cache_set *c; 2151 2152 list_for_each_entry(c, &bch_cache_sets, list) 2153 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2154 if (c->cache) 2155 return "duplicate cache set member"; 2156 2157 goto found; 2158 } 2159 2160 c = bch_cache_set_alloc(&ca->sb); 2161 if (!c) 2162 return err; 2163 2164 err = "error creating kobject"; 2165 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2166 kobject_add(&c->internal, &c->kobj, "internal")) 2167 goto err; 2168 2169 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2170 goto err; 2171 2172 bch_debug_init_cache_set(c); 2173 2174 list_add(&c->list, &bch_cache_sets); 2175 found: 2176 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2177 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2178 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2179 goto err; 2180 2181 kobject_get(&ca->kobj); 2182 ca->set = c; 2183 ca->set->cache = ca; 2184 2185 err = "failed to run cache set"; 2186 if (run_cache_set(c) < 0) 2187 goto err; 2188 2189 return NULL; 2190 err: 2191 bch_cache_set_unregister(c); 2192 return err; 2193 } 2194 2195 /* Cache device */ 2196 2197 /* When ca->kobj released */ 2198 void bch_cache_release(struct kobject *kobj) 2199 { 2200 struct cache *ca = container_of(kobj, struct cache, kobj); 2201 unsigned int i; 2202 2203 if (ca->set) { 2204 BUG_ON(ca->set->cache != ca); 2205 ca->set->cache = NULL; 2206 } 2207 2208 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2209 kfree(ca->prio_buckets); 2210 vfree(ca->buckets); 2211 2212 free_heap(&ca->heap); 2213 free_fifo(&ca->free_inc); 2214 2215 for (i = 0; i < RESERVE_NR; i++) 2216 free_fifo(&ca->free[i]); 2217 2218 if (ca->sb_disk) 2219 put_page(virt_to_page(ca->sb_disk)); 2220 2221 if (!IS_ERR_OR_NULL(ca->bdev)) 2222 blkdev_put(ca->bdev, ca); 2223 2224 kfree(ca); 2225 module_put(THIS_MODULE); 2226 } 2227 2228 static int cache_alloc(struct cache *ca) 2229 { 2230 size_t free; 2231 size_t btree_buckets; 2232 struct bucket *b; 2233 int ret = -ENOMEM; 2234 const char *err = NULL; 2235 2236 __module_get(THIS_MODULE); 2237 kobject_init(&ca->kobj, &bch_cache_ktype); 2238 2239 bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0); 2240 2241 /* 2242 * when ca->sb.njournal_buckets is not zero, journal exists, 2243 * and in bch_journal_replay(), tree node may split, 2244 * so bucket of RESERVE_BTREE type is needed, 2245 * the worst situation is all journal buckets are valid journal, 2246 * and all the keys need to replay, 2247 * so the number of RESERVE_BTREE type buckets should be as much 2248 * as journal buckets 2249 */ 2250 btree_buckets = ca->sb.njournal_buckets ?: 8; 2251 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2252 if (!free) { 2253 ret = -EPERM; 2254 err = "ca->sb.nbuckets is too small"; 2255 goto err_free; 2256 } 2257 2258 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2259 GFP_KERNEL)) { 2260 err = "ca->free[RESERVE_BTREE] alloc failed"; 2261 goto err_btree_alloc; 2262 } 2263 2264 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2265 GFP_KERNEL)) { 2266 err = "ca->free[RESERVE_PRIO] alloc failed"; 2267 goto err_prio_alloc; 2268 } 2269 2270 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2271 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2272 goto err_movinggc_alloc; 2273 } 2274 2275 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2276 err = "ca->free[RESERVE_NONE] alloc failed"; 2277 goto err_none_alloc; 2278 } 2279 2280 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2281 err = "ca->free_inc alloc failed"; 2282 goto err_free_inc_alloc; 2283 } 2284 2285 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2286 err = "ca->heap alloc failed"; 2287 goto err_heap_alloc; 2288 } 2289 2290 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2291 ca->sb.nbuckets)); 2292 if (!ca->buckets) { 2293 err = "ca->buckets alloc failed"; 2294 goto err_buckets_alloc; 2295 } 2296 2297 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2298 prio_buckets(ca), 2), 2299 GFP_KERNEL); 2300 if (!ca->prio_buckets) { 2301 err = "ca->prio_buckets alloc failed"; 2302 goto err_prio_buckets_alloc; 2303 } 2304 2305 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2306 if (!ca->disk_buckets) { 2307 err = "ca->disk_buckets alloc failed"; 2308 goto err_disk_buckets_alloc; 2309 } 2310 2311 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2312 2313 for_each_bucket(b, ca) 2314 atomic_set(&b->pin, 0); 2315 return 0; 2316 2317 err_disk_buckets_alloc: 2318 kfree(ca->prio_buckets); 2319 err_prio_buckets_alloc: 2320 vfree(ca->buckets); 2321 err_buckets_alloc: 2322 free_heap(&ca->heap); 2323 err_heap_alloc: 2324 free_fifo(&ca->free_inc); 2325 err_free_inc_alloc: 2326 free_fifo(&ca->free[RESERVE_NONE]); 2327 err_none_alloc: 2328 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2329 err_movinggc_alloc: 2330 free_fifo(&ca->free[RESERVE_PRIO]); 2331 err_prio_alloc: 2332 free_fifo(&ca->free[RESERVE_BTREE]); 2333 err_btree_alloc: 2334 err_free: 2335 module_put(THIS_MODULE); 2336 if (err) 2337 pr_notice("error %pg: %s\n", ca->bdev, err); 2338 return ret; 2339 } 2340 2341 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2342 struct block_device *bdev, struct cache *ca) 2343 { 2344 const char *err = NULL; /* must be set for any error case */ 2345 int ret = 0; 2346 2347 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2348 ca->bdev = bdev; 2349 ca->sb_disk = sb_disk; 2350 2351 if (bdev_max_discard_sectors((bdev))) 2352 ca->discard = CACHE_DISCARD(&ca->sb); 2353 2354 ret = cache_alloc(ca); 2355 if (ret != 0) { 2356 /* 2357 * If we failed here, it means ca->kobj is not initialized yet, 2358 * kobject_put() won't be called and there is no chance to 2359 * call blkdev_put() to bdev in bch_cache_release(). So we 2360 * explicitly call blkdev_put() here. 2361 */ 2362 blkdev_put(bdev, ca); 2363 if (ret == -ENOMEM) 2364 err = "cache_alloc(): -ENOMEM"; 2365 else if (ret == -EPERM) 2366 err = "cache_alloc(): cache device is too small"; 2367 else 2368 err = "cache_alloc(): unknown error"; 2369 goto err; 2370 } 2371 2372 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2373 err = "error calling kobject_add"; 2374 ret = -ENOMEM; 2375 goto out; 2376 } 2377 2378 mutex_lock(&bch_register_lock); 2379 err = register_cache_set(ca); 2380 mutex_unlock(&bch_register_lock); 2381 2382 if (err) { 2383 ret = -ENODEV; 2384 goto out; 2385 } 2386 2387 pr_info("registered cache device %pg\n", ca->bdev); 2388 2389 out: 2390 kobject_put(&ca->kobj); 2391 2392 err: 2393 if (err) 2394 pr_notice("error %pg: %s\n", ca->bdev, err); 2395 2396 return ret; 2397 } 2398 2399 /* Global interfaces/init */ 2400 2401 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2402 const char *buffer, size_t size); 2403 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2404 struct kobj_attribute *attr, 2405 const char *buffer, size_t size); 2406 2407 kobj_attribute_write(register, register_bcache); 2408 kobj_attribute_write(register_quiet, register_bcache); 2409 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2410 2411 static bool bch_is_open_backing(dev_t dev) 2412 { 2413 struct cache_set *c, *tc; 2414 struct cached_dev *dc, *t; 2415 2416 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2417 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2418 if (dc->bdev->bd_dev == dev) 2419 return true; 2420 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2421 if (dc->bdev->bd_dev == dev) 2422 return true; 2423 return false; 2424 } 2425 2426 static bool bch_is_open_cache(dev_t dev) 2427 { 2428 struct cache_set *c, *tc; 2429 2430 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2431 struct cache *ca = c->cache; 2432 2433 if (ca->bdev->bd_dev == dev) 2434 return true; 2435 } 2436 2437 return false; 2438 } 2439 2440 static bool bch_is_open(dev_t dev) 2441 { 2442 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2443 } 2444 2445 struct async_reg_args { 2446 struct delayed_work reg_work; 2447 char *path; 2448 struct cache_sb *sb; 2449 struct cache_sb_disk *sb_disk; 2450 struct block_device *bdev; 2451 void *holder; 2452 }; 2453 2454 static void register_bdev_worker(struct work_struct *work) 2455 { 2456 int fail = false; 2457 struct async_reg_args *args = 2458 container_of(work, struct async_reg_args, reg_work.work); 2459 2460 mutex_lock(&bch_register_lock); 2461 if (register_bdev(args->sb, args->sb_disk, args->bdev, args->holder) 2462 < 0) 2463 fail = true; 2464 mutex_unlock(&bch_register_lock); 2465 2466 if (fail) 2467 pr_info("error %s: fail to register backing device\n", 2468 args->path); 2469 kfree(args->sb); 2470 kfree(args->path); 2471 kfree(args); 2472 module_put(THIS_MODULE); 2473 } 2474 2475 static void register_cache_worker(struct work_struct *work) 2476 { 2477 int fail = false; 2478 struct async_reg_args *args = 2479 container_of(work, struct async_reg_args, reg_work.work); 2480 2481 /* blkdev_put() will be called in bch_cache_release() */ 2482 if (register_cache(args->sb, args->sb_disk, args->bdev, args->holder)) 2483 fail = true; 2484 2485 if (fail) 2486 pr_info("error %s: fail to register cache device\n", 2487 args->path); 2488 kfree(args->sb); 2489 kfree(args->path); 2490 kfree(args); 2491 module_put(THIS_MODULE); 2492 } 2493 2494 static void register_device_async(struct async_reg_args *args) 2495 { 2496 if (SB_IS_BDEV(args->sb)) 2497 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2498 else 2499 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2500 2501 /* 10 jiffies is enough for a delay */ 2502 queue_delayed_work(system_wq, &args->reg_work, 10); 2503 } 2504 2505 static void *alloc_holder_object(struct cache_sb *sb) 2506 { 2507 if (SB_IS_BDEV(sb)) 2508 return kzalloc(sizeof(struct cached_dev), GFP_KERNEL); 2509 return kzalloc(sizeof(struct cache), GFP_KERNEL); 2510 } 2511 2512 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2513 const char *buffer, size_t size) 2514 { 2515 const char *err; 2516 char *path = NULL; 2517 struct cache_sb *sb; 2518 struct cache_sb_disk *sb_disk; 2519 struct block_device *bdev, *bdev2; 2520 void *holder = NULL; 2521 ssize_t ret; 2522 bool async_registration = false; 2523 bool quiet = false; 2524 2525 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2526 async_registration = true; 2527 #endif 2528 2529 ret = -EBUSY; 2530 err = "failed to reference bcache module"; 2531 if (!try_module_get(THIS_MODULE)) 2532 goto out; 2533 2534 /* For latest state of bcache_is_reboot */ 2535 smp_mb(); 2536 err = "bcache is in reboot"; 2537 if (bcache_is_reboot) 2538 goto out_module_put; 2539 2540 ret = -ENOMEM; 2541 err = "cannot allocate memory"; 2542 path = kstrndup(buffer, size, GFP_KERNEL); 2543 if (!path) 2544 goto out_module_put; 2545 2546 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2547 if (!sb) 2548 goto out_free_path; 2549 2550 ret = -EINVAL; 2551 err = "failed to open device"; 2552 bdev = blkdev_get_by_path(strim(path), BLK_OPEN_READ, NULL, NULL); 2553 if (IS_ERR(bdev)) 2554 goto out_free_sb; 2555 2556 err = "failed to set blocksize"; 2557 if (set_blocksize(bdev, 4096)) 2558 goto out_blkdev_put; 2559 2560 err = read_super(sb, bdev, &sb_disk); 2561 if (err) 2562 goto out_blkdev_put; 2563 2564 holder = alloc_holder_object(sb); 2565 if (!holder) { 2566 ret = -ENOMEM; 2567 err = "cannot allocate memory"; 2568 goto out_put_sb_page; 2569 } 2570 2571 /* Now reopen in exclusive mode with proper holder */ 2572 bdev2 = blkdev_get_by_dev(bdev->bd_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, 2573 holder, NULL); 2574 blkdev_put(bdev, NULL); 2575 bdev = bdev2; 2576 if (IS_ERR(bdev)) { 2577 ret = PTR_ERR(bdev); 2578 bdev = NULL; 2579 if (ret == -EBUSY) { 2580 dev_t dev; 2581 2582 mutex_lock(&bch_register_lock); 2583 if (lookup_bdev(strim(path), &dev) == 0 && 2584 bch_is_open(dev)) 2585 err = "device already registered"; 2586 else 2587 err = "device busy"; 2588 mutex_unlock(&bch_register_lock); 2589 if (attr == &ksysfs_register_quiet) { 2590 quiet = true; 2591 ret = size; 2592 } 2593 } 2594 goto out_free_holder; 2595 } 2596 2597 err = "failed to register device"; 2598 2599 if (async_registration) { 2600 /* register in asynchronous way */ 2601 struct async_reg_args *args = 2602 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2603 2604 if (!args) { 2605 ret = -ENOMEM; 2606 err = "cannot allocate memory"; 2607 goto out_free_holder; 2608 } 2609 2610 args->path = path; 2611 args->sb = sb; 2612 args->sb_disk = sb_disk; 2613 args->bdev = bdev; 2614 args->holder = holder; 2615 register_device_async(args); 2616 /* No wait and returns to user space */ 2617 goto async_done; 2618 } 2619 2620 if (SB_IS_BDEV(sb)) { 2621 mutex_lock(&bch_register_lock); 2622 ret = register_bdev(sb, sb_disk, bdev, holder); 2623 mutex_unlock(&bch_register_lock); 2624 /* blkdev_put() will be called in cached_dev_free() */ 2625 if (ret < 0) 2626 goto out_free_sb; 2627 } else { 2628 /* blkdev_put() will be called in bch_cache_release() */ 2629 ret = register_cache(sb, sb_disk, bdev, holder); 2630 if (ret) 2631 goto out_free_sb; 2632 } 2633 2634 kfree(sb); 2635 kfree(path); 2636 module_put(THIS_MODULE); 2637 async_done: 2638 return size; 2639 2640 out_free_holder: 2641 kfree(holder); 2642 out_put_sb_page: 2643 put_page(virt_to_page(sb_disk)); 2644 out_blkdev_put: 2645 if (bdev) 2646 blkdev_put(bdev, holder); 2647 out_free_sb: 2648 kfree(sb); 2649 out_free_path: 2650 kfree(path); 2651 path = NULL; 2652 out_module_put: 2653 module_put(THIS_MODULE); 2654 out: 2655 if (!quiet) 2656 pr_info("error %s: %s\n", path?path:"", err); 2657 return ret; 2658 } 2659 2660 2661 struct pdev { 2662 struct list_head list; 2663 struct cached_dev *dc; 2664 }; 2665 2666 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2667 struct kobj_attribute *attr, 2668 const char *buffer, 2669 size_t size) 2670 { 2671 LIST_HEAD(pending_devs); 2672 ssize_t ret = size; 2673 struct cached_dev *dc, *tdc; 2674 struct pdev *pdev, *tpdev; 2675 struct cache_set *c, *tc; 2676 2677 mutex_lock(&bch_register_lock); 2678 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2679 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2680 if (!pdev) 2681 break; 2682 pdev->dc = dc; 2683 list_add(&pdev->list, &pending_devs); 2684 } 2685 2686 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2687 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2688 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2689 char *set_uuid = c->set_uuid; 2690 2691 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2692 list_del(&pdev->list); 2693 kfree(pdev); 2694 break; 2695 } 2696 } 2697 } 2698 mutex_unlock(&bch_register_lock); 2699 2700 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2701 pr_info("delete pdev %p\n", pdev); 2702 list_del(&pdev->list); 2703 bcache_device_stop(&pdev->dc->disk); 2704 kfree(pdev); 2705 } 2706 2707 return ret; 2708 } 2709 2710 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2711 { 2712 if (bcache_is_reboot) 2713 return NOTIFY_DONE; 2714 2715 if (code == SYS_DOWN || 2716 code == SYS_HALT || 2717 code == SYS_POWER_OFF) { 2718 DEFINE_WAIT(wait); 2719 unsigned long start = jiffies; 2720 bool stopped = false; 2721 2722 struct cache_set *c, *tc; 2723 struct cached_dev *dc, *tdc; 2724 2725 mutex_lock(&bch_register_lock); 2726 2727 if (bcache_is_reboot) 2728 goto out; 2729 2730 /* New registration is rejected since now */ 2731 bcache_is_reboot = true; 2732 /* 2733 * Make registering caller (if there is) on other CPU 2734 * core know bcache_is_reboot set to true earlier 2735 */ 2736 smp_mb(); 2737 2738 if (list_empty(&bch_cache_sets) && 2739 list_empty(&uncached_devices)) 2740 goto out; 2741 2742 mutex_unlock(&bch_register_lock); 2743 2744 pr_info("Stopping all devices:\n"); 2745 2746 /* 2747 * The reason bch_register_lock is not held to call 2748 * bch_cache_set_stop() and bcache_device_stop() is to 2749 * avoid potential deadlock during reboot, because cache 2750 * set or bcache device stopping process will acquire 2751 * bch_register_lock too. 2752 * 2753 * We are safe here because bcache_is_reboot sets to 2754 * true already, register_bcache() will reject new 2755 * registration now. bcache_is_reboot also makes sure 2756 * bcache_reboot() won't be re-entered on by other thread, 2757 * so there is no race in following list iteration by 2758 * list_for_each_entry_safe(). 2759 */ 2760 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2761 bch_cache_set_stop(c); 2762 2763 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2764 bcache_device_stop(&dc->disk); 2765 2766 2767 /* 2768 * Give an early chance for other kthreads and 2769 * kworkers to stop themselves 2770 */ 2771 schedule(); 2772 2773 /* What's a condition variable? */ 2774 while (1) { 2775 long timeout = start + 10 * HZ - jiffies; 2776 2777 mutex_lock(&bch_register_lock); 2778 stopped = list_empty(&bch_cache_sets) && 2779 list_empty(&uncached_devices); 2780 2781 if (timeout < 0 || stopped) 2782 break; 2783 2784 prepare_to_wait(&unregister_wait, &wait, 2785 TASK_UNINTERRUPTIBLE); 2786 2787 mutex_unlock(&bch_register_lock); 2788 schedule_timeout(timeout); 2789 } 2790 2791 finish_wait(&unregister_wait, &wait); 2792 2793 if (stopped) 2794 pr_info("All devices stopped\n"); 2795 else 2796 pr_notice("Timeout waiting for devices to be closed\n"); 2797 out: 2798 mutex_unlock(&bch_register_lock); 2799 } 2800 2801 return NOTIFY_DONE; 2802 } 2803 2804 static struct notifier_block reboot = { 2805 .notifier_call = bcache_reboot, 2806 .priority = INT_MAX, /* before any real devices */ 2807 }; 2808 2809 static void bcache_exit(void) 2810 { 2811 bch_debug_exit(); 2812 bch_request_exit(); 2813 if (bcache_kobj) 2814 kobject_put(bcache_kobj); 2815 if (bcache_wq) 2816 destroy_workqueue(bcache_wq); 2817 if (bch_journal_wq) 2818 destroy_workqueue(bch_journal_wq); 2819 if (bch_flush_wq) 2820 destroy_workqueue(bch_flush_wq); 2821 bch_btree_exit(); 2822 2823 if (bcache_major) 2824 unregister_blkdev(bcache_major, "bcache"); 2825 unregister_reboot_notifier(&reboot); 2826 mutex_destroy(&bch_register_lock); 2827 } 2828 2829 /* Check and fixup module parameters */ 2830 static void check_module_parameters(void) 2831 { 2832 if (bch_cutoff_writeback_sync == 0) 2833 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2834 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2835 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2836 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2837 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2838 } 2839 2840 if (bch_cutoff_writeback == 0) 2841 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2842 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2843 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2844 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2845 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2846 } 2847 2848 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2849 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2850 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2851 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2852 } 2853 } 2854 2855 static int __init bcache_init(void) 2856 { 2857 static const struct attribute *files[] = { 2858 &ksysfs_register.attr, 2859 &ksysfs_register_quiet.attr, 2860 &ksysfs_pendings_cleanup.attr, 2861 NULL 2862 }; 2863 2864 check_module_parameters(); 2865 2866 mutex_init(&bch_register_lock); 2867 init_waitqueue_head(&unregister_wait); 2868 register_reboot_notifier(&reboot); 2869 2870 bcache_major = register_blkdev(0, "bcache"); 2871 if (bcache_major < 0) { 2872 unregister_reboot_notifier(&reboot); 2873 mutex_destroy(&bch_register_lock); 2874 return bcache_major; 2875 } 2876 2877 if (bch_btree_init()) 2878 goto err; 2879 2880 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2881 if (!bcache_wq) 2882 goto err; 2883 2884 /* 2885 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2886 * 2887 * 1. It used `system_wq` before which also does no memory reclaim. 2888 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2889 * reduced throughput can be observed. 2890 * 2891 * We still want to user our own queue to not congest the `system_wq`. 2892 */ 2893 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2894 if (!bch_flush_wq) 2895 goto err; 2896 2897 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2898 if (!bch_journal_wq) 2899 goto err; 2900 2901 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2902 if (!bcache_kobj) 2903 goto err; 2904 2905 if (bch_request_init() || 2906 sysfs_create_files(bcache_kobj, files)) 2907 goto err; 2908 2909 bch_debug_init(); 2910 closure_debug_init(); 2911 2912 bcache_is_reboot = false; 2913 2914 return 0; 2915 err: 2916 bcache_exit(); 2917 return -ENOMEM; 2918 } 2919 2920 /* 2921 * Module hooks 2922 */ 2923 module_exit(bcache_exit); 2924 module_init(bcache_init); 2925 2926 module_param(bch_cutoff_writeback, uint, 0); 2927 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2928 2929 module_param(bch_cutoff_writeback_sync, uint, 0); 2930 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2931 2932 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2933 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2934 MODULE_LICENSE("GPL"); 2935