1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_journal_wq; 53 54 55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 56 /* limitation of partitions number on single bcache device */ 57 #define BCACHE_MINORS 128 58 /* limitation of bcache devices number on single system */ 59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 60 61 /* Superblock */ 62 63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 64 { 65 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 66 67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES && 68 bch_has_feature_large_bucket(sb)) 69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16; 70 71 return bucket_size; 72 } 73 74 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 75 struct cache_sb_disk *s) 76 { 77 const char *err; 78 unsigned int i; 79 80 sb->first_bucket= le16_to_cpu(s->first_bucket); 81 sb->nbuckets = le64_to_cpu(s->nbuckets); 82 sb->bucket_size = get_bucket_size(sb, s); 83 84 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 86 87 err = "Too many journal buckets"; 88 if (sb->keys > SB_JOURNAL_BUCKETS) 89 goto err; 90 91 err = "Too many buckets"; 92 if (sb->nbuckets > LONG_MAX) 93 goto err; 94 95 err = "Not enough buckets"; 96 if (sb->nbuckets < 1 << 7) 97 goto err; 98 99 err = "Bad block size (not power of 2)"; 100 if (!is_power_of_2(sb->block_size)) 101 goto err; 102 103 err = "Bad block size (larger than page size)"; 104 if (sb->block_size > PAGE_SECTORS) 105 goto err; 106 107 err = "Bad bucket size (not power of 2)"; 108 if (!is_power_of_2(sb->bucket_size)) 109 goto err; 110 111 err = "Bad bucket size (smaller than page size)"; 112 if (sb->bucket_size < PAGE_SECTORS) 113 goto err; 114 115 err = "Invalid superblock: device too small"; 116 if (get_capacity(bdev->bd_disk) < 117 sb->bucket_size * sb->nbuckets) 118 goto err; 119 120 err = "Bad UUID"; 121 if (bch_is_zero(sb->set_uuid, 16)) 122 goto err; 123 124 err = "Bad cache device number in set"; 125 if (!sb->nr_in_set || 126 sb->nr_in_set <= sb->nr_this_dev || 127 sb->nr_in_set > MAX_CACHES_PER_SET) 128 goto err; 129 130 err = "Journal buckets not sequential"; 131 for (i = 0; i < sb->keys; i++) 132 if (sb->d[i] != sb->first_bucket + i) 133 goto err; 134 135 err = "Too many journal buckets"; 136 if (sb->first_bucket + sb->keys > sb->nbuckets) 137 goto err; 138 139 err = "Invalid superblock: first bucket comes before end of super"; 140 if (sb->first_bucket * sb->bucket_size < 16) 141 goto err; 142 143 err = NULL; 144 err: 145 return err; 146 } 147 148 149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 150 struct cache_sb_disk **res) 151 { 152 const char *err; 153 struct cache_sb_disk *s; 154 struct page *page; 155 unsigned int i; 156 157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 159 if (IS_ERR(page)) 160 return "IO error"; 161 s = page_address(page) + offset_in_page(SB_OFFSET); 162 163 sb->offset = le64_to_cpu(s->offset); 164 sb->version = le64_to_cpu(s->version); 165 166 memcpy(sb->magic, s->magic, 16); 167 memcpy(sb->uuid, s->uuid, 16); 168 memcpy(sb->set_uuid, s->set_uuid, 16); 169 memcpy(sb->label, s->label, SB_LABEL_SIZE); 170 171 sb->flags = le64_to_cpu(s->flags); 172 sb->seq = le64_to_cpu(s->seq); 173 sb->last_mount = le32_to_cpu(s->last_mount); 174 sb->keys = le16_to_cpu(s->keys); 175 176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 177 sb->d[i] = le64_to_cpu(s->d[i]); 178 179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 180 sb->version, sb->flags, sb->seq, sb->keys); 181 182 err = "Not a bcache superblock (bad offset)"; 183 if (sb->offset != SB_SECTOR) 184 goto err; 185 186 err = "Not a bcache superblock (bad magic)"; 187 if (memcmp(sb->magic, bcache_magic, 16)) 188 goto err; 189 190 err = "Bad checksum"; 191 if (s->csum != csum_set(s)) 192 goto err; 193 194 err = "Bad UUID"; 195 if (bch_is_zero(sb->uuid, 16)) 196 goto err; 197 198 sb->block_size = le16_to_cpu(s->block_size); 199 200 err = "Superblock block size smaller than device block size"; 201 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 202 goto err; 203 204 switch (sb->version) { 205 case BCACHE_SB_VERSION_BDEV: 206 sb->data_offset = BDEV_DATA_START_DEFAULT; 207 break; 208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 210 sb->data_offset = le64_to_cpu(s->data_offset); 211 212 err = "Bad data offset"; 213 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 214 goto err; 215 216 break; 217 case BCACHE_SB_VERSION_CDEV: 218 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 219 err = read_super_common(sb, bdev, s); 220 if (err) 221 goto err; 222 break; 223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 224 /* 225 * Feature bits are needed in read_super_common(), 226 * convert them firstly. 227 */ 228 sb->feature_compat = le64_to_cpu(s->feature_compat); 229 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 231 err = read_super_common(sb, bdev, s); 232 if (err) 233 goto err; 234 break; 235 default: 236 err = "Unsupported superblock version"; 237 goto err; 238 } 239 240 sb->last_mount = (u32)ktime_get_real_seconds(); 241 *res = s; 242 return NULL; 243 err: 244 put_page(page); 245 return err; 246 } 247 248 static void write_bdev_super_endio(struct bio *bio) 249 { 250 struct cached_dev *dc = bio->bi_private; 251 252 if (bio->bi_status) 253 bch_count_backing_io_errors(dc, bio); 254 255 closure_put(&dc->sb_write); 256 } 257 258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 259 struct bio *bio) 260 { 261 unsigned int i; 262 263 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 264 bio->bi_iter.bi_sector = SB_SECTOR; 265 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 266 offset_in_page(out)); 267 268 out->offset = cpu_to_le64(sb->offset); 269 270 memcpy(out->uuid, sb->uuid, 16); 271 memcpy(out->set_uuid, sb->set_uuid, 16); 272 memcpy(out->label, sb->label, SB_LABEL_SIZE); 273 274 out->flags = cpu_to_le64(sb->flags); 275 out->seq = cpu_to_le64(sb->seq); 276 277 out->last_mount = cpu_to_le32(sb->last_mount); 278 out->first_bucket = cpu_to_le16(sb->first_bucket); 279 out->keys = cpu_to_le16(sb->keys); 280 281 for (i = 0; i < sb->keys; i++) 282 out->d[i] = cpu_to_le64(sb->d[i]); 283 284 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 285 out->feature_compat = cpu_to_le64(sb->feature_compat); 286 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 287 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 288 } 289 290 out->version = cpu_to_le64(sb->version); 291 out->csum = csum_set(out); 292 293 pr_debug("ver %llu, flags %llu, seq %llu\n", 294 sb->version, sb->flags, sb->seq); 295 296 submit_bio(bio); 297 } 298 299 static void bch_write_bdev_super_unlock(struct closure *cl) 300 { 301 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 302 303 up(&dc->sb_write_mutex); 304 } 305 306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 307 { 308 struct closure *cl = &dc->sb_write; 309 struct bio *bio = &dc->sb_bio; 310 311 down(&dc->sb_write_mutex); 312 closure_init(cl, parent); 313 314 bio_init(bio, dc->sb_bv, 1); 315 bio_set_dev(bio, dc->bdev); 316 bio->bi_end_io = write_bdev_super_endio; 317 bio->bi_private = dc; 318 319 closure_get(cl); 320 /* I/O request sent to backing device */ 321 __write_super(&dc->sb, dc->sb_disk, bio); 322 323 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 324 } 325 326 static void write_super_endio(struct bio *bio) 327 { 328 struct cache *ca = bio->bi_private; 329 330 /* is_read = 0 */ 331 bch_count_io_errors(ca, bio->bi_status, 0, 332 "writing superblock"); 333 closure_put(&ca->set->sb_write); 334 } 335 336 static void bcache_write_super_unlock(struct closure *cl) 337 { 338 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 339 340 up(&c->sb_write_mutex); 341 } 342 343 void bcache_write_super(struct cache_set *c) 344 { 345 struct closure *cl = &c->sb_write; 346 struct cache *ca = c->cache; 347 struct bio *bio = &ca->sb_bio; 348 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 349 350 down(&c->sb_write_mutex); 351 closure_init(cl, &c->cl); 352 353 ca->sb.seq++; 354 355 if (ca->sb.version < version) 356 ca->sb.version = version; 357 358 bio_init(bio, ca->sb_bv, 1); 359 bio_set_dev(bio, ca->bdev); 360 bio->bi_end_io = write_super_endio; 361 bio->bi_private = ca; 362 363 closure_get(cl); 364 __write_super(&ca->sb, ca->sb_disk, bio); 365 366 closure_return_with_destructor(cl, bcache_write_super_unlock); 367 } 368 369 /* UUID io */ 370 371 static void uuid_endio(struct bio *bio) 372 { 373 struct closure *cl = bio->bi_private; 374 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 375 376 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 377 bch_bbio_free(bio, c); 378 closure_put(cl); 379 } 380 381 static void uuid_io_unlock(struct closure *cl) 382 { 383 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 384 385 up(&c->uuid_write_mutex); 386 } 387 388 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 389 struct bkey *k, struct closure *parent) 390 { 391 struct closure *cl = &c->uuid_write; 392 struct uuid_entry *u; 393 unsigned int i; 394 char buf[80]; 395 396 BUG_ON(!parent); 397 down(&c->uuid_write_mutex); 398 closure_init(cl, parent); 399 400 for (i = 0; i < KEY_PTRS(k); i++) { 401 struct bio *bio = bch_bbio_alloc(c); 402 403 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 404 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 405 406 bio->bi_end_io = uuid_endio; 407 bio->bi_private = cl; 408 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 409 bch_bio_map(bio, c->uuids); 410 411 bch_submit_bbio(bio, c, k, i); 412 413 if (op != REQ_OP_WRITE) 414 break; 415 } 416 417 bch_extent_to_text(buf, sizeof(buf), k); 418 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 419 420 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 421 if (!bch_is_zero(u->uuid, 16)) 422 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 423 u - c->uuids, u->uuid, u->label, 424 u->first_reg, u->last_reg, u->invalidated); 425 426 closure_return_with_destructor(cl, uuid_io_unlock); 427 } 428 429 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 430 { 431 struct bkey *k = &j->uuid_bucket; 432 433 if (__bch_btree_ptr_invalid(c, k)) 434 return "bad uuid pointer"; 435 436 bkey_copy(&c->uuid_bucket, k); 437 uuid_io(c, REQ_OP_READ, 0, k, cl); 438 439 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 440 struct uuid_entry_v0 *u0 = (void *) c->uuids; 441 struct uuid_entry *u1 = (void *) c->uuids; 442 int i; 443 444 closure_sync(cl); 445 446 /* 447 * Since the new uuid entry is bigger than the old, we have to 448 * convert starting at the highest memory address and work down 449 * in order to do it in place 450 */ 451 452 for (i = c->nr_uuids - 1; 453 i >= 0; 454 --i) { 455 memcpy(u1[i].uuid, u0[i].uuid, 16); 456 memcpy(u1[i].label, u0[i].label, 32); 457 458 u1[i].first_reg = u0[i].first_reg; 459 u1[i].last_reg = u0[i].last_reg; 460 u1[i].invalidated = u0[i].invalidated; 461 462 u1[i].flags = 0; 463 u1[i].sectors = 0; 464 } 465 } 466 467 return NULL; 468 } 469 470 static int __uuid_write(struct cache_set *c) 471 { 472 BKEY_PADDED(key) k; 473 struct closure cl; 474 struct cache *ca = c->cache; 475 unsigned int size; 476 477 closure_init_stack(&cl); 478 lockdep_assert_held(&bch_register_lock); 479 480 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 481 return 1; 482 483 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 484 SET_KEY_SIZE(&k.key, size); 485 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 486 closure_sync(&cl); 487 488 /* Only one bucket used for uuid write */ 489 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 490 491 bkey_copy(&c->uuid_bucket, &k.key); 492 bkey_put(c, &k.key); 493 return 0; 494 } 495 496 int bch_uuid_write(struct cache_set *c) 497 { 498 int ret = __uuid_write(c); 499 500 if (!ret) 501 bch_journal_meta(c, NULL); 502 503 return ret; 504 } 505 506 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 507 { 508 struct uuid_entry *u; 509 510 for (u = c->uuids; 511 u < c->uuids + c->nr_uuids; u++) 512 if (!memcmp(u->uuid, uuid, 16)) 513 return u; 514 515 return NULL; 516 } 517 518 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 519 { 520 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 521 522 return uuid_find(c, zero_uuid); 523 } 524 525 /* 526 * Bucket priorities/gens: 527 * 528 * For each bucket, we store on disk its 529 * 8 bit gen 530 * 16 bit priority 531 * 532 * See alloc.c for an explanation of the gen. The priority is used to implement 533 * lru (and in the future other) cache replacement policies; for most purposes 534 * it's just an opaque integer. 535 * 536 * The gens and the priorities don't have a whole lot to do with each other, and 537 * it's actually the gens that must be written out at specific times - it's no 538 * big deal if the priorities don't get written, if we lose them we just reuse 539 * buckets in suboptimal order. 540 * 541 * On disk they're stored in a packed array, and in as many buckets are required 542 * to fit them all. The buckets we use to store them form a list; the journal 543 * header points to the first bucket, the first bucket points to the second 544 * bucket, et cetera. 545 * 546 * This code is used by the allocation code; periodically (whenever it runs out 547 * of buckets to allocate from) the allocation code will invalidate some 548 * buckets, but it can't use those buckets until their new gens are safely on 549 * disk. 550 */ 551 552 static void prio_endio(struct bio *bio) 553 { 554 struct cache *ca = bio->bi_private; 555 556 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 557 bch_bbio_free(bio, ca->set); 558 closure_put(&ca->prio); 559 } 560 561 static void prio_io(struct cache *ca, uint64_t bucket, int op, 562 unsigned long op_flags) 563 { 564 struct closure *cl = &ca->prio; 565 struct bio *bio = bch_bbio_alloc(ca->set); 566 567 closure_init_stack(cl); 568 569 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 570 bio_set_dev(bio, ca->bdev); 571 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 572 573 bio->bi_end_io = prio_endio; 574 bio->bi_private = ca; 575 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 576 bch_bio_map(bio, ca->disk_buckets); 577 578 closure_bio_submit(ca->set, bio, &ca->prio); 579 closure_sync(cl); 580 } 581 582 int bch_prio_write(struct cache *ca, bool wait) 583 { 584 int i; 585 struct bucket *b; 586 struct closure cl; 587 588 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 589 fifo_used(&ca->free[RESERVE_PRIO]), 590 fifo_used(&ca->free[RESERVE_NONE]), 591 fifo_used(&ca->free_inc)); 592 593 /* 594 * Pre-check if there are enough free buckets. In the non-blocking 595 * scenario it's better to fail early rather than starting to allocate 596 * buckets and do a cleanup later in case of failure. 597 */ 598 if (!wait) { 599 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 600 fifo_used(&ca->free[RESERVE_NONE]); 601 if (prio_buckets(ca) > avail) 602 return -ENOMEM; 603 } 604 605 closure_init_stack(&cl); 606 607 lockdep_assert_held(&ca->set->bucket_lock); 608 609 ca->disk_buckets->seq++; 610 611 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 612 &ca->meta_sectors_written); 613 614 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 615 long bucket; 616 struct prio_set *p = ca->disk_buckets; 617 struct bucket_disk *d = p->data; 618 struct bucket_disk *end = d + prios_per_bucket(ca); 619 620 for (b = ca->buckets + i * prios_per_bucket(ca); 621 b < ca->buckets + ca->sb.nbuckets && d < end; 622 b++, d++) { 623 d->prio = cpu_to_le16(b->prio); 624 d->gen = b->gen; 625 } 626 627 p->next_bucket = ca->prio_buckets[i + 1]; 628 p->magic = pset_magic(&ca->sb); 629 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 630 631 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 632 BUG_ON(bucket == -1); 633 634 mutex_unlock(&ca->set->bucket_lock); 635 prio_io(ca, bucket, REQ_OP_WRITE, 0); 636 mutex_lock(&ca->set->bucket_lock); 637 638 ca->prio_buckets[i] = bucket; 639 atomic_dec_bug(&ca->buckets[bucket].pin); 640 } 641 642 mutex_unlock(&ca->set->bucket_lock); 643 644 bch_journal_meta(ca->set, &cl); 645 closure_sync(&cl); 646 647 mutex_lock(&ca->set->bucket_lock); 648 649 /* 650 * Don't want the old priorities to get garbage collected until after we 651 * finish writing the new ones, and they're journalled 652 */ 653 for (i = 0; i < prio_buckets(ca); i++) { 654 if (ca->prio_last_buckets[i]) 655 __bch_bucket_free(ca, 656 &ca->buckets[ca->prio_last_buckets[i]]); 657 658 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 659 } 660 return 0; 661 } 662 663 static int prio_read(struct cache *ca, uint64_t bucket) 664 { 665 struct prio_set *p = ca->disk_buckets; 666 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 667 struct bucket *b; 668 unsigned int bucket_nr = 0; 669 int ret = -EIO; 670 671 for (b = ca->buckets; 672 b < ca->buckets + ca->sb.nbuckets; 673 b++, d++) { 674 if (d == end) { 675 ca->prio_buckets[bucket_nr] = bucket; 676 ca->prio_last_buckets[bucket_nr] = bucket; 677 bucket_nr++; 678 679 prio_io(ca, bucket, REQ_OP_READ, 0); 680 681 if (p->csum != 682 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 683 pr_warn("bad csum reading priorities\n"); 684 goto out; 685 } 686 687 if (p->magic != pset_magic(&ca->sb)) { 688 pr_warn("bad magic reading priorities\n"); 689 goto out; 690 } 691 692 bucket = p->next_bucket; 693 d = p->data; 694 } 695 696 b->prio = le16_to_cpu(d->prio); 697 b->gen = b->last_gc = d->gen; 698 } 699 700 ret = 0; 701 out: 702 return ret; 703 } 704 705 /* Bcache device */ 706 707 static int open_dev(struct block_device *b, fmode_t mode) 708 { 709 struct bcache_device *d = b->bd_disk->private_data; 710 711 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 712 return -ENXIO; 713 714 closure_get(&d->cl); 715 return 0; 716 } 717 718 static void release_dev(struct gendisk *b, fmode_t mode) 719 { 720 struct bcache_device *d = b->private_data; 721 722 closure_put(&d->cl); 723 } 724 725 static int ioctl_dev(struct block_device *b, fmode_t mode, 726 unsigned int cmd, unsigned long arg) 727 { 728 struct bcache_device *d = b->bd_disk->private_data; 729 730 return d->ioctl(d, mode, cmd, arg); 731 } 732 733 static const struct block_device_operations bcache_cached_ops = { 734 .submit_bio = cached_dev_submit_bio, 735 .open = open_dev, 736 .release = release_dev, 737 .ioctl = ioctl_dev, 738 .owner = THIS_MODULE, 739 }; 740 741 static const struct block_device_operations bcache_flash_ops = { 742 .submit_bio = flash_dev_submit_bio, 743 .open = open_dev, 744 .release = release_dev, 745 .ioctl = ioctl_dev, 746 .owner = THIS_MODULE, 747 }; 748 749 void bcache_device_stop(struct bcache_device *d) 750 { 751 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 752 /* 753 * closure_fn set to 754 * - cached device: cached_dev_flush() 755 * - flash dev: flash_dev_flush() 756 */ 757 closure_queue(&d->cl); 758 } 759 760 static void bcache_device_unlink(struct bcache_device *d) 761 { 762 lockdep_assert_held(&bch_register_lock); 763 764 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 765 struct cache *ca = d->c->cache; 766 767 sysfs_remove_link(&d->c->kobj, d->name); 768 sysfs_remove_link(&d->kobj, "cache"); 769 770 bd_unlink_disk_holder(ca->bdev, d->disk); 771 } 772 } 773 774 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 775 const char *name) 776 { 777 struct cache *ca = c->cache; 778 int ret; 779 780 bd_link_disk_holder(ca->bdev, d->disk); 781 782 snprintf(d->name, BCACHEDEVNAME_SIZE, 783 "%s%u", name, d->id); 784 785 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 786 if (ret < 0) 787 pr_err("Couldn't create device -> cache set symlink\n"); 788 789 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 790 if (ret < 0) 791 pr_err("Couldn't create cache set -> device symlink\n"); 792 793 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 794 } 795 796 static void bcache_device_detach(struct bcache_device *d) 797 { 798 lockdep_assert_held(&bch_register_lock); 799 800 atomic_dec(&d->c->attached_dev_nr); 801 802 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 803 struct uuid_entry *u = d->c->uuids + d->id; 804 805 SET_UUID_FLASH_ONLY(u, 0); 806 memcpy(u->uuid, invalid_uuid, 16); 807 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 808 bch_uuid_write(d->c); 809 } 810 811 bcache_device_unlink(d); 812 813 d->c->devices[d->id] = NULL; 814 closure_put(&d->c->caching); 815 d->c = NULL; 816 } 817 818 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 819 unsigned int id) 820 { 821 d->id = id; 822 d->c = c; 823 c->devices[id] = d; 824 825 if (id >= c->devices_max_used) 826 c->devices_max_used = id + 1; 827 828 closure_get(&c->caching); 829 } 830 831 static inline int first_minor_to_idx(int first_minor) 832 { 833 return (first_minor/BCACHE_MINORS); 834 } 835 836 static inline int idx_to_first_minor(int idx) 837 { 838 return (idx * BCACHE_MINORS); 839 } 840 841 static void bcache_device_free(struct bcache_device *d) 842 { 843 struct gendisk *disk = d->disk; 844 845 lockdep_assert_held(&bch_register_lock); 846 847 if (disk) 848 pr_info("%s stopped\n", disk->disk_name); 849 else 850 pr_err("bcache device (NULL gendisk) stopped\n"); 851 852 if (d->c) 853 bcache_device_detach(d); 854 855 if (disk) { 856 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 857 858 if (disk_added) 859 del_gendisk(disk); 860 861 if (disk->queue) 862 blk_cleanup_queue(disk->queue); 863 864 ida_simple_remove(&bcache_device_idx, 865 first_minor_to_idx(disk->first_minor)); 866 if (disk_added) 867 put_disk(disk); 868 } 869 870 bioset_exit(&d->bio_split); 871 kvfree(d->full_dirty_stripes); 872 kvfree(d->stripe_sectors_dirty); 873 874 closure_debug_destroy(&d->cl); 875 } 876 877 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 878 sector_t sectors, struct block_device *cached_bdev, 879 const struct block_device_operations *ops) 880 { 881 struct request_queue *q; 882 const size_t max_stripes = min_t(size_t, INT_MAX, 883 SIZE_MAX / sizeof(atomic_t)); 884 uint64_t n; 885 int idx; 886 887 if (!d->stripe_size) 888 d->stripe_size = 1 << 31; 889 890 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 891 if (!n || n > max_stripes) { 892 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 893 n); 894 return -ENOMEM; 895 } 896 d->nr_stripes = n; 897 898 n = d->nr_stripes * sizeof(atomic_t); 899 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 900 if (!d->stripe_sectors_dirty) 901 return -ENOMEM; 902 903 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 904 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 905 if (!d->full_dirty_stripes) 906 return -ENOMEM; 907 908 idx = ida_simple_get(&bcache_device_idx, 0, 909 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 910 if (idx < 0) 911 return idx; 912 913 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 914 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 915 goto err; 916 917 d->disk = alloc_disk(BCACHE_MINORS); 918 if (!d->disk) 919 goto err; 920 921 set_capacity(d->disk, sectors); 922 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 923 924 d->disk->major = bcache_major; 925 d->disk->first_minor = idx_to_first_minor(idx); 926 d->disk->fops = ops; 927 d->disk->private_data = d; 928 929 q = blk_alloc_queue(NUMA_NO_NODE); 930 if (!q) 931 return -ENOMEM; 932 933 d->disk->queue = q; 934 q->limits.max_hw_sectors = UINT_MAX; 935 q->limits.max_sectors = UINT_MAX; 936 q->limits.max_segment_size = UINT_MAX; 937 q->limits.max_segments = BIO_MAX_PAGES; 938 blk_queue_max_discard_sectors(q, UINT_MAX); 939 q->limits.discard_granularity = 512; 940 q->limits.io_min = block_size; 941 q->limits.logical_block_size = block_size; 942 q->limits.physical_block_size = block_size; 943 944 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 945 /* 946 * This should only happen with BCACHE_SB_VERSION_BDEV. 947 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 948 */ 949 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 950 d->disk->disk_name, q->limits.logical_block_size, 951 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 952 953 /* This also adjusts physical block size/min io size if needed */ 954 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 955 } 956 957 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 958 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 959 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 960 961 blk_queue_write_cache(q, true, true); 962 963 return 0; 964 965 err: 966 ida_simple_remove(&bcache_device_idx, idx); 967 return -ENOMEM; 968 969 } 970 971 /* Cached device */ 972 973 static void calc_cached_dev_sectors(struct cache_set *c) 974 { 975 uint64_t sectors = 0; 976 struct cached_dev *dc; 977 978 list_for_each_entry(dc, &c->cached_devs, list) 979 sectors += bdev_sectors(dc->bdev); 980 981 c->cached_dev_sectors = sectors; 982 } 983 984 #define BACKING_DEV_OFFLINE_TIMEOUT 5 985 static int cached_dev_status_update(void *arg) 986 { 987 struct cached_dev *dc = arg; 988 struct request_queue *q; 989 990 /* 991 * If this delayed worker is stopping outside, directly quit here. 992 * dc->io_disable might be set via sysfs interface, so check it 993 * here too. 994 */ 995 while (!kthread_should_stop() && !dc->io_disable) { 996 q = bdev_get_queue(dc->bdev); 997 if (blk_queue_dying(q)) 998 dc->offline_seconds++; 999 else 1000 dc->offline_seconds = 0; 1001 1002 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1003 pr_err("%s: device offline for %d seconds\n", 1004 dc->backing_dev_name, 1005 BACKING_DEV_OFFLINE_TIMEOUT); 1006 pr_err("%s: disable I/O request due to backing device offline\n", 1007 dc->disk.name); 1008 dc->io_disable = true; 1009 /* let others know earlier that io_disable is true */ 1010 smp_mb(); 1011 bcache_device_stop(&dc->disk); 1012 break; 1013 } 1014 schedule_timeout_interruptible(HZ); 1015 } 1016 1017 wait_for_kthread_stop(); 1018 return 0; 1019 } 1020 1021 1022 int bch_cached_dev_run(struct cached_dev *dc) 1023 { 1024 struct bcache_device *d = &dc->disk; 1025 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1026 char *env[] = { 1027 "DRIVER=bcache", 1028 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1029 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1030 NULL, 1031 }; 1032 1033 if (dc->io_disable) { 1034 pr_err("I/O disabled on cached dev %s\n", 1035 dc->backing_dev_name); 1036 kfree(env[1]); 1037 kfree(env[2]); 1038 kfree(buf); 1039 return -EIO; 1040 } 1041 1042 if (atomic_xchg(&dc->running, 1)) { 1043 kfree(env[1]); 1044 kfree(env[2]); 1045 kfree(buf); 1046 pr_info("cached dev %s is running already\n", 1047 dc->backing_dev_name); 1048 return -EBUSY; 1049 } 1050 1051 if (!d->c && 1052 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1053 struct closure cl; 1054 1055 closure_init_stack(&cl); 1056 1057 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1058 bch_write_bdev_super(dc, &cl); 1059 closure_sync(&cl); 1060 } 1061 1062 add_disk(d->disk); 1063 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1064 /* 1065 * won't show up in the uevent file, use udevadm monitor -e instead 1066 * only class / kset properties are persistent 1067 */ 1068 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1069 kfree(env[1]); 1070 kfree(env[2]); 1071 kfree(buf); 1072 1073 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1074 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1075 &d->kobj, "bcache")) { 1076 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1077 return -ENOMEM; 1078 } 1079 1080 dc->status_update_thread = kthread_run(cached_dev_status_update, 1081 dc, "bcache_status_update"); 1082 if (IS_ERR(dc->status_update_thread)) { 1083 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1084 } 1085 1086 return 0; 1087 } 1088 1089 /* 1090 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1091 * work dc->writeback_rate_update is running. Wait until the routine 1092 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1093 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1094 * seconds, give up waiting here and continue to cancel it too. 1095 */ 1096 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1097 { 1098 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1099 1100 do { 1101 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1102 &dc->disk.flags)) 1103 break; 1104 time_out--; 1105 schedule_timeout_interruptible(1); 1106 } while (time_out > 0); 1107 1108 if (time_out == 0) 1109 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1110 1111 cancel_delayed_work_sync(&dc->writeback_rate_update); 1112 } 1113 1114 static void cached_dev_detach_finish(struct work_struct *w) 1115 { 1116 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1117 1118 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1119 BUG_ON(refcount_read(&dc->count)); 1120 1121 1122 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1123 cancel_writeback_rate_update_dwork(dc); 1124 1125 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1126 kthread_stop(dc->writeback_thread); 1127 dc->writeback_thread = NULL; 1128 } 1129 1130 mutex_lock(&bch_register_lock); 1131 1132 calc_cached_dev_sectors(dc->disk.c); 1133 bcache_device_detach(&dc->disk); 1134 list_move(&dc->list, &uncached_devices); 1135 1136 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1137 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1138 1139 mutex_unlock(&bch_register_lock); 1140 1141 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1142 1143 /* Drop ref we took in cached_dev_detach() */ 1144 closure_put(&dc->disk.cl); 1145 } 1146 1147 void bch_cached_dev_detach(struct cached_dev *dc) 1148 { 1149 lockdep_assert_held(&bch_register_lock); 1150 1151 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1152 return; 1153 1154 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1155 return; 1156 1157 /* 1158 * Block the device from being closed and freed until we're finished 1159 * detaching 1160 */ 1161 closure_get(&dc->disk.cl); 1162 1163 bch_writeback_queue(dc); 1164 1165 cached_dev_put(dc); 1166 } 1167 1168 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1169 uint8_t *set_uuid) 1170 { 1171 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1172 struct uuid_entry *u; 1173 struct cached_dev *exist_dc, *t; 1174 int ret = 0; 1175 1176 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1177 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1178 return -ENOENT; 1179 1180 if (dc->disk.c) { 1181 pr_err("Can't attach %s: already attached\n", 1182 dc->backing_dev_name); 1183 return -EINVAL; 1184 } 1185 1186 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1187 pr_err("Can't attach %s: shutting down\n", 1188 dc->backing_dev_name); 1189 return -EINVAL; 1190 } 1191 1192 if (dc->sb.block_size < c->cache->sb.block_size) { 1193 /* Will die */ 1194 pr_err("Couldn't attach %s: block size less than set's block size\n", 1195 dc->backing_dev_name); 1196 return -EINVAL; 1197 } 1198 1199 /* Check whether already attached */ 1200 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1201 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1202 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1203 dc->backing_dev_name); 1204 1205 return -EINVAL; 1206 } 1207 } 1208 1209 u = uuid_find(c, dc->sb.uuid); 1210 1211 if (u && 1212 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1213 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1214 memcpy(u->uuid, invalid_uuid, 16); 1215 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1216 u = NULL; 1217 } 1218 1219 if (!u) { 1220 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1221 pr_err("Couldn't find uuid for %s in set\n", 1222 dc->backing_dev_name); 1223 return -ENOENT; 1224 } 1225 1226 u = uuid_find_empty(c); 1227 if (!u) { 1228 pr_err("Not caching %s, no room for UUID\n", 1229 dc->backing_dev_name); 1230 return -EINVAL; 1231 } 1232 } 1233 1234 /* 1235 * Deadlocks since we're called via sysfs... 1236 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1237 */ 1238 1239 if (bch_is_zero(u->uuid, 16)) { 1240 struct closure cl; 1241 1242 closure_init_stack(&cl); 1243 1244 memcpy(u->uuid, dc->sb.uuid, 16); 1245 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1246 u->first_reg = u->last_reg = rtime; 1247 bch_uuid_write(c); 1248 1249 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1250 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1251 1252 bch_write_bdev_super(dc, &cl); 1253 closure_sync(&cl); 1254 } else { 1255 u->last_reg = rtime; 1256 bch_uuid_write(c); 1257 } 1258 1259 bcache_device_attach(&dc->disk, c, u - c->uuids); 1260 list_move(&dc->list, &c->cached_devs); 1261 calc_cached_dev_sectors(c); 1262 1263 /* 1264 * dc->c must be set before dc->count != 0 - paired with the mb in 1265 * cached_dev_get() 1266 */ 1267 smp_wmb(); 1268 refcount_set(&dc->count, 1); 1269 1270 /* Block writeback thread, but spawn it */ 1271 down_write(&dc->writeback_lock); 1272 if (bch_cached_dev_writeback_start(dc)) { 1273 up_write(&dc->writeback_lock); 1274 pr_err("Couldn't start writeback facilities for %s\n", 1275 dc->disk.disk->disk_name); 1276 return -ENOMEM; 1277 } 1278 1279 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1280 atomic_set(&dc->has_dirty, 1); 1281 bch_writeback_queue(dc); 1282 } 1283 1284 bch_sectors_dirty_init(&dc->disk); 1285 1286 ret = bch_cached_dev_run(dc); 1287 if (ret && (ret != -EBUSY)) { 1288 up_write(&dc->writeback_lock); 1289 /* 1290 * bch_register_lock is held, bcache_device_stop() is not 1291 * able to be directly called. The kthread and kworker 1292 * created previously in bch_cached_dev_writeback_start() 1293 * have to be stopped manually here. 1294 */ 1295 kthread_stop(dc->writeback_thread); 1296 cancel_writeback_rate_update_dwork(dc); 1297 pr_err("Couldn't run cached device %s\n", 1298 dc->backing_dev_name); 1299 return ret; 1300 } 1301 1302 bcache_device_link(&dc->disk, c, "bdev"); 1303 atomic_inc(&c->attached_dev_nr); 1304 1305 /* Allow the writeback thread to proceed */ 1306 up_write(&dc->writeback_lock); 1307 1308 pr_info("Caching %s as %s on set %pU\n", 1309 dc->backing_dev_name, 1310 dc->disk.disk->disk_name, 1311 dc->disk.c->set_uuid); 1312 return 0; 1313 } 1314 1315 /* when dc->disk.kobj released */ 1316 void bch_cached_dev_release(struct kobject *kobj) 1317 { 1318 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1319 disk.kobj); 1320 kfree(dc); 1321 module_put(THIS_MODULE); 1322 } 1323 1324 static void cached_dev_free(struct closure *cl) 1325 { 1326 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1327 1328 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1329 cancel_writeback_rate_update_dwork(dc); 1330 1331 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1332 kthread_stop(dc->writeback_thread); 1333 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1334 kthread_stop(dc->status_update_thread); 1335 1336 mutex_lock(&bch_register_lock); 1337 1338 if (atomic_read(&dc->running)) 1339 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1340 bcache_device_free(&dc->disk); 1341 list_del(&dc->list); 1342 1343 mutex_unlock(&bch_register_lock); 1344 1345 if (dc->sb_disk) 1346 put_page(virt_to_page(dc->sb_disk)); 1347 1348 if (!IS_ERR_OR_NULL(dc->bdev)) 1349 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1350 1351 wake_up(&unregister_wait); 1352 1353 kobject_put(&dc->disk.kobj); 1354 } 1355 1356 static void cached_dev_flush(struct closure *cl) 1357 { 1358 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1359 struct bcache_device *d = &dc->disk; 1360 1361 mutex_lock(&bch_register_lock); 1362 bcache_device_unlink(d); 1363 mutex_unlock(&bch_register_lock); 1364 1365 bch_cache_accounting_destroy(&dc->accounting); 1366 kobject_del(&d->kobj); 1367 1368 continue_at(cl, cached_dev_free, system_wq); 1369 } 1370 1371 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1372 { 1373 int ret; 1374 struct io *io; 1375 struct request_queue *q = bdev_get_queue(dc->bdev); 1376 1377 __module_get(THIS_MODULE); 1378 INIT_LIST_HEAD(&dc->list); 1379 closure_init(&dc->disk.cl, NULL); 1380 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1381 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1382 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1383 sema_init(&dc->sb_write_mutex, 1); 1384 INIT_LIST_HEAD(&dc->io_lru); 1385 spin_lock_init(&dc->io_lock); 1386 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1387 1388 dc->sequential_cutoff = 4 << 20; 1389 1390 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1391 list_add(&io->lru, &dc->io_lru); 1392 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1393 } 1394 1395 dc->disk.stripe_size = q->limits.io_opt >> 9; 1396 1397 if (dc->disk.stripe_size) 1398 dc->partial_stripes_expensive = 1399 q->limits.raid_partial_stripes_expensive; 1400 1401 ret = bcache_device_init(&dc->disk, block_size, 1402 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1403 dc->bdev, &bcache_cached_ops); 1404 if (ret) 1405 return ret; 1406 1407 blk_queue_io_opt(dc->disk.disk->queue, 1408 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1409 1410 atomic_set(&dc->io_errors, 0); 1411 dc->io_disable = false; 1412 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1413 /* default to auto */ 1414 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1415 1416 bch_cached_dev_request_init(dc); 1417 bch_cached_dev_writeback_init(dc); 1418 return 0; 1419 } 1420 1421 /* Cached device - bcache superblock */ 1422 1423 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1424 struct block_device *bdev, 1425 struct cached_dev *dc) 1426 { 1427 const char *err = "cannot allocate memory"; 1428 struct cache_set *c; 1429 int ret = -ENOMEM; 1430 1431 bdevname(bdev, dc->backing_dev_name); 1432 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1433 dc->bdev = bdev; 1434 dc->bdev->bd_holder = dc; 1435 dc->sb_disk = sb_disk; 1436 1437 if (cached_dev_init(dc, sb->block_size << 9)) 1438 goto err; 1439 1440 err = "error creating kobject"; 1441 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1442 goto err; 1443 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1444 goto err; 1445 1446 pr_info("registered backing device %s\n", dc->backing_dev_name); 1447 1448 list_add(&dc->list, &uncached_devices); 1449 /* attach to a matched cache set if it exists */ 1450 list_for_each_entry(c, &bch_cache_sets, list) 1451 bch_cached_dev_attach(dc, c, NULL); 1452 1453 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1454 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1455 err = "failed to run cached device"; 1456 ret = bch_cached_dev_run(dc); 1457 if (ret) 1458 goto err; 1459 } 1460 1461 return 0; 1462 err: 1463 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1464 bcache_device_stop(&dc->disk); 1465 return ret; 1466 } 1467 1468 /* Flash only volumes */ 1469 1470 /* When d->kobj released */ 1471 void bch_flash_dev_release(struct kobject *kobj) 1472 { 1473 struct bcache_device *d = container_of(kobj, struct bcache_device, 1474 kobj); 1475 kfree(d); 1476 } 1477 1478 static void flash_dev_free(struct closure *cl) 1479 { 1480 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1481 1482 mutex_lock(&bch_register_lock); 1483 atomic_long_sub(bcache_dev_sectors_dirty(d), 1484 &d->c->flash_dev_dirty_sectors); 1485 bcache_device_free(d); 1486 mutex_unlock(&bch_register_lock); 1487 kobject_put(&d->kobj); 1488 } 1489 1490 static void flash_dev_flush(struct closure *cl) 1491 { 1492 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1493 1494 mutex_lock(&bch_register_lock); 1495 bcache_device_unlink(d); 1496 mutex_unlock(&bch_register_lock); 1497 kobject_del(&d->kobj); 1498 continue_at(cl, flash_dev_free, system_wq); 1499 } 1500 1501 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1502 { 1503 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1504 GFP_KERNEL); 1505 if (!d) 1506 return -ENOMEM; 1507 1508 closure_init(&d->cl, NULL); 1509 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1510 1511 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1512 1513 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1514 NULL, &bcache_flash_ops)) 1515 goto err; 1516 1517 bcache_device_attach(d, c, u - c->uuids); 1518 bch_sectors_dirty_init(d); 1519 bch_flash_dev_request_init(d); 1520 add_disk(d->disk); 1521 1522 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1523 goto err; 1524 1525 bcache_device_link(d, c, "volume"); 1526 1527 return 0; 1528 err: 1529 kobject_put(&d->kobj); 1530 return -ENOMEM; 1531 } 1532 1533 static int flash_devs_run(struct cache_set *c) 1534 { 1535 int ret = 0; 1536 struct uuid_entry *u; 1537 1538 for (u = c->uuids; 1539 u < c->uuids + c->nr_uuids && !ret; 1540 u++) 1541 if (UUID_FLASH_ONLY(u)) 1542 ret = flash_dev_run(c, u); 1543 1544 return ret; 1545 } 1546 1547 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1548 { 1549 struct uuid_entry *u; 1550 1551 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1552 return -EINTR; 1553 1554 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1555 return -EPERM; 1556 1557 u = uuid_find_empty(c); 1558 if (!u) { 1559 pr_err("Can't create volume, no room for UUID\n"); 1560 return -EINVAL; 1561 } 1562 1563 get_random_bytes(u->uuid, 16); 1564 memset(u->label, 0, 32); 1565 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1566 1567 SET_UUID_FLASH_ONLY(u, 1); 1568 u->sectors = size >> 9; 1569 1570 bch_uuid_write(c); 1571 1572 return flash_dev_run(c, u); 1573 } 1574 1575 bool bch_cached_dev_error(struct cached_dev *dc) 1576 { 1577 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1578 return false; 1579 1580 dc->io_disable = true; 1581 /* make others know io_disable is true earlier */ 1582 smp_mb(); 1583 1584 pr_err("stop %s: too many IO errors on backing device %s\n", 1585 dc->disk.disk->disk_name, dc->backing_dev_name); 1586 1587 bcache_device_stop(&dc->disk); 1588 return true; 1589 } 1590 1591 /* Cache set */ 1592 1593 __printf(2, 3) 1594 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1595 { 1596 struct va_format vaf; 1597 va_list args; 1598 1599 if (c->on_error != ON_ERROR_PANIC && 1600 test_bit(CACHE_SET_STOPPING, &c->flags)) 1601 return false; 1602 1603 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1604 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1605 1606 /* 1607 * XXX: we can be called from atomic context 1608 * acquire_console_sem(); 1609 */ 1610 1611 va_start(args, fmt); 1612 1613 vaf.fmt = fmt; 1614 vaf.va = &args; 1615 1616 pr_err("error on %pU: %pV, disabling caching\n", 1617 c->set_uuid, &vaf); 1618 1619 va_end(args); 1620 1621 if (c->on_error == ON_ERROR_PANIC) 1622 panic("panic forced after error\n"); 1623 1624 bch_cache_set_unregister(c); 1625 return true; 1626 } 1627 1628 /* When c->kobj released */ 1629 void bch_cache_set_release(struct kobject *kobj) 1630 { 1631 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1632 1633 kfree(c); 1634 module_put(THIS_MODULE); 1635 } 1636 1637 static void cache_set_free(struct closure *cl) 1638 { 1639 struct cache_set *c = container_of(cl, struct cache_set, cl); 1640 struct cache *ca; 1641 1642 debugfs_remove(c->debug); 1643 1644 bch_open_buckets_free(c); 1645 bch_btree_cache_free(c); 1646 bch_journal_free(c); 1647 1648 mutex_lock(&bch_register_lock); 1649 bch_bset_sort_state_free(&c->sort); 1650 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1651 1652 ca = c->cache; 1653 if (ca) { 1654 ca->set = NULL; 1655 c->cache = NULL; 1656 kobject_put(&ca->kobj); 1657 } 1658 1659 1660 if (c->moving_gc_wq) 1661 destroy_workqueue(c->moving_gc_wq); 1662 bioset_exit(&c->bio_split); 1663 mempool_exit(&c->fill_iter); 1664 mempool_exit(&c->bio_meta); 1665 mempool_exit(&c->search); 1666 kfree(c->devices); 1667 1668 list_del(&c->list); 1669 mutex_unlock(&bch_register_lock); 1670 1671 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1672 wake_up(&unregister_wait); 1673 1674 closure_debug_destroy(&c->cl); 1675 kobject_put(&c->kobj); 1676 } 1677 1678 static void cache_set_flush(struct closure *cl) 1679 { 1680 struct cache_set *c = container_of(cl, struct cache_set, caching); 1681 struct cache *ca = c->cache; 1682 struct btree *b; 1683 1684 bch_cache_accounting_destroy(&c->accounting); 1685 1686 kobject_put(&c->internal); 1687 kobject_del(&c->kobj); 1688 1689 if (!IS_ERR_OR_NULL(c->gc_thread)) 1690 kthread_stop(c->gc_thread); 1691 1692 if (!IS_ERR_OR_NULL(c->root)) 1693 list_add(&c->root->list, &c->btree_cache); 1694 1695 /* 1696 * Avoid flushing cached nodes if cache set is retiring 1697 * due to too many I/O errors detected. 1698 */ 1699 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1700 list_for_each_entry(b, &c->btree_cache, list) { 1701 mutex_lock(&b->write_lock); 1702 if (btree_node_dirty(b)) 1703 __bch_btree_node_write(b, NULL); 1704 mutex_unlock(&b->write_lock); 1705 } 1706 1707 if (ca->alloc_thread) 1708 kthread_stop(ca->alloc_thread); 1709 1710 if (c->journal.cur) { 1711 cancel_delayed_work_sync(&c->journal.work); 1712 /* flush last journal entry if needed */ 1713 c->journal.work.work.func(&c->journal.work.work); 1714 } 1715 1716 closure_return(cl); 1717 } 1718 1719 /* 1720 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1721 * cache set is unregistering due to too many I/O errors. In this condition, 1722 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1723 * value and whether the broken cache has dirty data: 1724 * 1725 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1726 * BCH_CACHED_STOP_AUTO 0 NO 1727 * BCH_CACHED_STOP_AUTO 1 YES 1728 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1729 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1730 * 1731 * The expected behavior is, if stop_when_cache_set_failed is configured to 1732 * "auto" via sysfs interface, the bcache device will not be stopped if the 1733 * backing device is clean on the broken cache device. 1734 */ 1735 static void conditional_stop_bcache_device(struct cache_set *c, 1736 struct bcache_device *d, 1737 struct cached_dev *dc) 1738 { 1739 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1740 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1741 d->disk->disk_name, c->set_uuid); 1742 bcache_device_stop(d); 1743 } else if (atomic_read(&dc->has_dirty)) { 1744 /* 1745 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1746 * and dc->has_dirty == 1 1747 */ 1748 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1749 d->disk->disk_name); 1750 /* 1751 * There might be a small time gap that cache set is 1752 * released but bcache device is not. Inside this time 1753 * gap, regular I/O requests will directly go into 1754 * backing device as no cache set attached to. This 1755 * behavior may also introduce potential inconsistence 1756 * data in writeback mode while cache is dirty. 1757 * Therefore before calling bcache_device_stop() due 1758 * to a broken cache device, dc->io_disable should be 1759 * explicitly set to true. 1760 */ 1761 dc->io_disable = true; 1762 /* make others know io_disable is true earlier */ 1763 smp_mb(); 1764 bcache_device_stop(d); 1765 } else { 1766 /* 1767 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1768 * and dc->has_dirty == 0 1769 */ 1770 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1771 d->disk->disk_name); 1772 } 1773 } 1774 1775 static void __cache_set_unregister(struct closure *cl) 1776 { 1777 struct cache_set *c = container_of(cl, struct cache_set, caching); 1778 struct cached_dev *dc; 1779 struct bcache_device *d; 1780 size_t i; 1781 1782 mutex_lock(&bch_register_lock); 1783 1784 for (i = 0; i < c->devices_max_used; i++) { 1785 d = c->devices[i]; 1786 if (!d) 1787 continue; 1788 1789 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1790 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1791 dc = container_of(d, struct cached_dev, disk); 1792 bch_cached_dev_detach(dc); 1793 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1794 conditional_stop_bcache_device(c, d, dc); 1795 } else { 1796 bcache_device_stop(d); 1797 } 1798 } 1799 1800 mutex_unlock(&bch_register_lock); 1801 1802 continue_at(cl, cache_set_flush, system_wq); 1803 } 1804 1805 void bch_cache_set_stop(struct cache_set *c) 1806 { 1807 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1808 /* closure_fn set to __cache_set_unregister() */ 1809 closure_queue(&c->caching); 1810 } 1811 1812 void bch_cache_set_unregister(struct cache_set *c) 1813 { 1814 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1815 bch_cache_set_stop(c); 1816 } 1817 1818 #define alloc_meta_bucket_pages(gfp, sb) \ 1819 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1820 1821 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1822 { 1823 int iter_size; 1824 struct cache *ca = container_of(sb, struct cache, sb); 1825 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1826 1827 if (!c) 1828 return NULL; 1829 1830 __module_get(THIS_MODULE); 1831 closure_init(&c->cl, NULL); 1832 set_closure_fn(&c->cl, cache_set_free, system_wq); 1833 1834 closure_init(&c->caching, &c->cl); 1835 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1836 1837 /* Maybe create continue_at_noreturn() and use it here? */ 1838 closure_set_stopped(&c->cl); 1839 closure_put(&c->cl); 1840 1841 kobject_init(&c->kobj, &bch_cache_set_ktype); 1842 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1843 1844 bch_cache_accounting_init(&c->accounting, &c->cl); 1845 1846 memcpy(c->set_uuid, sb->set_uuid, 16); 1847 1848 c->cache = ca; 1849 c->cache->set = c; 1850 c->bucket_bits = ilog2(sb->bucket_size); 1851 c->block_bits = ilog2(sb->block_size); 1852 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1853 c->devices_max_used = 0; 1854 atomic_set(&c->attached_dev_nr, 0); 1855 c->btree_pages = meta_bucket_pages(sb); 1856 if (c->btree_pages > BTREE_MAX_PAGES) 1857 c->btree_pages = max_t(int, c->btree_pages / 4, 1858 BTREE_MAX_PAGES); 1859 1860 sema_init(&c->sb_write_mutex, 1); 1861 mutex_init(&c->bucket_lock); 1862 init_waitqueue_head(&c->btree_cache_wait); 1863 spin_lock_init(&c->btree_cannibalize_lock); 1864 init_waitqueue_head(&c->bucket_wait); 1865 init_waitqueue_head(&c->gc_wait); 1866 sema_init(&c->uuid_write_mutex, 1); 1867 1868 spin_lock_init(&c->btree_gc_time.lock); 1869 spin_lock_init(&c->btree_split_time.lock); 1870 spin_lock_init(&c->btree_read_time.lock); 1871 1872 bch_moving_init_cache_set(c); 1873 1874 INIT_LIST_HEAD(&c->list); 1875 INIT_LIST_HEAD(&c->cached_devs); 1876 INIT_LIST_HEAD(&c->btree_cache); 1877 INIT_LIST_HEAD(&c->btree_cache_freeable); 1878 INIT_LIST_HEAD(&c->btree_cache_freed); 1879 INIT_LIST_HEAD(&c->data_buckets); 1880 1881 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1882 sizeof(struct btree_iter_set); 1883 1884 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1885 if (!c->devices) 1886 goto err; 1887 1888 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1889 goto err; 1890 1891 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1892 sizeof(struct bbio) + 1893 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1894 goto err; 1895 1896 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1897 goto err; 1898 1899 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1900 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 1901 goto err; 1902 1903 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1904 if (!c->uuids) 1905 goto err; 1906 1907 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1908 if (!c->moving_gc_wq) 1909 goto err; 1910 1911 if (bch_journal_alloc(c)) 1912 goto err; 1913 1914 if (bch_btree_cache_alloc(c)) 1915 goto err; 1916 1917 if (bch_open_buckets_alloc(c)) 1918 goto err; 1919 1920 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1921 goto err; 1922 1923 c->congested_read_threshold_us = 2000; 1924 c->congested_write_threshold_us = 20000; 1925 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1926 c->idle_max_writeback_rate_enabled = 1; 1927 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1928 1929 return c; 1930 err: 1931 bch_cache_set_unregister(c); 1932 return NULL; 1933 } 1934 1935 static int run_cache_set(struct cache_set *c) 1936 { 1937 const char *err = "cannot allocate memory"; 1938 struct cached_dev *dc, *t; 1939 struct cache *ca = c->cache; 1940 struct closure cl; 1941 LIST_HEAD(journal); 1942 struct journal_replay *l; 1943 1944 closure_init_stack(&cl); 1945 1946 c->nbuckets = ca->sb.nbuckets; 1947 set_gc_sectors(c); 1948 1949 if (CACHE_SYNC(&c->cache->sb)) { 1950 struct bkey *k; 1951 struct jset *j; 1952 1953 err = "cannot allocate memory for journal"; 1954 if (bch_journal_read(c, &journal)) 1955 goto err; 1956 1957 pr_debug("btree_journal_read() done\n"); 1958 1959 err = "no journal entries found"; 1960 if (list_empty(&journal)) 1961 goto err; 1962 1963 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1964 1965 err = "IO error reading priorities"; 1966 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1967 goto err; 1968 1969 /* 1970 * If prio_read() fails it'll call cache_set_error and we'll 1971 * tear everything down right away, but if we perhaps checked 1972 * sooner we could avoid journal replay. 1973 */ 1974 1975 k = &j->btree_root; 1976 1977 err = "bad btree root"; 1978 if (__bch_btree_ptr_invalid(c, k)) 1979 goto err; 1980 1981 err = "error reading btree root"; 1982 c->root = bch_btree_node_get(c, NULL, k, 1983 j->btree_level, 1984 true, NULL); 1985 if (IS_ERR_OR_NULL(c->root)) 1986 goto err; 1987 1988 list_del_init(&c->root->list); 1989 rw_unlock(true, c->root); 1990 1991 err = uuid_read(c, j, &cl); 1992 if (err) 1993 goto err; 1994 1995 err = "error in recovery"; 1996 if (bch_btree_check(c)) 1997 goto err; 1998 1999 bch_journal_mark(c, &journal); 2000 bch_initial_gc_finish(c); 2001 pr_debug("btree_check() done\n"); 2002 2003 /* 2004 * bcache_journal_next() can't happen sooner, or 2005 * btree_gc_finish() will give spurious errors about last_gc > 2006 * gc_gen - this is a hack but oh well. 2007 */ 2008 bch_journal_next(&c->journal); 2009 2010 err = "error starting allocator thread"; 2011 if (bch_cache_allocator_start(ca)) 2012 goto err; 2013 2014 /* 2015 * First place it's safe to allocate: btree_check() and 2016 * btree_gc_finish() have to run before we have buckets to 2017 * allocate, and bch_bucket_alloc_set() might cause a journal 2018 * entry to be written so bcache_journal_next() has to be called 2019 * first. 2020 * 2021 * If the uuids were in the old format we have to rewrite them 2022 * before the next journal entry is written: 2023 */ 2024 if (j->version < BCACHE_JSET_VERSION_UUID) 2025 __uuid_write(c); 2026 2027 err = "bcache: replay journal failed"; 2028 if (bch_journal_replay(c, &journal)) 2029 goto err; 2030 } else { 2031 unsigned int j; 2032 2033 pr_notice("invalidating existing data\n"); 2034 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2035 2, SB_JOURNAL_BUCKETS); 2036 2037 for (j = 0; j < ca->sb.keys; j++) 2038 ca->sb.d[j] = ca->sb.first_bucket + j; 2039 2040 bch_initial_gc_finish(c); 2041 2042 err = "error starting allocator thread"; 2043 if (bch_cache_allocator_start(ca)) 2044 goto err; 2045 2046 mutex_lock(&c->bucket_lock); 2047 bch_prio_write(ca, true); 2048 mutex_unlock(&c->bucket_lock); 2049 2050 err = "cannot allocate new UUID bucket"; 2051 if (__uuid_write(c)) 2052 goto err; 2053 2054 err = "cannot allocate new btree root"; 2055 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2056 if (IS_ERR_OR_NULL(c->root)) 2057 goto err; 2058 2059 mutex_lock(&c->root->write_lock); 2060 bkey_copy_key(&c->root->key, &MAX_KEY); 2061 bch_btree_node_write(c->root, &cl); 2062 mutex_unlock(&c->root->write_lock); 2063 2064 bch_btree_set_root(c->root); 2065 rw_unlock(true, c->root); 2066 2067 /* 2068 * We don't want to write the first journal entry until 2069 * everything is set up - fortunately journal entries won't be 2070 * written until the SET_CACHE_SYNC() here: 2071 */ 2072 SET_CACHE_SYNC(&c->cache->sb, true); 2073 2074 bch_journal_next(&c->journal); 2075 bch_journal_meta(c, &cl); 2076 } 2077 2078 err = "error starting gc thread"; 2079 if (bch_gc_thread_start(c)) 2080 goto err; 2081 2082 closure_sync(&cl); 2083 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2084 bcache_write_super(c); 2085 2086 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2087 bch_cached_dev_attach(dc, c, NULL); 2088 2089 flash_devs_run(c); 2090 2091 set_bit(CACHE_SET_RUNNING, &c->flags); 2092 return 0; 2093 err: 2094 while (!list_empty(&journal)) { 2095 l = list_first_entry(&journal, struct journal_replay, list); 2096 list_del(&l->list); 2097 kfree(l); 2098 } 2099 2100 closure_sync(&cl); 2101 2102 bch_cache_set_error(c, "%s", err); 2103 2104 return -EIO; 2105 } 2106 2107 static const char *register_cache_set(struct cache *ca) 2108 { 2109 char buf[12]; 2110 const char *err = "cannot allocate memory"; 2111 struct cache_set *c; 2112 2113 list_for_each_entry(c, &bch_cache_sets, list) 2114 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2115 if (c->cache) 2116 return "duplicate cache set member"; 2117 2118 goto found; 2119 } 2120 2121 c = bch_cache_set_alloc(&ca->sb); 2122 if (!c) 2123 return err; 2124 2125 err = "error creating kobject"; 2126 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2127 kobject_add(&c->internal, &c->kobj, "internal")) 2128 goto err; 2129 2130 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2131 goto err; 2132 2133 bch_debug_init_cache_set(c); 2134 2135 list_add(&c->list, &bch_cache_sets); 2136 found: 2137 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2138 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2139 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2140 goto err; 2141 2142 kobject_get(&ca->kobj); 2143 ca->set = c; 2144 ca->set->cache = ca; 2145 2146 err = "failed to run cache set"; 2147 if (run_cache_set(c) < 0) 2148 goto err; 2149 2150 return NULL; 2151 err: 2152 bch_cache_set_unregister(c); 2153 return err; 2154 } 2155 2156 /* Cache device */ 2157 2158 /* When ca->kobj released */ 2159 void bch_cache_release(struct kobject *kobj) 2160 { 2161 struct cache *ca = container_of(kobj, struct cache, kobj); 2162 unsigned int i; 2163 2164 if (ca->set) { 2165 BUG_ON(ca->set->cache != ca); 2166 ca->set->cache = NULL; 2167 } 2168 2169 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2170 kfree(ca->prio_buckets); 2171 vfree(ca->buckets); 2172 2173 free_heap(&ca->heap); 2174 free_fifo(&ca->free_inc); 2175 2176 for (i = 0; i < RESERVE_NR; i++) 2177 free_fifo(&ca->free[i]); 2178 2179 if (ca->sb_disk) 2180 put_page(virt_to_page(ca->sb_disk)); 2181 2182 if (!IS_ERR_OR_NULL(ca->bdev)) 2183 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2184 2185 kfree(ca); 2186 module_put(THIS_MODULE); 2187 } 2188 2189 static int cache_alloc(struct cache *ca) 2190 { 2191 size_t free; 2192 size_t btree_buckets; 2193 struct bucket *b; 2194 int ret = -ENOMEM; 2195 const char *err = NULL; 2196 2197 __module_get(THIS_MODULE); 2198 kobject_init(&ca->kobj, &bch_cache_ktype); 2199 2200 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2201 2202 /* 2203 * when ca->sb.njournal_buckets is not zero, journal exists, 2204 * and in bch_journal_replay(), tree node may split, 2205 * so bucket of RESERVE_BTREE type is needed, 2206 * the worst situation is all journal buckets are valid journal, 2207 * and all the keys need to replay, 2208 * so the number of RESERVE_BTREE type buckets should be as much 2209 * as journal buckets 2210 */ 2211 btree_buckets = ca->sb.njournal_buckets ?: 8; 2212 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2213 if (!free) { 2214 ret = -EPERM; 2215 err = "ca->sb.nbuckets is too small"; 2216 goto err_free; 2217 } 2218 2219 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2220 GFP_KERNEL)) { 2221 err = "ca->free[RESERVE_BTREE] alloc failed"; 2222 goto err_btree_alloc; 2223 } 2224 2225 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2226 GFP_KERNEL)) { 2227 err = "ca->free[RESERVE_PRIO] alloc failed"; 2228 goto err_prio_alloc; 2229 } 2230 2231 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2232 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2233 goto err_movinggc_alloc; 2234 } 2235 2236 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2237 err = "ca->free[RESERVE_NONE] alloc failed"; 2238 goto err_none_alloc; 2239 } 2240 2241 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2242 err = "ca->free_inc alloc failed"; 2243 goto err_free_inc_alloc; 2244 } 2245 2246 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2247 err = "ca->heap alloc failed"; 2248 goto err_heap_alloc; 2249 } 2250 2251 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2252 ca->sb.nbuckets)); 2253 if (!ca->buckets) { 2254 err = "ca->buckets alloc failed"; 2255 goto err_buckets_alloc; 2256 } 2257 2258 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2259 prio_buckets(ca), 2), 2260 GFP_KERNEL); 2261 if (!ca->prio_buckets) { 2262 err = "ca->prio_buckets alloc failed"; 2263 goto err_prio_buckets_alloc; 2264 } 2265 2266 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2267 if (!ca->disk_buckets) { 2268 err = "ca->disk_buckets alloc failed"; 2269 goto err_disk_buckets_alloc; 2270 } 2271 2272 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2273 2274 for_each_bucket(b, ca) 2275 atomic_set(&b->pin, 0); 2276 return 0; 2277 2278 err_disk_buckets_alloc: 2279 kfree(ca->prio_buckets); 2280 err_prio_buckets_alloc: 2281 vfree(ca->buckets); 2282 err_buckets_alloc: 2283 free_heap(&ca->heap); 2284 err_heap_alloc: 2285 free_fifo(&ca->free_inc); 2286 err_free_inc_alloc: 2287 free_fifo(&ca->free[RESERVE_NONE]); 2288 err_none_alloc: 2289 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2290 err_movinggc_alloc: 2291 free_fifo(&ca->free[RESERVE_PRIO]); 2292 err_prio_alloc: 2293 free_fifo(&ca->free[RESERVE_BTREE]); 2294 err_btree_alloc: 2295 err_free: 2296 module_put(THIS_MODULE); 2297 if (err) 2298 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2299 return ret; 2300 } 2301 2302 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2303 struct block_device *bdev, struct cache *ca) 2304 { 2305 const char *err = NULL; /* must be set for any error case */ 2306 int ret = 0; 2307 2308 bdevname(bdev, ca->cache_dev_name); 2309 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2310 ca->bdev = bdev; 2311 ca->bdev->bd_holder = ca; 2312 ca->sb_disk = sb_disk; 2313 2314 if (blk_queue_discard(bdev_get_queue(bdev))) 2315 ca->discard = CACHE_DISCARD(&ca->sb); 2316 2317 ret = cache_alloc(ca); 2318 if (ret != 0) { 2319 /* 2320 * If we failed here, it means ca->kobj is not initialized yet, 2321 * kobject_put() won't be called and there is no chance to 2322 * call blkdev_put() to bdev in bch_cache_release(). So we 2323 * explicitly call blkdev_put() here. 2324 */ 2325 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2326 if (ret == -ENOMEM) 2327 err = "cache_alloc(): -ENOMEM"; 2328 else if (ret == -EPERM) 2329 err = "cache_alloc(): cache device is too small"; 2330 else 2331 err = "cache_alloc(): unknown error"; 2332 goto err; 2333 } 2334 2335 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2336 err = "error calling kobject_add"; 2337 ret = -ENOMEM; 2338 goto out; 2339 } 2340 2341 mutex_lock(&bch_register_lock); 2342 err = register_cache_set(ca); 2343 mutex_unlock(&bch_register_lock); 2344 2345 if (err) { 2346 ret = -ENODEV; 2347 goto out; 2348 } 2349 2350 pr_info("registered cache device %s\n", ca->cache_dev_name); 2351 2352 out: 2353 kobject_put(&ca->kobj); 2354 2355 err: 2356 if (err) 2357 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2358 2359 return ret; 2360 } 2361 2362 /* Global interfaces/init */ 2363 2364 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2365 const char *buffer, size_t size); 2366 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2367 struct kobj_attribute *attr, 2368 const char *buffer, size_t size); 2369 2370 kobj_attribute_write(register, register_bcache); 2371 kobj_attribute_write(register_quiet, register_bcache); 2372 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2373 2374 static bool bch_is_open_backing(dev_t dev) 2375 { 2376 struct cache_set *c, *tc; 2377 struct cached_dev *dc, *t; 2378 2379 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2380 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2381 if (dc->bdev->bd_dev == dev) 2382 return true; 2383 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2384 if (dc->bdev->bd_dev == dev) 2385 return true; 2386 return false; 2387 } 2388 2389 static bool bch_is_open_cache(dev_t dev) 2390 { 2391 struct cache_set *c, *tc; 2392 2393 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2394 struct cache *ca = c->cache; 2395 2396 if (ca->bdev->bd_dev == dev) 2397 return true; 2398 } 2399 2400 return false; 2401 } 2402 2403 static bool bch_is_open(dev_t dev) 2404 { 2405 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2406 } 2407 2408 struct async_reg_args { 2409 struct delayed_work reg_work; 2410 char *path; 2411 struct cache_sb *sb; 2412 struct cache_sb_disk *sb_disk; 2413 struct block_device *bdev; 2414 }; 2415 2416 static void register_bdev_worker(struct work_struct *work) 2417 { 2418 int fail = false; 2419 struct async_reg_args *args = 2420 container_of(work, struct async_reg_args, reg_work.work); 2421 struct cached_dev *dc; 2422 2423 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2424 if (!dc) { 2425 fail = true; 2426 put_page(virt_to_page(args->sb_disk)); 2427 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2428 goto out; 2429 } 2430 2431 mutex_lock(&bch_register_lock); 2432 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2433 fail = true; 2434 mutex_unlock(&bch_register_lock); 2435 2436 out: 2437 if (fail) 2438 pr_info("error %s: fail to register backing device\n", 2439 args->path); 2440 kfree(args->sb); 2441 kfree(args->path); 2442 kfree(args); 2443 module_put(THIS_MODULE); 2444 } 2445 2446 static void register_cache_worker(struct work_struct *work) 2447 { 2448 int fail = false; 2449 struct async_reg_args *args = 2450 container_of(work, struct async_reg_args, reg_work.work); 2451 struct cache *ca; 2452 2453 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2454 if (!ca) { 2455 fail = true; 2456 put_page(virt_to_page(args->sb_disk)); 2457 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2458 goto out; 2459 } 2460 2461 /* blkdev_put() will be called in bch_cache_release() */ 2462 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2463 fail = true; 2464 2465 out: 2466 if (fail) 2467 pr_info("error %s: fail to register cache device\n", 2468 args->path); 2469 kfree(args->sb); 2470 kfree(args->path); 2471 kfree(args); 2472 module_put(THIS_MODULE); 2473 } 2474 2475 static void register_device_aync(struct async_reg_args *args) 2476 { 2477 if (SB_IS_BDEV(args->sb)) 2478 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2479 else 2480 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2481 2482 /* 10 jiffies is enough for a delay */ 2483 queue_delayed_work(system_wq, &args->reg_work, 10); 2484 } 2485 2486 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2487 const char *buffer, size_t size) 2488 { 2489 const char *err; 2490 char *path = NULL; 2491 struct cache_sb *sb; 2492 struct cache_sb_disk *sb_disk; 2493 struct block_device *bdev; 2494 ssize_t ret; 2495 bool async_registration = false; 2496 2497 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2498 async_registration = true; 2499 #endif 2500 2501 ret = -EBUSY; 2502 err = "failed to reference bcache module"; 2503 if (!try_module_get(THIS_MODULE)) 2504 goto out; 2505 2506 /* For latest state of bcache_is_reboot */ 2507 smp_mb(); 2508 err = "bcache is in reboot"; 2509 if (bcache_is_reboot) 2510 goto out_module_put; 2511 2512 ret = -ENOMEM; 2513 err = "cannot allocate memory"; 2514 path = kstrndup(buffer, size, GFP_KERNEL); 2515 if (!path) 2516 goto out_module_put; 2517 2518 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2519 if (!sb) 2520 goto out_free_path; 2521 2522 ret = -EINVAL; 2523 err = "failed to open device"; 2524 bdev = blkdev_get_by_path(strim(path), 2525 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2526 sb); 2527 if (IS_ERR(bdev)) { 2528 if (bdev == ERR_PTR(-EBUSY)) { 2529 dev_t dev; 2530 2531 mutex_lock(&bch_register_lock); 2532 if (lookup_bdev(strim(path), &dev) == 0 && 2533 bch_is_open(dev)) 2534 err = "device already registered"; 2535 else 2536 err = "device busy"; 2537 mutex_unlock(&bch_register_lock); 2538 if (!IS_ERR(bdev)) 2539 bdput(bdev); 2540 if (attr == &ksysfs_register_quiet) 2541 goto done; 2542 } 2543 goto out_free_sb; 2544 } 2545 2546 err = "failed to set blocksize"; 2547 if (set_blocksize(bdev, 4096)) 2548 goto out_blkdev_put; 2549 2550 err = read_super(sb, bdev, &sb_disk); 2551 if (err) 2552 goto out_blkdev_put; 2553 2554 err = "failed to register device"; 2555 2556 if (async_registration) { 2557 /* register in asynchronous way */ 2558 struct async_reg_args *args = 2559 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2560 2561 if (!args) { 2562 ret = -ENOMEM; 2563 err = "cannot allocate memory"; 2564 goto out_put_sb_page; 2565 } 2566 2567 args->path = path; 2568 args->sb = sb; 2569 args->sb_disk = sb_disk; 2570 args->bdev = bdev; 2571 register_device_aync(args); 2572 /* No wait and returns to user space */ 2573 goto async_done; 2574 } 2575 2576 if (SB_IS_BDEV(sb)) { 2577 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2578 2579 if (!dc) 2580 goto out_put_sb_page; 2581 2582 mutex_lock(&bch_register_lock); 2583 ret = register_bdev(sb, sb_disk, bdev, dc); 2584 mutex_unlock(&bch_register_lock); 2585 /* blkdev_put() will be called in cached_dev_free() */ 2586 if (ret < 0) 2587 goto out_free_sb; 2588 } else { 2589 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2590 2591 if (!ca) 2592 goto out_put_sb_page; 2593 2594 /* blkdev_put() will be called in bch_cache_release() */ 2595 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2596 goto out_free_sb; 2597 } 2598 2599 done: 2600 kfree(sb); 2601 kfree(path); 2602 module_put(THIS_MODULE); 2603 async_done: 2604 return size; 2605 2606 out_put_sb_page: 2607 put_page(virt_to_page(sb_disk)); 2608 out_blkdev_put: 2609 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2610 out_free_sb: 2611 kfree(sb); 2612 out_free_path: 2613 kfree(path); 2614 path = NULL; 2615 out_module_put: 2616 module_put(THIS_MODULE); 2617 out: 2618 pr_info("error %s: %s\n", path?path:"", err); 2619 return ret; 2620 } 2621 2622 2623 struct pdev { 2624 struct list_head list; 2625 struct cached_dev *dc; 2626 }; 2627 2628 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2629 struct kobj_attribute *attr, 2630 const char *buffer, 2631 size_t size) 2632 { 2633 LIST_HEAD(pending_devs); 2634 ssize_t ret = size; 2635 struct cached_dev *dc, *tdc; 2636 struct pdev *pdev, *tpdev; 2637 struct cache_set *c, *tc; 2638 2639 mutex_lock(&bch_register_lock); 2640 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2641 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2642 if (!pdev) 2643 break; 2644 pdev->dc = dc; 2645 list_add(&pdev->list, &pending_devs); 2646 } 2647 2648 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2649 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2650 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2651 char *set_uuid = c->set_uuid; 2652 2653 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2654 list_del(&pdev->list); 2655 kfree(pdev); 2656 break; 2657 } 2658 } 2659 } 2660 mutex_unlock(&bch_register_lock); 2661 2662 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2663 pr_info("delete pdev %p\n", pdev); 2664 list_del(&pdev->list); 2665 bcache_device_stop(&pdev->dc->disk); 2666 kfree(pdev); 2667 } 2668 2669 return ret; 2670 } 2671 2672 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2673 { 2674 if (bcache_is_reboot) 2675 return NOTIFY_DONE; 2676 2677 if (code == SYS_DOWN || 2678 code == SYS_HALT || 2679 code == SYS_POWER_OFF) { 2680 DEFINE_WAIT(wait); 2681 unsigned long start = jiffies; 2682 bool stopped = false; 2683 2684 struct cache_set *c, *tc; 2685 struct cached_dev *dc, *tdc; 2686 2687 mutex_lock(&bch_register_lock); 2688 2689 if (bcache_is_reboot) 2690 goto out; 2691 2692 /* New registration is rejected since now */ 2693 bcache_is_reboot = true; 2694 /* 2695 * Make registering caller (if there is) on other CPU 2696 * core know bcache_is_reboot set to true earlier 2697 */ 2698 smp_mb(); 2699 2700 if (list_empty(&bch_cache_sets) && 2701 list_empty(&uncached_devices)) 2702 goto out; 2703 2704 mutex_unlock(&bch_register_lock); 2705 2706 pr_info("Stopping all devices:\n"); 2707 2708 /* 2709 * The reason bch_register_lock is not held to call 2710 * bch_cache_set_stop() and bcache_device_stop() is to 2711 * avoid potential deadlock during reboot, because cache 2712 * set or bcache device stopping process will acqurie 2713 * bch_register_lock too. 2714 * 2715 * We are safe here because bcache_is_reboot sets to 2716 * true already, register_bcache() will reject new 2717 * registration now. bcache_is_reboot also makes sure 2718 * bcache_reboot() won't be re-entered on by other thread, 2719 * so there is no race in following list iteration by 2720 * list_for_each_entry_safe(). 2721 */ 2722 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2723 bch_cache_set_stop(c); 2724 2725 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2726 bcache_device_stop(&dc->disk); 2727 2728 2729 /* 2730 * Give an early chance for other kthreads and 2731 * kworkers to stop themselves 2732 */ 2733 schedule(); 2734 2735 /* What's a condition variable? */ 2736 while (1) { 2737 long timeout = start + 10 * HZ - jiffies; 2738 2739 mutex_lock(&bch_register_lock); 2740 stopped = list_empty(&bch_cache_sets) && 2741 list_empty(&uncached_devices); 2742 2743 if (timeout < 0 || stopped) 2744 break; 2745 2746 prepare_to_wait(&unregister_wait, &wait, 2747 TASK_UNINTERRUPTIBLE); 2748 2749 mutex_unlock(&bch_register_lock); 2750 schedule_timeout(timeout); 2751 } 2752 2753 finish_wait(&unregister_wait, &wait); 2754 2755 if (stopped) 2756 pr_info("All devices stopped\n"); 2757 else 2758 pr_notice("Timeout waiting for devices to be closed\n"); 2759 out: 2760 mutex_unlock(&bch_register_lock); 2761 } 2762 2763 return NOTIFY_DONE; 2764 } 2765 2766 static struct notifier_block reboot = { 2767 .notifier_call = bcache_reboot, 2768 .priority = INT_MAX, /* before any real devices */ 2769 }; 2770 2771 static void bcache_exit(void) 2772 { 2773 bch_debug_exit(); 2774 bch_request_exit(); 2775 if (bcache_kobj) 2776 kobject_put(bcache_kobj); 2777 if (bcache_wq) 2778 destroy_workqueue(bcache_wq); 2779 if (bch_journal_wq) 2780 destroy_workqueue(bch_journal_wq); 2781 2782 if (bcache_major) 2783 unregister_blkdev(bcache_major, "bcache"); 2784 unregister_reboot_notifier(&reboot); 2785 mutex_destroy(&bch_register_lock); 2786 } 2787 2788 /* Check and fixup module parameters */ 2789 static void check_module_parameters(void) 2790 { 2791 if (bch_cutoff_writeback_sync == 0) 2792 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2793 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2794 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2795 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2796 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2797 } 2798 2799 if (bch_cutoff_writeback == 0) 2800 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2801 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2802 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2803 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2804 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2805 } 2806 2807 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2808 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2809 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2810 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2811 } 2812 } 2813 2814 static int __init bcache_init(void) 2815 { 2816 static const struct attribute *files[] = { 2817 &ksysfs_register.attr, 2818 &ksysfs_register_quiet.attr, 2819 &ksysfs_pendings_cleanup.attr, 2820 NULL 2821 }; 2822 2823 check_module_parameters(); 2824 2825 mutex_init(&bch_register_lock); 2826 init_waitqueue_head(&unregister_wait); 2827 register_reboot_notifier(&reboot); 2828 2829 bcache_major = register_blkdev(0, "bcache"); 2830 if (bcache_major < 0) { 2831 unregister_reboot_notifier(&reboot); 2832 mutex_destroy(&bch_register_lock); 2833 return bcache_major; 2834 } 2835 2836 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2837 if (!bcache_wq) 2838 goto err; 2839 2840 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2841 if (!bch_journal_wq) 2842 goto err; 2843 2844 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2845 if (!bcache_kobj) 2846 goto err; 2847 2848 if (bch_request_init() || 2849 sysfs_create_files(bcache_kobj, files)) 2850 goto err; 2851 2852 bch_debug_init(); 2853 closure_debug_init(); 2854 2855 bcache_is_reboot = false; 2856 2857 return 0; 2858 err: 2859 bcache_exit(); 2860 return -ENOMEM; 2861 } 2862 2863 /* 2864 * Module hooks 2865 */ 2866 module_exit(bcache_exit); 2867 module_init(bcache_init); 2868 2869 module_param(bch_cutoff_writeback, uint, 0); 2870 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2871 2872 module_param(bch_cutoff_writeback_sync, uint, 0); 2873 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2874 2875 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2876 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2877 MODULE_LICENSE("GPL"); 2878