xref: /openbmc/linux/drivers/md/bcache/super.c (revision 8dfb839c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27 
28 MODULE_LICENSE("GPL");
29 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
30 
31 static const char bcache_magic[] = {
32 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35 
36 static const char invalid_uuid[] = {
37 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40 
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 LIST_HEAD(bch_cache_sets);
44 static LIST_HEAD(uncached_devices);
45 
46 static int bcache_major;
47 static DEFINE_IDA(bcache_device_idx);
48 static wait_queue_head_t unregister_wait;
49 struct workqueue_struct *bcache_wq;
50 struct workqueue_struct *bch_journal_wq;
51 
52 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
53 /* limitation of partitions number on single bcache device */
54 #define BCACHE_MINORS		128
55 /* limitation of bcache devices number on single system */
56 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
57 
58 /* Superblock */
59 
60 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
61 			      struct page **res)
62 {
63 	const char *err;
64 	struct cache_sb *s;
65 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
66 	unsigned int i;
67 
68 	if (!bh)
69 		return "IO error";
70 
71 	s = (struct cache_sb *) bh->b_data;
72 
73 	sb->offset		= le64_to_cpu(s->offset);
74 	sb->version		= le64_to_cpu(s->version);
75 
76 	memcpy(sb->magic,	s->magic, 16);
77 	memcpy(sb->uuid,	s->uuid, 16);
78 	memcpy(sb->set_uuid,	s->set_uuid, 16);
79 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
80 
81 	sb->flags		= le64_to_cpu(s->flags);
82 	sb->seq			= le64_to_cpu(s->seq);
83 	sb->last_mount		= le32_to_cpu(s->last_mount);
84 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
85 	sb->keys		= le16_to_cpu(s->keys);
86 
87 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
88 		sb->d[i] = le64_to_cpu(s->d[i]);
89 
90 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
91 		 sb->version, sb->flags, sb->seq, sb->keys);
92 
93 	err = "Not a bcache superblock";
94 	if (sb->offset != SB_SECTOR)
95 		goto err;
96 
97 	if (memcmp(sb->magic, bcache_magic, 16))
98 		goto err;
99 
100 	err = "Too many journal buckets";
101 	if (sb->keys > SB_JOURNAL_BUCKETS)
102 		goto err;
103 
104 	err = "Bad checksum";
105 	if (s->csum != csum_set(s))
106 		goto err;
107 
108 	err = "Bad UUID";
109 	if (bch_is_zero(sb->uuid, 16))
110 		goto err;
111 
112 	sb->block_size	= le16_to_cpu(s->block_size);
113 
114 	err = "Superblock block size smaller than device block size";
115 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
116 		goto err;
117 
118 	switch (sb->version) {
119 	case BCACHE_SB_VERSION_BDEV:
120 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
121 		break;
122 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
123 		sb->data_offset	= le64_to_cpu(s->data_offset);
124 
125 		err = "Bad data offset";
126 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
127 			goto err;
128 
129 		break;
130 	case BCACHE_SB_VERSION_CDEV:
131 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
132 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
133 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
134 
135 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
136 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
137 
138 		err = "Too many buckets";
139 		if (sb->nbuckets > LONG_MAX)
140 			goto err;
141 
142 		err = "Not enough buckets";
143 		if (sb->nbuckets < 1 << 7)
144 			goto err;
145 
146 		err = "Bad block/bucket size";
147 		if (!is_power_of_2(sb->block_size) ||
148 		    sb->block_size > PAGE_SECTORS ||
149 		    !is_power_of_2(sb->bucket_size) ||
150 		    sb->bucket_size < PAGE_SECTORS)
151 			goto err;
152 
153 		err = "Invalid superblock: device too small";
154 		if (get_capacity(bdev->bd_disk) <
155 		    sb->bucket_size * sb->nbuckets)
156 			goto err;
157 
158 		err = "Bad UUID";
159 		if (bch_is_zero(sb->set_uuid, 16))
160 			goto err;
161 
162 		err = "Bad cache device number in set";
163 		if (!sb->nr_in_set ||
164 		    sb->nr_in_set <= sb->nr_this_dev ||
165 		    sb->nr_in_set > MAX_CACHES_PER_SET)
166 			goto err;
167 
168 		err = "Journal buckets not sequential";
169 		for (i = 0; i < sb->keys; i++)
170 			if (sb->d[i] != sb->first_bucket + i)
171 				goto err;
172 
173 		err = "Too many journal buckets";
174 		if (sb->first_bucket + sb->keys > sb->nbuckets)
175 			goto err;
176 
177 		err = "Invalid superblock: first bucket comes before end of super";
178 		if (sb->first_bucket * sb->bucket_size < 16)
179 			goto err;
180 
181 		break;
182 	default:
183 		err = "Unsupported superblock version";
184 		goto err;
185 	}
186 
187 	sb->last_mount = (u32)ktime_get_real_seconds();
188 	err = NULL;
189 
190 	get_page(bh->b_page);
191 	*res = bh->b_page;
192 err:
193 	put_bh(bh);
194 	return err;
195 }
196 
197 static void write_bdev_super_endio(struct bio *bio)
198 {
199 	struct cached_dev *dc = bio->bi_private;
200 	/* XXX: error checking */
201 
202 	closure_put(&dc->sb_write);
203 }
204 
205 static void __write_super(struct cache_sb *sb, struct bio *bio)
206 {
207 	struct cache_sb *out = page_address(bio_first_page_all(bio));
208 	unsigned int i;
209 
210 	bio->bi_iter.bi_sector	= SB_SECTOR;
211 	bio->bi_iter.bi_size	= SB_SIZE;
212 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
213 	bch_bio_map(bio, NULL);
214 
215 	out->offset		= cpu_to_le64(sb->offset);
216 	out->version		= cpu_to_le64(sb->version);
217 
218 	memcpy(out->uuid,	sb->uuid, 16);
219 	memcpy(out->set_uuid,	sb->set_uuid, 16);
220 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
221 
222 	out->flags		= cpu_to_le64(sb->flags);
223 	out->seq		= cpu_to_le64(sb->seq);
224 
225 	out->last_mount		= cpu_to_le32(sb->last_mount);
226 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
227 	out->keys		= cpu_to_le16(sb->keys);
228 
229 	for (i = 0; i < sb->keys; i++)
230 		out->d[i] = cpu_to_le64(sb->d[i]);
231 
232 	out->csum = csum_set(out);
233 
234 	pr_debug("ver %llu, flags %llu, seq %llu",
235 		 sb->version, sb->flags, sb->seq);
236 
237 	submit_bio(bio);
238 }
239 
240 static void bch_write_bdev_super_unlock(struct closure *cl)
241 {
242 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
243 
244 	up(&dc->sb_write_mutex);
245 }
246 
247 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
248 {
249 	struct closure *cl = &dc->sb_write;
250 	struct bio *bio = &dc->sb_bio;
251 
252 	down(&dc->sb_write_mutex);
253 	closure_init(cl, parent);
254 
255 	bio_reset(bio);
256 	bio_set_dev(bio, dc->bdev);
257 	bio->bi_end_io	= write_bdev_super_endio;
258 	bio->bi_private = dc;
259 
260 	closure_get(cl);
261 	/* I/O request sent to backing device */
262 	__write_super(&dc->sb, bio);
263 
264 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
265 }
266 
267 static void write_super_endio(struct bio *bio)
268 {
269 	struct cache *ca = bio->bi_private;
270 
271 	/* is_read = 0 */
272 	bch_count_io_errors(ca, bio->bi_status, 0,
273 			    "writing superblock");
274 	closure_put(&ca->set->sb_write);
275 }
276 
277 static void bcache_write_super_unlock(struct closure *cl)
278 {
279 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
280 
281 	up(&c->sb_write_mutex);
282 }
283 
284 void bcache_write_super(struct cache_set *c)
285 {
286 	struct closure *cl = &c->sb_write;
287 	struct cache *ca;
288 	unsigned int i;
289 
290 	down(&c->sb_write_mutex);
291 	closure_init(cl, &c->cl);
292 
293 	c->sb.seq++;
294 
295 	for_each_cache(ca, c, i) {
296 		struct bio *bio = &ca->sb_bio;
297 
298 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
299 		ca->sb.seq		= c->sb.seq;
300 		ca->sb.last_mount	= c->sb.last_mount;
301 
302 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
303 
304 		bio_reset(bio);
305 		bio_set_dev(bio, ca->bdev);
306 		bio->bi_end_io	= write_super_endio;
307 		bio->bi_private = ca;
308 
309 		closure_get(cl);
310 		__write_super(&ca->sb, bio);
311 	}
312 
313 	closure_return_with_destructor(cl, bcache_write_super_unlock);
314 }
315 
316 /* UUID io */
317 
318 static void uuid_endio(struct bio *bio)
319 {
320 	struct closure *cl = bio->bi_private;
321 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
322 
323 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
324 	bch_bbio_free(bio, c);
325 	closure_put(cl);
326 }
327 
328 static void uuid_io_unlock(struct closure *cl)
329 {
330 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
331 
332 	up(&c->uuid_write_mutex);
333 }
334 
335 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
336 		    struct bkey *k, struct closure *parent)
337 {
338 	struct closure *cl = &c->uuid_write;
339 	struct uuid_entry *u;
340 	unsigned int i;
341 	char buf[80];
342 
343 	BUG_ON(!parent);
344 	down(&c->uuid_write_mutex);
345 	closure_init(cl, parent);
346 
347 	for (i = 0; i < KEY_PTRS(k); i++) {
348 		struct bio *bio = bch_bbio_alloc(c);
349 
350 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
351 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
352 
353 		bio->bi_end_io	= uuid_endio;
354 		bio->bi_private = cl;
355 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
356 		bch_bio_map(bio, c->uuids);
357 
358 		bch_submit_bbio(bio, c, k, i);
359 
360 		if (op != REQ_OP_WRITE)
361 			break;
362 	}
363 
364 	bch_extent_to_text(buf, sizeof(buf), k);
365 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
366 
367 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 		if (!bch_is_zero(u->uuid, 16))
369 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 				 u - c->uuids, u->uuid, u->label,
371 				 u->first_reg, u->last_reg, u->invalidated);
372 
373 	closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375 
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 	struct bkey *k = &j->uuid_bucket;
379 
380 	if (__bch_btree_ptr_invalid(c, k))
381 		return "bad uuid pointer";
382 
383 	bkey_copy(&c->uuid_bucket, k);
384 	uuid_io(c, REQ_OP_READ, 0, k, cl);
385 
386 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
388 		struct uuid_entry	*u1 = (void *) c->uuids;
389 		int i;
390 
391 		closure_sync(cl);
392 
393 		/*
394 		 * Since the new uuid entry is bigger than the old, we have to
395 		 * convert starting at the highest memory address and work down
396 		 * in order to do it in place
397 		 */
398 
399 		for (i = c->nr_uuids - 1;
400 		     i >= 0;
401 		     --i) {
402 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
403 			memcpy(u1[i].label,	u0[i].label, 32);
404 
405 			u1[i].first_reg		= u0[i].first_reg;
406 			u1[i].last_reg		= u0[i].last_reg;
407 			u1[i].invalidated	= u0[i].invalidated;
408 
409 			u1[i].flags	= 0;
410 			u1[i].sectors	= 0;
411 		}
412 	}
413 
414 	return NULL;
415 }
416 
417 static int __uuid_write(struct cache_set *c)
418 {
419 	BKEY_PADDED(key) k;
420 	struct closure cl;
421 
422 	closure_init_stack(&cl);
423 	lockdep_assert_held(&bch_register_lock);
424 
425 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
426 		return 1;
427 
428 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
429 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
430 	closure_sync(&cl);
431 
432 	bkey_copy(&c->uuid_bucket, &k.key);
433 	bkey_put(c, &k.key);
434 	return 0;
435 }
436 
437 int bch_uuid_write(struct cache_set *c)
438 {
439 	int ret = __uuid_write(c);
440 
441 	if (!ret)
442 		bch_journal_meta(c, NULL);
443 
444 	return ret;
445 }
446 
447 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
448 {
449 	struct uuid_entry *u;
450 
451 	for (u = c->uuids;
452 	     u < c->uuids + c->nr_uuids; u++)
453 		if (!memcmp(u->uuid, uuid, 16))
454 			return u;
455 
456 	return NULL;
457 }
458 
459 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
460 {
461 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
462 
463 	return uuid_find(c, zero_uuid);
464 }
465 
466 /*
467  * Bucket priorities/gens:
468  *
469  * For each bucket, we store on disk its
470  *   8 bit gen
471  *  16 bit priority
472  *
473  * See alloc.c for an explanation of the gen. The priority is used to implement
474  * lru (and in the future other) cache replacement policies; for most purposes
475  * it's just an opaque integer.
476  *
477  * The gens and the priorities don't have a whole lot to do with each other, and
478  * it's actually the gens that must be written out at specific times - it's no
479  * big deal if the priorities don't get written, if we lose them we just reuse
480  * buckets in suboptimal order.
481  *
482  * On disk they're stored in a packed array, and in as many buckets are required
483  * to fit them all. The buckets we use to store them form a list; the journal
484  * header points to the first bucket, the first bucket points to the second
485  * bucket, et cetera.
486  *
487  * This code is used by the allocation code; periodically (whenever it runs out
488  * of buckets to allocate from) the allocation code will invalidate some
489  * buckets, but it can't use those buckets until their new gens are safely on
490  * disk.
491  */
492 
493 static void prio_endio(struct bio *bio)
494 {
495 	struct cache *ca = bio->bi_private;
496 
497 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
498 	bch_bbio_free(bio, ca->set);
499 	closure_put(&ca->prio);
500 }
501 
502 static void prio_io(struct cache *ca, uint64_t bucket, int op,
503 		    unsigned long op_flags)
504 {
505 	struct closure *cl = &ca->prio;
506 	struct bio *bio = bch_bbio_alloc(ca->set);
507 
508 	closure_init_stack(cl);
509 
510 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
511 	bio_set_dev(bio, ca->bdev);
512 	bio->bi_iter.bi_size	= bucket_bytes(ca);
513 
514 	bio->bi_end_io	= prio_endio;
515 	bio->bi_private = ca;
516 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
517 	bch_bio_map(bio, ca->disk_buckets);
518 
519 	closure_bio_submit(ca->set, bio, &ca->prio);
520 	closure_sync(cl);
521 }
522 
523 void bch_prio_write(struct cache *ca)
524 {
525 	int i;
526 	struct bucket *b;
527 	struct closure cl;
528 
529 	closure_init_stack(&cl);
530 
531 	lockdep_assert_held(&ca->set->bucket_lock);
532 
533 	ca->disk_buckets->seq++;
534 
535 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
536 			&ca->meta_sectors_written);
537 
538 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
539 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
540 
541 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
542 		long bucket;
543 		struct prio_set *p = ca->disk_buckets;
544 		struct bucket_disk *d = p->data;
545 		struct bucket_disk *end = d + prios_per_bucket(ca);
546 
547 		for (b = ca->buckets + i * prios_per_bucket(ca);
548 		     b < ca->buckets + ca->sb.nbuckets && d < end;
549 		     b++, d++) {
550 			d->prio = cpu_to_le16(b->prio);
551 			d->gen = b->gen;
552 		}
553 
554 		p->next_bucket	= ca->prio_buckets[i + 1];
555 		p->magic	= pset_magic(&ca->sb);
556 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
557 
558 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
559 		BUG_ON(bucket == -1);
560 
561 		mutex_unlock(&ca->set->bucket_lock);
562 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
563 		mutex_lock(&ca->set->bucket_lock);
564 
565 		ca->prio_buckets[i] = bucket;
566 		atomic_dec_bug(&ca->buckets[bucket].pin);
567 	}
568 
569 	mutex_unlock(&ca->set->bucket_lock);
570 
571 	bch_journal_meta(ca->set, &cl);
572 	closure_sync(&cl);
573 
574 	mutex_lock(&ca->set->bucket_lock);
575 
576 	/*
577 	 * Don't want the old priorities to get garbage collected until after we
578 	 * finish writing the new ones, and they're journalled
579 	 */
580 	for (i = 0; i < prio_buckets(ca); i++) {
581 		if (ca->prio_last_buckets[i])
582 			__bch_bucket_free(ca,
583 				&ca->buckets[ca->prio_last_buckets[i]]);
584 
585 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
586 	}
587 }
588 
589 static void prio_read(struct cache *ca, uint64_t bucket)
590 {
591 	struct prio_set *p = ca->disk_buckets;
592 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
593 	struct bucket *b;
594 	unsigned int bucket_nr = 0;
595 
596 	for (b = ca->buckets;
597 	     b < ca->buckets + ca->sb.nbuckets;
598 	     b++, d++) {
599 		if (d == end) {
600 			ca->prio_buckets[bucket_nr] = bucket;
601 			ca->prio_last_buckets[bucket_nr] = bucket;
602 			bucket_nr++;
603 
604 			prio_io(ca, bucket, REQ_OP_READ, 0);
605 
606 			if (p->csum !=
607 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8))
608 				pr_warn("bad csum reading priorities");
609 
610 			if (p->magic != pset_magic(&ca->sb))
611 				pr_warn("bad magic reading priorities");
612 
613 			bucket = p->next_bucket;
614 			d = p->data;
615 		}
616 
617 		b->prio = le16_to_cpu(d->prio);
618 		b->gen = b->last_gc = d->gen;
619 	}
620 }
621 
622 /* Bcache device */
623 
624 static int open_dev(struct block_device *b, fmode_t mode)
625 {
626 	struct bcache_device *d = b->bd_disk->private_data;
627 
628 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
629 		return -ENXIO;
630 
631 	closure_get(&d->cl);
632 	return 0;
633 }
634 
635 static void release_dev(struct gendisk *b, fmode_t mode)
636 {
637 	struct bcache_device *d = b->private_data;
638 
639 	closure_put(&d->cl);
640 }
641 
642 static int ioctl_dev(struct block_device *b, fmode_t mode,
643 		     unsigned int cmd, unsigned long arg)
644 {
645 	struct bcache_device *d = b->bd_disk->private_data;
646 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
647 
648 	if (dc->io_disable)
649 		return -EIO;
650 
651 	return d->ioctl(d, mode, cmd, arg);
652 }
653 
654 static const struct block_device_operations bcache_ops = {
655 	.open		= open_dev,
656 	.release	= release_dev,
657 	.ioctl		= ioctl_dev,
658 	.owner		= THIS_MODULE,
659 };
660 
661 void bcache_device_stop(struct bcache_device *d)
662 {
663 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
664 		closure_queue(&d->cl);
665 }
666 
667 static void bcache_device_unlink(struct bcache_device *d)
668 {
669 	lockdep_assert_held(&bch_register_lock);
670 
671 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
672 		unsigned int i;
673 		struct cache *ca;
674 
675 		sysfs_remove_link(&d->c->kobj, d->name);
676 		sysfs_remove_link(&d->kobj, "cache");
677 
678 		for_each_cache(ca, d->c, i)
679 			bd_unlink_disk_holder(ca->bdev, d->disk);
680 	}
681 }
682 
683 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
684 			       const char *name)
685 {
686 	unsigned int i;
687 	struct cache *ca;
688 
689 	for_each_cache(ca, d->c, i)
690 		bd_link_disk_holder(ca->bdev, d->disk);
691 
692 	snprintf(d->name, BCACHEDEVNAME_SIZE,
693 		 "%s%u", name, d->id);
694 
695 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
696 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
697 	     "Couldn't create device <-> cache set symlinks");
698 
699 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
700 }
701 
702 static void bcache_device_detach(struct bcache_device *d)
703 {
704 	lockdep_assert_held(&bch_register_lock);
705 
706 	atomic_dec(&d->c->attached_dev_nr);
707 
708 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
709 		struct uuid_entry *u = d->c->uuids + d->id;
710 
711 		SET_UUID_FLASH_ONLY(u, 0);
712 		memcpy(u->uuid, invalid_uuid, 16);
713 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
714 		bch_uuid_write(d->c);
715 	}
716 
717 	bcache_device_unlink(d);
718 
719 	d->c->devices[d->id] = NULL;
720 	closure_put(&d->c->caching);
721 	d->c = NULL;
722 }
723 
724 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
725 				 unsigned int id)
726 {
727 	d->id = id;
728 	d->c = c;
729 	c->devices[id] = d;
730 
731 	if (id >= c->devices_max_used)
732 		c->devices_max_used = id + 1;
733 
734 	closure_get(&c->caching);
735 }
736 
737 static inline int first_minor_to_idx(int first_minor)
738 {
739 	return (first_minor/BCACHE_MINORS);
740 }
741 
742 static inline int idx_to_first_minor(int idx)
743 {
744 	return (idx * BCACHE_MINORS);
745 }
746 
747 static void bcache_device_free(struct bcache_device *d)
748 {
749 	lockdep_assert_held(&bch_register_lock);
750 
751 	pr_info("%s stopped", d->disk->disk_name);
752 
753 	if (d->c)
754 		bcache_device_detach(d);
755 	if (d->disk && d->disk->flags & GENHD_FL_UP)
756 		del_gendisk(d->disk);
757 	if (d->disk && d->disk->queue)
758 		blk_cleanup_queue(d->disk->queue);
759 	if (d->disk) {
760 		ida_simple_remove(&bcache_device_idx,
761 				  first_minor_to_idx(d->disk->first_minor));
762 		put_disk(d->disk);
763 	}
764 
765 	bioset_exit(&d->bio_split);
766 	kvfree(d->full_dirty_stripes);
767 	kvfree(d->stripe_sectors_dirty);
768 
769 	closure_debug_destroy(&d->cl);
770 }
771 
772 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
773 			      sector_t sectors)
774 {
775 	struct request_queue *q;
776 	const size_t max_stripes = min_t(size_t, INT_MAX,
777 					 SIZE_MAX / sizeof(atomic_t));
778 	size_t n;
779 	int idx;
780 
781 	if (!d->stripe_size)
782 		d->stripe_size = 1 << 31;
783 
784 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
785 
786 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
787 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
788 			(unsigned int)d->nr_stripes);
789 		return -ENOMEM;
790 	}
791 
792 	n = d->nr_stripes * sizeof(atomic_t);
793 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
794 	if (!d->stripe_sectors_dirty)
795 		return -ENOMEM;
796 
797 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
798 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
799 	if (!d->full_dirty_stripes)
800 		return -ENOMEM;
801 
802 	idx = ida_simple_get(&bcache_device_idx, 0,
803 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
804 	if (idx < 0)
805 		return idx;
806 
807 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
808 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
809 		goto err;
810 
811 	d->disk = alloc_disk(BCACHE_MINORS);
812 	if (!d->disk)
813 		goto err;
814 
815 	set_capacity(d->disk, sectors);
816 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
817 
818 	d->disk->major		= bcache_major;
819 	d->disk->first_minor	= idx_to_first_minor(idx);
820 	d->disk->fops		= &bcache_ops;
821 	d->disk->private_data	= d;
822 
823 	q = blk_alloc_queue(GFP_KERNEL);
824 	if (!q)
825 		return -ENOMEM;
826 
827 	blk_queue_make_request(q, NULL);
828 	d->disk->queue			= q;
829 	q->queuedata			= d;
830 	q->backing_dev_info->congested_data = d;
831 	q->limits.max_hw_sectors	= UINT_MAX;
832 	q->limits.max_sectors		= UINT_MAX;
833 	q->limits.max_segment_size	= UINT_MAX;
834 	q->limits.max_segments		= BIO_MAX_PAGES;
835 	blk_queue_max_discard_sectors(q, UINT_MAX);
836 	q->limits.discard_granularity	= 512;
837 	q->limits.io_min		= block_size;
838 	q->limits.logical_block_size	= block_size;
839 	q->limits.physical_block_size	= block_size;
840 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
841 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
842 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
843 
844 	blk_queue_write_cache(q, true, true);
845 
846 	return 0;
847 
848 err:
849 	ida_simple_remove(&bcache_device_idx, idx);
850 	return -ENOMEM;
851 
852 }
853 
854 /* Cached device */
855 
856 static void calc_cached_dev_sectors(struct cache_set *c)
857 {
858 	uint64_t sectors = 0;
859 	struct cached_dev *dc;
860 
861 	list_for_each_entry(dc, &c->cached_devs, list)
862 		sectors += bdev_sectors(dc->bdev);
863 
864 	c->cached_dev_sectors = sectors;
865 }
866 
867 #define BACKING_DEV_OFFLINE_TIMEOUT 5
868 static int cached_dev_status_update(void *arg)
869 {
870 	struct cached_dev *dc = arg;
871 	struct request_queue *q;
872 
873 	/*
874 	 * If this delayed worker is stopping outside, directly quit here.
875 	 * dc->io_disable might be set via sysfs interface, so check it
876 	 * here too.
877 	 */
878 	while (!kthread_should_stop() && !dc->io_disable) {
879 		q = bdev_get_queue(dc->bdev);
880 		if (blk_queue_dying(q))
881 			dc->offline_seconds++;
882 		else
883 			dc->offline_seconds = 0;
884 
885 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
886 			pr_err("%s: device offline for %d seconds",
887 			       dc->backing_dev_name,
888 			       BACKING_DEV_OFFLINE_TIMEOUT);
889 			pr_err("%s: disable I/O request due to backing "
890 			       "device offline", dc->disk.name);
891 			dc->io_disable = true;
892 			/* let others know earlier that io_disable is true */
893 			smp_mb();
894 			bcache_device_stop(&dc->disk);
895 			break;
896 		}
897 		schedule_timeout_interruptible(HZ);
898 	}
899 
900 	wait_for_kthread_stop();
901 	return 0;
902 }
903 
904 
905 void bch_cached_dev_run(struct cached_dev *dc)
906 {
907 	struct bcache_device *d = &dc->disk;
908 	char buf[SB_LABEL_SIZE + 1];
909 	char *env[] = {
910 		"DRIVER=bcache",
911 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
912 		NULL,
913 		NULL,
914 	};
915 
916 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
917 	buf[SB_LABEL_SIZE] = '\0';
918 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
919 
920 	if (atomic_xchg(&dc->running, 1)) {
921 		kfree(env[1]);
922 		kfree(env[2]);
923 		return;
924 	}
925 
926 	if (!d->c &&
927 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
928 		struct closure cl;
929 
930 		closure_init_stack(&cl);
931 
932 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
933 		bch_write_bdev_super(dc, &cl);
934 		closure_sync(&cl);
935 	}
936 
937 	add_disk(d->disk);
938 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
939 	/*
940 	 * won't show up in the uevent file, use udevadm monitor -e instead
941 	 * only class / kset properties are persistent
942 	 */
943 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
944 	kfree(env[1]);
945 	kfree(env[2]);
946 
947 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
948 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
949 		pr_debug("error creating sysfs link");
950 
951 	dc->status_update_thread = kthread_run(cached_dev_status_update,
952 					       dc, "bcache_status_update");
953 	if (IS_ERR(dc->status_update_thread)) {
954 		pr_warn("failed to create bcache_status_update kthread, "
955 			"continue to run without monitoring backing "
956 			"device status");
957 	}
958 }
959 
960 /*
961  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
962  * work dc->writeback_rate_update is running. Wait until the routine
963  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
964  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
965  * seconds, give up waiting here and continue to cancel it too.
966  */
967 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
968 {
969 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
970 
971 	do {
972 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
973 			      &dc->disk.flags))
974 			break;
975 		time_out--;
976 		schedule_timeout_interruptible(1);
977 	} while (time_out > 0);
978 
979 	if (time_out == 0)
980 		pr_warn("give up waiting for dc->writeback_write_update to quit");
981 
982 	cancel_delayed_work_sync(&dc->writeback_rate_update);
983 }
984 
985 static void cached_dev_detach_finish(struct work_struct *w)
986 {
987 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
988 	struct closure cl;
989 
990 	closure_init_stack(&cl);
991 
992 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
993 	BUG_ON(refcount_read(&dc->count));
994 
995 	mutex_lock(&bch_register_lock);
996 
997 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
998 		cancel_writeback_rate_update_dwork(dc);
999 
1000 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1001 		kthread_stop(dc->writeback_thread);
1002 		dc->writeback_thread = NULL;
1003 	}
1004 
1005 	memset(&dc->sb.set_uuid, 0, 16);
1006 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1007 
1008 	bch_write_bdev_super(dc, &cl);
1009 	closure_sync(&cl);
1010 
1011 	bcache_device_detach(&dc->disk);
1012 	list_move(&dc->list, &uncached_devices);
1013 
1014 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1015 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1016 
1017 	mutex_unlock(&bch_register_lock);
1018 
1019 	pr_info("Caching disabled for %s", dc->backing_dev_name);
1020 
1021 	/* Drop ref we took in cached_dev_detach() */
1022 	closure_put(&dc->disk.cl);
1023 }
1024 
1025 void bch_cached_dev_detach(struct cached_dev *dc)
1026 {
1027 	lockdep_assert_held(&bch_register_lock);
1028 
1029 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1030 		return;
1031 
1032 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1033 		return;
1034 
1035 	/*
1036 	 * Block the device from being closed and freed until we're finished
1037 	 * detaching
1038 	 */
1039 	closure_get(&dc->disk.cl);
1040 
1041 	bch_writeback_queue(dc);
1042 
1043 	cached_dev_put(dc);
1044 }
1045 
1046 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1047 			  uint8_t *set_uuid)
1048 {
1049 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1050 	struct uuid_entry *u;
1051 	struct cached_dev *exist_dc, *t;
1052 
1053 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1054 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1055 		return -ENOENT;
1056 
1057 	if (dc->disk.c) {
1058 		pr_err("Can't attach %s: already attached",
1059 		       dc->backing_dev_name);
1060 		return -EINVAL;
1061 	}
1062 
1063 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1064 		pr_err("Can't attach %s: shutting down",
1065 		       dc->backing_dev_name);
1066 		return -EINVAL;
1067 	}
1068 
1069 	if (dc->sb.block_size < c->sb.block_size) {
1070 		/* Will die */
1071 		pr_err("Couldn't attach %s: block size less than set's block size",
1072 		       dc->backing_dev_name);
1073 		return -EINVAL;
1074 	}
1075 
1076 	/* Check whether already attached */
1077 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1078 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1079 			pr_err("Tried to attach %s but duplicate UUID already attached",
1080 				dc->backing_dev_name);
1081 
1082 			return -EINVAL;
1083 		}
1084 	}
1085 
1086 	u = uuid_find(c, dc->sb.uuid);
1087 
1088 	if (u &&
1089 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1090 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1091 		memcpy(u->uuid, invalid_uuid, 16);
1092 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1093 		u = NULL;
1094 	}
1095 
1096 	if (!u) {
1097 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1098 			pr_err("Couldn't find uuid for %s in set",
1099 			       dc->backing_dev_name);
1100 			return -ENOENT;
1101 		}
1102 
1103 		u = uuid_find_empty(c);
1104 		if (!u) {
1105 			pr_err("Not caching %s, no room for UUID",
1106 			       dc->backing_dev_name);
1107 			return -EINVAL;
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * Deadlocks since we're called via sysfs...
1113 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1114 	 */
1115 
1116 	if (bch_is_zero(u->uuid, 16)) {
1117 		struct closure cl;
1118 
1119 		closure_init_stack(&cl);
1120 
1121 		memcpy(u->uuid, dc->sb.uuid, 16);
1122 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1123 		u->first_reg = u->last_reg = rtime;
1124 		bch_uuid_write(c);
1125 
1126 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1127 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1128 
1129 		bch_write_bdev_super(dc, &cl);
1130 		closure_sync(&cl);
1131 	} else {
1132 		u->last_reg = rtime;
1133 		bch_uuid_write(c);
1134 	}
1135 
1136 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1137 	list_move(&dc->list, &c->cached_devs);
1138 	calc_cached_dev_sectors(c);
1139 
1140 	/*
1141 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1142 	 * cached_dev_get()
1143 	 */
1144 	smp_wmb();
1145 	refcount_set(&dc->count, 1);
1146 
1147 	/* Block writeback thread, but spawn it */
1148 	down_write(&dc->writeback_lock);
1149 	if (bch_cached_dev_writeback_start(dc)) {
1150 		up_write(&dc->writeback_lock);
1151 		return -ENOMEM;
1152 	}
1153 
1154 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1155 		bch_sectors_dirty_init(&dc->disk);
1156 		atomic_set(&dc->has_dirty, 1);
1157 		bch_writeback_queue(dc);
1158 	}
1159 
1160 	bch_cached_dev_run(dc);
1161 	bcache_device_link(&dc->disk, c, "bdev");
1162 	atomic_inc(&c->attached_dev_nr);
1163 
1164 	/* Allow the writeback thread to proceed */
1165 	up_write(&dc->writeback_lock);
1166 
1167 	pr_info("Caching %s as %s on set %pU",
1168 		dc->backing_dev_name,
1169 		dc->disk.disk->disk_name,
1170 		dc->disk.c->sb.set_uuid);
1171 	return 0;
1172 }
1173 
1174 void bch_cached_dev_release(struct kobject *kobj)
1175 {
1176 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1177 					     disk.kobj);
1178 	kfree(dc);
1179 	module_put(THIS_MODULE);
1180 }
1181 
1182 static void cached_dev_free(struct closure *cl)
1183 {
1184 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1185 
1186 	mutex_lock(&bch_register_lock);
1187 
1188 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1189 		cancel_writeback_rate_update_dwork(dc);
1190 
1191 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1192 		kthread_stop(dc->writeback_thread);
1193 	if (dc->writeback_write_wq)
1194 		destroy_workqueue(dc->writeback_write_wq);
1195 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1196 		kthread_stop(dc->status_update_thread);
1197 
1198 	if (atomic_read(&dc->running))
1199 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1200 	bcache_device_free(&dc->disk);
1201 	list_del(&dc->list);
1202 
1203 	mutex_unlock(&bch_register_lock);
1204 
1205 	if (!IS_ERR_OR_NULL(dc->bdev))
1206 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1207 
1208 	wake_up(&unregister_wait);
1209 
1210 	kobject_put(&dc->disk.kobj);
1211 }
1212 
1213 static void cached_dev_flush(struct closure *cl)
1214 {
1215 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1216 	struct bcache_device *d = &dc->disk;
1217 
1218 	mutex_lock(&bch_register_lock);
1219 	bcache_device_unlink(d);
1220 	mutex_unlock(&bch_register_lock);
1221 
1222 	bch_cache_accounting_destroy(&dc->accounting);
1223 	kobject_del(&d->kobj);
1224 
1225 	continue_at(cl, cached_dev_free, system_wq);
1226 }
1227 
1228 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1229 {
1230 	int ret;
1231 	struct io *io;
1232 	struct request_queue *q = bdev_get_queue(dc->bdev);
1233 
1234 	__module_get(THIS_MODULE);
1235 	INIT_LIST_HEAD(&dc->list);
1236 	closure_init(&dc->disk.cl, NULL);
1237 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1238 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1239 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1240 	sema_init(&dc->sb_write_mutex, 1);
1241 	INIT_LIST_HEAD(&dc->io_lru);
1242 	spin_lock_init(&dc->io_lock);
1243 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1244 
1245 	dc->sequential_cutoff		= 4 << 20;
1246 
1247 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1248 		list_add(&io->lru, &dc->io_lru);
1249 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1250 	}
1251 
1252 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1253 
1254 	if (dc->disk.stripe_size)
1255 		dc->partial_stripes_expensive =
1256 			q->limits.raid_partial_stripes_expensive;
1257 
1258 	ret = bcache_device_init(&dc->disk, block_size,
1259 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1260 	if (ret)
1261 		return ret;
1262 
1263 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1264 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1265 		    q->backing_dev_info->ra_pages);
1266 
1267 	atomic_set(&dc->io_errors, 0);
1268 	dc->io_disable = false;
1269 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1270 	/* default to auto */
1271 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1272 
1273 	bch_cached_dev_request_init(dc);
1274 	bch_cached_dev_writeback_init(dc);
1275 	return 0;
1276 }
1277 
1278 /* Cached device - bcache superblock */
1279 
1280 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1281 				 struct block_device *bdev,
1282 				 struct cached_dev *dc)
1283 {
1284 	const char *err = "cannot allocate memory";
1285 	struct cache_set *c;
1286 
1287 	bdevname(bdev, dc->backing_dev_name);
1288 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1289 	dc->bdev = bdev;
1290 	dc->bdev->bd_holder = dc;
1291 
1292 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1293 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1294 	get_page(sb_page);
1295 
1296 
1297 	if (cached_dev_init(dc, sb->block_size << 9))
1298 		goto err;
1299 
1300 	err = "error creating kobject";
1301 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1302 			"bcache"))
1303 		goto err;
1304 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1305 		goto err;
1306 
1307 	pr_info("registered backing device %s", dc->backing_dev_name);
1308 
1309 	list_add(&dc->list, &uncached_devices);
1310 	/* attach to a matched cache set if it exists */
1311 	list_for_each_entry(c, &bch_cache_sets, list)
1312 		bch_cached_dev_attach(dc, c, NULL);
1313 
1314 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1315 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1316 		bch_cached_dev_run(dc);
1317 
1318 	return;
1319 err:
1320 	pr_notice("error %s: %s", dc->backing_dev_name, err);
1321 	bcache_device_stop(&dc->disk);
1322 }
1323 
1324 /* Flash only volumes */
1325 
1326 void bch_flash_dev_release(struct kobject *kobj)
1327 {
1328 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1329 					       kobj);
1330 	kfree(d);
1331 }
1332 
1333 static void flash_dev_free(struct closure *cl)
1334 {
1335 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1336 
1337 	mutex_lock(&bch_register_lock);
1338 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1339 			&d->c->flash_dev_dirty_sectors);
1340 	bcache_device_free(d);
1341 	mutex_unlock(&bch_register_lock);
1342 	kobject_put(&d->kobj);
1343 }
1344 
1345 static void flash_dev_flush(struct closure *cl)
1346 {
1347 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1348 
1349 	mutex_lock(&bch_register_lock);
1350 	bcache_device_unlink(d);
1351 	mutex_unlock(&bch_register_lock);
1352 	kobject_del(&d->kobj);
1353 	continue_at(cl, flash_dev_free, system_wq);
1354 }
1355 
1356 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1357 {
1358 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1359 					  GFP_KERNEL);
1360 	if (!d)
1361 		return -ENOMEM;
1362 
1363 	closure_init(&d->cl, NULL);
1364 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1365 
1366 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1367 
1368 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1369 		goto err;
1370 
1371 	bcache_device_attach(d, c, u - c->uuids);
1372 	bch_sectors_dirty_init(d);
1373 	bch_flash_dev_request_init(d);
1374 	add_disk(d->disk);
1375 
1376 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1377 		goto err;
1378 
1379 	bcache_device_link(d, c, "volume");
1380 
1381 	return 0;
1382 err:
1383 	kobject_put(&d->kobj);
1384 	return -ENOMEM;
1385 }
1386 
1387 static int flash_devs_run(struct cache_set *c)
1388 {
1389 	int ret = 0;
1390 	struct uuid_entry *u;
1391 
1392 	for (u = c->uuids;
1393 	     u < c->uuids + c->nr_uuids && !ret;
1394 	     u++)
1395 		if (UUID_FLASH_ONLY(u))
1396 			ret = flash_dev_run(c, u);
1397 
1398 	return ret;
1399 }
1400 
1401 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1402 {
1403 	struct uuid_entry *u;
1404 
1405 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1406 		return -EINTR;
1407 
1408 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1409 		return -EPERM;
1410 
1411 	u = uuid_find_empty(c);
1412 	if (!u) {
1413 		pr_err("Can't create volume, no room for UUID");
1414 		return -EINVAL;
1415 	}
1416 
1417 	get_random_bytes(u->uuid, 16);
1418 	memset(u->label, 0, 32);
1419 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1420 
1421 	SET_UUID_FLASH_ONLY(u, 1);
1422 	u->sectors = size >> 9;
1423 
1424 	bch_uuid_write(c);
1425 
1426 	return flash_dev_run(c, u);
1427 }
1428 
1429 bool bch_cached_dev_error(struct cached_dev *dc)
1430 {
1431 	struct cache_set *c;
1432 
1433 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1434 		return false;
1435 
1436 	dc->io_disable = true;
1437 	/* make others know io_disable is true earlier */
1438 	smp_mb();
1439 
1440 	pr_err("stop %s: too many IO errors on backing device %s\n",
1441 		dc->disk.disk->disk_name, dc->backing_dev_name);
1442 
1443 	/*
1444 	 * If the cached device is still attached to a cache set,
1445 	 * even dc->io_disable is true and no more I/O requests
1446 	 * accepted, cache device internal I/O (writeback scan or
1447 	 * garbage collection) may still prevent bcache device from
1448 	 * being stopped. So here CACHE_SET_IO_DISABLE should be
1449 	 * set to c->flags too, to make the internal I/O to cache
1450 	 * device rejected and stopped immediately.
1451 	 * If c is NULL, that means the bcache device is not attached
1452 	 * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1453 	 */
1454 	c = dc->disk.c;
1455 	if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1456 		pr_info("CACHE_SET_IO_DISABLE already set");
1457 
1458 	bcache_device_stop(&dc->disk);
1459 	return true;
1460 }
1461 
1462 /* Cache set */
1463 
1464 __printf(2, 3)
1465 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1466 {
1467 	va_list args;
1468 
1469 	if (c->on_error != ON_ERROR_PANIC &&
1470 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1471 		return false;
1472 
1473 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1474 		pr_info("CACHE_SET_IO_DISABLE already set");
1475 
1476 	/*
1477 	 * XXX: we can be called from atomic context
1478 	 * acquire_console_sem();
1479 	 */
1480 
1481 	pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1482 
1483 	va_start(args, fmt);
1484 	vprintk(fmt, args);
1485 	va_end(args);
1486 
1487 	pr_err(", disabling caching\n");
1488 
1489 	if (c->on_error == ON_ERROR_PANIC)
1490 		panic("panic forced after error\n");
1491 
1492 	bch_cache_set_unregister(c);
1493 	return true;
1494 }
1495 
1496 void bch_cache_set_release(struct kobject *kobj)
1497 {
1498 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1499 
1500 	kfree(c);
1501 	module_put(THIS_MODULE);
1502 }
1503 
1504 static void cache_set_free(struct closure *cl)
1505 {
1506 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1507 	struct cache *ca;
1508 	unsigned int i;
1509 
1510 	if (!IS_ERR_OR_NULL(c->debug))
1511 		debugfs_remove(c->debug);
1512 
1513 	bch_open_buckets_free(c);
1514 	bch_btree_cache_free(c);
1515 	bch_journal_free(c);
1516 
1517 	for_each_cache(ca, c, i)
1518 		if (ca) {
1519 			ca->set = NULL;
1520 			c->cache[ca->sb.nr_this_dev] = NULL;
1521 			kobject_put(&ca->kobj);
1522 		}
1523 
1524 	bch_bset_sort_state_free(&c->sort);
1525 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1526 
1527 	if (c->moving_gc_wq)
1528 		destroy_workqueue(c->moving_gc_wq);
1529 	bioset_exit(&c->bio_split);
1530 	mempool_exit(&c->fill_iter);
1531 	mempool_exit(&c->bio_meta);
1532 	mempool_exit(&c->search);
1533 	kfree(c->devices);
1534 
1535 	mutex_lock(&bch_register_lock);
1536 	list_del(&c->list);
1537 	mutex_unlock(&bch_register_lock);
1538 
1539 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1540 	wake_up(&unregister_wait);
1541 
1542 	closure_debug_destroy(&c->cl);
1543 	kobject_put(&c->kobj);
1544 }
1545 
1546 static void cache_set_flush(struct closure *cl)
1547 {
1548 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1549 	struct cache *ca;
1550 	struct btree *b;
1551 	unsigned int i;
1552 
1553 	bch_cache_accounting_destroy(&c->accounting);
1554 
1555 	kobject_put(&c->internal);
1556 	kobject_del(&c->kobj);
1557 
1558 	if (c->gc_thread)
1559 		kthread_stop(c->gc_thread);
1560 
1561 	if (!IS_ERR_OR_NULL(c->root))
1562 		list_add(&c->root->list, &c->btree_cache);
1563 
1564 	/* Should skip this if we're unregistering because of an error */
1565 	list_for_each_entry(b, &c->btree_cache, list) {
1566 		mutex_lock(&b->write_lock);
1567 		if (btree_node_dirty(b))
1568 			__bch_btree_node_write(b, NULL);
1569 		mutex_unlock(&b->write_lock);
1570 	}
1571 
1572 	for_each_cache(ca, c, i)
1573 		if (ca->alloc_thread)
1574 			kthread_stop(ca->alloc_thread);
1575 
1576 	if (c->journal.cur) {
1577 		cancel_delayed_work_sync(&c->journal.work);
1578 		/* flush last journal entry if needed */
1579 		c->journal.work.work.func(&c->journal.work.work);
1580 	}
1581 
1582 	closure_return(cl);
1583 }
1584 
1585 /*
1586  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1587  * cache set is unregistering due to too many I/O errors. In this condition,
1588  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1589  * value and whether the broken cache has dirty data:
1590  *
1591  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1592  *  BCH_CACHED_STOP_AUTO               0               NO
1593  *  BCH_CACHED_STOP_AUTO               1               YES
1594  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1595  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1596  *
1597  * The expected behavior is, if stop_when_cache_set_failed is configured to
1598  * "auto" via sysfs interface, the bcache device will not be stopped if the
1599  * backing device is clean on the broken cache device.
1600  */
1601 static void conditional_stop_bcache_device(struct cache_set *c,
1602 					   struct bcache_device *d,
1603 					   struct cached_dev *dc)
1604 {
1605 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1606 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1607 			d->disk->disk_name, c->sb.set_uuid);
1608 		bcache_device_stop(d);
1609 	} else if (atomic_read(&dc->has_dirty)) {
1610 		/*
1611 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1612 		 * and dc->has_dirty == 1
1613 		 */
1614 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1615 			d->disk->disk_name);
1616 			/*
1617 			 * There might be a small time gap that cache set is
1618 			 * released but bcache device is not. Inside this time
1619 			 * gap, regular I/O requests will directly go into
1620 			 * backing device as no cache set attached to. This
1621 			 * behavior may also introduce potential inconsistence
1622 			 * data in writeback mode while cache is dirty.
1623 			 * Therefore before calling bcache_device_stop() due
1624 			 * to a broken cache device, dc->io_disable should be
1625 			 * explicitly set to true.
1626 			 */
1627 			dc->io_disable = true;
1628 			/* make others know io_disable is true earlier */
1629 			smp_mb();
1630 			bcache_device_stop(d);
1631 	} else {
1632 		/*
1633 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1634 		 * and dc->has_dirty == 0
1635 		 */
1636 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1637 			d->disk->disk_name);
1638 	}
1639 }
1640 
1641 static void __cache_set_unregister(struct closure *cl)
1642 {
1643 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1644 	struct cached_dev *dc;
1645 	struct bcache_device *d;
1646 	size_t i;
1647 
1648 	mutex_lock(&bch_register_lock);
1649 
1650 	for (i = 0; i < c->devices_max_used; i++) {
1651 		d = c->devices[i];
1652 		if (!d)
1653 			continue;
1654 
1655 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1656 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1657 			dc = container_of(d, struct cached_dev, disk);
1658 			bch_cached_dev_detach(dc);
1659 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1660 				conditional_stop_bcache_device(c, d, dc);
1661 		} else {
1662 			bcache_device_stop(d);
1663 		}
1664 	}
1665 
1666 	mutex_unlock(&bch_register_lock);
1667 
1668 	continue_at(cl, cache_set_flush, system_wq);
1669 }
1670 
1671 void bch_cache_set_stop(struct cache_set *c)
1672 {
1673 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1674 		closure_queue(&c->caching);
1675 }
1676 
1677 void bch_cache_set_unregister(struct cache_set *c)
1678 {
1679 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1680 	bch_cache_set_stop(c);
1681 }
1682 
1683 #define alloc_bucket_pages(gfp, c)			\
1684 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1685 
1686 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1687 {
1688 	int iter_size;
1689 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1690 
1691 	if (!c)
1692 		return NULL;
1693 
1694 	__module_get(THIS_MODULE);
1695 	closure_init(&c->cl, NULL);
1696 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1697 
1698 	closure_init(&c->caching, &c->cl);
1699 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1700 
1701 	/* Maybe create continue_at_noreturn() and use it here? */
1702 	closure_set_stopped(&c->cl);
1703 	closure_put(&c->cl);
1704 
1705 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1706 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1707 
1708 	bch_cache_accounting_init(&c->accounting, &c->cl);
1709 
1710 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1711 	c->sb.block_size	= sb->block_size;
1712 	c->sb.bucket_size	= sb->bucket_size;
1713 	c->sb.nr_in_set		= sb->nr_in_set;
1714 	c->sb.last_mount	= sb->last_mount;
1715 	c->bucket_bits		= ilog2(sb->bucket_size);
1716 	c->block_bits		= ilog2(sb->block_size);
1717 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1718 	c->devices_max_used	= 0;
1719 	atomic_set(&c->attached_dev_nr, 0);
1720 	c->btree_pages		= bucket_pages(c);
1721 	if (c->btree_pages > BTREE_MAX_PAGES)
1722 		c->btree_pages = max_t(int, c->btree_pages / 4,
1723 				       BTREE_MAX_PAGES);
1724 
1725 	sema_init(&c->sb_write_mutex, 1);
1726 	mutex_init(&c->bucket_lock);
1727 	init_waitqueue_head(&c->btree_cache_wait);
1728 	init_waitqueue_head(&c->bucket_wait);
1729 	init_waitqueue_head(&c->gc_wait);
1730 	sema_init(&c->uuid_write_mutex, 1);
1731 
1732 	spin_lock_init(&c->btree_gc_time.lock);
1733 	spin_lock_init(&c->btree_split_time.lock);
1734 	spin_lock_init(&c->btree_read_time.lock);
1735 
1736 	bch_moving_init_cache_set(c);
1737 
1738 	INIT_LIST_HEAD(&c->list);
1739 	INIT_LIST_HEAD(&c->cached_devs);
1740 	INIT_LIST_HEAD(&c->btree_cache);
1741 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1742 	INIT_LIST_HEAD(&c->btree_cache_freed);
1743 	INIT_LIST_HEAD(&c->data_buckets);
1744 
1745 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1746 		sizeof(struct btree_iter_set);
1747 
1748 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1749 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1750 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1751 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1752 				bucket_pages(c)) ||
1753 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1754 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1755 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1756 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1757 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1758 						WQ_MEM_RECLAIM, 0)) ||
1759 	    bch_journal_alloc(c) ||
1760 	    bch_btree_cache_alloc(c) ||
1761 	    bch_open_buckets_alloc(c) ||
1762 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1763 		goto err;
1764 
1765 	c->congested_read_threshold_us	= 2000;
1766 	c->congested_write_threshold_us	= 20000;
1767 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1768 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1769 
1770 	return c;
1771 err:
1772 	bch_cache_set_unregister(c);
1773 	return NULL;
1774 }
1775 
1776 static void run_cache_set(struct cache_set *c)
1777 {
1778 	const char *err = "cannot allocate memory";
1779 	struct cached_dev *dc, *t;
1780 	struct cache *ca;
1781 	struct closure cl;
1782 	unsigned int i;
1783 
1784 	closure_init_stack(&cl);
1785 
1786 	for_each_cache(ca, c, i)
1787 		c->nbuckets += ca->sb.nbuckets;
1788 	set_gc_sectors(c);
1789 
1790 	if (CACHE_SYNC(&c->sb)) {
1791 		LIST_HEAD(journal);
1792 		struct bkey *k;
1793 		struct jset *j;
1794 
1795 		err = "cannot allocate memory for journal";
1796 		if (bch_journal_read(c, &journal))
1797 			goto err;
1798 
1799 		pr_debug("btree_journal_read() done");
1800 
1801 		err = "no journal entries found";
1802 		if (list_empty(&journal))
1803 			goto err;
1804 
1805 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1806 
1807 		err = "IO error reading priorities";
1808 		for_each_cache(ca, c, i)
1809 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1810 
1811 		/*
1812 		 * If prio_read() fails it'll call cache_set_error and we'll
1813 		 * tear everything down right away, but if we perhaps checked
1814 		 * sooner we could avoid journal replay.
1815 		 */
1816 
1817 		k = &j->btree_root;
1818 
1819 		err = "bad btree root";
1820 		if (__bch_btree_ptr_invalid(c, k))
1821 			goto err;
1822 
1823 		err = "error reading btree root";
1824 		c->root = bch_btree_node_get(c, NULL, k,
1825 					     j->btree_level,
1826 					     true, NULL);
1827 		if (IS_ERR_OR_NULL(c->root))
1828 			goto err;
1829 
1830 		list_del_init(&c->root->list);
1831 		rw_unlock(true, c->root);
1832 
1833 		err = uuid_read(c, j, &cl);
1834 		if (err)
1835 			goto err;
1836 
1837 		err = "error in recovery";
1838 		if (bch_btree_check(c))
1839 			goto err;
1840 
1841 		bch_journal_mark(c, &journal);
1842 		bch_initial_gc_finish(c);
1843 		pr_debug("btree_check() done");
1844 
1845 		/*
1846 		 * bcache_journal_next() can't happen sooner, or
1847 		 * btree_gc_finish() will give spurious errors about last_gc >
1848 		 * gc_gen - this is a hack but oh well.
1849 		 */
1850 		bch_journal_next(&c->journal);
1851 
1852 		err = "error starting allocator thread";
1853 		for_each_cache(ca, c, i)
1854 			if (bch_cache_allocator_start(ca))
1855 				goto err;
1856 
1857 		/*
1858 		 * First place it's safe to allocate: btree_check() and
1859 		 * btree_gc_finish() have to run before we have buckets to
1860 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1861 		 * entry to be written so bcache_journal_next() has to be called
1862 		 * first.
1863 		 *
1864 		 * If the uuids were in the old format we have to rewrite them
1865 		 * before the next journal entry is written:
1866 		 */
1867 		if (j->version < BCACHE_JSET_VERSION_UUID)
1868 			__uuid_write(c);
1869 
1870 		bch_journal_replay(c, &journal);
1871 	} else {
1872 		pr_notice("invalidating existing data");
1873 
1874 		for_each_cache(ca, c, i) {
1875 			unsigned int j;
1876 
1877 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1878 					      2, SB_JOURNAL_BUCKETS);
1879 
1880 			for (j = 0; j < ca->sb.keys; j++)
1881 				ca->sb.d[j] = ca->sb.first_bucket + j;
1882 		}
1883 
1884 		bch_initial_gc_finish(c);
1885 
1886 		err = "error starting allocator thread";
1887 		for_each_cache(ca, c, i)
1888 			if (bch_cache_allocator_start(ca))
1889 				goto err;
1890 
1891 		mutex_lock(&c->bucket_lock);
1892 		for_each_cache(ca, c, i)
1893 			bch_prio_write(ca);
1894 		mutex_unlock(&c->bucket_lock);
1895 
1896 		err = "cannot allocate new UUID bucket";
1897 		if (__uuid_write(c))
1898 			goto err;
1899 
1900 		err = "cannot allocate new btree root";
1901 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1902 		if (IS_ERR_OR_NULL(c->root))
1903 			goto err;
1904 
1905 		mutex_lock(&c->root->write_lock);
1906 		bkey_copy_key(&c->root->key, &MAX_KEY);
1907 		bch_btree_node_write(c->root, &cl);
1908 		mutex_unlock(&c->root->write_lock);
1909 
1910 		bch_btree_set_root(c->root);
1911 		rw_unlock(true, c->root);
1912 
1913 		/*
1914 		 * We don't want to write the first journal entry until
1915 		 * everything is set up - fortunately journal entries won't be
1916 		 * written until the SET_CACHE_SYNC() here:
1917 		 */
1918 		SET_CACHE_SYNC(&c->sb, true);
1919 
1920 		bch_journal_next(&c->journal);
1921 		bch_journal_meta(c, &cl);
1922 	}
1923 
1924 	err = "error starting gc thread";
1925 	if (bch_gc_thread_start(c))
1926 		goto err;
1927 
1928 	closure_sync(&cl);
1929 	c->sb.last_mount = (u32)ktime_get_real_seconds();
1930 	bcache_write_super(c);
1931 
1932 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1933 		bch_cached_dev_attach(dc, c, NULL);
1934 
1935 	flash_devs_run(c);
1936 
1937 	set_bit(CACHE_SET_RUNNING, &c->flags);
1938 	return;
1939 err:
1940 	closure_sync(&cl);
1941 	/* XXX: test this, it's broken */
1942 	bch_cache_set_error(c, "%s", err);
1943 }
1944 
1945 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1946 {
1947 	return ca->sb.block_size	== c->sb.block_size &&
1948 		ca->sb.bucket_size	== c->sb.bucket_size &&
1949 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1950 }
1951 
1952 static const char *register_cache_set(struct cache *ca)
1953 {
1954 	char buf[12];
1955 	const char *err = "cannot allocate memory";
1956 	struct cache_set *c;
1957 
1958 	list_for_each_entry(c, &bch_cache_sets, list)
1959 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1960 			if (c->cache[ca->sb.nr_this_dev])
1961 				return "duplicate cache set member";
1962 
1963 			if (!can_attach_cache(ca, c))
1964 				return "cache sb does not match set";
1965 
1966 			if (!CACHE_SYNC(&ca->sb))
1967 				SET_CACHE_SYNC(&c->sb, false);
1968 
1969 			goto found;
1970 		}
1971 
1972 	c = bch_cache_set_alloc(&ca->sb);
1973 	if (!c)
1974 		return err;
1975 
1976 	err = "error creating kobject";
1977 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1978 	    kobject_add(&c->internal, &c->kobj, "internal"))
1979 		goto err;
1980 
1981 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1982 		goto err;
1983 
1984 	bch_debug_init_cache_set(c);
1985 
1986 	list_add(&c->list, &bch_cache_sets);
1987 found:
1988 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1989 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1990 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1991 		goto err;
1992 
1993 	if (ca->sb.seq > c->sb.seq) {
1994 		c->sb.version		= ca->sb.version;
1995 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1996 		c->sb.flags             = ca->sb.flags;
1997 		c->sb.seq		= ca->sb.seq;
1998 		pr_debug("set version = %llu", c->sb.version);
1999 	}
2000 
2001 	kobject_get(&ca->kobj);
2002 	ca->set = c;
2003 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2004 	c->cache_by_alloc[c->caches_loaded++] = ca;
2005 
2006 	if (c->caches_loaded == c->sb.nr_in_set)
2007 		run_cache_set(c);
2008 
2009 	return NULL;
2010 err:
2011 	bch_cache_set_unregister(c);
2012 	return err;
2013 }
2014 
2015 /* Cache device */
2016 
2017 void bch_cache_release(struct kobject *kobj)
2018 {
2019 	struct cache *ca = container_of(kobj, struct cache, kobj);
2020 	unsigned int i;
2021 
2022 	if (ca->set) {
2023 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2024 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2025 	}
2026 
2027 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2028 	kfree(ca->prio_buckets);
2029 	vfree(ca->buckets);
2030 
2031 	free_heap(&ca->heap);
2032 	free_fifo(&ca->free_inc);
2033 
2034 	for (i = 0; i < RESERVE_NR; i++)
2035 		free_fifo(&ca->free[i]);
2036 
2037 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2038 		put_page(bio_first_page_all(&ca->sb_bio));
2039 
2040 	if (!IS_ERR_OR_NULL(ca->bdev))
2041 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2042 
2043 	kfree(ca);
2044 	module_put(THIS_MODULE);
2045 }
2046 
2047 static int cache_alloc(struct cache *ca)
2048 {
2049 	size_t free;
2050 	size_t btree_buckets;
2051 	struct bucket *b;
2052 
2053 	__module_get(THIS_MODULE);
2054 	kobject_init(&ca->kobj, &bch_cache_ktype);
2055 
2056 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2057 
2058 	/*
2059 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2060 	 * and in bch_journal_replay(), tree node may split,
2061 	 * so bucket of RESERVE_BTREE type is needed,
2062 	 * the worst situation is all journal buckets are valid journal,
2063 	 * and all the keys need to replay,
2064 	 * so the number of  RESERVE_BTREE type buckets should be as much
2065 	 * as journal buckets
2066 	 */
2067 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2068 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2069 
2070 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
2071 	    !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
2072 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
2073 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
2074 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
2075 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
2076 	    !(ca->buckets	= vzalloc(array_size(sizeof(struct bucket),
2077 						     ca->sb.nbuckets))) ||
2078 	    !(ca->prio_buckets	= kzalloc(array3_size(sizeof(uint64_t),
2079 						      prio_buckets(ca), 2),
2080 					  GFP_KERNEL)) ||
2081 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
2082 		return -ENOMEM;
2083 
2084 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2085 
2086 	for_each_bucket(b, ca)
2087 		atomic_set(&b->pin, 0);
2088 
2089 	return 0;
2090 }
2091 
2092 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2093 				struct block_device *bdev, struct cache *ca)
2094 {
2095 	const char *err = NULL; /* must be set for any error case */
2096 	int ret = 0;
2097 
2098 	bdevname(bdev, ca->cache_dev_name);
2099 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2100 	ca->bdev = bdev;
2101 	ca->bdev->bd_holder = ca;
2102 
2103 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2104 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2105 	get_page(sb_page);
2106 
2107 	if (blk_queue_discard(bdev_get_queue(bdev)))
2108 		ca->discard = CACHE_DISCARD(&ca->sb);
2109 
2110 	ret = cache_alloc(ca);
2111 	if (ret != 0) {
2112 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2113 		if (ret == -ENOMEM)
2114 			err = "cache_alloc(): -ENOMEM";
2115 		else
2116 			err = "cache_alloc(): unknown error";
2117 		goto err;
2118 	}
2119 
2120 	if (kobject_add(&ca->kobj,
2121 			&part_to_dev(bdev->bd_part)->kobj,
2122 			"bcache")) {
2123 		err = "error calling kobject_add";
2124 		ret = -ENOMEM;
2125 		goto out;
2126 	}
2127 
2128 	mutex_lock(&bch_register_lock);
2129 	err = register_cache_set(ca);
2130 	mutex_unlock(&bch_register_lock);
2131 
2132 	if (err) {
2133 		ret = -ENODEV;
2134 		goto out;
2135 	}
2136 
2137 	pr_info("registered cache device %s", ca->cache_dev_name);
2138 
2139 out:
2140 	kobject_put(&ca->kobj);
2141 
2142 err:
2143 	if (err)
2144 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2145 
2146 	return ret;
2147 }
2148 
2149 /* Global interfaces/init */
2150 
2151 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2152 			       const char *buffer, size_t size);
2153 
2154 kobj_attribute_write(register,		register_bcache);
2155 kobj_attribute_write(register_quiet,	register_bcache);
2156 
2157 static bool bch_is_open_backing(struct block_device *bdev)
2158 {
2159 	struct cache_set *c, *tc;
2160 	struct cached_dev *dc, *t;
2161 
2162 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2163 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2164 			if (dc->bdev == bdev)
2165 				return true;
2166 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2167 		if (dc->bdev == bdev)
2168 			return true;
2169 	return false;
2170 }
2171 
2172 static bool bch_is_open_cache(struct block_device *bdev)
2173 {
2174 	struct cache_set *c, *tc;
2175 	struct cache *ca;
2176 	unsigned int i;
2177 
2178 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2179 		for_each_cache(ca, c, i)
2180 			if (ca->bdev == bdev)
2181 				return true;
2182 	return false;
2183 }
2184 
2185 static bool bch_is_open(struct block_device *bdev)
2186 {
2187 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2188 }
2189 
2190 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2191 			       const char *buffer, size_t size)
2192 {
2193 	ssize_t ret = size;
2194 	const char *err = "cannot allocate memory";
2195 	char *path = NULL;
2196 	struct cache_sb *sb = NULL;
2197 	struct block_device *bdev = NULL;
2198 	struct page *sb_page = NULL;
2199 
2200 	if (!try_module_get(THIS_MODULE))
2201 		return -EBUSY;
2202 
2203 	path = kstrndup(buffer, size, GFP_KERNEL);
2204 	if (!path)
2205 		goto err;
2206 
2207 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2208 	if (!sb)
2209 		goto err;
2210 
2211 	err = "failed to open device";
2212 	bdev = blkdev_get_by_path(strim(path),
2213 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2214 				  sb);
2215 	if (IS_ERR(bdev)) {
2216 		if (bdev == ERR_PTR(-EBUSY)) {
2217 			bdev = lookup_bdev(strim(path));
2218 			mutex_lock(&bch_register_lock);
2219 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2220 				err = "device already registered";
2221 			else
2222 				err = "device busy";
2223 			mutex_unlock(&bch_register_lock);
2224 			if (!IS_ERR(bdev))
2225 				bdput(bdev);
2226 			if (attr == &ksysfs_register_quiet)
2227 				goto out;
2228 		}
2229 		goto err;
2230 	}
2231 
2232 	err = "failed to set blocksize";
2233 	if (set_blocksize(bdev, 4096))
2234 		goto err_close;
2235 
2236 	err = read_super(sb, bdev, &sb_page);
2237 	if (err)
2238 		goto err_close;
2239 
2240 	err = "failed to register device";
2241 	if (SB_IS_BDEV(sb)) {
2242 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2243 
2244 		if (!dc)
2245 			goto err_close;
2246 
2247 		mutex_lock(&bch_register_lock);
2248 		register_bdev(sb, sb_page, bdev, dc);
2249 		mutex_unlock(&bch_register_lock);
2250 	} else {
2251 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2252 
2253 		if (!ca)
2254 			goto err_close;
2255 
2256 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2257 			goto err;
2258 	}
2259 out:
2260 	if (sb_page)
2261 		put_page(sb_page);
2262 	kfree(sb);
2263 	kfree(path);
2264 	module_put(THIS_MODULE);
2265 	return ret;
2266 
2267 err_close:
2268 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2269 err:
2270 	pr_info("error %s: %s", path, err);
2271 	ret = -EINVAL;
2272 	goto out;
2273 }
2274 
2275 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2276 {
2277 	if (code == SYS_DOWN ||
2278 	    code == SYS_HALT ||
2279 	    code == SYS_POWER_OFF) {
2280 		DEFINE_WAIT(wait);
2281 		unsigned long start = jiffies;
2282 		bool stopped = false;
2283 
2284 		struct cache_set *c, *tc;
2285 		struct cached_dev *dc, *tdc;
2286 
2287 		mutex_lock(&bch_register_lock);
2288 
2289 		if (list_empty(&bch_cache_sets) &&
2290 		    list_empty(&uncached_devices))
2291 			goto out;
2292 
2293 		pr_info("Stopping all devices:");
2294 
2295 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2296 			bch_cache_set_stop(c);
2297 
2298 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2299 			bcache_device_stop(&dc->disk);
2300 
2301 		/* What's a condition variable? */
2302 		while (1) {
2303 			long timeout = start + 2 * HZ - jiffies;
2304 
2305 			stopped = list_empty(&bch_cache_sets) &&
2306 				list_empty(&uncached_devices);
2307 
2308 			if (timeout < 0 || stopped)
2309 				break;
2310 
2311 			prepare_to_wait(&unregister_wait, &wait,
2312 					TASK_UNINTERRUPTIBLE);
2313 
2314 			mutex_unlock(&bch_register_lock);
2315 			schedule_timeout(timeout);
2316 			mutex_lock(&bch_register_lock);
2317 		}
2318 
2319 		finish_wait(&unregister_wait, &wait);
2320 
2321 		if (stopped)
2322 			pr_info("All devices stopped");
2323 		else
2324 			pr_notice("Timeout waiting for devices to be closed");
2325 out:
2326 		mutex_unlock(&bch_register_lock);
2327 	}
2328 
2329 	return NOTIFY_DONE;
2330 }
2331 
2332 static struct notifier_block reboot = {
2333 	.notifier_call	= bcache_reboot,
2334 	.priority	= INT_MAX, /* before any real devices */
2335 };
2336 
2337 static void bcache_exit(void)
2338 {
2339 	bch_debug_exit();
2340 	bch_request_exit();
2341 	if (bcache_kobj)
2342 		kobject_put(bcache_kobj);
2343 	if (bcache_wq)
2344 		destroy_workqueue(bcache_wq);
2345 	if (bch_journal_wq)
2346 		destroy_workqueue(bch_journal_wq);
2347 
2348 	if (bcache_major)
2349 		unregister_blkdev(bcache_major, "bcache");
2350 	unregister_reboot_notifier(&reboot);
2351 	mutex_destroy(&bch_register_lock);
2352 }
2353 
2354 static int __init bcache_init(void)
2355 {
2356 	static const struct attribute *files[] = {
2357 		&ksysfs_register.attr,
2358 		&ksysfs_register_quiet.attr,
2359 		NULL
2360 	};
2361 
2362 	mutex_init(&bch_register_lock);
2363 	init_waitqueue_head(&unregister_wait);
2364 	register_reboot_notifier(&reboot);
2365 
2366 	bcache_major = register_blkdev(0, "bcache");
2367 	if (bcache_major < 0) {
2368 		unregister_reboot_notifier(&reboot);
2369 		mutex_destroy(&bch_register_lock);
2370 		return bcache_major;
2371 	}
2372 
2373 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2374 	if (!bcache_wq)
2375 		goto err;
2376 
2377 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2378 	if (!bch_journal_wq)
2379 		goto err;
2380 
2381 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2382 	if (!bcache_kobj)
2383 		goto err;
2384 
2385 	if (bch_request_init() ||
2386 	    sysfs_create_files(bcache_kobj, files))
2387 		goto err;
2388 
2389 	bch_debug_init(bcache_kobj);
2390 	closure_debug_init();
2391 
2392 	return 0;
2393 err:
2394 	bcache_exit();
2395 	return -ENOMEM;
2396 }
2397 
2398 module_exit(bcache_exit);
2399 module_init(bcache_init);
2400