1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 17 #include <linux/blkdev.h> 18 #include <linux/buffer_head.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/module.h> 24 #include <linux/random.h> 25 #include <linux/reboot.h> 26 #include <linux/sysfs.h> 27 28 unsigned int bch_cutoff_writeback; 29 unsigned int bch_cutoff_writeback_sync; 30 31 static const char bcache_magic[] = { 32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 34 }; 35 36 static const char invalid_uuid[] = { 37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 39 }; 40 41 static struct kobject *bcache_kobj; 42 struct mutex bch_register_lock; 43 bool bcache_is_reboot; 44 LIST_HEAD(bch_cache_sets); 45 static LIST_HEAD(uncached_devices); 46 47 static int bcache_major; 48 static DEFINE_IDA(bcache_device_idx); 49 static wait_queue_head_t unregister_wait; 50 struct workqueue_struct *bcache_wq; 51 struct workqueue_struct *bch_journal_wq; 52 53 54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 55 /* limitation of partitions number on single bcache device */ 56 #define BCACHE_MINORS 128 57 /* limitation of bcache devices number on single system */ 58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 59 60 /* Superblock */ 61 62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 63 struct page **res) 64 { 65 const char *err; 66 struct cache_sb *s; 67 struct buffer_head *bh = __bread(bdev, 1, SB_SIZE); 68 unsigned int i; 69 70 if (!bh) 71 return "IO error"; 72 73 s = (struct cache_sb *) bh->b_data; 74 75 sb->offset = le64_to_cpu(s->offset); 76 sb->version = le64_to_cpu(s->version); 77 78 memcpy(sb->magic, s->magic, 16); 79 memcpy(sb->uuid, s->uuid, 16); 80 memcpy(sb->set_uuid, s->set_uuid, 16); 81 memcpy(sb->label, s->label, SB_LABEL_SIZE); 82 83 sb->flags = le64_to_cpu(s->flags); 84 sb->seq = le64_to_cpu(s->seq); 85 sb->last_mount = le32_to_cpu(s->last_mount); 86 sb->first_bucket = le16_to_cpu(s->first_bucket); 87 sb->keys = le16_to_cpu(s->keys); 88 89 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 90 sb->d[i] = le64_to_cpu(s->d[i]); 91 92 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u", 93 sb->version, sb->flags, sb->seq, sb->keys); 94 95 err = "Not a bcache superblock (bad offset)"; 96 if (sb->offset != SB_SECTOR) 97 goto err; 98 99 err = "Not a bcache superblock (bad magic)"; 100 if (memcmp(sb->magic, bcache_magic, 16)) 101 goto err; 102 103 err = "Too many journal buckets"; 104 if (sb->keys > SB_JOURNAL_BUCKETS) 105 goto err; 106 107 err = "Bad checksum"; 108 if (s->csum != csum_set(s)) 109 goto err; 110 111 err = "Bad UUID"; 112 if (bch_is_zero(sb->uuid, 16)) 113 goto err; 114 115 sb->block_size = le16_to_cpu(s->block_size); 116 117 err = "Superblock block size smaller than device block size"; 118 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 119 goto err; 120 121 switch (sb->version) { 122 case BCACHE_SB_VERSION_BDEV: 123 sb->data_offset = BDEV_DATA_START_DEFAULT; 124 break; 125 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 126 sb->data_offset = le64_to_cpu(s->data_offset); 127 128 err = "Bad data offset"; 129 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 130 goto err; 131 132 break; 133 case BCACHE_SB_VERSION_CDEV: 134 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 135 sb->nbuckets = le64_to_cpu(s->nbuckets); 136 sb->bucket_size = le16_to_cpu(s->bucket_size); 137 138 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 139 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 140 141 err = "Too many buckets"; 142 if (sb->nbuckets > LONG_MAX) 143 goto err; 144 145 err = "Not enough buckets"; 146 if (sb->nbuckets < 1 << 7) 147 goto err; 148 149 err = "Bad block/bucket size"; 150 if (!is_power_of_2(sb->block_size) || 151 sb->block_size > PAGE_SECTORS || 152 !is_power_of_2(sb->bucket_size) || 153 sb->bucket_size < PAGE_SECTORS) 154 goto err; 155 156 err = "Invalid superblock: device too small"; 157 if (get_capacity(bdev->bd_disk) < 158 sb->bucket_size * sb->nbuckets) 159 goto err; 160 161 err = "Bad UUID"; 162 if (bch_is_zero(sb->set_uuid, 16)) 163 goto err; 164 165 err = "Bad cache device number in set"; 166 if (!sb->nr_in_set || 167 sb->nr_in_set <= sb->nr_this_dev || 168 sb->nr_in_set > MAX_CACHES_PER_SET) 169 goto err; 170 171 err = "Journal buckets not sequential"; 172 for (i = 0; i < sb->keys; i++) 173 if (sb->d[i] != sb->first_bucket + i) 174 goto err; 175 176 err = "Too many journal buckets"; 177 if (sb->first_bucket + sb->keys > sb->nbuckets) 178 goto err; 179 180 err = "Invalid superblock: first bucket comes before end of super"; 181 if (sb->first_bucket * sb->bucket_size < 16) 182 goto err; 183 184 break; 185 default: 186 err = "Unsupported superblock version"; 187 goto err; 188 } 189 190 sb->last_mount = (u32)ktime_get_real_seconds(); 191 err = NULL; 192 193 get_page(bh->b_page); 194 *res = bh->b_page; 195 err: 196 put_bh(bh); 197 return err; 198 } 199 200 static void write_bdev_super_endio(struct bio *bio) 201 { 202 struct cached_dev *dc = bio->bi_private; 203 204 if (bio->bi_status) 205 bch_count_backing_io_errors(dc, bio); 206 207 closure_put(&dc->sb_write); 208 } 209 210 static void __write_super(struct cache_sb *sb, struct bio *bio) 211 { 212 struct cache_sb *out = page_address(bio_first_page_all(bio)); 213 unsigned int i; 214 215 bio->bi_iter.bi_sector = SB_SECTOR; 216 bio->bi_iter.bi_size = SB_SIZE; 217 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META); 218 bch_bio_map(bio, NULL); 219 220 out->offset = cpu_to_le64(sb->offset); 221 out->version = cpu_to_le64(sb->version); 222 223 memcpy(out->uuid, sb->uuid, 16); 224 memcpy(out->set_uuid, sb->set_uuid, 16); 225 memcpy(out->label, sb->label, SB_LABEL_SIZE); 226 227 out->flags = cpu_to_le64(sb->flags); 228 out->seq = cpu_to_le64(sb->seq); 229 230 out->last_mount = cpu_to_le32(sb->last_mount); 231 out->first_bucket = cpu_to_le16(sb->first_bucket); 232 out->keys = cpu_to_le16(sb->keys); 233 234 for (i = 0; i < sb->keys; i++) 235 out->d[i] = cpu_to_le64(sb->d[i]); 236 237 out->csum = csum_set(out); 238 239 pr_debug("ver %llu, flags %llu, seq %llu", 240 sb->version, sb->flags, sb->seq); 241 242 submit_bio(bio); 243 } 244 245 static void bch_write_bdev_super_unlock(struct closure *cl) 246 { 247 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 248 249 up(&dc->sb_write_mutex); 250 } 251 252 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 253 { 254 struct closure *cl = &dc->sb_write; 255 struct bio *bio = &dc->sb_bio; 256 257 down(&dc->sb_write_mutex); 258 closure_init(cl, parent); 259 260 bio_reset(bio); 261 bio_set_dev(bio, dc->bdev); 262 bio->bi_end_io = write_bdev_super_endio; 263 bio->bi_private = dc; 264 265 closure_get(cl); 266 /* I/O request sent to backing device */ 267 __write_super(&dc->sb, bio); 268 269 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 270 } 271 272 static void write_super_endio(struct bio *bio) 273 { 274 struct cache *ca = bio->bi_private; 275 276 /* is_read = 0 */ 277 bch_count_io_errors(ca, bio->bi_status, 0, 278 "writing superblock"); 279 closure_put(&ca->set->sb_write); 280 } 281 282 static void bcache_write_super_unlock(struct closure *cl) 283 { 284 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 285 286 up(&c->sb_write_mutex); 287 } 288 289 void bcache_write_super(struct cache_set *c) 290 { 291 struct closure *cl = &c->sb_write; 292 struct cache *ca; 293 unsigned int i; 294 295 down(&c->sb_write_mutex); 296 closure_init(cl, &c->cl); 297 298 c->sb.seq++; 299 300 for_each_cache(ca, c, i) { 301 struct bio *bio = &ca->sb_bio; 302 303 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 304 ca->sb.seq = c->sb.seq; 305 ca->sb.last_mount = c->sb.last_mount; 306 307 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 308 309 bio_reset(bio); 310 bio_set_dev(bio, ca->bdev); 311 bio->bi_end_io = write_super_endio; 312 bio->bi_private = ca; 313 314 closure_get(cl); 315 __write_super(&ca->sb, bio); 316 } 317 318 closure_return_with_destructor(cl, bcache_write_super_unlock); 319 } 320 321 /* UUID io */ 322 323 static void uuid_endio(struct bio *bio) 324 { 325 struct closure *cl = bio->bi_private; 326 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 327 328 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 329 bch_bbio_free(bio, c); 330 closure_put(cl); 331 } 332 333 static void uuid_io_unlock(struct closure *cl) 334 { 335 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 336 337 up(&c->uuid_write_mutex); 338 } 339 340 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 341 struct bkey *k, struct closure *parent) 342 { 343 struct closure *cl = &c->uuid_write; 344 struct uuid_entry *u; 345 unsigned int i; 346 char buf[80]; 347 348 BUG_ON(!parent); 349 down(&c->uuid_write_mutex); 350 closure_init(cl, parent); 351 352 for (i = 0; i < KEY_PTRS(k); i++) { 353 struct bio *bio = bch_bbio_alloc(c); 354 355 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 356 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 357 358 bio->bi_end_io = uuid_endio; 359 bio->bi_private = cl; 360 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 361 bch_bio_map(bio, c->uuids); 362 363 bch_submit_bbio(bio, c, k, i); 364 365 if (op != REQ_OP_WRITE) 366 break; 367 } 368 369 bch_extent_to_text(buf, sizeof(buf), k); 370 pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf); 371 372 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 373 if (!bch_is_zero(u->uuid, 16)) 374 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u", 375 u - c->uuids, u->uuid, u->label, 376 u->first_reg, u->last_reg, u->invalidated); 377 378 closure_return_with_destructor(cl, uuid_io_unlock); 379 } 380 381 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 382 { 383 struct bkey *k = &j->uuid_bucket; 384 385 if (__bch_btree_ptr_invalid(c, k)) 386 return "bad uuid pointer"; 387 388 bkey_copy(&c->uuid_bucket, k); 389 uuid_io(c, REQ_OP_READ, 0, k, cl); 390 391 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 392 struct uuid_entry_v0 *u0 = (void *) c->uuids; 393 struct uuid_entry *u1 = (void *) c->uuids; 394 int i; 395 396 closure_sync(cl); 397 398 /* 399 * Since the new uuid entry is bigger than the old, we have to 400 * convert starting at the highest memory address and work down 401 * in order to do it in place 402 */ 403 404 for (i = c->nr_uuids - 1; 405 i >= 0; 406 --i) { 407 memcpy(u1[i].uuid, u0[i].uuid, 16); 408 memcpy(u1[i].label, u0[i].label, 32); 409 410 u1[i].first_reg = u0[i].first_reg; 411 u1[i].last_reg = u0[i].last_reg; 412 u1[i].invalidated = u0[i].invalidated; 413 414 u1[i].flags = 0; 415 u1[i].sectors = 0; 416 } 417 } 418 419 return NULL; 420 } 421 422 static int __uuid_write(struct cache_set *c) 423 { 424 BKEY_PADDED(key) k; 425 struct closure cl; 426 struct cache *ca; 427 428 closure_init_stack(&cl); 429 lockdep_assert_held(&bch_register_lock); 430 431 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 432 return 1; 433 434 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 435 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 436 closure_sync(&cl); 437 438 /* Only one bucket used for uuid write */ 439 ca = PTR_CACHE(c, &k.key, 0); 440 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 441 442 bkey_copy(&c->uuid_bucket, &k.key); 443 bkey_put(c, &k.key); 444 return 0; 445 } 446 447 int bch_uuid_write(struct cache_set *c) 448 { 449 int ret = __uuid_write(c); 450 451 if (!ret) 452 bch_journal_meta(c, NULL); 453 454 return ret; 455 } 456 457 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 458 { 459 struct uuid_entry *u; 460 461 for (u = c->uuids; 462 u < c->uuids + c->nr_uuids; u++) 463 if (!memcmp(u->uuid, uuid, 16)) 464 return u; 465 466 return NULL; 467 } 468 469 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 470 { 471 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 472 473 return uuid_find(c, zero_uuid); 474 } 475 476 /* 477 * Bucket priorities/gens: 478 * 479 * For each bucket, we store on disk its 480 * 8 bit gen 481 * 16 bit priority 482 * 483 * See alloc.c for an explanation of the gen. The priority is used to implement 484 * lru (and in the future other) cache replacement policies; for most purposes 485 * it's just an opaque integer. 486 * 487 * The gens and the priorities don't have a whole lot to do with each other, and 488 * it's actually the gens that must be written out at specific times - it's no 489 * big deal if the priorities don't get written, if we lose them we just reuse 490 * buckets in suboptimal order. 491 * 492 * On disk they're stored in a packed array, and in as many buckets are required 493 * to fit them all. The buckets we use to store them form a list; the journal 494 * header points to the first bucket, the first bucket points to the second 495 * bucket, et cetera. 496 * 497 * This code is used by the allocation code; periodically (whenever it runs out 498 * of buckets to allocate from) the allocation code will invalidate some 499 * buckets, but it can't use those buckets until their new gens are safely on 500 * disk. 501 */ 502 503 static void prio_endio(struct bio *bio) 504 { 505 struct cache *ca = bio->bi_private; 506 507 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 508 bch_bbio_free(bio, ca->set); 509 closure_put(&ca->prio); 510 } 511 512 static void prio_io(struct cache *ca, uint64_t bucket, int op, 513 unsigned long op_flags) 514 { 515 struct closure *cl = &ca->prio; 516 struct bio *bio = bch_bbio_alloc(ca->set); 517 518 closure_init_stack(cl); 519 520 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 521 bio_set_dev(bio, ca->bdev); 522 bio->bi_iter.bi_size = bucket_bytes(ca); 523 524 bio->bi_end_io = prio_endio; 525 bio->bi_private = ca; 526 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 527 bch_bio_map(bio, ca->disk_buckets); 528 529 closure_bio_submit(ca->set, bio, &ca->prio); 530 closure_sync(cl); 531 } 532 533 int bch_prio_write(struct cache *ca, bool wait) 534 { 535 int i; 536 struct bucket *b; 537 struct closure cl; 538 539 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu", 540 fifo_used(&ca->free[RESERVE_PRIO]), 541 fifo_used(&ca->free[RESERVE_NONE]), 542 fifo_used(&ca->free_inc)); 543 544 /* 545 * Pre-check if there are enough free buckets. In the non-blocking 546 * scenario it's better to fail early rather than starting to allocate 547 * buckets and do a cleanup later in case of failure. 548 */ 549 if (!wait) { 550 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 551 fifo_used(&ca->free[RESERVE_NONE]); 552 if (prio_buckets(ca) > avail) 553 return -ENOMEM; 554 } 555 556 closure_init_stack(&cl); 557 558 lockdep_assert_held(&ca->set->bucket_lock); 559 560 ca->disk_buckets->seq++; 561 562 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 563 &ca->meta_sectors_written); 564 565 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 566 long bucket; 567 struct prio_set *p = ca->disk_buckets; 568 struct bucket_disk *d = p->data; 569 struct bucket_disk *end = d + prios_per_bucket(ca); 570 571 for (b = ca->buckets + i * prios_per_bucket(ca); 572 b < ca->buckets + ca->sb.nbuckets && d < end; 573 b++, d++) { 574 d->prio = cpu_to_le16(b->prio); 575 d->gen = b->gen; 576 } 577 578 p->next_bucket = ca->prio_buckets[i + 1]; 579 p->magic = pset_magic(&ca->sb); 580 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 581 582 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 583 BUG_ON(bucket == -1); 584 585 mutex_unlock(&ca->set->bucket_lock); 586 prio_io(ca, bucket, REQ_OP_WRITE, 0); 587 mutex_lock(&ca->set->bucket_lock); 588 589 ca->prio_buckets[i] = bucket; 590 atomic_dec_bug(&ca->buckets[bucket].pin); 591 } 592 593 mutex_unlock(&ca->set->bucket_lock); 594 595 bch_journal_meta(ca->set, &cl); 596 closure_sync(&cl); 597 598 mutex_lock(&ca->set->bucket_lock); 599 600 /* 601 * Don't want the old priorities to get garbage collected until after we 602 * finish writing the new ones, and they're journalled 603 */ 604 for (i = 0; i < prio_buckets(ca); i++) { 605 if (ca->prio_last_buckets[i]) 606 __bch_bucket_free(ca, 607 &ca->buckets[ca->prio_last_buckets[i]]); 608 609 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 610 } 611 return 0; 612 } 613 614 static void prio_read(struct cache *ca, uint64_t bucket) 615 { 616 struct prio_set *p = ca->disk_buckets; 617 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 618 struct bucket *b; 619 unsigned int bucket_nr = 0; 620 621 for (b = ca->buckets; 622 b < ca->buckets + ca->sb.nbuckets; 623 b++, d++) { 624 if (d == end) { 625 ca->prio_buckets[bucket_nr] = bucket; 626 ca->prio_last_buckets[bucket_nr] = bucket; 627 bucket_nr++; 628 629 prio_io(ca, bucket, REQ_OP_READ, 0); 630 631 if (p->csum != 632 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) 633 pr_warn("bad csum reading priorities"); 634 635 if (p->magic != pset_magic(&ca->sb)) 636 pr_warn("bad magic reading priorities"); 637 638 bucket = p->next_bucket; 639 d = p->data; 640 } 641 642 b->prio = le16_to_cpu(d->prio); 643 b->gen = b->last_gc = d->gen; 644 } 645 } 646 647 /* Bcache device */ 648 649 static int open_dev(struct block_device *b, fmode_t mode) 650 { 651 struct bcache_device *d = b->bd_disk->private_data; 652 653 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 654 return -ENXIO; 655 656 closure_get(&d->cl); 657 return 0; 658 } 659 660 static void release_dev(struct gendisk *b, fmode_t mode) 661 { 662 struct bcache_device *d = b->private_data; 663 664 closure_put(&d->cl); 665 } 666 667 static int ioctl_dev(struct block_device *b, fmode_t mode, 668 unsigned int cmd, unsigned long arg) 669 { 670 struct bcache_device *d = b->bd_disk->private_data; 671 672 return d->ioctl(d, mode, cmd, arg); 673 } 674 675 static const struct block_device_operations bcache_ops = { 676 .open = open_dev, 677 .release = release_dev, 678 .ioctl = ioctl_dev, 679 .owner = THIS_MODULE, 680 }; 681 682 void bcache_device_stop(struct bcache_device *d) 683 { 684 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 685 /* 686 * closure_fn set to 687 * - cached device: cached_dev_flush() 688 * - flash dev: flash_dev_flush() 689 */ 690 closure_queue(&d->cl); 691 } 692 693 static void bcache_device_unlink(struct bcache_device *d) 694 { 695 lockdep_assert_held(&bch_register_lock); 696 697 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 698 unsigned int i; 699 struct cache *ca; 700 701 sysfs_remove_link(&d->c->kobj, d->name); 702 sysfs_remove_link(&d->kobj, "cache"); 703 704 for_each_cache(ca, d->c, i) 705 bd_unlink_disk_holder(ca->bdev, d->disk); 706 } 707 } 708 709 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 710 const char *name) 711 { 712 unsigned int i; 713 struct cache *ca; 714 int ret; 715 716 for_each_cache(ca, d->c, i) 717 bd_link_disk_holder(ca->bdev, d->disk); 718 719 snprintf(d->name, BCACHEDEVNAME_SIZE, 720 "%s%u", name, d->id); 721 722 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 723 if (ret < 0) 724 pr_err("Couldn't create device -> cache set symlink"); 725 726 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 727 if (ret < 0) 728 pr_err("Couldn't create cache set -> device symlink"); 729 730 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 731 } 732 733 static void bcache_device_detach(struct bcache_device *d) 734 { 735 lockdep_assert_held(&bch_register_lock); 736 737 atomic_dec(&d->c->attached_dev_nr); 738 739 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 740 struct uuid_entry *u = d->c->uuids + d->id; 741 742 SET_UUID_FLASH_ONLY(u, 0); 743 memcpy(u->uuid, invalid_uuid, 16); 744 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 745 bch_uuid_write(d->c); 746 } 747 748 bcache_device_unlink(d); 749 750 d->c->devices[d->id] = NULL; 751 closure_put(&d->c->caching); 752 d->c = NULL; 753 } 754 755 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 756 unsigned int id) 757 { 758 d->id = id; 759 d->c = c; 760 c->devices[id] = d; 761 762 if (id >= c->devices_max_used) 763 c->devices_max_used = id + 1; 764 765 closure_get(&c->caching); 766 } 767 768 static inline int first_minor_to_idx(int first_minor) 769 { 770 return (first_minor/BCACHE_MINORS); 771 } 772 773 static inline int idx_to_first_minor(int idx) 774 { 775 return (idx * BCACHE_MINORS); 776 } 777 778 static void bcache_device_free(struct bcache_device *d) 779 { 780 struct gendisk *disk = d->disk; 781 782 lockdep_assert_held(&bch_register_lock); 783 784 if (disk) 785 pr_info("%s stopped", disk->disk_name); 786 else 787 pr_err("bcache device (NULL gendisk) stopped"); 788 789 if (d->c) 790 bcache_device_detach(d); 791 792 if (disk) { 793 if (disk->flags & GENHD_FL_UP) 794 del_gendisk(disk); 795 796 if (disk->queue) 797 blk_cleanup_queue(disk->queue); 798 799 ida_simple_remove(&bcache_device_idx, 800 first_minor_to_idx(disk->first_minor)); 801 put_disk(disk); 802 } 803 804 bioset_exit(&d->bio_split); 805 kvfree(d->full_dirty_stripes); 806 kvfree(d->stripe_sectors_dirty); 807 808 closure_debug_destroy(&d->cl); 809 } 810 811 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 812 sector_t sectors) 813 { 814 struct request_queue *q; 815 const size_t max_stripes = min_t(size_t, INT_MAX, 816 SIZE_MAX / sizeof(atomic_t)); 817 size_t n; 818 int idx; 819 820 if (!d->stripe_size) 821 d->stripe_size = 1 << 31; 822 823 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 824 825 if (!d->nr_stripes || d->nr_stripes > max_stripes) { 826 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)", 827 (unsigned int)d->nr_stripes); 828 return -ENOMEM; 829 } 830 831 n = d->nr_stripes * sizeof(atomic_t); 832 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 833 if (!d->stripe_sectors_dirty) 834 return -ENOMEM; 835 836 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 837 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 838 if (!d->full_dirty_stripes) 839 return -ENOMEM; 840 841 idx = ida_simple_get(&bcache_device_idx, 0, 842 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 843 if (idx < 0) 844 return idx; 845 846 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 847 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 848 goto err; 849 850 d->disk = alloc_disk(BCACHE_MINORS); 851 if (!d->disk) 852 goto err; 853 854 set_capacity(d->disk, sectors); 855 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 856 857 d->disk->major = bcache_major; 858 d->disk->first_minor = idx_to_first_minor(idx); 859 d->disk->fops = &bcache_ops; 860 d->disk->private_data = d; 861 862 q = blk_alloc_queue(GFP_KERNEL); 863 if (!q) 864 return -ENOMEM; 865 866 blk_queue_make_request(q, NULL); 867 d->disk->queue = q; 868 q->queuedata = d; 869 q->backing_dev_info->congested_data = d; 870 q->limits.max_hw_sectors = UINT_MAX; 871 q->limits.max_sectors = UINT_MAX; 872 q->limits.max_segment_size = UINT_MAX; 873 q->limits.max_segments = BIO_MAX_PAGES; 874 blk_queue_max_discard_sectors(q, UINT_MAX); 875 q->limits.discard_granularity = 512; 876 q->limits.io_min = block_size; 877 q->limits.logical_block_size = block_size; 878 q->limits.physical_block_size = block_size; 879 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 880 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 881 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 882 883 blk_queue_write_cache(q, true, true); 884 885 return 0; 886 887 err: 888 ida_simple_remove(&bcache_device_idx, idx); 889 return -ENOMEM; 890 891 } 892 893 /* Cached device */ 894 895 static void calc_cached_dev_sectors(struct cache_set *c) 896 { 897 uint64_t sectors = 0; 898 struct cached_dev *dc; 899 900 list_for_each_entry(dc, &c->cached_devs, list) 901 sectors += bdev_sectors(dc->bdev); 902 903 c->cached_dev_sectors = sectors; 904 } 905 906 #define BACKING_DEV_OFFLINE_TIMEOUT 5 907 static int cached_dev_status_update(void *arg) 908 { 909 struct cached_dev *dc = arg; 910 struct request_queue *q; 911 912 /* 913 * If this delayed worker is stopping outside, directly quit here. 914 * dc->io_disable might be set via sysfs interface, so check it 915 * here too. 916 */ 917 while (!kthread_should_stop() && !dc->io_disable) { 918 q = bdev_get_queue(dc->bdev); 919 if (blk_queue_dying(q)) 920 dc->offline_seconds++; 921 else 922 dc->offline_seconds = 0; 923 924 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 925 pr_err("%s: device offline for %d seconds", 926 dc->backing_dev_name, 927 BACKING_DEV_OFFLINE_TIMEOUT); 928 pr_err("%s: disable I/O request due to backing " 929 "device offline", dc->disk.name); 930 dc->io_disable = true; 931 /* let others know earlier that io_disable is true */ 932 smp_mb(); 933 bcache_device_stop(&dc->disk); 934 break; 935 } 936 schedule_timeout_interruptible(HZ); 937 } 938 939 wait_for_kthread_stop(); 940 return 0; 941 } 942 943 944 int bch_cached_dev_run(struct cached_dev *dc) 945 { 946 struct bcache_device *d = &dc->disk; 947 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 948 char *env[] = { 949 "DRIVER=bcache", 950 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 951 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 952 NULL, 953 }; 954 955 if (dc->io_disable) { 956 pr_err("I/O disabled on cached dev %s", 957 dc->backing_dev_name); 958 kfree(env[1]); 959 kfree(env[2]); 960 kfree(buf); 961 return -EIO; 962 } 963 964 if (atomic_xchg(&dc->running, 1)) { 965 kfree(env[1]); 966 kfree(env[2]); 967 kfree(buf); 968 pr_info("cached dev %s is running already", 969 dc->backing_dev_name); 970 return -EBUSY; 971 } 972 973 if (!d->c && 974 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 975 struct closure cl; 976 977 closure_init_stack(&cl); 978 979 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 980 bch_write_bdev_super(dc, &cl); 981 closure_sync(&cl); 982 } 983 984 add_disk(d->disk); 985 bd_link_disk_holder(dc->bdev, dc->disk.disk); 986 /* 987 * won't show up in the uevent file, use udevadm monitor -e instead 988 * only class / kset properties are persistent 989 */ 990 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 991 kfree(env[1]); 992 kfree(env[2]); 993 kfree(buf); 994 995 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 996 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 997 &d->kobj, "bcache")) { 998 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks"); 999 return -ENOMEM; 1000 } 1001 1002 dc->status_update_thread = kthread_run(cached_dev_status_update, 1003 dc, "bcache_status_update"); 1004 if (IS_ERR(dc->status_update_thread)) { 1005 pr_warn("failed to create bcache_status_update kthread, " 1006 "continue to run without monitoring backing " 1007 "device status"); 1008 } 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1015 * work dc->writeback_rate_update is running. Wait until the routine 1016 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1017 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1018 * seconds, give up waiting here and continue to cancel it too. 1019 */ 1020 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1021 { 1022 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1023 1024 do { 1025 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1026 &dc->disk.flags)) 1027 break; 1028 time_out--; 1029 schedule_timeout_interruptible(1); 1030 } while (time_out > 0); 1031 1032 if (time_out == 0) 1033 pr_warn("give up waiting for dc->writeback_write_update to quit"); 1034 1035 cancel_delayed_work_sync(&dc->writeback_rate_update); 1036 } 1037 1038 static void cached_dev_detach_finish(struct work_struct *w) 1039 { 1040 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1041 struct closure cl; 1042 1043 closure_init_stack(&cl); 1044 1045 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1046 BUG_ON(refcount_read(&dc->count)); 1047 1048 1049 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1050 cancel_writeback_rate_update_dwork(dc); 1051 1052 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1053 kthread_stop(dc->writeback_thread); 1054 dc->writeback_thread = NULL; 1055 } 1056 1057 memset(&dc->sb.set_uuid, 0, 16); 1058 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1059 1060 bch_write_bdev_super(dc, &cl); 1061 closure_sync(&cl); 1062 1063 mutex_lock(&bch_register_lock); 1064 1065 calc_cached_dev_sectors(dc->disk.c); 1066 bcache_device_detach(&dc->disk); 1067 list_move(&dc->list, &uncached_devices); 1068 1069 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1070 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1071 1072 mutex_unlock(&bch_register_lock); 1073 1074 pr_info("Caching disabled for %s", dc->backing_dev_name); 1075 1076 /* Drop ref we took in cached_dev_detach() */ 1077 closure_put(&dc->disk.cl); 1078 } 1079 1080 void bch_cached_dev_detach(struct cached_dev *dc) 1081 { 1082 lockdep_assert_held(&bch_register_lock); 1083 1084 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1085 return; 1086 1087 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1088 return; 1089 1090 /* 1091 * Block the device from being closed and freed until we're finished 1092 * detaching 1093 */ 1094 closure_get(&dc->disk.cl); 1095 1096 bch_writeback_queue(dc); 1097 1098 cached_dev_put(dc); 1099 } 1100 1101 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1102 uint8_t *set_uuid) 1103 { 1104 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1105 struct uuid_entry *u; 1106 struct cached_dev *exist_dc, *t; 1107 int ret = 0; 1108 1109 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1110 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1111 return -ENOENT; 1112 1113 if (dc->disk.c) { 1114 pr_err("Can't attach %s: already attached", 1115 dc->backing_dev_name); 1116 return -EINVAL; 1117 } 1118 1119 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1120 pr_err("Can't attach %s: shutting down", 1121 dc->backing_dev_name); 1122 return -EINVAL; 1123 } 1124 1125 if (dc->sb.block_size < c->sb.block_size) { 1126 /* Will die */ 1127 pr_err("Couldn't attach %s: block size less than set's block size", 1128 dc->backing_dev_name); 1129 return -EINVAL; 1130 } 1131 1132 /* Check whether already attached */ 1133 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1134 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1135 pr_err("Tried to attach %s but duplicate UUID already attached", 1136 dc->backing_dev_name); 1137 1138 return -EINVAL; 1139 } 1140 } 1141 1142 u = uuid_find(c, dc->sb.uuid); 1143 1144 if (u && 1145 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1146 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1147 memcpy(u->uuid, invalid_uuid, 16); 1148 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1149 u = NULL; 1150 } 1151 1152 if (!u) { 1153 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1154 pr_err("Couldn't find uuid for %s in set", 1155 dc->backing_dev_name); 1156 return -ENOENT; 1157 } 1158 1159 u = uuid_find_empty(c); 1160 if (!u) { 1161 pr_err("Not caching %s, no room for UUID", 1162 dc->backing_dev_name); 1163 return -EINVAL; 1164 } 1165 } 1166 1167 /* 1168 * Deadlocks since we're called via sysfs... 1169 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1170 */ 1171 1172 if (bch_is_zero(u->uuid, 16)) { 1173 struct closure cl; 1174 1175 closure_init_stack(&cl); 1176 1177 memcpy(u->uuid, dc->sb.uuid, 16); 1178 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1179 u->first_reg = u->last_reg = rtime; 1180 bch_uuid_write(c); 1181 1182 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1183 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1184 1185 bch_write_bdev_super(dc, &cl); 1186 closure_sync(&cl); 1187 } else { 1188 u->last_reg = rtime; 1189 bch_uuid_write(c); 1190 } 1191 1192 bcache_device_attach(&dc->disk, c, u - c->uuids); 1193 list_move(&dc->list, &c->cached_devs); 1194 calc_cached_dev_sectors(c); 1195 1196 /* 1197 * dc->c must be set before dc->count != 0 - paired with the mb in 1198 * cached_dev_get() 1199 */ 1200 smp_wmb(); 1201 refcount_set(&dc->count, 1); 1202 1203 /* Block writeback thread, but spawn it */ 1204 down_write(&dc->writeback_lock); 1205 if (bch_cached_dev_writeback_start(dc)) { 1206 up_write(&dc->writeback_lock); 1207 pr_err("Couldn't start writeback facilities for %s", 1208 dc->disk.disk->disk_name); 1209 return -ENOMEM; 1210 } 1211 1212 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1213 atomic_set(&dc->has_dirty, 1); 1214 bch_writeback_queue(dc); 1215 } 1216 1217 bch_sectors_dirty_init(&dc->disk); 1218 1219 ret = bch_cached_dev_run(dc); 1220 if (ret && (ret != -EBUSY)) { 1221 up_write(&dc->writeback_lock); 1222 /* 1223 * bch_register_lock is held, bcache_device_stop() is not 1224 * able to be directly called. The kthread and kworker 1225 * created previously in bch_cached_dev_writeback_start() 1226 * have to be stopped manually here. 1227 */ 1228 kthread_stop(dc->writeback_thread); 1229 cancel_writeback_rate_update_dwork(dc); 1230 pr_err("Couldn't run cached device %s", 1231 dc->backing_dev_name); 1232 return ret; 1233 } 1234 1235 bcache_device_link(&dc->disk, c, "bdev"); 1236 atomic_inc(&c->attached_dev_nr); 1237 1238 /* Allow the writeback thread to proceed */ 1239 up_write(&dc->writeback_lock); 1240 1241 pr_info("Caching %s as %s on set %pU", 1242 dc->backing_dev_name, 1243 dc->disk.disk->disk_name, 1244 dc->disk.c->sb.set_uuid); 1245 return 0; 1246 } 1247 1248 /* when dc->disk.kobj released */ 1249 void bch_cached_dev_release(struct kobject *kobj) 1250 { 1251 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1252 disk.kobj); 1253 kfree(dc); 1254 module_put(THIS_MODULE); 1255 } 1256 1257 static void cached_dev_free(struct closure *cl) 1258 { 1259 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1260 1261 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1262 cancel_writeback_rate_update_dwork(dc); 1263 1264 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1265 kthread_stop(dc->writeback_thread); 1266 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1267 kthread_stop(dc->status_update_thread); 1268 1269 mutex_lock(&bch_register_lock); 1270 1271 if (atomic_read(&dc->running)) 1272 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1273 bcache_device_free(&dc->disk); 1274 list_del(&dc->list); 1275 1276 mutex_unlock(&bch_register_lock); 1277 1278 if (!IS_ERR_OR_NULL(dc->bdev)) 1279 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1280 1281 wake_up(&unregister_wait); 1282 1283 kobject_put(&dc->disk.kobj); 1284 } 1285 1286 static void cached_dev_flush(struct closure *cl) 1287 { 1288 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1289 struct bcache_device *d = &dc->disk; 1290 1291 mutex_lock(&bch_register_lock); 1292 bcache_device_unlink(d); 1293 mutex_unlock(&bch_register_lock); 1294 1295 bch_cache_accounting_destroy(&dc->accounting); 1296 kobject_del(&d->kobj); 1297 1298 continue_at(cl, cached_dev_free, system_wq); 1299 } 1300 1301 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1302 { 1303 int ret; 1304 struct io *io; 1305 struct request_queue *q = bdev_get_queue(dc->bdev); 1306 1307 __module_get(THIS_MODULE); 1308 INIT_LIST_HEAD(&dc->list); 1309 closure_init(&dc->disk.cl, NULL); 1310 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1311 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1312 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1313 sema_init(&dc->sb_write_mutex, 1); 1314 INIT_LIST_HEAD(&dc->io_lru); 1315 spin_lock_init(&dc->io_lock); 1316 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1317 1318 dc->sequential_cutoff = 4 << 20; 1319 1320 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1321 list_add(&io->lru, &dc->io_lru); 1322 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1323 } 1324 1325 dc->disk.stripe_size = q->limits.io_opt >> 9; 1326 1327 if (dc->disk.stripe_size) 1328 dc->partial_stripes_expensive = 1329 q->limits.raid_partial_stripes_expensive; 1330 1331 ret = bcache_device_init(&dc->disk, block_size, 1332 dc->bdev->bd_part->nr_sects - dc->sb.data_offset); 1333 if (ret) 1334 return ret; 1335 1336 dc->disk.disk->queue->backing_dev_info->ra_pages = 1337 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1338 q->backing_dev_info->ra_pages); 1339 1340 atomic_set(&dc->io_errors, 0); 1341 dc->io_disable = false; 1342 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1343 /* default to auto */ 1344 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1345 1346 bch_cached_dev_request_init(dc); 1347 bch_cached_dev_writeback_init(dc); 1348 return 0; 1349 } 1350 1351 /* Cached device - bcache superblock */ 1352 1353 static int register_bdev(struct cache_sb *sb, struct page *sb_page, 1354 struct block_device *bdev, 1355 struct cached_dev *dc) 1356 { 1357 const char *err = "cannot allocate memory"; 1358 struct cache_set *c; 1359 int ret = -ENOMEM; 1360 1361 bdevname(bdev, dc->backing_dev_name); 1362 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1363 dc->bdev = bdev; 1364 dc->bdev->bd_holder = dc; 1365 1366 bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1); 1367 bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page; 1368 get_page(sb_page); 1369 1370 1371 if (cached_dev_init(dc, sb->block_size << 9)) 1372 goto err; 1373 1374 err = "error creating kobject"; 1375 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1376 "bcache")) 1377 goto err; 1378 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1379 goto err; 1380 1381 pr_info("registered backing device %s", dc->backing_dev_name); 1382 1383 list_add(&dc->list, &uncached_devices); 1384 /* attach to a matched cache set if it exists */ 1385 list_for_each_entry(c, &bch_cache_sets, list) 1386 bch_cached_dev_attach(dc, c, NULL); 1387 1388 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1389 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1390 err = "failed to run cached device"; 1391 ret = bch_cached_dev_run(dc); 1392 if (ret) 1393 goto err; 1394 } 1395 1396 return 0; 1397 err: 1398 pr_notice("error %s: %s", dc->backing_dev_name, err); 1399 bcache_device_stop(&dc->disk); 1400 return ret; 1401 } 1402 1403 /* Flash only volumes */ 1404 1405 /* When d->kobj released */ 1406 void bch_flash_dev_release(struct kobject *kobj) 1407 { 1408 struct bcache_device *d = container_of(kobj, struct bcache_device, 1409 kobj); 1410 kfree(d); 1411 } 1412 1413 static void flash_dev_free(struct closure *cl) 1414 { 1415 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1416 1417 mutex_lock(&bch_register_lock); 1418 atomic_long_sub(bcache_dev_sectors_dirty(d), 1419 &d->c->flash_dev_dirty_sectors); 1420 bcache_device_free(d); 1421 mutex_unlock(&bch_register_lock); 1422 kobject_put(&d->kobj); 1423 } 1424 1425 static void flash_dev_flush(struct closure *cl) 1426 { 1427 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1428 1429 mutex_lock(&bch_register_lock); 1430 bcache_device_unlink(d); 1431 mutex_unlock(&bch_register_lock); 1432 kobject_del(&d->kobj); 1433 continue_at(cl, flash_dev_free, system_wq); 1434 } 1435 1436 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1437 { 1438 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1439 GFP_KERNEL); 1440 if (!d) 1441 return -ENOMEM; 1442 1443 closure_init(&d->cl, NULL); 1444 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1445 1446 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1447 1448 if (bcache_device_init(d, block_bytes(c), u->sectors)) 1449 goto err; 1450 1451 bcache_device_attach(d, c, u - c->uuids); 1452 bch_sectors_dirty_init(d); 1453 bch_flash_dev_request_init(d); 1454 add_disk(d->disk); 1455 1456 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1457 goto err; 1458 1459 bcache_device_link(d, c, "volume"); 1460 1461 return 0; 1462 err: 1463 kobject_put(&d->kobj); 1464 return -ENOMEM; 1465 } 1466 1467 static int flash_devs_run(struct cache_set *c) 1468 { 1469 int ret = 0; 1470 struct uuid_entry *u; 1471 1472 for (u = c->uuids; 1473 u < c->uuids + c->nr_uuids && !ret; 1474 u++) 1475 if (UUID_FLASH_ONLY(u)) 1476 ret = flash_dev_run(c, u); 1477 1478 return ret; 1479 } 1480 1481 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1482 { 1483 struct uuid_entry *u; 1484 1485 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1486 return -EINTR; 1487 1488 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1489 return -EPERM; 1490 1491 u = uuid_find_empty(c); 1492 if (!u) { 1493 pr_err("Can't create volume, no room for UUID"); 1494 return -EINVAL; 1495 } 1496 1497 get_random_bytes(u->uuid, 16); 1498 memset(u->label, 0, 32); 1499 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1500 1501 SET_UUID_FLASH_ONLY(u, 1); 1502 u->sectors = size >> 9; 1503 1504 bch_uuid_write(c); 1505 1506 return flash_dev_run(c, u); 1507 } 1508 1509 bool bch_cached_dev_error(struct cached_dev *dc) 1510 { 1511 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1512 return false; 1513 1514 dc->io_disable = true; 1515 /* make others know io_disable is true earlier */ 1516 smp_mb(); 1517 1518 pr_err("stop %s: too many IO errors on backing device %s\n", 1519 dc->disk.disk->disk_name, dc->backing_dev_name); 1520 1521 bcache_device_stop(&dc->disk); 1522 return true; 1523 } 1524 1525 /* Cache set */ 1526 1527 __printf(2, 3) 1528 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1529 { 1530 va_list args; 1531 1532 if (c->on_error != ON_ERROR_PANIC && 1533 test_bit(CACHE_SET_STOPPING, &c->flags)) 1534 return false; 1535 1536 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1537 pr_info("CACHE_SET_IO_DISABLE already set"); 1538 1539 /* 1540 * XXX: we can be called from atomic context 1541 * acquire_console_sem(); 1542 */ 1543 1544 pr_err("bcache: error on %pU: ", c->sb.set_uuid); 1545 1546 va_start(args, fmt); 1547 vprintk(fmt, args); 1548 va_end(args); 1549 1550 pr_err(", disabling caching\n"); 1551 1552 if (c->on_error == ON_ERROR_PANIC) 1553 panic("panic forced after error\n"); 1554 1555 bch_cache_set_unregister(c); 1556 return true; 1557 } 1558 1559 /* When c->kobj released */ 1560 void bch_cache_set_release(struct kobject *kobj) 1561 { 1562 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1563 1564 kfree(c); 1565 module_put(THIS_MODULE); 1566 } 1567 1568 static void cache_set_free(struct closure *cl) 1569 { 1570 struct cache_set *c = container_of(cl, struct cache_set, cl); 1571 struct cache *ca; 1572 unsigned int i; 1573 1574 debugfs_remove(c->debug); 1575 1576 bch_open_buckets_free(c); 1577 bch_btree_cache_free(c); 1578 bch_journal_free(c); 1579 1580 mutex_lock(&bch_register_lock); 1581 for_each_cache(ca, c, i) 1582 if (ca) { 1583 ca->set = NULL; 1584 c->cache[ca->sb.nr_this_dev] = NULL; 1585 kobject_put(&ca->kobj); 1586 } 1587 1588 bch_bset_sort_state_free(&c->sort); 1589 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1590 1591 if (c->moving_gc_wq) 1592 destroy_workqueue(c->moving_gc_wq); 1593 bioset_exit(&c->bio_split); 1594 mempool_exit(&c->fill_iter); 1595 mempool_exit(&c->bio_meta); 1596 mempool_exit(&c->search); 1597 kfree(c->devices); 1598 1599 list_del(&c->list); 1600 mutex_unlock(&bch_register_lock); 1601 1602 pr_info("Cache set %pU unregistered", c->sb.set_uuid); 1603 wake_up(&unregister_wait); 1604 1605 closure_debug_destroy(&c->cl); 1606 kobject_put(&c->kobj); 1607 } 1608 1609 static void cache_set_flush(struct closure *cl) 1610 { 1611 struct cache_set *c = container_of(cl, struct cache_set, caching); 1612 struct cache *ca; 1613 struct btree *b; 1614 unsigned int i; 1615 1616 bch_cache_accounting_destroy(&c->accounting); 1617 1618 kobject_put(&c->internal); 1619 kobject_del(&c->kobj); 1620 1621 if (!IS_ERR_OR_NULL(c->gc_thread)) 1622 kthread_stop(c->gc_thread); 1623 1624 if (!IS_ERR_OR_NULL(c->root)) 1625 list_add(&c->root->list, &c->btree_cache); 1626 1627 /* 1628 * Avoid flushing cached nodes if cache set is retiring 1629 * due to too many I/O errors detected. 1630 */ 1631 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1632 list_for_each_entry(b, &c->btree_cache, list) { 1633 mutex_lock(&b->write_lock); 1634 if (btree_node_dirty(b)) 1635 __bch_btree_node_write(b, NULL); 1636 mutex_unlock(&b->write_lock); 1637 } 1638 1639 for_each_cache(ca, c, i) 1640 if (ca->alloc_thread) 1641 kthread_stop(ca->alloc_thread); 1642 1643 if (c->journal.cur) { 1644 cancel_delayed_work_sync(&c->journal.work); 1645 /* flush last journal entry if needed */ 1646 c->journal.work.work.func(&c->journal.work.work); 1647 } 1648 1649 closure_return(cl); 1650 } 1651 1652 /* 1653 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1654 * cache set is unregistering due to too many I/O errors. In this condition, 1655 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1656 * value and whether the broken cache has dirty data: 1657 * 1658 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1659 * BCH_CACHED_STOP_AUTO 0 NO 1660 * BCH_CACHED_STOP_AUTO 1 YES 1661 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1662 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1663 * 1664 * The expected behavior is, if stop_when_cache_set_failed is configured to 1665 * "auto" via sysfs interface, the bcache device will not be stopped if the 1666 * backing device is clean on the broken cache device. 1667 */ 1668 static void conditional_stop_bcache_device(struct cache_set *c, 1669 struct bcache_device *d, 1670 struct cached_dev *dc) 1671 { 1672 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1673 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.", 1674 d->disk->disk_name, c->sb.set_uuid); 1675 bcache_device_stop(d); 1676 } else if (atomic_read(&dc->has_dirty)) { 1677 /* 1678 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1679 * and dc->has_dirty == 1 1680 */ 1681 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.", 1682 d->disk->disk_name); 1683 /* 1684 * There might be a small time gap that cache set is 1685 * released but bcache device is not. Inside this time 1686 * gap, regular I/O requests will directly go into 1687 * backing device as no cache set attached to. This 1688 * behavior may also introduce potential inconsistence 1689 * data in writeback mode while cache is dirty. 1690 * Therefore before calling bcache_device_stop() due 1691 * to a broken cache device, dc->io_disable should be 1692 * explicitly set to true. 1693 */ 1694 dc->io_disable = true; 1695 /* make others know io_disable is true earlier */ 1696 smp_mb(); 1697 bcache_device_stop(d); 1698 } else { 1699 /* 1700 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1701 * and dc->has_dirty == 0 1702 */ 1703 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.", 1704 d->disk->disk_name); 1705 } 1706 } 1707 1708 static void __cache_set_unregister(struct closure *cl) 1709 { 1710 struct cache_set *c = container_of(cl, struct cache_set, caching); 1711 struct cached_dev *dc; 1712 struct bcache_device *d; 1713 size_t i; 1714 1715 mutex_lock(&bch_register_lock); 1716 1717 for (i = 0; i < c->devices_max_used; i++) { 1718 d = c->devices[i]; 1719 if (!d) 1720 continue; 1721 1722 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1723 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1724 dc = container_of(d, struct cached_dev, disk); 1725 bch_cached_dev_detach(dc); 1726 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1727 conditional_stop_bcache_device(c, d, dc); 1728 } else { 1729 bcache_device_stop(d); 1730 } 1731 } 1732 1733 mutex_unlock(&bch_register_lock); 1734 1735 continue_at(cl, cache_set_flush, system_wq); 1736 } 1737 1738 void bch_cache_set_stop(struct cache_set *c) 1739 { 1740 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1741 /* closure_fn set to __cache_set_unregister() */ 1742 closure_queue(&c->caching); 1743 } 1744 1745 void bch_cache_set_unregister(struct cache_set *c) 1746 { 1747 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1748 bch_cache_set_stop(c); 1749 } 1750 1751 #define alloc_bucket_pages(gfp, c) \ 1752 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1753 1754 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1755 { 1756 int iter_size; 1757 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1758 1759 if (!c) 1760 return NULL; 1761 1762 __module_get(THIS_MODULE); 1763 closure_init(&c->cl, NULL); 1764 set_closure_fn(&c->cl, cache_set_free, system_wq); 1765 1766 closure_init(&c->caching, &c->cl); 1767 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1768 1769 /* Maybe create continue_at_noreturn() and use it here? */ 1770 closure_set_stopped(&c->cl); 1771 closure_put(&c->cl); 1772 1773 kobject_init(&c->kobj, &bch_cache_set_ktype); 1774 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1775 1776 bch_cache_accounting_init(&c->accounting, &c->cl); 1777 1778 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1779 c->sb.block_size = sb->block_size; 1780 c->sb.bucket_size = sb->bucket_size; 1781 c->sb.nr_in_set = sb->nr_in_set; 1782 c->sb.last_mount = sb->last_mount; 1783 c->bucket_bits = ilog2(sb->bucket_size); 1784 c->block_bits = ilog2(sb->block_size); 1785 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1786 c->devices_max_used = 0; 1787 atomic_set(&c->attached_dev_nr, 0); 1788 c->btree_pages = bucket_pages(c); 1789 if (c->btree_pages > BTREE_MAX_PAGES) 1790 c->btree_pages = max_t(int, c->btree_pages / 4, 1791 BTREE_MAX_PAGES); 1792 1793 sema_init(&c->sb_write_mutex, 1); 1794 mutex_init(&c->bucket_lock); 1795 init_waitqueue_head(&c->btree_cache_wait); 1796 spin_lock_init(&c->btree_cannibalize_lock); 1797 init_waitqueue_head(&c->bucket_wait); 1798 init_waitqueue_head(&c->gc_wait); 1799 sema_init(&c->uuid_write_mutex, 1); 1800 1801 spin_lock_init(&c->btree_gc_time.lock); 1802 spin_lock_init(&c->btree_split_time.lock); 1803 spin_lock_init(&c->btree_read_time.lock); 1804 1805 bch_moving_init_cache_set(c); 1806 1807 INIT_LIST_HEAD(&c->list); 1808 INIT_LIST_HEAD(&c->cached_devs); 1809 INIT_LIST_HEAD(&c->btree_cache); 1810 INIT_LIST_HEAD(&c->btree_cache_freeable); 1811 INIT_LIST_HEAD(&c->btree_cache_freed); 1812 INIT_LIST_HEAD(&c->data_buckets); 1813 1814 iter_size = (sb->bucket_size / sb->block_size + 1) * 1815 sizeof(struct btree_iter_set); 1816 1817 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || 1818 mempool_init_slab_pool(&c->search, 32, bch_search_cache) || 1819 mempool_init_kmalloc_pool(&c->bio_meta, 2, 1820 sizeof(struct bbio) + sizeof(struct bio_vec) * 1821 bucket_pages(c)) || 1822 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 1823 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1824 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || 1825 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1826 !(c->moving_gc_wq = alloc_workqueue("bcache_gc", 1827 WQ_MEM_RECLAIM, 0)) || 1828 bch_journal_alloc(c) || 1829 bch_btree_cache_alloc(c) || 1830 bch_open_buckets_alloc(c) || 1831 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1832 goto err; 1833 1834 c->congested_read_threshold_us = 2000; 1835 c->congested_write_threshold_us = 20000; 1836 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1837 c->idle_max_writeback_rate_enabled = 1; 1838 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1839 1840 return c; 1841 err: 1842 bch_cache_set_unregister(c); 1843 return NULL; 1844 } 1845 1846 static int run_cache_set(struct cache_set *c) 1847 { 1848 const char *err = "cannot allocate memory"; 1849 struct cached_dev *dc, *t; 1850 struct cache *ca; 1851 struct closure cl; 1852 unsigned int i; 1853 LIST_HEAD(journal); 1854 struct journal_replay *l; 1855 1856 closure_init_stack(&cl); 1857 1858 for_each_cache(ca, c, i) 1859 c->nbuckets += ca->sb.nbuckets; 1860 set_gc_sectors(c); 1861 1862 if (CACHE_SYNC(&c->sb)) { 1863 struct bkey *k; 1864 struct jset *j; 1865 1866 err = "cannot allocate memory for journal"; 1867 if (bch_journal_read(c, &journal)) 1868 goto err; 1869 1870 pr_debug("btree_journal_read() done"); 1871 1872 err = "no journal entries found"; 1873 if (list_empty(&journal)) 1874 goto err; 1875 1876 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1877 1878 err = "IO error reading priorities"; 1879 for_each_cache(ca, c, i) 1880 prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]); 1881 1882 /* 1883 * If prio_read() fails it'll call cache_set_error and we'll 1884 * tear everything down right away, but if we perhaps checked 1885 * sooner we could avoid journal replay. 1886 */ 1887 1888 k = &j->btree_root; 1889 1890 err = "bad btree root"; 1891 if (__bch_btree_ptr_invalid(c, k)) 1892 goto err; 1893 1894 err = "error reading btree root"; 1895 c->root = bch_btree_node_get(c, NULL, k, 1896 j->btree_level, 1897 true, NULL); 1898 if (IS_ERR_OR_NULL(c->root)) 1899 goto err; 1900 1901 list_del_init(&c->root->list); 1902 rw_unlock(true, c->root); 1903 1904 err = uuid_read(c, j, &cl); 1905 if (err) 1906 goto err; 1907 1908 err = "error in recovery"; 1909 if (bch_btree_check(c)) 1910 goto err; 1911 1912 /* 1913 * bch_btree_check() may occupy too much system memory which 1914 * has negative effects to user space application (e.g. data 1915 * base) performance. Shrink the mca cache memory proactively 1916 * here to avoid competing memory with user space workloads.. 1917 */ 1918 if (!c->shrinker_disabled) { 1919 struct shrink_control sc; 1920 1921 sc.gfp_mask = GFP_KERNEL; 1922 sc.nr_to_scan = c->btree_cache_used * c->btree_pages; 1923 /* first run to clear b->accessed tag */ 1924 c->shrink.scan_objects(&c->shrink, &sc); 1925 /* second run to reap non-accessed nodes */ 1926 c->shrink.scan_objects(&c->shrink, &sc); 1927 } 1928 1929 bch_journal_mark(c, &journal); 1930 bch_initial_gc_finish(c); 1931 pr_debug("btree_check() done"); 1932 1933 /* 1934 * bcache_journal_next() can't happen sooner, or 1935 * btree_gc_finish() will give spurious errors about last_gc > 1936 * gc_gen - this is a hack but oh well. 1937 */ 1938 bch_journal_next(&c->journal); 1939 1940 err = "error starting allocator thread"; 1941 for_each_cache(ca, c, i) 1942 if (bch_cache_allocator_start(ca)) 1943 goto err; 1944 1945 /* 1946 * First place it's safe to allocate: btree_check() and 1947 * btree_gc_finish() have to run before we have buckets to 1948 * allocate, and bch_bucket_alloc_set() might cause a journal 1949 * entry to be written so bcache_journal_next() has to be called 1950 * first. 1951 * 1952 * If the uuids were in the old format we have to rewrite them 1953 * before the next journal entry is written: 1954 */ 1955 if (j->version < BCACHE_JSET_VERSION_UUID) 1956 __uuid_write(c); 1957 1958 err = "bcache: replay journal failed"; 1959 if (bch_journal_replay(c, &journal)) 1960 goto err; 1961 } else { 1962 pr_notice("invalidating existing data"); 1963 1964 for_each_cache(ca, c, i) { 1965 unsigned int j; 1966 1967 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1968 2, SB_JOURNAL_BUCKETS); 1969 1970 for (j = 0; j < ca->sb.keys; j++) 1971 ca->sb.d[j] = ca->sb.first_bucket + j; 1972 } 1973 1974 bch_initial_gc_finish(c); 1975 1976 err = "error starting allocator thread"; 1977 for_each_cache(ca, c, i) 1978 if (bch_cache_allocator_start(ca)) 1979 goto err; 1980 1981 mutex_lock(&c->bucket_lock); 1982 for_each_cache(ca, c, i) 1983 bch_prio_write(ca, true); 1984 mutex_unlock(&c->bucket_lock); 1985 1986 err = "cannot allocate new UUID bucket"; 1987 if (__uuid_write(c)) 1988 goto err; 1989 1990 err = "cannot allocate new btree root"; 1991 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 1992 if (IS_ERR_OR_NULL(c->root)) 1993 goto err; 1994 1995 mutex_lock(&c->root->write_lock); 1996 bkey_copy_key(&c->root->key, &MAX_KEY); 1997 bch_btree_node_write(c->root, &cl); 1998 mutex_unlock(&c->root->write_lock); 1999 2000 bch_btree_set_root(c->root); 2001 rw_unlock(true, c->root); 2002 2003 /* 2004 * We don't want to write the first journal entry until 2005 * everything is set up - fortunately journal entries won't be 2006 * written until the SET_CACHE_SYNC() here: 2007 */ 2008 SET_CACHE_SYNC(&c->sb, true); 2009 2010 bch_journal_next(&c->journal); 2011 bch_journal_meta(c, &cl); 2012 } 2013 2014 err = "error starting gc thread"; 2015 if (bch_gc_thread_start(c)) 2016 goto err; 2017 2018 closure_sync(&cl); 2019 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2020 bcache_write_super(c); 2021 2022 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2023 bch_cached_dev_attach(dc, c, NULL); 2024 2025 flash_devs_run(c); 2026 2027 set_bit(CACHE_SET_RUNNING, &c->flags); 2028 return 0; 2029 err: 2030 while (!list_empty(&journal)) { 2031 l = list_first_entry(&journal, struct journal_replay, list); 2032 list_del(&l->list); 2033 kfree(l); 2034 } 2035 2036 closure_sync(&cl); 2037 2038 bch_cache_set_error(c, "%s", err); 2039 2040 return -EIO; 2041 } 2042 2043 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2044 { 2045 return ca->sb.block_size == c->sb.block_size && 2046 ca->sb.bucket_size == c->sb.bucket_size && 2047 ca->sb.nr_in_set == c->sb.nr_in_set; 2048 } 2049 2050 static const char *register_cache_set(struct cache *ca) 2051 { 2052 char buf[12]; 2053 const char *err = "cannot allocate memory"; 2054 struct cache_set *c; 2055 2056 list_for_each_entry(c, &bch_cache_sets, list) 2057 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2058 if (c->cache[ca->sb.nr_this_dev]) 2059 return "duplicate cache set member"; 2060 2061 if (!can_attach_cache(ca, c)) 2062 return "cache sb does not match set"; 2063 2064 if (!CACHE_SYNC(&ca->sb)) 2065 SET_CACHE_SYNC(&c->sb, false); 2066 2067 goto found; 2068 } 2069 2070 c = bch_cache_set_alloc(&ca->sb); 2071 if (!c) 2072 return err; 2073 2074 err = "error creating kobject"; 2075 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2076 kobject_add(&c->internal, &c->kobj, "internal")) 2077 goto err; 2078 2079 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2080 goto err; 2081 2082 bch_debug_init_cache_set(c); 2083 2084 list_add(&c->list, &bch_cache_sets); 2085 found: 2086 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2087 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2088 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2089 goto err; 2090 2091 if (ca->sb.seq > c->sb.seq) { 2092 c->sb.version = ca->sb.version; 2093 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2094 c->sb.flags = ca->sb.flags; 2095 c->sb.seq = ca->sb.seq; 2096 pr_debug("set version = %llu", c->sb.version); 2097 } 2098 2099 kobject_get(&ca->kobj); 2100 ca->set = c; 2101 ca->set->cache[ca->sb.nr_this_dev] = ca; 2102 c->cache_by_alloc[c->caches_loaded++] = ca; 2103 2104 if (c->caches_loaded == c->sb.nr_in_set) { 2105 err = "failed to run cache set"; 2106 if (run_cache_set(c) < 0) 2107 goto err; 2108 } 2109 2110 return NULL; 2111 err: 2112 bch_cache_set_unregister(c); 2113 return err; 2114 } 2115 2116 /* Cache device */ 2117 2118 /* When ca->kobj released */ 2119 void bch_cache_release(struct kobject *kobj) 2120 { 2121 struct cache *ca = container_of(kobj, struct cache, kobj); 2122 unsigned int i; 2123 2124 if (ca->set) { 2125 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2126 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2127 } 2128 2129 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 2130 kfree(ca->prio_buckets); 2131 vfree(ca->buckets); 2132 2133 free_heap(&ca->heap); 2134 free_fifo(&ca->free_inc); 2135 2136 for (i = 0; i < RESERVE_NR; i++) 2137 free_fifo(&ca->free[i]); 2138 2139 if (ca->sb_bio.bi_inline_vecs[0].bv_page) 2140 put_page(bio_first_page_all(&ca->sb_bio)); 2141 2142 if (!IS_ERR_OR_NULL(ca->bdev)) 2143 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2144 2145 kfree(ca); 2146 module_put(THIS_MODULE); 2147 } 2148 2149 static int cache_alloc(struct cache *ca) 2150 { 2151 size_t free; 2152 size_t btree_buckets; 2153 struct bucket *b; 2154 int ret = -ENOMEM; 2155 const char *err = NULL; 2156 2157 __module_get(THIS_MODULE); 2158 kobject_init(&ca->kobj, &bch_cache_ktype); 2159 2160 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2161 2162 /* 2163 * when ca->sb.njournal_buckets is not zero, journal exists, 2164 * and in bch_journal_replay(), tree node may split, 2165 * so bucket of RESERVE_BTREE type is needed, 2166 * the worst situation is all journal buckets are valid journal, 2167 * and all the keys need to replay, 2168 * so the number of RESERVE_BTREE type buckets should be as much 2169 * as journal buckets 2170 */ 2171 btree_buckets = ca->sb.njournal_buckets ?: 8; 2172 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2173 if (!free) { 2174 ret = -EPERM; 2175 err = "ca->sb.nbuckets is too small"; 2176 goto err_free; 2177 } 2178 2179 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2180 GFP_KERNEL)) { 2181 err = "ca->free[RESERVE_BTREE] alloc failed"; 2182 goto err_btree_alloc; 2183 } 2184 2185 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2186 GFP_KERNEL)) { 2187 err = "ca->free[RESERVE_PRIO] alloc failed"; 2188 goto err_prio_alloc; 2189 } 2190 2191 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2192 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2193 goto err_movinggc_alloc; 2194 } 2195 2196 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2197 err = "ca->free[RESERVE_NONE] alloc failed"; 2198 goto err_none_alloc; 2199 } 2200 2201 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2202 err = "ca->free_inc alloc failed"; 2203 goto err_free_inc_alloc; 2204 } 2205 2206 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2207 err = "ca->heap alloc failed"; 2208 goto err_heap_alloc; 2209 } 2210 2211 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2212 ca->sb.nbuckets)); 2213 if (!ca->buckets) { 2214 err = "ca->buckets alloc failed"; 2215 goto err_buckets_alloc; 2216 } 2217 2218 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2219 prio_buckets(ca), 2), 2220 GFP_KERNEL); 2221 if (!ca->prio_buckets) { 2222 err = "ca->prio_buckets alloc failed"; 2223 goto err_prio_buckets_alloc; 2224 } 2225 2226 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); 2227 if (!ca->disk_buckets) { 2228 err = "ca->disk_buckets alloc failed"; 2229 goto err_disk_buckets_alloc; 2230 } 2231 2232 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2233 2234 for_each_bucket(b, ca) 2235 atomic_set(&b->pin, 0); 2236 return 0; 2237 2238 err_disk_buckets_alloc: 2239 kfree(ca->prio_buckets); 2240 err_prio_buckets_alloc: 2241 vfree(ca->buckets); 2242 err_buckets_alloc: 2243 free_heap(&ca->heap); 2244 err_heap_alloc: 2245 free_fifo(&ca->free_inc); 2246 err_free_inc_alloc: 2247 free_fifo(&ca->free[RESERVE_NONE]); 2248 err_none_alloc: 2249 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2250 err_movinggc_alloc: 2251 free_fifo(&ca->free[RESERVE_PRIO]); 2252 err_prio_alloc: 2253 free_fifo(&ca->free[RESERVE_BTREE]); 2254 err_btree_alloc: 2255 err_free: 2256 module_put(THIS_MODULE); 2257 if (err) 2258 pr_notice("error %s: %s", ca->cache_dev_name, err); 2259 return ret; 2260 } 2261 2262 static int register_cache(struct cache_sb *sb, struct page *sb_page, 2263 struct block_device *bdev, struct cache *ca) 2264 { 2265 const char *err = NULL; /* must be set for any error case */ 2266 int ret = 0; 2267 2268 bdevname(bdev, ca->cache_dev_name); 2269 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2270 ca->bdev = bdev; 2271 ca->bdev->bd_holder = ca; 2272 2273 bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1); 2274 bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page; 2275 get_page(sb_page); 2276 2277 if (blk_queue_discard(bdev_get_queue(bdev))) 2278 ca->discard = CACHE_DISCARD(&ca->sb); 2279 2280 ret = cache_alloc(ca); 2281 if (ret != 0) { 2282 /* 2283 * If we failed here, it means ca->kobj is not initialized yet, 2284 * kobject_put() won't be called and there is no chance to 2285 * call blkdev_put() to bdev in bch_cache_release(). So we 2286 * explicitly call blkdev_put() here. 2287 */ 2288 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2289 if (ret == -ENOMEM) 2290 err = "cache_alloc(): -ENOMEM"; 2291 else if (ret == -EPERM) 2292 err = "cache_alloc(): cache device is too small"; 2293 else 2294 err = "cache_alloc(): unknown error"; 2295 goto err; 2296 } 2297 2298 if (kobject_add(&ca->kobj, 2299 &part_to_dev(bdev->bd_part)->kobj, 2300 "bcache")) { 2301 err = "error calling kobject_add"; 2302 ret = -ENOMEM; 2303 goto out; 2304 } 2305 2306 mutex_lock(&bch_register_lock); 2307 err = register_cache_set(ca); 2308 mutex_unlock(&bch_register_lock); 2309 2310 if (err) { 2311 ret = -ENODEV; 2312 goto out; 2313 } 2314 2315 pr_info("registered cache device %s", ca->cache_dev_name); 2316 2317 out: 2318 kobject_put(&ca->kobj); 2319 2320 err: 2321 if (err) 2322 pr_notice("error %s: %s", ca->cache_dev_name, err); 2323 2324 return ret; 2325 } 2326 2327 /* Global interfaces/init */ 2328 2329 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2330 const char *buffer, size_t size); 2331 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2332 struct kobj_attribute *attr, 2333 const char *buffer, size_t size); 2334 2335 kobj_attribute_write(register, register_bcache); 2336 kobj_attribute_write(register_quiet, register_bcache); 2337 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2338 2339 static bool bch_is_open_backing(struct block_device *bdev) 2340 { 2341 struct cache_set *c, *tc; 2342 struct cached_dev *dc, *t; 2343 2344 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2345 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2346 if (dc->bdev == bdev) 2347 return true; 2348 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2349 if (dc->bdev == bdev) 2350 return true; 2351 return false; 2352 } 2353 2354 static bool bch_is_open_cache(struct block_device *bdev) 2355 { 2356 struct cache_set *c, *tc; 2357 struct cache *ca; 2358 unsigned int i; 2359 2360 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2361 for_each_cache(ca, c, i) 2362 if (ca->bdev == bdev) 2363 return true; 2364 return false; 2365 } 2366 2367 static bool bch_is_open(struct block_device *bdev) 2368 { 2369 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2370 } 2371 2372 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2373 const char *buffer, size_t size) 2374 { 2375 ssize_t ret = -EINVAL; 2376 const char *err = "cannot allocate memory"; 2377 char *path = NULL; 2378 struct cache_sb *sb = NULL; 2379 struct block_device *bdev = NULL; 2380 struct page *sb_page = NULL; 2381 2382 if (!try_module_get(THIS_MODULE)) 2383 return -EBUSY; 2384 2385 /* For latest state of bcache_is_reboot */ 2386 smp_mb(); 2387 if (bcache_is_reboot) 2388 return -EBUSY; 2389 2390 path = kstrndup(buffer, size, GFP_KERNEL); 2391 if (!path) 2392 goto err; 2393 2394 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2395 if (!sb) 2396 goto err; 2397 2398 err = "failed to open device"; 2399 bdev = blkdev_get_by_path(strim(path), 2400 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2401 sb); 2402 if (IS_ERR(bdev)) { 2403 if (bdev == ERR_PTR(-EBUSY)) { 2404 bdev = lookup_bdev(strim(path)); 2405 mutex_lock(&bch_register_lock); 2406 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2407 err = "device already registered"; 2408 else 2409 err = "device busy"; 2410 mutex_unlock(&bch_register_lock); 2411 if (!IS_ERR(bdev)) 2412 bdput(bdev); 2413 if (attr == &ksysfs_register_quiet) 2414 goto quiet_out; 2415 } 2416 goto err; 2417 } 2418 2419 err = "failed to set blocksize"; 2420 if (set_blocksize(bdev, 4096)) 2421 goto err_close; 2422 2423 err = read_super(sb, bdev, &sb_page); 2424 if (err) 2425 goto err_close; 2426 2427 err = "failed to register device"; 2428 if (SB_IS_BDEV(sb)) { 2429 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2430 2431 if (!dc) 2432 goto err_close; 2433 2434 mutex_lock(&bch_register_lock); 2435 ret = register_bdev(sb, sb_page, bdev, dc); 2436 mutex_unlock(&bch_register_lock); 2437 /* blkdev_put() will be called in cached_dev_free() */ 2438 if (ret < 0) 2439 goto err; 2440 } else { 2441 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2442 2443 if (!ca) 2444 goto err_close; 2445 2446 /* blkdev_put() will be called in bch_cache_release() */ 2447 if (register_cache(sb, sb_page, bdev, ca) != 0) 2448 goto err; 2449 } 2450 quiet_out: 2451 ret = size; 2452 out: 2453 if (sb_page) 2454 put_page(sb_page); 2455 kfree(sb); 2456 kfree(path); 2457 module_put(THIS_MODULE); 2458 return ret; 2459 2460 err_close: 2461 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2462 err: 2463 pr_info("error %s: %s", path, err); 2464 goto out; 2465 } 2466 2467 2468 struct pdev { 2469 struct list_head list; 2470 struct cached_dev *dc; 2471 }; 2472 2473 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2474 struct kobj_attribute *attr, 2475 const char *buffer, 2476 size_t size) 2477 { 2478 LIST_HEAD(pending_devs); 2479 ssize_t ret = size; 2480 struct cached_dev *dc, *tdc; 2481 struct pdev *pdev, *tpdev; 2482 struct cache_set *c, *tc; 2483 2484 mutex_lock(&bch_register_lock); 2485 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2486 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2487 if (!pdev) 2488 break; 2489 pdev->dc = dc; 2490 list_add(&pdev->list, &pending_devs); 2491 } 2492 2493 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2494 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2495 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2496 char *set_uuid = c->sb.uuid; 2497 2498 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2499 list_del(&pdev->list); 2500 kfree(pdev); 2501 break; 2502 } 2503 } 2504 } 2505 mutex_unlock(&bch_register_lock); 2506 2507 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2508 pr_info("delete pdev %p", pdev); 2509 list_del(&pdev->list); 2510 bcache_device_stop(&pdev->dc->disk); 2511 kfree(pdev); 2512 } 2513 2514 return ret; 2515 } 2516 2517 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2518 { 2519 if (bcache_is_reboot) 2520 return NOTIFY_DONE; 2521 2522 if (code == SYS_DOWN || 2523 code == SYS_HALT || 2524 code == SYS_POWER_OFF) { 2525 DEFINE_WAIT(wait); 2526 unsigned long start = jiffies; 2527 bool stopped = false; 2528 2529 struct cache_set *c, *tc; 2530 struct cached_dev *dc, *tdc; 2531 2532 mutex_lock(&bch_register_lock); 2533 2534 if (bcache_is_reboot) 2535 goto out; 2536 2537 /* New registration is rejected since now */ 2538 bcache_is_reboot = true; 2539 /* 2540 * Make registering caller (if there is) on other CPU 2541 * core know bcache_is_reboot set to true earlier 2542 */ 2543 smp_mb(); 2544 2545 if (list_empty(&bch_cache_sets) && 2546 list_empty(&uncached_devices)) 2547 goto out; 2548 2549 mutex_unlock(&bch_register_lock); 2550 2551 pr_info("Stopping all devices:"); 2552 2553 /* 2554 * The reason bch_register_lock is not held to call 2555 * bch_cache_set_stop() and bcache_device_stop() is to 2556 * avoid potential deadlock during reboot, because cache 2557 * set or bcache device stopping process will acqurie 2558 * bch_register_lock too. 2559 * 2560 * We are safe here because bcache_is_reboot sets to 2561 * true already, register_bcache() will reject new 2562 * registration now. bcache_is_reboot also makes sure 2563 * bcache_reboot() won't be re-entered on by other thread, 2564 * so there is no race in following list iteration by 2565 * list_for_each_entry_safe(). 2566 */ 2567 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2568 bch_cache_set_stop(c); 2569 2570 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2571 bcache_device_stop(&dc->disk); 2572 2573 2574 /* 2575 * Give an early chance for other kthreads and 2576 * kworkers to stop themselves 2577 */ 2578 schedule(); 2579 2580 /* What's a condition variable? */ 2581 while (1) { 2582 long timeout = start + 10 * HZ - jiffies; 2583 2584 mutex_lock(&bch_register_lock); 2585 stopped = list_empty(&bch_cache_sets) && 2586 list_empty(&uncached_devices); 2587 2588 if (timeout < 0 || stopped) 2589 break; 2590 2591 prepare_to_wait(&unregister_wait, &wait, 2592 TASK_UNINTERRUPTIBLE); 2593 2594 mutex_unlock(&bch_register_lock); 2595 schedule_timeout(timeout); 2596 } 2597 2598 finish_wait(&unregister_wait, &wait); 2599 2600 if (stopped) 2601 pr_info("All devices stopped"); 2602 else 2603 pr_notice("Timeout waiting for devices to be closed"); 2604 out: 2605 mutex_unlock(&bch_register_lock); 2606 } 2607 2608 return NOTIFY_DONE; 2609 } 2610 2611 static struct notifier_block reboot = { 2612 .notifier_call = bcache_reboot, 2613 .priority = INT_MAX, /* before any real devices */ 2614 }; 2615 2616 static void bcache_exit(void) 2617 { 2618 bch_debug_exit(); 2619 bch_request_exit(); 2620 if (bcache_kobj) 2621 kobject_put(bcache_kobj); 2622 if (bcache_wq) 2623 destroy_workqueue(bcache_wq); 2624 if (bch_journal_wq) 2625 destroy_workqueue(bch_journal_wq); 2626 2627 if (bcache_major) 2628 unregister_blkdev(bcache_major, "bcache"); 2629 unregister_reboot_notifier(&reboot); 2630 mutex_destroy(&bch_register_lock); 2631 } 2632 2633 /* Check and fixup module parameters */ 2634 static void check_module_parameters(void) 2635 { 2636 if (bch_cutoff_writeback_sync == 0) 2637 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2638 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2639 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u", 2640 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2641 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2642 } 2643 2644 if (bch_cutoff_writeback == 0) 2645 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2646 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2647 pr_warn("set bch_cutoff_writeback (%u) to max value %u", 2648 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2649 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2650 } 2651 2652 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2653 pr_warn("set bch_cutoff_writeback (%u) to %u", 2654 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2655 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2656 } 2657 } 2658 2659 static int __init bcache_init(void) 2660 { 2661 static const struct attribute *files[] = { 2662 &ksysfs_register.attr, 2663 &ksysfs_register_quiet.attr, 2664 &ksysfs_pendings_cleanup.attr, 2665 NULL 2666 }; 2667 2668 check_module_parameters(); 2669 2670 mutex_init(&bch_register_lock); 2671 init_waitqueue_head(&unregister_wait); 2672 register_reboot_notifier(&reboot); 2673 2674 bcache_major = register_blkdev(0, "bcache"); 2675 if (bcache_major < 0) { 2676 unregister_reboot_notifier(&reboot); 2677 mutex_destroy(&bch_register_lock); 2678 return bcache_major; 2679 } 2680 2681 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2682 if (!bcache_wq) 2683 goto err; 2684 2685 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2686 if (!bch_journal_wq) 2687 goto err; 2688 2689 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2690 if (!bcache_kobj) 2691 goto err; 2692 2693 if (bch_request_init() || 2694 sysfs_create_files(bcache_kobj, files)) 2695 goto err; 2696 2697 bch_debug_init(); 2698 closure_debug_init(); 2699 2700 bcache_is_reboot = false; 2701 2702 return 0; 2703 err: 2704 bcache_exit(); 2705 return -ENOMEM; 2706 } 2707 2708 /* 2709 * Module hooks 2710 */ 2711 module_exit(bcache_exit); 2712 module_init(bcache_init); 2713 2714 module_param(bch_cutoff_writeback, uint, 0); 2715 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2716 2717 module_param(bch_cutoff_writeback_sync, uint, 0); 2718 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2719 2720 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2721 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2722 MODULE_LICENSE("GPL"); 2723