1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_flush_wq; 53 struct workqueue_struct *bch_journal_wq; 54 55 56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57 /* limitation of partitions number on single bcache device */ 58 #define BCACHE_MINORS 128 59 /* limitation of bcache devices number on single system */ 60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62 /* Superblock */ 63 64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65 { 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89 } 90 91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93 { 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161 err: 162 return err; 163 } 164 165 166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168 { 169 const char *err; 170 struct cache_sb_disk *s; 171 struct page *page; 172 unsigned int i; 173 174 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(page)) 177 return "IO error"; 178 s = page_address(page) + offset_in_page(SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274 err: 275 put_page(page); 276 return err; 277 } 278 279 static void write_bdev_super_endio(struct bio *bio) 280 { 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287 } 288 289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291 { 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 297 offset_in_page(out)); 298 299 out->offset = cpu_to_le64(sb->offset); 300 301 memcpy(out->uuid, sb->uuid, 16); 302 memcpy(out->set_uuid, sb->set_uuid, 16); 303 memcpy(out->label, sb->label, SB_LABEL_SIZE); 304 305 out->flags = cpu_to_le64(sb->flags); 306 out->seq = cpu_to_le64(sb->seq); 307 308 out->last_mount = cpu_to_le32(sb->last_mount); 309 out->first_bucket = cpu_to_le16(sb->first_bucket); 310 out->keys = cpu_to_le16(sb->keys); 311 312 for (i = 0; i < sb->keys; i++) 313 out->d[i] = cpu_to_le64(sb->d[i]); 314 315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 316 out->feature_compat = cpu_to_le64(sb->feature_compat); 317 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 319 } 320 321 out->version = cpu_to_le64(sb->version); 322 out->csum = csum_set(out); 323 324 pr_debug("ver %llu, flags %llu, seq %llu\n", 325 sb->version, sb->flags, sb->seq); 326 327 submit_bio(bio); 328 } 329 330 static void bch_write_bdev_super_unlock(struct closure *cl) 331 { 332 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 333 334 up(&dc->sb_write_mutex); 335 } 336 337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 338 { 339 struct closure *cl = &dc->sb_write; 340 struct bio *bio = &dc->sb_bio; 341 342 down(&dc->sb_write_mutex); 343 closure_init(cl, parent); 344 345 bio_init(bio, dc->sb_bv, 1); 346 bio_set_dev(bio, dc->bdev); 347 bio->bi_end_io = write_bdev_super_endio; 348 bio->bi_private = dc; 349 350 closure_get(cl); 351 /* I/O request sent to backing device */ 352 __write_super(&dc->sb, dc->sb_disk, bio); 353 354 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 355 } 356 357 static void write_super_endio(struct bio *bio) 358 { 359 struct cache *ca = bio->bi_private; 360 361 /* is_read = 0 */ 362 bch_count_io_errors(ca, bio->bi_status, 0, 363 "writing superblock"); 364 closure_put(&ca->set->sb_write); 365 } 366 367 static void bcache_write_super_unlock(struct closure *cl) 368 { 369 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 370 371 up(&c->sb_write_mutex); 372 } 373 374 void bcache_write_super(struct cache_set *c) 375 { 376 struct closure *cl = &c->sb_write; 377 struct cache *ca = c->cache; 378 struct bio *bio = &ca->sb_bio; 379 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 380 381 down(&c->sb_write_mutex); 382 closure_init(cl, &c->cl); 383 384 ca->sb.seq++; 385 386 if (ca->sb.version < version) 387 ca->sb.version = version; 388 389 bio_init(bio, ca->sb_bv, 1); 390 bio_set_dev(bio, ca->bdev); 391 bio->bi_end_io = write_super_endio; 392 bio->bi_private = ca; 393 394 closure_get(cl); 395 __write_super(&ca->sb, ca->sb_disk, bio); 396 397 closure_return_with_destructor(cl, bcache_write_super_unlock); 398 } 399 400 /* UUID io */ 401 402 static void uuid_endio(struct bio *bio) 403 { 404 struct closure *cl = bio->bi_private; 405 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 406 407 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 408 bch_bbio_free(bio, c); 409 closure_put(cl); 410 } 411 412 static void uuid_io_unlock(struct closure *cl) 413 { 414 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 415 416 up(&c->uuid_write_mutex); 417 } 418 419 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 420 struct bkey *k, struct closure *parent) 421 { 422 struct closure *cl = &c->uuid_write; 423 struct uuid_entry *u; 424 unsigned int i; 425 char buf[80]; 426 427 BUG_ON(!parent); 428 down(&c->uuid_write_mutex); 429 closure_init(cl, parent); 430 431 for (i = 0; i < KEY_PTRS(k); i++) { 432 struct bio *bio = bch_bbio_alloc(c); 433 434 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 435 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 436 437 bio->bi_end_io = uuid_endio; 438 bio->bi_private = cl; 439 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 440 bch_bio_map(bio, c->uuids); 441 442 bch_submit_bbio(bio, c, k, i); 443 444 if (op != REQ_OP_WRITE) 445 break; 446 } 447 448 bch_extent_to_text(buf, sizeof(buf), k); 449 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 450 451 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 452 if (!bch_is_zero(u->uuid, 16)) 453 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 454 u - c->uuids, u->uuid, u->label, 455 u->first_reg, u->last_reg, u->invalidated); 456 457 closure_return_with_destructor(cl, uuid_io_unlock); 458 } 459 460 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 461 { 462 struct bkey *k = &j->uuid_bucket; 463 464 if (__bch_btree_ptr_invalid(c, k)) 465 return "bad uuid pointer"; 466 467 bkey_copy(&c->uuid_bucket, k); 468 uuid_io(c, REQ_OP_READ, 0, k, cl); 469 470 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 471 struct uuid_entry_v0 *u0 = (void *) c->uuids; 472 struct uuid_entry *u1 = (void *) c->uuids; 473 int i; 474 475 closure_sync(cl); 476 477 /* 478 * Since the new uuid entry is bigger than the old, we have to 479 * convert starting at the highest memory address and work down 480 * in order to do it in place 481 */ 482 483 for (i = c->nr_uuids - 1; 484 i >= 0; 485 --i) { 486 memcpy(u1[i].uuid, u0[i].uuid, 16); 487 memcpy(u1[i].label, u0[i].label, 32); 488 489 u1[i].first_reg = u0[i].first_reg; 490 u1[i].last_reg = u0[i].last_reg; 491 u1[i].invalidated = u0[i].invalidated; 492 493 u1[i].flags = 0; 494 u1[i].sectors = 0; 495 } 496 } 497 498 return NULL; 499 } 500 501 static int __uuid_write(struct cache_set *c) 502 { 503 BKEY_PADDED(key) k; 504 struct closure cl; 505 struct cache *ca = c->cache; 506 unsigned int size; 507 508 closure_init_stack(&cl); 509 lockdep_assert_held(&bch_register_lock); 510 511 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 512 return 1; 513 514 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 515 SET_KEY_SIZE(&k.key, size); 516 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 517 closure_sync(&cl); 518 519 /* Only one bucket used for uuid write */ 520 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 521 522 bkey_copy(&c->uuid_bucket, &k.key); 523 bkey_put(c, &k.key); 524 return 0; 525 } 526 527 int bch_uuid_write(struct cache_set *c) 528 { 529 int ret = __uuid_write(c); 530 531 if (!ret) 532 bch_journal_meta(c, NULL); 533 534 return ret; 535 } 536 537 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 538 { 539 struct uuid_entry *u; 540 541 for (u = c->uuids; 542 u < c->uuids + c->nr_uuids; u++) 543 if (!memcmp(u->uuid, uuid, 16)) 544 return u; 545 546 return NULL; 547 } 548 549 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 550 { 551 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 552 553 return uuid_find(c, zero_uuid); 554 } 555 556 /* 557 * Bucket priorities/gens: 558 * 559 * For each bucket, we store on disk its 560 * 8 bit gen 561 * 16 bit priority 562 * 563 * See alloc.c for an explanation of the gen. The priority is used to implement 564 * lru (and in the future other) cache replacement policies; for most purposes 565 * it's just an opaque integer. 566 * 567 * The gens and the priorities don't have a whole lot to do with each other, and 568 * it's actually the gens that must be written out at specific times - it's no 569 * big deal if the priorities don't get written, if we lose them we just reuse 570 * buckets in suboptimal order. 571 * 572 * On disk they're stored in a packed array, and in as many buckets are required 573 * to fit them all. The buckets we use to store them form a list; the journal 574 * header points to the first bucket, the first bucket points to the second 575 * bucket, et cetera. 576 * 577 * This code is used by the allocation code; periodically (whenever it runs out 578 * of buckets to allocate from) the allocation code will invalidate some 579 * buckets, but it can't use those buckets until their new gens are safely on 580 * disk. 581 */ 582 583 static void prio_endio(struct bio *bio) 584 { 585 struct cache *ca = bio->bi_private; 586 587 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 588 bch_bbio_free(bio, ca->set); 589 closure_put(&ca->prio); 590 } 591 592 static void prio_io(struct cache *ca, uint64_t bucket, int op, 593 unsigned long op_flags) 594 { 595 struct closure *cl = &ca->prio; 596 struct bio *bio = bch_bbio_alloc(ca->set); 597 598 closure_init_stack(cl); 599 600 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 601 bio_set_dev(bio, ca->bdev); 602 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 603 604 bio->bi_end_io = prio_endio; 605 bio->bi_private = ca; 606 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 607 bch_bio_map(bio, ca->disk_buckets); 608 609 closure_bio_submit(ca->set, bio, &ca->prio); 610 closure_sync(cl); 611 } 612 613 int bch_prio_write(struct cache *ca, bool wait) 614 { 615 int i; 616 struct bucket *b; 617 struct closure cl; 618 619 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 620 fifo_used(&ca->free[RESERVE_PRIO]), 621 fifo_used(&ca->free[RESERVE_NONE]), 622 fifo_used(&ca->free_inc)); 623 624 /* 625 * Pre-check if there are enough free buckets. In the non-blocking 626 * scenario it's better to fail early rather than starting to allocate 627 * buckets and do a cleanup later in case of failure. 628 */ 629 if (!wait) { 630 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 631 fifo_used(&ca->free[RESERVE_NONE]); 632 if (prio_buckets(ca) > avail) 633 return -ENOMEM; 634 } 635 636 closure_init_stack(&cl); 637 638 lockdep_assert_held(&ca->set->bucket_lock); 639 640 ca->disk_buckets->seq++; 641 642 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 643 &ca->meta_sectors_written); 644 645 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 646 long bucket; 647 struct prio_set *p = ca->disk_buckets; 648 struct bucket_disk *d = p->data; 649 struct bucket_disk *end = d + prios_per_bucket(ca); 650 651 for (b = ca->buckets + i * prios_per_bucket(ca); 652 b < ca->buckets + ca->sb.nbuckets && d < end; 653 b++, d++) { 654 d->prio = cpu_to_le16(b->prio); 655 d->gen = b->gen; 656 } 657 658 p->next_bucket = ca->prio_buckets[i + 1]; 659 p->magic = pset_magic(&ca->sb); 660 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 661 662 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 663 BUG_ON(bucket == -1); 664 665 mutex_unlock(&ca->set->bucket_lock); 666 prio_io(ca, bucket, REQ_OP_WRITE, 0); 667 mutex_lock(&ca->set->bucket_lock); 668 669 ca->prio_buckets[i] = bucket; 670 atomic_dec_bug(&ca->buckets[bucket].pin); 671 } 672 673 mutex_unlock(&ca->set->bucket_lock); 674 675 bch_journal_meta(ca->set, &cl); 676 closure_sync(&cl); 677 678 mutex_lock(&ca->set->bucket_lock); 679 680 /* 681 * Don't want the old priorities to get garbage collected until after we 682 * finish writing the new ones, and they're journalled 683 */ 684 for (i = 0; i < prio_buckets(ca); i++) { 685 if (ca->prio_last_buckets[i]) 686 __bch_bucket_free(ca, 687 &ca->buckets[ca->prio_last_buckets[i]]); 688 689 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 690 } 691 return 0; 692 } 693 694 static int prio_read(struct cache *ca, uint64_t bucket) 695 { 696 struct prio_set *p = ca->disk_buckets; 697 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 698 struct bucket *b; 699 unsigned int bucket_nr = 0; 700 int ret = -EIO; 701 702 for (b = ca->buckets; 703 b < ca->buckets + ca->sb.nbuckets; 704 b++, d++) { 705 if (d == end) { 706 ca->prio_buckets[bucket_nr] = bucket; 707 ca->prio_last_buckets[bucket_nr] = bucket; 708 bucket_nr++; 709 710 prio_io(ca, bucket, REQ_OP_READ, 0); 711 712 if (p->csum != 713 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 714 pr_warn("bad csum reading priorities\n"); 715 goto out; 716 } 717 718 if (p->magic != pset_magic(&ca->sb)) { 719 pr_warn("bad magic reading priorities\n"); 720 goto out; 721 } 722 723 bucket = p->next_bucket; 724 d = p->data; 725 } 726 727 b->prio = le16_to_cpu(d->prio); 728 b->gen = b->last_gc = d->gen; 729 } 730 731 ret = 0; 732 out: 733 return ret; 734 } 735 736 /* Bcache device */ 737 738 static int open_dev(struct block_device *b, fmode_t mode) 739 { 740 struct bcache_device *d = b->bd_disk->private_data; 741 742 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 743 return -ENXIO; 744 745 closure_get(&d->cl); 746 return 0; 747 } 748 749 static void release_dev(struct gendisk *b, fmode_t mode) 750 { 751 struct bcache_device *d = b->private_data; 752 753 closure_put(&d->cl); 754 } 755 756 static int ioctl_dev(struct block_device *b, fmode_t mode, 757 unsigned int cmd, unsigned long arg) 758 { 759 struct bcache_device *d = b->bd_disk->private_data; 760 761 return d->ioctl(d, mode, cmd, arg); 762 } 763 764 static const struct block_device_operations bcache_cached_ops = { 765 .submit_bio = cached_dev_submit_bio, 766 .open = open_dev, 767 .release = release_dev, 768 .ioctl = ioctl_dev, 769 .owner = THIS_MODULE, 770 }; 771 772 static const struct block_device_operations bcache_flash_ops = { 773 .submit_bio = flash_dev_submit_bio, 774 .open = open_dev, 775 .release = release_dev, 776 .ioctl = ioctl_dev, 777 .owner = THIS_MODULE, 778 }; 779 780 void bcache_device_stop(struct bcache_device *d) 781 { 782 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 783 /* 784 * closure_fn set to 785 * - cached device: cached_dev_flush() 786 * - flash dev: flash_dev_flush() 787 */ 788 closure_queue(&d->cl); 789 } 790 791 static void bcache_device_unlink(struct bcache_device *d) 792 { 793 lockdep_assert_held(&bch_register_lock); 794 795 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 796 struct cache *ca = d->c->cache; 797 798 sysfs_remove_link(&d->c->kobj, d->name); 799 sysfs_remove_link(&d->kobj, "cache"); 800 801 bd_unlink_disk_holder(ca->bdev, d->disk); 802 } 803 } 804 805 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 806 const char *name) 807 { 808 struct cache *ca = c->cache; 809 int ret; 810 811 bd_link_disk_holder(ca->bdev, d->disk); 812 813 snprintf(d->name, BCACHEDEVNAME_SIZE, 814 "%s%u", name, d->id); 815 816 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 817 if (ret < 0) 818 pr_err("Couldn't create device -> cache set symlink\n"); 819 820 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 821 if (ret < 0) 822 pr_err("Couldn't create cache set -> device symlink\n"); 823 824 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 825 } 826 827 static void bcache_device_detach(struct bcache_device *d) 828 { 829 lockdep_assert_held(&bch_register_lock); 830 831 atomic_dec(&d->c->attached_dev_nr); 832 833 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 834 struct uuid_entry *u = d->c->uuids + d->id; 835 836 SET_UUID_FLASH_ONLY(u, 0); 837 memcpy(u->uuid, invalid_uuid, 16); 838 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 839 bch_uuid_write(d->c); 840 } 841 842 bcache_device_unlink(d); 843 844 d->c->devices[d->id] = NULL; 845 closure_put(&d->c->caching); 846 d->c = NULL; 847 } 848 849 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 850 unsigned int id) 851 { 852 d->id = id; 853 d->c = c; 854 c->devices[id] = d; 855 856 if (id >= c->devices_max_used) 857 c->devices_max_used = id + 1; 858 859 closure_get(&c->caching); 860 } 861 862 static inline int first_minor_to_idx(int first_minor) 863 { 864 return (first_minor/BCACHE_MINORS); 865 } 866 867 static inline int idx_to_first_minor(int idx) 868 { 869 return (idx * BCACHE_MINORS); 870 } 871 872 static void bcache_device_free(struct bcache_device *d) 873 { 874 struct gendisk *disk = d->disk; 875 876 lockdep_assert_held(&bch_register_lock); 877 878 if (disk) 879 pr_info("%s stopped\n", disk->disk_name); 880 else 881 pr_err("bcache device (NULL gendisk) stopped\n"); 882 883 if (d->c) 884 bcache_device_detach(d); 885 886 if (disk) { 887 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 888 889 if (disk_added) 890 del_gendisk(disk); 891 892 if (disk->queue) 893 blk_cleanup_queue(disk->queue); 894 895 ida_simple_remove(&bcache_device_idx, 896 first_minor_to_idx(disk->first_minor)); 897 if (disk_added) 898 put_disk(disk); 899 } 900 901 bioset_exit(&d->bio_split); 902 kvfree(d->full_dirty_stripes); 903 kvfree(d->stripe_sectors_dirty); 904 905 closure_debug_destroy(&d->cl); 906 } 907 908 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 909 sector_t sectors, struct block_device *cached_bdev, 910 const struct block_device_operations *ops) 911 { 912 struct request_queue *q; 913 const size_t max_stripes = min_t(size_t, INT_MAX, 914 SIZE_MAX / sizeof(atomic_t)); 915 uint64_t n; 916 int idx; 917 918 if (!d->stripe_size) 919 d->stripe_size = 1 << 31; 920 921 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 922 if (!n || n > max_stripes) { 923 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 924 n); 925 return -ENOMEM; 926 } 927 d->nr_stripes = n; 928 929 n = d->nr_stripes * sizeof(atomic_t); 930 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 931 if (!d->stripe_sectors_dirty) 932 return -ENOMEM; 933 934 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 935 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 936 if (!d->full_dirty_stripes) 937 return -ENOMEM; 938 939 idx = ida_simple_get(&bcache_device_idx, 0, 940 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 941 if (idx < 0) 942 return idx; 943 944 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 945 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 946 goto err; 947 948 d->disk = alloc_disk(BCACHE_MINORS); 949 if (!d->disk) 950 goto err; 951 952 set_capacity(d->disk, sectors); 953 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 954 955 d->disk->major = bcache_major; 956 d->disk->first_minor = idx_to_first_minor(idx); 957 d->disk->fops = ops; 958 d->disk->private_data = d; 959 960 q = blk_alloc_queue(NUMA_NO_NODE); 961 if (!q) 962 return -ENOMEM; 963 964 d->disk->queue = q; 965 q->limits.max_hw_sectors = UINT_MAX; 966 q->limits.max_sectors = UINT_MAX; 967 q->limits.max_segment_size = UINT_MAX; 968 q->limits.max_segments = BIO_MAX_PAGES; 969 blk_queue_max_discard_sectors(q, UINT_MAX); 970 q->limits.discard_granularity = 512; 971 q->limits.io_min = block_size; 972 q->limits.logical_block_size = block_size; 973 q->limits.physical_block_size = block_size; 974 975 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 976 /* 977 * This should only happen with BCACHE_SB_VERSION_BDEV. 978 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 979 */ 980 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 981 d->disk->disk_name, q->limits.logical_block_size, 982 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 983 984 /* This also adjusts physical block size/min io size if needed */ 985 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 986 } 987 988 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 989 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 990 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 991 992 blk_queue_write_cache(q, true, true); 993 994 return 0; 995 996 err: 997 ida_simple_remove(&bcache_device_idx, idx); 998 return -ENOMEM; 999 1000 } 1001 1002 /* Cached device */ 1003 1004 static void calc_cached_dev_sectors(struct cache_set *c) 1005 { 1006 uint64_t sectors = 0; 1007 struct cached_dev *dc; 1008 1009 list_for_each_entry(dc, &c->cached_devs, list) 1010 sectors += bdev_sectors(dc->bdev); 1011 1012 c->cached_dev_sectors = sectors; 1013 } 1014 1015 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1016 static int cached_dev_status_update(void *arg) 1017 { 1018 struct cached_dev *dc = arg; 1019 struct request_queue *q; 1020 1021 /* 1022 * If this delayed worker is stopping outside, directly quit here. 1023 * dc->io_disable might be set via sysfs interface, so check it 1024 * here too. 1025 */ 1026 while (!kthread_should_stop() && !dc->io_disable) { 1027 q = bdev_get_queue(dc->bdev); 1028 if (blk_queue_dying(q)) 1029 dc->offline_seconds++; 1030 else 1031 dc->offline_seconds = 0; 1032 1033 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1034 pr_err("%s: device offline for %d seconds\n", 1035 dc->backing_dev_name, 1036 BACKING_DEV_OFFLINE_TIMEOUT); 1037 pr_err("%s: disable I/O request due to backing device offline\n", 1038 dc->disk.name); 1039 dc->io_disable = true; 1040 /* let others know earlier that io_disable is true */ 1041 smp_mb(); 1042 bcache_device_stop(&dc->disk); 1043 break; 1044 } 1045 schedule_timeout_interruptible(HZ); 1046 } 1047 1048 wait_for_kthread_stop(); 1049 return 0; 1050 } 1051 1052 1053 int bch_cached_dev_run(struct cached_dev *dc) 1054 { 1055 struct bcache_device *d = &dc->disk; 1056 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1057 char *env[] = { 1058 "DRIVER=bcache", 1059 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1060 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1061 NULL, 1062 }; 1063 1064 if (dc->io_disable) { 1065 pr_err("I/O disabled on cached dev %s\n", 1066 dc->backing_dev_name); 1067 kfree(env[1]); 1068 kfree(env[2]); 1069 kfree(buf); 1070 return -EIO; 1071 } 1072 1073 if (atomic_xchg(&dc->running, 1)) { 1074 kfree(env[1]); 1075 kfree(env[2]); 1076 kfree(buf); 1077 pr_info("cached dev %s is running already\n", 1078 dc->backing_dev_name); 1079 return -EBUSY; 1080 } 1081 1082 if (!d->c && 1083 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1084 struct closure cl; 1085 1086 closure_init_stack(&cl); 1087 1088 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1089 bch_write_bdev_super(dc, &cl); 1090 closure_sync(&cl); 1091 } 1092 1093 add_disk(d->disk); 1094 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1095 /* 1096 * won't show up in the uevent file, use udevadm monitor -e instead 1097 * only class / kset properties are persistent 1098 */ 1099 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1100 kfree(env[1]); 1101 kfree(env[2]); 1102 kfree(buf); 1103 1104 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1105 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1106 &d->kobj, "bcache")) { 1107 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1108 return -ENOMEM; 1109 } 1110 1111 dc->status_update_thread = kthread_run(cached_dev_status_update, 1112 dc, "bcache_status_update"); 1113 if (IS_ERR(dc->status_update_thread)) { 1114 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1122 * work dc->writeback_rate_update is running. Wait until the routine 1123 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1124 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1125 * seconds, give up waiting here and continue to cancel it too. 1126 */ 1127 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1128 { 1129 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1130 1131 do { 1132 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1133 &dc->disk.flags)) 1134 break; 1135 time_out--; 1136 schedule_timeout_interruptible(1); 1137 } while (time_out > 0); 1138 1139 if (time_out == 0) 1140 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1141 1142 cancel_delayed_work_sync(&dc->writeback_rate_update); 1143 } 1144 1145 static void cached_dev_detach_finish(struct work_struct *w) 1146 { 1147 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1148 1149 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1150 BUG_ON(refcount_read(&dc->count)); 1151 1152 1153 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1154 cancel_writeback_rate_update_dwork(dc); 1155 1156 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1157 kthread_stop(dc->writeback_thread); 1158 dc->writeback_thread = NULL; 1159 } 1160 1161 mutex_lock(&bch_register_lock); 1162 1163 calc_cached_dev_sectors(dc->disk.c); 1164 bcache_device_detach(&dc->disk); 1165 list_move(&dc->list, &uncached_devices); 1166 1167 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1168 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1169 1170 mutex_unlock(&bch_register_lock); 1171 1172 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1173 1174 /* Drop ref we took in cached_dev_detach() */ 1175 closure_put(&dc->disk.cl); 1176 } 1177 1178 void bch_cached_dev_detach(struct cached_dev *dc) 1179 { 1180 lockdep_assert_held(&bch_register_lock); 1181 1182 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1183 return; 1184 1185 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1186 return; 1187 1188 /* 1189 * Block the device from being closed and freed until we're finished 1190 * detaching 1191 */ 1192 closure_get(&dc->disk.cl); 1193 1194 bch_writeback_queue(dc); 1195 1196 cached_dev_put(dc); 1197 } 1198 1199 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1200 uint8_t *set_uuid) 1201 { 1202 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1203 struct uuid_entry *u; 1204 struct cached_dev *exist_dc, *t; 1205 int ret = 0; 1206 1207 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1208 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1209 return -ENOENT; 1210 1211 if (dc->disk.c) { 1212 pr_err("Can't attach %s: already attached\n", 1213 dc->backing_dev_name); 1214 return -EINVAL; 1215 } 1216 1217 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1218 pr_err("Can't attach %s: shutting down\n", 1219 dc->backing_dev_name); 1220 return -EINVAL; 1221 } 1222 1223 if (dc->sb.block_size < c->cache->sb.block_size) { 1224 /* Will die */ 1225 pr_err("Couldn't attach %s: block size less than set's block size\n", 1226 dc->backing_dev_name); 1227 return -EINVAL; 1228 } 1229 1230 /* Check whether already attached */ 1231 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1232 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1233 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1234 dc->backing_dev_name); 1235 1236 return -EINVAL; 1237 } 1238 } 1239 1240 u = uuid_find(c, dc->sb.uuid); 1241 1242 if (u && 1243 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1244 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1245 memcpy(u->uuid, invalid_uuid, 16); 1246 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1247 u = NULL; 1248 } 1249 1250 if (!u) { 1251 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1252 pr_err("Couldn't find uuid for %s in set\n", 1253 dc->backing_dev_name); 1254 return -ENOENT; 1255 } 1256 1257 u = uuid_find_empty(c); 1258 if (!u) { 1259 pr_err("Not caching %s, no room for UUID\n", 1260 dc->backing_dev_name); 1261 return -EINVAL; 1262 } 1263 } 1264 1265 /* 1266 * Deadlocks since we're called via sysfs... 1267 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1268 */ 1269 1270 if (bch_is_zero(u->uuid, 16)) { 1271 struct closure cl; 1272 1273 closure_init_stack(&cl); 1274 1275 memcpy(u->uuid, dc->sb.uuid, 16); 1276 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1277 u->first_reg = u->last_reg = rtime; 1278 bch_uuid_write(c); 1279 1280 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1281 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1282 1283 bch_write_bdev_super(dc, &cl); 1284 closure_sync(&cl); 1285 } else { 1286 u->last_reg = rtime; 1287 bch_uuid_write(c); 1288 } 1289 1290 bcache_device_attach(&dc->disk, c, u - c->uuids); 1291 list_move(&dc->list, &c->cached_devs); 1292 calc_cached_dev_sectors(c); 1293 1294 /* 1295 * dc->c must be set before dc->count != 0 - paired with the mb in 1296 * cached_dev_get() 1297 */ 1298 smp_wmb(); 1299 refcount_set(&dc->count, 1); 1300 1301 /* Block writeback thread, but spawn it */ 1302 down_write(&dc->writeback_lock); 1303 if (bch_cached_dev_writeback_start(dc)) { 1304 up_write(&dc->writeback_lock); 1305 pr_err("Couldn't start writeback facilities for %s\n", 1306 dc->disk.disk->disk_name); 1307 return -ENOMEM; 1308 } 1309 1310 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1311 atomic_set(&dc->has_dirty, 1); 1312 bch_writeback_queue(dc); 1313 } 1314 1315 bch_sectors_dirty_init(&dc->disk); 1316 1317 ret = bch_cached_dev_run(dc); 1318 if (ret && (ret != -EBUSY)) { 1319 up_write(&dc->writeback_lock); 1320 /* 1321 * bch_register_lock is held, bcache_device_stop() is not 1322 * able to be directly called. The kthread and kworker 1323 * created previously in bch_cached_dev_writeback_start() 1324 * have to be stopped manually here. 1325 */ 1326 kthread_stop(dc->writeback_thread); 1327 cancel_writeback_rate_update_dwork(dc); 1328 pr_err("Couldn't run cached device %s\n", 1329 dc->backing_dev_name); 1330 return ret; 1331 } 1332 1333 bcache_device_link(&dc->disk, c, "bdev"); 1334 atomic_inc(&c->attached_dev_nr); 1335 1336 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1337 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1338 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1339 set_disk_ro(dc->disk.disk, 1); 1340 } 1341 1342 /* Allow the writeback thread to proceed */ 1343 up_write(&dc->writeback_lock); 1344 1345 pr_info("Caching %s as %s on set %pU\n", 1346 dc->backing_dev_name, 1347 dc->disk.disk->disk_name, 1348 dc->disk.c->set_uuid); 1349 return 0; 1350 } 1351 1352 /* when dc->disk.kobj released */ 1353 void bch_cached_dev_release(struct kobject *kobj) 1354 { 1355 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1356 disk.kobj); 1357 kfree(dc); 1358 module_put(THIS_MODULE); 1359 } 1360 1361 static void cached_dev_free(struct closure *cl) 1362 { 1363 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1364 1365 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1366 cancel_writeback_rate_update_dwork(dc); 1367 1368 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1369 kthread_stop(dc->writeback_thread); 1370 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1371 kthread_stop(dc->status_update_thread); 1372 1373 mutex_lock(&bch_register_lock); 1374 1375 if (atomic_read(&dc->running)) 1376 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1377 bcache_device_free(&dc->disk); 1378 list_del(&dc->list); 1379 1380 mutex_unlock(&bch_register_lock); 1381 1382 if (dc->sb_disk) 1383 put_page(virt_to_page(dc->sb_disk)); 1384 1385 if (!IS_ERR_OR_NULL(dc->bdev)) 1386 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1387 1388 wake_up(&unregister_wait); 1389 1390 kobject_put(&dc->disk.kobj); 1391 } 1392 1393 static void cached_dev_flush(struct closure *cl) 1394 { 1395 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1396 struct bcache_device *d = &dc->disk; 1397 1398 mutex_lock(&bch_register_lock); 1399 bcache_device_unlink(d); 1400 mutex_unlock(&bch_register_lock); 1401 1402 bch_cache_accounting_destroy(&dc->accounting); 1403 kobject_del(&d->kobj); 1404 1405 continue_at(cl, cached_dev_free, system_wq); 1406 } 1407 1408 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1409 { 1410 int ret; 1411 struct io *io; 1412 struct request_queue *q = bdev_get_queue(dc->bdev); 1413 1414 __module_get(THIS_MODULE); 1415 INIT_LIST_HEAD(&dc->list); 1416 closure_init(&dc->disk.cl, NULL); 1417 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1418 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1419 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1420 sema_init(&dc->sb_write_mutex, 1); 1421 INIT_LIST_HEAD(&dc->io_lru); 1422 spin_lock_init(&dc->io_lock); 1423 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1424 1425 dc->sequential_cutoff = 4 << 20; 1426 1427 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1428 list_add(&io->lru, &dc->io_lru); 1429 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1430 } 1431 1432 dc->disk.stripe_size = q->limits.io_opt >> 9; 1433 1434 if (dc->disk.stripe_size) 1435 dc->partial_stripes_expensive = 1436 q->limits.raid_partial_stripes_expensive; 1437 1438 ret = bcache_device_init(&dc->disk, block_size, 1439 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1440 dc->bdev, &bcache_cached_ops); 1441 if (ret) 1442 return ret; 1443 1444 blk_queue_io_opt(dc->disk.disk->queue, 1445 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1446 1447 atomic_set(&dc->io_errors, 0); 1448 dc->io_disable = false; 1449 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1450 /* default to auto */ 1451 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1452 1453 bch_cached_dev_request_init(dc); 1454 bch_cached_dev_writeback_init(dc); 1455 return 0; 1456 } 1457 1458 /* Cached device - bcache superblock */ 1459 1460 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1461 struct block_device *bdev, 1462 struct cached_dev *dc) 1463 { 1464 const char *err = "cannot allocate memory"; 1465 struct cache_set *c; 1466 int ret = -ENOMEM; 1467 1468 bdevname(bdev, dc->backing_dev_name); 1469 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1470 dc->bdev = bdev; 1471 dc->bdev->bd_holder = dc; 1472 dc->sb_disk = sb_disk; 1473 1474 if (cached_dev_init(dc, sb->block_size << 9)) 1475 goto err; 1476 1477 err = "error creating kobject"; 1478 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1479 goto err; 1480 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1481 goto err; 1482 1483 pr_info("registered backing device %s\n", dc->backing_dev_name); 1484 1485 list_add(&dc->list, &uncached_devices); 1486 /* attach to a matched cache set if it exists */ 1487 list_for_each_entry(c, &bch_cache_sets, list) 1488 bch_cached_dev_attach(dc, c, NULL); 1489 1490 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1491 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1492 err = "failed to run cached device"; 1493 ret = bch_cached_dev_run(dc); 1494 if (ret) 1495 goto err; 1496 } 1497 1498 return 0; 1499 err: 1500 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1501 bcache_device_stop(&dc->disk); 1502 return ret; 1503 } 1504 1505 /* Flash only volumes */ 1506 1507 /* When d->kobj released */ 1508 void bch_flash_dev_release(struct kobject *kobj) 1509 { 1510 struct bcache_device *d = container_of(kobj, struct bcache_device, 1511 kobj); 1512 kfree(d); 1513 } 1514 1515 static void flash_dev_free(struct closure *cl) 1516 { 1517 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1518 1519 mutex_lock(&bch_register_lock); 1520 atomic_long_sub(bcache_dev_sectors_dirty(d), 1521 &d->c->flash_dev_dirty_sectors); 1522 bcache_device_free(d); 1523 mutex_unlock(&bch_register_lock); 1524 kobject_put(&d->kobj); 1525 } 1526 1527 static void flash_dev_flush(struct closure *cl) 1528 { 1529 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1530 1531 mutex_lock(&bch_register_lock); 1532 bcache_device_unlink(d); 1533 mutex_unlock(&bch_register_lock); 1534 kobject_del(&d->kobj); 1535 continue_at(cl, flash_dev_free, system_wq); 1536 } 1537 1538 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1539 { 1540 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1541 GFP_KERNEL); 1542 if (!d) 1543 return -ENOMEM; 1544 1545 closure_init(&d->cl, NULL); 1546 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1547 1548 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1549 1550 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1551 NULL, &bcache_flash_ops)) 1552 goto err; 1553 1554 bcache_device_attach(d, c, u - c->uuids); 1555 bch_sectors_dirty_init(d); 1556 bch_flash_dev_request_init(d); 1557 add_disk(d->disk); 1558 1559 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1560 goto err; 1561 1562 bcache_device_link(d, c, "volume"); 1563 1564 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1565 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1566 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1567 set_disk_ro(d->disk, 1); 1568 } 1569 1570 return 0; 1571 err: 1572 kobject_put(&d->kobj); 1573 return -ENOMEM; 1574 } 1575 1576 static int flash_devs_run(struct cache_set *c) 1577 { 1578 int ret = 0; 1579 struct uuid_entry *u; 1580 1581 for (u = c->uuids; 1582 u < c->uuids + c->nr_uuids && !ret; 1583 u++) 1584 if (UUID_FLASH_ONLY(u)) 1585 ret = flash_dev_run(c, u); 1586 1587 return ret; 1588 } 1589 1590 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1591 { 1592 struct uuid_entry *u; 1593 1594 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1595 return -EINTR; 1596 1597 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1598 return -EPERM; 1599 1600 u = uuid_find_empty(c); 1601 if (!u) { 1602 pr_err("Can't create volume, no room for UUID\n"); 1603 return -EINVAL; 1604 } 1605 1606 get_random_bytes(u->uuid, 16); 1607 memset(u->label, 0, 32); 1608 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1609 1610 SET_UUID_FLASH_ONLY(u, 1); 1611 u->sectors = size >> 9; 1612 1613 bch_uuid_write(c); 1614 1615 return flash_dev_run(c, u); 1616 } 1617 1618 bool bch_cached_dev_error(struct cached_dev *dc) 1619 { 1620 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1621 return false; 1622 1623 dc->io_disable = true; 1624 /* make others know io_disable is true earlier */ 1625 smp_mb(); 1626 1627 pr_err("stop %s: too many IO errors on backing device %s\n", 1628 dc->disk.disk->disk_name, dc->backing_dev_name); 1629 1630 bcache_device_stop(&dc->disk); 1631 return true; 1632 } 1633 1634 /* Cache set */ 1635 1636 __printf(2, 3) 1637 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1638 { 1639 struct va_format vaf; 1640 va_list args; 1641 1642 if (c->on_error != ON_ERROR_PANIC && 1643 test_bit(CACHE_SET_STOPPING, &c->flags)) 1644 return false; 1645 1646 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1647 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1648 1649 /* 1650 * XXX: we can be called from atomic context 1651 * acquire_console_sem(); 1652 */ 1653 1654 va_start(args, fmt); 1655 1656 vaf.fmt = fmt; 1657 vaf.va = &args; 1658 1659 pr_err("error on %pU: %pV, disabling caching\n", 1660 c->set_uuid, &vaf); 1661 1662 va_end(args); 1663 1664 if (c->on_error == ON_ERROR_PANIC) 1665 panic("panic forced after error\n"); 1666 1667 bch_cache_set_unregister(c); 1668 return true; 1669 } 1670 1671 /* When c->kobj released */ 1672 void bch_cache_set_release(struct kobject *kobj) 1673 { 1674 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1675 1676 kfree(c); 1677 module_put(THIS_MODULE); 1678 } 1679 1680 static void cache_set_free(struct closure *cl) 1681 { 1682 struct cache_set *c = container_of(cl, struct cache_set, cl); 1683 struct cache *ca; 1684 1685 debugfs_remove(c->debug); 1686 1687 bch_open_buckets_free(c); 1688 bch_btree_cache_free(c); 1689 bch_journal_free(c); 1690 1691 mutex_lock(&bch_register_lock); 1692 bch_bset_sort_state_free(&c->sort); 1693 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1694 1695 ca = c->cache; 1696 if (ca) { 1697 ca->set = NULL; 1698 c->cache = NULL; 1699 kobject_put(&ca->kobj); 1700 } 1701 1702 1703 if (c->moving_gc_wq) 1704 destroy_workqueue(c->moving_gc_wq); 1705 bioset_exit(&c->bio_split); 1706 mempool_exit(&c->fill_iter); 1707 mempool_exit(&c->bio_meta); 1708 mempool_exit(&c->search); 1709 kfree(c->devices); 1710 1711 list_del(&c->list); 1712 mutex_unlock(&bch_register_lock); 1713 1714 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1715 wake_up(&unregister_wait); 1716 1717 closure_debug_destroy(&c->cl); 1718 kobject_put(&c->kobj); 1719 } 1720 1721 static void cache_set_flush(struct closure *cl) 1722 { 1723 struct cache_set *c = container_of(cl, struct cache_set, caching); 1724 struct cache *ca = c->cache; 1725 struct btree *b; 1726 1727 bch_cache_accounting_destroy(&c->accounting); 1728 1729 kobject_put(&c->internal); 1730 kobject_del(&c->kobj); 1731 1732 if (!IS_ERR_OR_NULL(c->gc_thread)) 1733 kthread_stop(c->gc_thread); 1734 1735 if (!IS_ERR_OR_NULL(c->root)) 1736 list_add(&c->root->list, &c->btree_cache); 1737 1738 /* 1739 * Avoid flushing cached nodes if cache set is retiring 1740 * due to too many I/O errors detected. 1741 */ 1742 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1743 list_for_each_entry(b, &c->btree_cache, list) { 1744 mutex_lock(&b->write_lock); 1745 if (btree_node_dirty(b)) 1746 __bch_btree_node_write(b, NULL); 1747 mutex_unlock(&b->write_lock); 1748 } 1749 1750 if (ca->alloc_thread) 1751 kthread_stop(ca->alloc_thread); 1752 1753 if (c->journal.cur) { 1754 cancel_delayed_work_sync(&c->journal.work); 1755 /* flush last journal entry if needed */ 1756 c->journal.work.work.func(&c->journal.work.work); 1757 } 1758 1759 closure_return(cl); 1760 } 1761 1762 /* 1763 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1764 * cache set is unregistering due to too many I/O errors. In this condition, 1765 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1766 * value and whether the broken cache has dirty data: 1767 * 1768 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1769 * BCH_CACHED_STOP_AUTO 0 NO 1770 * BCH_CACHED_STOP_AUTO 1 YES 1771 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1772 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1773 * 1774 * The expected behavior is, if stop_when_cache_set_failed is configured to 1775 * "auto" via sysfs interface, the bcache device will not be stopped if the 1776 * backing device is clean on the broken cache device. 1777 */ 1778 static void conditional_stop_bcache_device(struct cache_set *c, 1779 struct bcache_device *d, 1780 struct cached_dev *dc) 1781 { 1782 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1783 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1784 d->disk->disk_name, c->set_uuid); 1785 bcache_device_stop(d); 1786 } else if (atomic_read(&dc->has_dirty)) { 1787 /* 1788 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1789 * and dc->has_dirty == 1 1790 */ 1791 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1792 d->disk->disk_name); 1793 /* 1794 * There might be a small time gap that cache set is 1795 * released but bcache device is not. Inside this time 1796 * gap, regular I/O requests will directly go into 1797 * backing device as no cache set attached to. This 1798 * behavior may also introduce potential inconsistence 1799 * data in writeback mode while cache is dirty. 1800 * Therefore before calling bcache_device_stop() due 1801 * to a broken cache device, dc->io_disable should be 1802 * explicitly set to true. 1803 */ 1804 dc->io_disable = true; 1805 /* make others know io_disable is true earlier */ 1806 smp_mb(); 1807 bcache_device_stop(d); 1808 } else { 1809 /* 1810 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1811 * and dc->has_dirty == 0 1812 */ 1813 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1814 d->disk->disk_name); 1815 } 1816 } 1817 1818 static void __cache_set_unregister(struct closure *cl) 1819 { 1820 struct cache_set *c = container_of(cl, struct cache_set, caching); 1821 struct cached_dev *dc; 1822 struct bcache_device *d; 1823 size_t i; 1824 1825 mutex_lock(&bch_register_lock); 1826 1827 for (i = 0; i < c->devices_max_used; i++) { 1828 d = c->devices[i]; 1829 if (!d) 1830 continue; 1831 1832 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1833 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1834 dc = container_of(d, struct cached_dev, disk); 1835 bch_cached_dev_detach(dc); 1836 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1837 conditional_stop_bcache_device(c, d, dc); 1838 } else { 1839 bcache_device_stop(d); 1840 } 1841 } 1842 1843 mutex_unlock(&bch_register_lock); 1844 1845 continue_at(cl, cache_set_flush, system_wq); 1846 } 1847 1848 void bch_cache_set_stop(struct cache_set *c) 1849 { 1850 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1851 /* closure_fn set to __cache_set_unregister() */ 1852 closure_queue(&c->caching); 1853 } 1854 1855 void bch_cache_set_unregister(struct cache_set *c) 1856 { 1857 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1858 bch_cache_set_stop(c); 1859 } 1860 1861 #define alloc_meta_bucket_pages(gfp, sb) \ 1862 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1863 1864 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1865 { 1866 int iter_size; 1867 struct cache *ca = container_of(sb, struct cache, sb); 1868 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1869 1870 if (!c) 1871 return NULL; 1872 1873 __module_get(THIS_MODULE); 1874 closure_init(&c->cl, NULL); 1875 set_closure_fn(&c->cl, cache_set_free, system_wq); 1876 1877 closure_init(&c->caching, &c->cl); 1878 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1879 1880 /* Maybe create continue_at_noreturn() and use it here? */ 1881 closure_set_stopped(&c->cl); 1882 closure_put(&c->cl); 1883 1884 kobject_init(&c->kobj, &bch_cache_set_ktype); 1885 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1886 1887 bch_cache_accounting_init(&c->accounting, &c->cl); 1888 1889 memcpy(c->set_uuid, sb->set_uuid, 16); 1890 1891 c->cache = ca; 1892 c->cache->set = c; 1893 c->bucket_bits = ilog2(sb->bucket_size); 1894 c->block_bits = ilog2(sb->block_size); 1895 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1896 c->devices_max_used = 0; 1897 atomic_set(&c->attached_dev_nr, 0); 1898 c->btree_pages = meta_bucket_pages(sb); 1899 if (c->btree_pages > BTREE_MAX_PAGES) 1900 c->btree_pages = max_t(int, c->btree_pages / 4, 1901 BTREE_MAX_PAGES); 1902 1903 sema_init(&c->sb_write_mutex, 1); 1904 mutex_init(&c->bucket_lock); 1905 init_waitqueue_head(&c->btree_cache_wait); 1906 spin_lock_init(&c->btree_cannibalize_lock); 1907 init_waitqueue_head(&c->bucket_wait); 1908 init_waitqueue_head(&c->gc_wait); 1909 sema_init(&c->uuid_write_mutex, 1); 1910 1911 spin_lock_init(&c->btree_gc_time.lock); 1912 spin_lock_init(&c->btree_split_time.lock); 1913 spin_lock_init(&c->btree_read_time.lock); 1914 1915 bch_moving_init_cache_set(c); 1916 1917 INIT_LIST_HEAD(&c->list); 1918 INIT_LIST_HEAD(&c->cached_devs); 1919 INIT_LIST_HEAD(&c->btree_cache); 1920 INIT_LIST_HEAD(&c->btree_cache_freeable); 1921 INIT_LIST_HEAD(&c->btree_cache_freed); 1922 INIT_LIST_HEAD(&c->data_buckets); 1923 1924 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1925 sizeof(struct btree_iter_set); 1926 1927 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1928 if (!c->devices) 1929 goto err; 1930 1931 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1932 goto err; 1933 1934 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1935 sizeof(struct bbio) + 1936 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1937 goto err; 1938 1939 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1940 goto err; 1941 1942 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1943 BIOSET_NEED_RESCUER)) 1944 goto err; 1945 1946 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1947 if (!c->uuids) 1948 goto err; 1949 1950 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1951 if (!c->moving_gc_wq) 1952 goto err; 1953 1954 if (bch_journal_alloc(c)) 1955 goto err; 1956 1957 if (bch_btree_cache_alloc(c)) 1958 goto err; 1959 1960 if (bch_open_buckets_alloc(c)) 1961 goto err; 1962 1963 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1964 goto err; 1965 1966 c->congested_read_threshold_us = 2000; 1967 c->congested_write_threshold_us = 20000; 1968 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1969 c->idle_max_writeback_rate_enabled = 1; 1970 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1971 1972 return c; 1973 err: 1974 bch_cache_set_unregister(c); 1975 return NULL; 1976 } 1977 1978 static int run_cache_set(struct cache_set *c) 1979 { 1980 const char *err = "cannot allocate memory"; 1981 struct cached_dev *dc, *t; 1982 struct cache *ca = c->cache; 1983 struct closure cl; 1984 LIST_HEAD(journal); 1985 struct journal_replay *l; 1986 1987 closure_init_stack(&cl); 1988 1989 c->nbuckets = ca->sb.nbuckets; 1990 set_gc_sectors(c); 1991 1992 if (CACHE_SYNC(&c->cache->sb)) { 1993 struct bkey *k; 1994 struct jset *j; 1995 1996 err = "cannot allocate memory for journal"; 1997 if (bch_journal_read(c, &journal)) 1998 goto err; 1999 2000 pr_debug("btree_journal_read() done\n"); 2001 2002 err = "no journal entries found"; 2003 if (list_empty(&journal)) 2004 goto err; 2005 2006 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2007 2008 err = "IO error reading priorities"; 2009 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2010 goto err; 2011 2012 /* 2013 * If prio_read() fails it'll call cache_set_error and we'll 2014 * tear everything down right away, but if we perhaps checked 2015 * sooner we could avoid journal replay. 2016 */ 2017 2018 k = &j->btree_root; 2019 2020 err = "bad btree root"; 2021 if (__bch_btree_ptr_invalid(c, k)) 2022 goto err; 2023 2024 err = "error reading btree root"; 2025 c->root = bch_btree_node_get(c, NULL, k, 2026 j->btree_level, 2027 true, NULL); 2028 if (IS_ERR_OR_NULL(c->root)) 2029 goto err; 2030 2031 list_del_init(&c->root->list); 2032 rw_unlock(true, c->root); 2033 2034 err = uuid_read(c, j, &cl); 2035 if (err) 2036 goto err; 2037 2038 err = "error in recovery"; 2039 if (bch_btree_check(c)) 2040 goto err; 2041 2042 bch_journal_mark(c, &journal); 2043 bch_initial_gc_finish(c); 2044 pr_debug("btree_check() done\n"); 2045 2046 /* 2047 * bcache_journal_next() can't happen sooner, or 2048 * btree_gc_finish() will give spurious errors about last_gc > 2049 * gc_gen - this is a hack but oh well. 2050 */ 2051 bch_journal_next(&c->journal); 2052 2053 err = "error starting allocator thread"; 2054 if (bch_cache_allocator_start(ca)) 2055 goto err; 2056 2057 /* 2058 * First place it's safe to allocate: btree_check() and 2059 * btree_gc_finish() have to run before we have buckets to 2060 * allocate, and bch_bucket_alloc_set() might cause a journal 2061 * entry to be written so bcache_journal_next() has to be called 2062 * first. 2063 * 2064 * If the uuids were in the old format we have to rewrite them 2065 * before the next journal entry is written: 2066 */ 2067 if (j->version < BCACHE_JSET_VERSION_UUID) 2068 __uuid_write(c); 2069 2070 err = "bcache: replay journal failed"; 2071 if (bch_journal_replay(c, &journal)) 2072 goto err; 2073 } else { 2074 unsigned int j; 2075 2076 pr_notice("invalidating existing data\n"); 2077 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2078 2, SB_JOURNAL_BUCKETS); 2079 2080 for (j = 0; j < ca->sb.keys; j++) 2081 ca->sb.d[j] = ca->sb.first_bucket + j; 2082 2083 bch_initial_gc_finish(c); 2084 2085 err = "error starting allocator thread"; 2086 if (bch_cache_allocator_start(ca)) 2087 goto err; 2088 2089 mutex_lock(&c->bucket_lock); 2090 bch_prio_write(ca, true); 2091 mutex_unlock(&c->bucket_lock); 2092 2093 err = "cannot allocate new UUID bucket"; 2094 if (__uuid_write(c)) 2095 goto err; 2096 2097 err = "cannot allocate new btree root"; 2098 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2099 if (IS_ERR_OR_NULL(c->root)) 2100 goto err; 2101 2102 mutex_lock(&c->root->write_lock); 2103 bkey_copy_key(&c->root->key, &MAX_KEY); 2104 bch_btree_node_write(c->root, &cl); 2105 mutex_unlock(&c->root->write_lock); 2106 2107 bch_btree_set_root(c->root); 2108 rw_unlock(true, c->root); 2109 2110 /* 2111 * We don't want to write the first journal entry until 2112 * everything is set up - fortunately journal entries won't be 2113 * written until the SET_CACHE_SYNC() here: 2114 */ 2115 SET_CACHE_SYNC(&c->cache->sb, true); 2116 2117 bch_journal_next(&c->journal); 2118 bch_journal_meta(c, &cl); 2119 } 2120 2121 err = "error starting gc thread"; 2122 if (bch_gc_thread_start(c)) 2123 goto err; 2124 2125 closure_sync(&cl); 2126 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2127 bcache_write_super(c); 2128 2129 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2130 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2131 2132 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2133 bch_cached_dev_attach(dc, c, NULL); 2134 2135 flash_devs_run(c); 2136 2137 set_bit(CACHE_SET_RUNNING, &c->flags); 2138 return 0; 2139 err: 2140 while (!list_empty(&journal)) { 2141 l = list_first_entry(&journal, struct journal_replay, list); 2142 list_del(&l->list); 2143 kfree(l); 2144 } 2145 2146 closure_sync(&cl); 2147 2148 bch_cache_set_error(c, "%s", err); 2149 2150 return -EIO; 2151 } 2152 2153 static const char *register_cache_set(struct cache *ca) 2154 { 2155 char buf[12]; 2156 const char *err = "cannot allocate memory"; 2157 struct cache_set *c; 2158 2159 list_for_each_entry(c, &bch_cache_sets, list) 2160 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2161 if (c->cache) 2162 return "duplicate cache set member"; 2163 2164 goto found; 2165 } 2166 2167 c = bch_cache_set_alloc(&ca->sb); 2168 if (!c) 2169 return err; 2170 2171 err = "error creating kobject"; 2172 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2173 kobject_add(&c->internal, &c->kobj, "internal")) 2174 goto err; 2175 2176 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2177 goto err; 2178 2179 bch_debug_init_cache_set(c); 2180 2181 list_add(&c->list, &bch_cache_sets); 2182 found: 2183 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2184 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2185 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2186 goto err; 2187 2188 kobject_get(&ca->kobj); 2189 ca->set = c; 2190 ca->set->cache = ca; 2191 2192 err = "failed to run cache set"; 2193 if (run_cache_set(c) < 0) 2194 goto err; 2195 2196 return NULL; 2197 err: 2198 bch_cache_set_unregister(c); 2199 return err; 2200 } 2201 2202 /* Cache device */ 2203 2204 /* When ca->kobj released */ 2205 void bch_cache_release(struct kobject *kobj) 2206 { 2207 struct cache *ca = container_of(kobj, struct cache, kobj); 2208 unsigned int i; 2209 2210 if (ca->set) { 2211 BUG_ON(ca->set->cache != ca); 2212 ca->set->cache = NULL; 2213 } 2214 2215 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2216 kfree(ca->prio_buckets); 2217 vfree(ca->buckets); 2218 2219 free_heap(&ca->heap); 2220 free_fifo(&ca->free_inc); 2221 2222 for (i = 0; i < RESERVE_NR; i++) 2223 free_fifo(&ca->free[i]); 2224 2225 if (ca->sb_disk) 2226 put_page(virt_to_page(ca->sb_disk)); 2227 2228 if (!IS_ERR_OR_NULL(ca->bdev)) 2229 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2230 2231 kfree(ca); 2232 module_put(THIS_MODULE); 2233 } 2234 2235 static int cache_alloc(struct cache *ca) 2236 { 2237 size_t free; 2238 size_t btree_buckets; 2239 struct bucket *b; 2240 int ret = -ENOMEM; 2241 const char *err = NULL; 2242 2243 __module_get(THIS_MODULE); 2244 kobject_init(&ca->kobj, &bch_cache_ktype); 2245 2246 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2247 2248 /* 2249 * when ca->sb.njournal_buckets is not zero, journal exists, 2250 * and in bch_journal_replay(), tree node may split, 2251 * so bucket of RESERVE_BTREE type is needed, 2252 * the worst situation is all journal buckets are valid journal, 2253 * and all the keys need to replay, 2254 * so the number of RESERVE_BTREE type buckets should be as much 2255 * as journal buckets 2256 */ 2257 btree_buckets = ca->sb.njournal_buckets ?: 8; 2258 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2259 if (!free) { 2260 ret = -EPERM; 2261 err = "ca->sb.nbuckets is too small"; 2262 goto err_free; 2263 } 2264 2265 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2266 GFP_KERNEL)) { 2267 err = "ca->free[RESERVE_BTREE] alloc failed"; 2268 goto err_btree_alloc; 2269 } 2270 2271 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2272 GFP_KERNEL)) { 2273 err = "ca->free[RESERVE_PRIO] alloc failed"; 2274 goto err_prio_alloc; 2275 } 2276 2277 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2278 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2279 goto err_movinggc_alloc; 2280 } 2281 2282 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2283 err = "ca->free[RESERVE_NONE] alloc failed"; 2284 goto err_none_alloc; 2285 } 2286 2287 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2288 err = "ca->free_inc alloc failed"; 2289 goto err_free_inc_alloc; 2290 } 2291 2292 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2293 err = "ca->heap alloc failed"; 2294 goto err_heap_alloc; 2295 } 2296 2297 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2298 ca->sb.nbuckets)); 2299 if (!ca->buckets) { 2300 err = "ca->buckets alloc failed"; 2301 goto err_buckets_alloc; 2302 } 2303 2304 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2305 prio_buckets(ca), 2), 2306 GFP_KERNEL); 2307 if (!ca->prio_buckets) { 2308 err = "ca->prio_buckets alloc failed"; 2309 goto err_prio_buckets_alloc; 2310 } 2311 2312 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2313 if (!ca->disk_buckets) { 2314 err = "ca->disk_buckets alloc failed"; 2315 goto err_disk_buckets_alloc; 2316 } 2317 2318 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2319 2320 for_each_bucket(b, ca) 2321 atomic_set(&b->pin, 0); 2322 return 0; 2323 2324 err_disk_buckets_alloc: 2325 kfree(ca->prio_buckets); 2326 err_prio_buckets_alloc: 2327 vfree(ca->buckets); 2328 err_buckets_alloc: 2329 free_heap(&ca->heap); 2330 err_heap_alloc: 2331 free_fifo(&ca->free_inc); 2332 err_free_inc_alloc: 2333 free_fifo(&ca->free[RESERVE_NONE]); 2334 err_none_alloc: 2335 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2336 err_movinggc_alloc: 2337 free_fifo(&ca->free[RESERVE_PRIO]); 2338 err_prio_alloc: 2339 free_fifo(&ca->free[RESERVE_BTREE]); 2340 err_btree_alloc: 2341 err_free: 2342 module_put(THIS_MODULE); 2343 if (err) 2344 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2345 return ret; 2346 } 2347 2348 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2349 struct block_device *bdev, struct cache *ca) 2350 { 2351 const char *err = NULL; /* must be set for any error case */ 2352 int ret = 0; 2353 2354 bdevname(bdev, ca->cache_dev_name); 2355 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2356 ca->bdev = bdev; 2357 ca->bdev->bd_holder = ca; 2358 ca->sb_disk = sb_disk; 2359 2360 if (blk_queue_discard(bdev_get_queue(bdev))) 2361 ca->discard = CACHE_DISCARD(&ca->sb); 2362 2363 ret = cache_alloc(ca); 2364 if (ret != 0) { 2365 /* 2366 * If we failed here, it means ca->kobj is not initialized yet, 2367 * kobject_put() won't be called and there is no chance to 2368 * call blkdev_put() to bdev in bch_cache_release(). So we 2369 * explicitly call blkdev_put() here. 2370 */ 2371 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2372 if (ret == -ENOMEM) 2373 err = "cache_alloc(): -ENOMEM"; 2374 else if (ret == -EPERM) 2375 err = "cache_alloc(): cache device is too small"; 2376 else 2377 err = "cache_alloc(): unknown error"; 2378 goto err; 2379 } 2380 2381 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2382 err = "error calling kobject_add"; 2383 ret = -ENOMEM; 2384 goto out; 2385 } 2386 2387 mutex_lock(&bch_register_lock); 2388 err = register_cache_set(ca); 2389 mutex_unlock(&bch_register_lock); 2390 2391 if (err) { 2392 ret = -ENODEV; 2393 goto out; 2394 } 2395 2396 pr_info("registered cache device %s\n", ca->cache_dev_name); 2397 2398 out: 2399 kobject_put(&ca->kobj); 2400 2401 err: 2402 if (err) 2403 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2404 2405 return ret; 2406 } 2407 2408 /* Global interfaces/init */ 2409 2410 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2411 const char *buffer, size_t size); 2412 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2413 struct kobj_attribute *attr, 2414 const char *buffer, size_t size); 2415 2416 kobj_attribute_write(register, register_bcache); 2417 kobj_attribute_write(register_quiet, register_bcache); 2418 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2419 2420 static bool bch_is_open_backing(dev_t dev) 2421 { 2422 struct cache_set *c, *tc; 2423 struct cached_dev *dc, *t; 2424 2425 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2426 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2427 if (dc->bdev->bd_dev == dev) 2428 return true; 2429 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2430 if (dc->bdev->bd_dev == dev) 2431 return true; 2432 return false; 2433 } 2434 2435 static bool bch_is_open_cache(dev_t dev) 2436 { 2437 struct cache_set *c, *tc; 2438 2439 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2440 struct cache *ca = c->cache; 2441 2442 if (ca->bdev->bd_dev == dev) 2443 return true; 2444 } 2445 2446 return false; 2447 } 2448 2449 static bool bch_is_open(dev_t dev) 2450 { 2451 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2452 } 2453 2454 struct async_reg_args { 2455 struct delayed_work reg_work; 2456 char *path; 2457 struct cache_sb *sb; 2458 struct cache_sb_disk *sb_disk; 2459 struct block_device *bdev; 2460 }; 2461 2462 static void register_bdev_worker(struct work_struct *work) 2463 { 2464 int fail = false; 2465 struct async_reg_args *args = 2466 container_of(work, struct async_reg_args, reg_work.work); 2467 struct cached_dev *dc; 2468 2469 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2470 if (!dc) { 2471 fail = true; 2472 put_page(virt_to_page(args->sb_disk)); 2473 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2474 goto out; 2475 } 2476 2477 mutex_lock(&bch_register_lock); 2478 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2479 fail = true; 2480 mutex_unlock(&bch_register_lock); 2481 2482 out: 2483 if (fail) 2484 pr_info("error %s: fail to register backing device\n", 2485 args->path); 2486 kfree(args->sb); 2487 kfree(args->path); 2488 kfree(args); 2489 module_put(THIS_MODULE); 2490 } 2491 2492 static void register_cache_worker(struct work_struct *work) 2493 { 2494 int fail = false; 2495 struct async_reg_args *args = 2496 container_of(work, struct async_reg_args, reg_work.work); 2497 struct cache *ca; 2498 2499 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2500 if (!ca) { 2501 fail = true; 2502 put_page(virt_to_page(args->sb_disk)); 2503 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2504 goto out; 2505 } 2506 2507 /* blkdev_put() will be called in bch_cache_release() */ 2508 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2509 fail = true; 2510 2511 out: 2512 if (fail) 2513 pr_info("error %s: fail to register cache device\n", 2514 args->path); 2515 kfree(args->sb); 2516 kfree(args->path); 2517 kfree(args); 2518 module_put(THIS_MODULE); 2519 } 2520 2521 static void register_device_async(struct async_reg_args *args) 2522 { 2523 if (SB_IS_BDEV(args->sb)) 2524 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2525 else 2526 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2527 2528 /* 10 jiffies is enough for a delay */ 2529 queue_delayed_work(system_wq, &args->reg_work, 10); 2530 } 2531 2532 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2533 const char *buffer, size_t size) 2534 { 2535 const char *err; 2536 char *path = NULL; 2537 struct cache_sb *sb; 2538 struct cache_sb_disk *sb_disk; 2539 struct block_device *bdev; 2540 ssize_t ret; 2541 bool async_registration = false; 2542 2543 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2544 async_registration = true; 2545 #endif 2546 2547 ret = -EBUSY; 2548 err = "failed to reference bcache module"; 2549 if (!try_module_get(THIS_MODULE)) 2550 goto out; 2551 2552 /* For latest state of bcache_is_reboot */ 2553 smp_mb(); 2554 err = "bcache is in reboot"; 2555 if (bcache_is_reboot) 2556 goto out_module_put; 2557 2558 ret = -ENOMEM; 2559 err = "cannot allocate memory"; 2560 path = kstrndup(buffer, size, GFP_KERNEL); 2561 if (!path) 2562 goto out_module_put; 2563 2564 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2565 if (!sb) 2566 goto out_free_path; 2567 2568 ret = -EINVAL; 2569 err = "failed to open device"; 2570 bdev = blkdev_get_by_path(strim(path), 2571 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2572 sb); 2573 if (IS_ERR(bdev)) { 2574 if (bdev == ERR_PTR(-EBUSY)) { 2575 dev_t dev; 2576 2577 mutex_lock(&bch_register_lock); 2578 if (lookup_bdev(strim(path), &dev) == 0 && 2579 bch_is_open(dev)) 2580 err = "device already registered"; 2581 else 2582 err = "device busy"; 2583 mutex_unlock(&bch_register_lock); 2584 if (attr == &ksysfs_register_quiet) 2585 goto done; 2586 } 2587 goto out_free_sb; 2588 } 2589 2590 err = "failed to set blocksize"; 2591 if (set_blocksize(bdev, 4096)) 2592 goto out_blkdev_put; 2593 2594 err = read_super(sb, bdev, &sb_disk); 2595 if (err) 2596 goto out_blkdev_put; 2597 2598 err = "failed to register device"; 2599 2600 if (async_registration) { 2601 /* register in asynchronous way */ 2602 struct async_reg_args *args = 2603 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2604 2605 if (!args) { 2606 ret = -ENOMEM; 2607 err = "cannot allocate memory"; 2608 goto out_put_sb_page; 2609 } 2610 2611 args->path = path; 2612 args->sb = sb; 2613 args->sb_disk = sb_disk; 2614 args->bdev = bdev; 2615 register_device_async(args); 2616 /* No wait and returns to user space */ 2617 goto async_done; 2618 } 2619 2620 if (SB_IS_BDEV(sb)) { 2621 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2622 2623 if (!dc) 2624 goto out_put_sb_page; 2625 2626 mutex_lock(&bch_register_lock); 2627 ret = register_bdev(sb, sb_disk, bdev, dc); 2628 mutex_unlock(&bch_register_lock); 2629 /* blkdev_put() will be called in cached_dev_free() */ 2630 if (ret < 0) 2631 goto out_free_sb; 2632 } else { 2633 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2634 2635 if (!ca) 2636 goto out_put_sb_page; 2637 2638 /* blkdev_put() will be called in bch_cache_release() */ 2639 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2640 goto out_free_sb; 2641 } 2642 2643 done: 2644 kfree(sb); 2645 kfree(path); 2646 module_put(THIS_MODULE); 2647 async_done: 2648 return size; 2649 2650 out_put_sb_page: 2651 put_page(virt_to_page(sb_disk)); 2652 out_blkdev_put: 2653 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2654 out_free_sb: 2655 kfree(sb); 2656 out_free_path: 2657 kfree(path); 2658 path = NULL; 2659 out_module_put: 2660 module_put(THIS_MODULE); 2661 out: 2662 pr_info("error %s: %s\n", path?path:"", err); 2663 return ret; 2664 } 2665 2666 2667 struct pdev { 2668 struct list_head list; 2669 struct cached_dev *dc; 2670 }; 2671 2672 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2673 struct kobj_attribute *attr, 2674 const char *buffer, 2675 size_t size) 2676 { 2677 LIST_HEAD(pending_devs); 2678 ssize_t ret = size; 2679 struct cached_dev *dc, *tdc; 2680 struct pdev *pdev, *tpdev; 2681 struct cache_set *c, *tc; 2682 2683 mutex_lock(&bch_register_lock); 2684 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2685 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2686 if (!pdev) 2687 break; 2688 pdev->dc = dc; 2689 list_add(&pdev->list, &pending_devs); 2690 } 2691 2692 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2693 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2694 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2695 char *set_uuid = c->set_uuid; 2696 2697 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2698 list_del(&pdev->list); 2699 kfree(pdev); 2700 break; 2701 } 2702 } 2703 } 2704 mutex_unlock(&bch_register_lock); 2705 2706 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2707 pr_info("delete pdev %p\n", pdev); 2708 list_del(&pdev->list); 2709 bcache_device_stop(&pdev->dc->disk); 2710 kfree(pdev); 2711 } 2712 2713 return ret; 2714 } 2715 2716 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2717 { 2718 if (bcache_is_reboot) 2719 return NOTIFY_DONE; 2720 2721 if (code == SYS_DOWN || 2722 code == SYS_HALT || 2723 code == SYS_POWER_OFF) { 2724 DEFINE_WAIT(wait); 2725 unsigned long start = jiffies; 2726 bool stopped = false; 2727 2728 struct cache_set *c, *tc; 2729 struct cached_dev *dc, *tdc; 2730 2731 mutex_lock(&bch_register_lock); 2732 2733 if (bcache_is_reboot) 2734 goto out; 2735 2736 /* New registration is rejected since now */ 2737 bcache_is_reboot = true; 2738 /* 2739 * Make registering caller (if there is) on other CPU 2740 * core know bcache_is_reboot set to true earlier 2741 */ 2742 smp_mb(); 2743 2744 if (list_empty(&bch_cache_sets) && 2745 list_empty(&uncached_devices)) 2746 goto out; 2747 2748 mutex_unlock(&bch_register_lock); 2749 2750 pr_info("Stopping all devices:\n"); 2751 2752 /* 2753 * The reason bch_register_lock is not held to call 2754 * bch_cache_set_stop() and bcache_device_stop() is to 2755 * avoid potential deadlock during reboot, because cache 2756 * set or bcache device stopping process will acqurie 2757 * bch_register_lock too. 2758 * 2759 * We are safe here because bcache_is_reboot sets to 2760 * true already, register_bcache() will reject new 2761 * registration now. bcache_is_reboot also makes sure 2762 * bcache_reboot() won't be re-entered on by other thread, 2763 * so there is no race in following list iteration by 2764 * list_for_each_entry_safe(). 2765 */ 2766 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2767 bch_cache_set_stop(c); 2768 2769 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2770 bcache_device_stop(&dc->disk); 2771 2772 2773 /* 2774 * Give an early chance for other kthreads and 2775 * kworkers to stop themselves 2776 */ 2777 schedule(); 2778 2779 /* What's a condition variable? */ 2780 while (1) { 2781 long timeout = start + 10 * HZ - jiffies; 2782 2783 mutex_lock(&bch_register_lock); 2784 stopped = list_empty(&bch_cache_sets) && 2785 list_empty(&uncached_devices); 2786 2787 if (timeout < 0 || stopped) 2788 break; 2789 2790 prepare_to_wait(&unregister_wait, &wait, 2791 TASK_UNINTERRUPTIBLE); 2792 2793 mutex_unlock(&bch_register_lock); 2794 schedule_timeout(timeout); 2795 } 2796 2797 finish_wait(&unregister_wait, &wait); 2798 2799 if (stopped) 2800 pr_info("All devices stopped\n"); 2801 else 2802 pr_notice("Timeout waiting for devices to be closed\n"); 2803 out: 2804 mutex_unlock(&bch_register_lock); 2805 } 2806 2807 return NOTIFY_DONE; 2808 } 2809 2810 static struct notifier_block reboot = { 2811 .notifier_call = bcache_reboot, 2812 .priority = INT_MAX, /* before any real devices */ 2813 }; 2814 2815 static void bcache_exit(void) 2816 { 2817 bch_debug_exit(); 2818 bch_request_exit(); 2819 if (bcache_kobj) 2820 kobject_put(bcache_kobj); 2821 if (bcache_wq) 2822 destroy_workqueue(bcache_wq); 2823 if (bch_journal_wq) 2824 destroy_workqueue(bch_journal_wq); 2825 if (bch_flush_wq) 2826 destroy_workqueue(bch_flush_wq); 2827 bch_btree_exit(); 2828 2829 if (bcache_major) 2830 unregister_blkdev(bcache_major, "bcache"); 2831 unregister_reboot_notifier(&reboot); 2832 mutex_destroy(&bch_register_lock); 2833 } 2834 2835 /* Check and fixup module parameters */ 2836 static void check_module_parameters(void) 2837 { 2838 if (bch_cutoff_writeback_sync == 0) 2839 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2840 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2841 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2842 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2843 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2844 } 2845 2846 if (bch_cutoff_writeback == 0) 2847 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2848 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2849 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2850 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2851 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2852 } 2853 2854 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2855 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2856 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2857 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2858 } 2859 } 2860 2861 static int __init bcache_init(void) 2862 { 2863 static const struct attribute *files[] = { 2864 &ksysfs_register.attr, 2865 &ksysfs_register_quiet.attr, 2866 &ksysfs_pendings_cleanup.attr, 2867 NULL 2868 }; 2869 2870 check_module_parameters(); 2871 2872 mutex_init(&bch_register_lock); 2873 init_waitqueue_head(&unregister_wait); 2874 register_reboot_notifier(&reboot); 2875 2876 bcache_major = register_blkdev(0, "bcache"); 2877 if (bcache_major < 0) { 2878 unregister_reboot_notifier(&reboot); 2879 mutex_destroy(&bch_register_lock); 2880 return bcache_major; 2881 } 2882 2883 if (bch_btree_init()) 2884 goto err; 2885 2886 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2887 if (!bcache_wq) 2888 goto err; 2889 2890 /* 2891 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2892 * 2893 * 1. It used `system_wq` before which also does no memory reclaim. 2894 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2895 * reduced throughput can be observed. 2896 * 2897 * We still want to user our own queue to not congest the `system_wq`. 2898 */ 2899 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2900 if (!bch_flush_wq) 2901 goto err; 2902 2903 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2904 if (!bch_journal_wq) 2905 goto err; 2906 2907 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2908 if (!bcache_kobj) 2909 goto err; 2910 2911 if (bch_request_init() || 2912 sysfs_create_files(bcache_kobj, files)) 2913 goto err; 2914 2915 bch_debug_init(); 2916 closure_debug_init(); 2917 2918 bcache_is_reboot = false; 2919 2920 return 0; 2921 err: 2922 bcache_exit(); 2923 return -ENOMEM; 2924 } 2925 2926 /* 2927 * Module hooks 2928 */ 2929 module_exit(bcache_exit); 2930 module_init(bcache_init); 2931 2932 module_param(bch_cutoff_writeback, uint, 0); 2933 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2934 2935 module_param(bch_cutoff_writeback_sync, uint, 0); 2936 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2937 2938 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2939 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2940 MODULE_LICENSE("GPL"); 2941