1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_flush_wq; 53 struct workqueue_struct *bch_journal_wq; 54 55 56 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 57 /* limitation of partitions number on single bcache device */ 58 #define BCACHE_MINORS 128 59 /* limitation of bcache devices number on single system */ 60 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 61 62 /* Superblock */ 63 64 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 65 { 66 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 67 68 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 69 if (bch_has_feature_large_bucket(sb)) { 70 unsigned int max, order; 71 72 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 73 order = le16_to_cpu(s->bucket_size); 74 /* 75 * bcache tool will make sure the overflow won't 76 * happen, an error message here is enough. 77 */ 78 if (order > max) 79 pr_err("Bucket size (1 << %u) overflows\n", 80 order); 81 bucket_size = 1 << order; 82 } else if (bch_has_feature_obso_large_bucket(sb)) { 83 bucket_size += 84 le16_to_cpu(s->obso_bucket_size_hi) << 16; 85 } 86 } 87 88 return bucket_size; 89 } 90 91 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 92 struct cache_sb_disk *s) 93 { 94 const char *err; 95 unsigned int i; 96 97 sb->first_bucket= le16_to_cpu(s->first_bucket); 98 sb->nbuckets = le64_to_cpu(s->nbuckets); 99 sb->bucket_size = get_bucket_size(sb, s); 100 101 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 102 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Too many buckets"; 109 if (sb->nbuckets > LONG_MAX) 110 goto err; 111 112 err = "Not enough buckets"; 113 if (sb->nbuckets < 1 << 7) 114 goto err; 115 116 err = "Bad block size (not power of 2)"; 117 if (!is_power_of_2(sb->block_size)) 118 goto err; 119 120 err = "Bad block size (larger than page size)"; 121 if (sb->block_size > PAGE_SECTORS) 122 goto err; 123 124 err = "Bad bucket size (not power of 2)"; 125 if (!is_power_of_2(sb->bucket_size)) 126 goto err; 127 128 err = "Bad bucket size (smaller than page size)"; 129 if (sb->bucket_size < PAGE_SECTORS) 130 goto err; 131 132 err = "Invalid superblock: device too small"; 133 if (get_capacity(bdev->bd_disk) < 134 sb->bucket_size * sb->nbuckets) 135 goto err; 136 137 err = "Bad UUID"; 138 if (bch_is_zero(sb->set_uuid, 16)) 139 goto err; 140 141 err = "Bad cache device number in set"; 142 if (!sb->nr_in_set || 143 sb->nr_in_set <= sb->nr_this_dev || 144 sb->nr_in_set > MAX_CACHES_PER_SET) 145 goto err; 146 147 err = "Journal buckets not sequential"; 148 for (i = 0; i < sb->keys; i++) 149 if (sb->d[i] != sb->first_bucket + i) 150 goto err; 151 152 err = "Too many journal buckets"; 153 if (sb->first_bucket + sb->keys > sb->nbuckets) 154 goto err; 155 156 err = "Invalid superblock: first bucket comes before end of super"; 157 if (sb->first_bucket * sb->bucket_size < 16) 158 goto err; 159 160 err = NULL; 161 err: 162 return err; 163 } 164 165 166 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 167 struct cache_sb_disk **res) 168 { 169 const char *err; 170 struct cache_sb_disk *s; 171 struct page *page; 172 unsigned int i; 173 174 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 175 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 176 if (IS_ERR(page)) 177 return "IO error"; 178 s = page_address(page) + offset_in_page(SB_OFFSET); 179 180 sb->offset = le64_to_cpu(s->offset); 181 sb->version = le64_to_cpu(s->version); 182 183 memcpy(sb->magic, s->magic, 16); 184 memcpy(sb->uuid, s->uuid, 16); 185 memcpy(sb->set_uuid, s->set_uuid, 16); 186 memcpy(sb->label, s->label, SB_LABEL_SIZE); 187 188 sb->flags = le64_to_cpu(s->flags); 189 sb->seq = le64_to_cpu(s->seq); 190 sb->last_mount = le32_to_cpu(s->last_mount); 191 sb->keys = le16_to_cpu(s->keys); 192 193 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 194 sb->d[i] = le64_to_cpu(s->d[i]); 195 196 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 197 sb->version, sb->flags, sb->seq, sb->keys); 198 199 err = "Not a bcache superblock (bad offset)"; 200 if (sb->offset != SB_SECTOR) 201 goto err; 202 203 err = "Not a bcache superblock (bad magic)"; 204 if (memcmp(sb->magic, bcache_magic, 16)) 205 goto err; 206 207 err = "Bad checksum"; 208 if (s->csum != csum_set(s)) 209 goto err; 210 211 err = "Bad UUID"; 212 if (bch_is_zero(sb->uuid, 16)) 213 goto err; 214 215 sb->block_size = le16_to_cpu(s->block_size); 216 217 err = "Superblock block size smaller than device block size"; 218 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 219 goto err; 220 221 switch (sb->version) { 222 case BCACHE_SB_VERSION_BDEV: 223 sb->data_offset = BDEV_DATA_START_DEFAULT; 224 break; 225 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 226 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 227 sb->data_offset = le64_to_cpu(s->data_offset); 228 229 err = "Bad data offset"; 230 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 231 goto err; 232 233 break; 234 case BCACHE_SB_VERSION_CDEV: 235 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 236 err = read_super_common(sb, bdev, s); 237 if (err) 238 goto err; 239 break; 240 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 241 /* 242 * Feature bits are needed in read_super_common(), 243 * convert them firstly. 244 */ 245 sb->feature_compat = le64_to_cpu(s->feature_compat); 246 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 247 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 248 249 /* Check incompatible features */ 250 err = "Unsupported compatible feature found"; 251 if (bch_has_unknown_compat_features(sb)) 252 goto err; 253 254 err = "Unsupported read-only compatible feature found"; 255 if (bch_has_unknown_ro_compat_features(sb)) 256 goto err; 257 258 err = "Unsupported incompatible feature found"; 259 if (bch_has_unknown_incompat_features(sb)) 260 goto err; 261 262 err = read_super_common(sb, bdev, s); 263 if (err) 264 goto err; 265 break; 266 default: 267 err = "Unsupported superblock version"; 268 goto err; 269 } 270 271 sb->last_mount = (u32)ktime_get_real_seconds(); 272 *res = s; 273 return NULL; 274 err: 275 put_page(page); 276 return err; 277 } 278 279 static void write_bdev_super_endio(struct bio *bio) 280 { 281 struct cached_dev *dc = bio->bi_private; 282 283 if (bio->bi_status) 284 bch_count_backing_io_errors(dc, bio); 285 286 closure_put(&dc->sb_write); 287 } 288 289 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 290 struct bio *bio) 291 { 292 unsigned int i; 293 294 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 295 bio->bi_iter.bi_sector = SB_SECTOR; 296 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 297 offset_in_page(out)); 298 299 out->offset = cpu_to_le64(sb->offset); 300 301 memcpy(out->uuid, sb->uuid, 16); 302 memcpy(out->set_uuid, sb->set_uuid, 16); 303 memcpy(out->label, sb->label, SB_LABEL_SIZE); 304 305 out->flags = cpu_to_le64(sb->flags); 306 out->seq = cpu_to_le64(sb->seq); 307 308 out->last_mount = cpu_to_le32(sb->last_mount); 309 out->first_bucket = cpu_to_le16(sb->first_bucket); 310 out->keys = cpu_to_le16(sb->keys); 311 312 for (i = 0; i < sb->keys; i++) 313 out->d[i] = cpu_to_le64(sb->d[i]); 314 315 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 316 out->feature_compat = cpu_to_le64(sb->feature_compat); 317 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 318 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 319 } 320 321 out->version = cpu_to_le64(sb->version); 322 out->csum = csum_set(out); 323 324 pr_debug("ver %llu, flags %llu, seq %llu\n", 325 sb->version, sb->flags, sb->seq); 326 327 submit_bio(bio); 328 } 329 330 static void bch_write_bdev_super_unlock(struct closure *cl) 331 { 332 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 333 334 up(&dc->sb_write_mutex); 335 } 336 337 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 338 { 339 struct closure *cl = &dc->sb_write; 340 struct bio *bio = &dc->sb_bio; 341 342 down(&dc->sb_write_mutex); 343 closure_init(cl, parent); 344 345 bio_init(bio, dc->bdev, dc->sb_bv, 1, 0); 346 bio->bi_end_io = write_bdev_super_endio; 347 bio->bi_private = dc; 348 349 closure_get(cl); 350 /* I/O request sent to backing device */ 351 __write_super(&dc->sb, dc->sb_disk, bio); 352 353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 354 } 355 356 static void write_super_endio(struct bio *bio) 357 { 358 struct cache *ca = bio->bi_private; 359 360 /* is_read = 0 */ 361 bch_count_io_errors(ca, bio->bi_status, 0, 362 "writing superblock"); 363 closure_put(&ca->set->sb_write); 364 } 365 366 static void bcache_write_super_unlock(struct closure *cl) 367 { 368 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 369 370 up(&c->sb_write_mutex); 371 } 372 373 void bcache_write_super(struct cache_set *c) 374 { 375 struct closure *cl = &c->sb_write; 376 struct cache *ca = c->cache; 377 struct bio *bio = &ca->sb_bio; 378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 379 380 down(&c->sb_write_mutex); 381 closure_init(cl, &c->cl); 382 383 ca->sb.seq++; 384 385 if (ca->sb.version < version) 386 ca->sb.version = version; 387 388 bio_init(bio, ca->bdev, ca->sb_bv, 1, 0); 389 bio->bi_end_io = write_super_endio; 390 bio->bi_private = ca; 391 392 closure_get(cl); 393 __write_super(&ca->sb, ca->sb_disk, bio); 394 395 closure_return_with_destructor(cl, bcache_write_super_unlock); 396 } 397 398 /* UUID io */ 399 400 static void uuid_endio(struct bio *bio) 401 { 402 struct closure *cl = bio->bi_private; 403 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 404 405 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 406 bch_bbio_free(bio, c); 407 closure_put(cl); 408 } 409 410 static void uuid_io_unlock(struct closure *cl) 411 { 412 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 413 414 up(&c->uuid_write_mutex); 415 } 416 417 static void uuid_io(struct cache_set *c, blk_opf_t opf, struct bkey *k, 418 struct closure *parent) 419 { 420 struct closure *cl = &c->uuid_write; 421 struct uuid_entry *u; 422 unsigned int i; 423 char buf[80]; 424 425 BUG_ON(!parent); 426 down(&c->uuid_write_mutex); 427 closure_init(cl, parent); 428 429 for (i = 0; i < KEY_PTRS(k); i++) { 430 struct bio *bio = bch_bbio_alloc(c); 431 432 bio->bi_opf = opf | REQ_SYNC | REQ_META; 433 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 434 435 bio->bi_end_io = uuid_endio; 436 bio->bi_private = cl; 437 bch_bio_map(bio, c->uuids); 438 439 bch_submit_bbio(bio, c, k, i); 440 441 if ((opf & REQ_OP_MASK) != REQ_OP_WRITE) 442 break; 443 } 444 445 bch_extent_to_text(buf, sizeof(buf), k); 446 pr_debug("%s UUIDs at %s\n", (opf & REQ_OP_MASK) == REQ_OP_WRITE ? 447 "wrote" : "read", buf); 448 449 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 450 if (!bch_is_zero(u->uuid, 16)) 451 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 452 u - c->uuids, u->uuid, u->label, 453 u->first_reg, u->last_reg, u->invalidated); 454 455 closure_return_with_destructor(cl, uuid_io_unlock); 456 } 457 458 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 459 { 460 struct bkey *k = &j->uuid_bucket; 461 462 if (__bch_btree_ptr_invalid(c, k)) 463 return "bad uuid pointer"; 464 465 bkey_copy(&c->uuid_bucket, k); 466 uuid_io(c, REQ_OP_READ, k, cl); 467 468 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 469 struct uuid_entry_v0 *u0 = (void *) c->uuids; 470 struct uuid_entry *u1 = (void *) c->uuids; 471 int i; 472 473 closure_sync(cl); 474 475 /* 476 * Since the new uuid entry is bigger than the old, we have to 477 * convert starting at the highest memory address and work down 478 * in order to do it in place 479 */ 480 481 for (i = c->nr_uuids - 1; 482 i >= 0; 483 --i) { 484 memcpy(u1[i].uuid, u0[i].uuid, 16); 485 memcpy(u1[i].label, u0[i].label, 32); 486 487 u1[i].first_reg = u0[i].first_reg; 488 u1[i].last_reg = u0[i].last_reg; 489 u1[i].invalidated = u0[i].invalidated; 490 491 u1[i].flags = 0; 492 u1[i].sectors = 0; 493 } 494 } 495 496 return NULL; 497 } 498 499 static int __uuid_write(struct cache_set *c) 500 { 501 BKEY_PADDED(key) k; 502 struct closure cl; 503 struct cache *ca = c->cache; 504 unsigned int size; 505 506 closure_init_stack(&cl); 507 lockdep_assert_held(&bch_register_lock); 508 509 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 510 return 1; 511 512 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 513 SET_KEY_SIZE(&k.key, size); 514 uuid_io(c, REQ_OP_WRITE, &k.key, &cl); 515 closure_sync(&cl); 516 517 /* Only one bucket used for uuid write */ 518 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 519 520 bkey_copy(&c->uuid_bucket, &k.key); 521 bkey_put(c, &k.key); 522 return 0; 523 } 524 525 int bch_uuid_write(struct cache_set *c) 526 { 527 int ret = __uuid_write(c); 528 529 if (!ret) 530 bch_journal_meta(c, NULL); 531 532 return ret; 533 } 534 535 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 536 { 537 struct uuid_entry *u; 538 539 for (u = c->uuids; 540 u < c->uuids + c->nr_uuids; u++) 541 if (!memcmp(u->uuid, uuid, 16)) 542 return u; 543 544 return NULL; 545 } 546 547 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 548 { 549 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 550 551 return uuid_find(c, zero_uuid); 552 } 553 554 /* 555 * Bucket priorities/gens: 556 * 557 * For each bucket, we store on disk its 558 * 8 bit gen 559 * 16 bit priority 560 * 561 * See alloc.c for an explanation of the gen. The priority is used to implement 562 * lru (and in the future other) cache replacement policies; for most purposes 563 * it's just an opaque integer. 564 * 565 * The gens and the priorities don't have a whole lot to do with each other, and 566 * it's actually the gens that must be written out at specific times - it's no 567 * big deal if the priorities don't get written, if we lose them we just reuse 568 * buckets in suboptimal order. 569 * 570 * On disk they're stored in a packed array, and in as many buckets are required 571 * to fit them all. The buckets we use to store them form a list; the journal 572 * header points to the first bucket, the first bucket points to the second 573 * bucket, et cetera. 574 * 575 * This code is used by the allocation code; periodically (whenever it runs out 576 * of buckets to allocate from) the allocation code will invalidate some 577 * buckets, but it can't use those buckets until their new gens are safely on 578 * disk. 579 */ 580 581 static void prio_endio(struct bio *bio) 582 { 583 struct cache *ca = bio->bi_private; 584 585 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 586 bch_bbio_free(bio, ca->set); 587 closure_put(&ca->prio); 588 } 589 590 static void prio_io(struct cache *ca, uint64_t bucket, blk_opf_t opf) 591 { 592 struct closure *cl = &ca->prio; 593 struct bio *bio = bch_bbio_alloc(ca->set); 594 595 closure_init_stack(cl); 596 597 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 598 bio_set_dev(bio, ca->bdev); 599 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 600 601 bio->bi_end_io = prio_endio; 602 bio->bi_private = ca; 603 bio->bi_opf = opf | REQ_SYNC | REQ_META; 604 bch_bio_map(bio, ca->disk_buckets); 605 606 closure_bio_submit(ca->set, bio, &ca->prio); 607 closure_sync(cl); 608 } 609 610 int bch_prio_write(struct cache *ca, bool wait) 611 { 612 int i; 613 struct bucket *b; 614 struct closure cl; 615 616 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 617 fifo_used(&ca->free[RESERVE_PRIO]), 618 fifo_used(&ca->free[RESERVE_NONE]), 619 fifo_used(&ca->free_inc)); 620 621 /* 622 * Pre-check if there are enough free buckets. In the non-blocking 623 * scenario it's better to fail early rather than starting to allocate 624 * buckets and do a cleanup later in case of failure. 625 */ 626 if (!wait) { 627 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 628 fifo_used(&ca->free[RESERVE_NONE]); 629 if (prio_buckets(ca) > avail) 630 return -ENOMEM; 631 } 632 633 closure_init_stack(&cl); 634 635 lockdep_assert_held(&ca->set->bucket_lock); 636 637 ca->disk_buckets->seq++; 638 639 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 640 &ca->meta_sectors_written); 641 642 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 643 long bucket; 644 struct prio_set *p = ca->disk_buckets; 645 struct bucket_disk *d = p->data; 646 struct bucket_disk *end = d + prios_per_bucket(ca); 647 648 for (b = ca->buckets + i * prios_per_bucket(ca); 649 b < ca->buckets + ca->sb.nbuckets && d < end; 650 b++, d++) { 651 d->prio = cpu_to_le16(b->prio); 652 d->gen = b->gen; 653 } 654 655 p->next_bucket = ca->prio_buckets[i + 1]; 656 p->magic = pset_magic(&ca->sb); 657 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 658 659 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 660 BUG_ON(bucket == -1); 661 662 mutex_unlock(&ca->set->bucket_lock); 663 prio_io(ca, bucket, REQ_OP_WRITE); 664 mutex_lock(&ca->set->bucket_lock); 665 666 ca->prio_buckets[i] = bucket; 667 atomic_dec_bug(&ca->buckets[bucket].pin); 668 } 669 670 mutex_unlock(&ca->set->bucket_lock); 671 672 bch_journal_meta(ca->set, &cl); 673 closure_sync(&cl); 674 675 mutex_lock(&ca->set->bucket_lock); 676 677 /* 678 * Don't want the old priorities to get garbage collected until after we 679 * finish writing the new ones, and they're journalled 680 */ 681 for (i = 0; i < prio_buckets(ca); i++) { 682 if (ca->prio_last_buckets[i]) 683 __bch_bucket_free(ca, 684 &ca->buckets[ca->prio_last_buckets[i]]); 685 686 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 687 } 688 return 0; 689 } 690 691 static int prio_read(struct cache *ca, uint64_t bucket) 692 { 693 struct prio_set *p = ca->disk_buckets; 694 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 695 struct bucket *b; 696 unsigned int bucket_nr = 0; 697 int ret = -EIO; 698 699 for (b = ca->buckets; 700 b < ca->buckets + ca->sb.nbuckets; 701 b++, d++) { 702 if (d == end) { 703 ca->prio_buckets[bucket_nr] = bucket; 704 ca->prio_last_buckets[bucket_nr] = bucket; 705 bucket_nr++; 706 707 prio_io(ca, bucket, REQ_OP_READ); 708 709 if (p->csum != 710 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 711 pr_warn("bad csum reading priorities\n"); 712 goto out; 713 } 714 715 if (p->magic != pset_magic(&ca->sb)) { 716 pr_warn("bad magic reading priorities\n"); 717 goto out; 718 } 719 720 bucket = p->next_bucket; 721 d = p->data; 722 } 723 724 b->prio = le16_to_cpu(d->prio); 725 b->gen = b->last_gc = d->gen; 726 } 727 728 ret = 0; 729 out: 730 return ret; 731 } 732 733 /* Bcache device */ 734 735 static int open_dev(struct gendisk *disk, blk_mode_t mode) 736 { 737 struct bcache_device *d = disk->private_data; 738 739 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 740 return -ENXIO; 741 742 closure_get(&d->cl); 743 return 0; 744 } 745 746 static void release_dev(struct gendisk *b) 747 { 748 struct bcache_device *d = b->private_data; 749 750 closure_put(&d->cl); 751 } 752 753 static int ioctl_dev(struct block_device *b, blk_mode_t mode, 754 unsigned int cmd, unsigned long arg) 755 { 756 struct bcache_device *d = b->bd_disk->private_data; 757 758 return d->ioctl(d, mode, cmd, arg); 759 } 760 761 static const struct block_device_operations bcache_cached_ops = { 762 .submit_bio = cached_dev_submit_bio, 763 .open = open_dev, 764 .release = release_dev, 765 .ioctl = ioctl_dev, 766 .owner = THIS_MODULE, 767 }; 768 769 static const struct block_device_operations bcache_flash_ops = { 770 .submit_bio = flash_dev_submit_bio, 771 .open = open_dev, 772 .release = release_dev, 773 .ioctl = ioctl_dev, 774 .owner = THIS_MODULE, 775 }; 776 777 void bcache_device_stop(struct bcache_device *d) 778 { 779 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 780 /* 781 * closure_fn set to 782 * - cached device: cached_dev_flush() 783 * - flash dev: flash_dev_flush() 784 */ 785 closure_queue(&d->cl); 786 } 787 788 static void bcache_device_unlink(struct bcache_device *d) 789 { 790 lockdep_assert_held(&bch_register_lock); 791 792 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 793 struct cache *ca = d->c->cache; 794 795 sysfs_remove_link(&d->c->kobj, d->name); 796 sysfs_remove_link(&d->kobj, "cache"); 797 798 bd_unlink_disk_holder(ca->bdev, d->disk); 799 } 800 } 801 802 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 803 const char *name) 804 { 805 struct cache *ca = c->cache; 806 int ret; 807 808 bd_link_disk_holder(ca->bdev, d->disk); 809 810 snprintf(d->name, BCACHEDEVNAME_SIZE, 811 "%s%u", name, d->id); 812 813 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 814 if (ret < 0) 815 pr_err("Couldn't create device -> cache set symlink\n"); 816 817 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 818 if (ret < 0) 819 pr_err("Couldn't create cache set -> device symlink\n"); 820 821 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 822 } 823 824 static void bcache_device_detach(struct bcache_device *d) 825 { 826 lockdep_assert_held(&bch_register_lock); 827 828 atomic_dec(&d->c->attached_dev_nr); 829 830 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 831 struct uuid_entry *u = d->c->uuids + d->id; 832 833 SET_UUID_FLASH_ONLY(u, 0); 834 memcpy(u->uuid, invalid_uuid, 16); 835 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 836 bch_uuid_write(d->c); 837 } 838 839 bcache_device_unlink(d); 840 841 d->c->devices[d->id] = NULL; 842 closure_put(&d->c->caching); 843 d->c = NULL; 844 } 845 846 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 847 unsigned int id) 848 { 849 d->id = id; 850 d->c = c; 851 c->devices[id] = d; 852 853 if (id >= c->devices_max_used) 854 c->devices_max_used = id + 1; 855 856 closure_get(&c->caching); 857 } 858 859 static inline int first_minor_to_idx(int first_minor) 860 { 861 return (first_minor/BCACHE_MINORS); 862 } 863 864 static inline int idx_to_first_minor(int idx) 865 { 866 return (idx * BCACHE_MINORS); 867 } 868 869 static void bcache_device_free(struct bcache_device *d) 870 { 871 struct gendisk *disk = d->disk; 872 873 lockdep_assert_held(&bch_register_lock); 874 875 if (disk) 876 pr_info("%s stopped\n", disk->disk_name); 877 else 878 pr_err("bcache device (NULL gendisk) stopped\n"); 879 880 if (d->c) 881 bcache_device_detach(d); 882 883 if (disk) { 884 ida_simple_remove(&bcache_device_idx, 885 first_minor_to_idx(disk->first_minor)); 886 put_disk(disk); 887 } 888 889 bioset_exit(&d->bio_split); 890 kvfree(d->full_dirty_stripes); 891 kvfree(d->stripe_sectors_dirty); 892 893 closure_debug_destroy(&d->cl); 894 } 895 896 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 897 sector_t sectors, struct block_device *cached_bdev, 898 const struct block_device_operations *ops) 899 { 900 struct request_queue *q; 901 const size_t max_stripes = min_t(size_t, INT_MAX, 902 SIZE_MAX / sizeof(atomic_t)); 903 uint64_t n; 904 int idx; 905 906 if (!d->stripe_size) 907 d->stripe_size = 1 << 31; 908 909 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 910 if (!n || n > max_stripes) { 911 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 912 n); 913 return -ENOMEM; 914 } 915 d->nr_stripes = n; 916 917 n = d->nr_stripes * sizeof(atomic_t); 918 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 919 if (!d->stripe_sectors_dirty) 920 return -ENOMEM; 921 922 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 923 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 924 if (!d->full_dirty_stripes) 925 goto out_free_stripe_sectors_dirty; 926 927 idx = ida_simple_get(&bcache_device_idx, 0, 928 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 929 if (idx < 0) 930 goto out_free_full_dirty_stripes; 931 932 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 933 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 934 goto out_ida_remove; 935 936 d->disk = blk_alloc_disk(NUMA_NO_NODE); 937 if (!d->disk) 938 goto out_bioset_exit; 939 940 set_capacity(d->disk, sectors); 941 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 942 943 d->disk->major = bcache_major; 944 d->disk->first_minor = idx_to_first_minor(idx); 945 d->disk->minors = BCACHE_MINORS; 946 d->disk->fops = ops; 947 d->disk->private_data = d; 948 949 q = d->disk->queue; 950 q->limits.max_hw_sectors = UINT_MAX; 951 q->limits.max_sectors = UINT_MAX; 952 q->limits.max_segment_size = UINT_MAX; 953 q->limits.max_segments = BIO_MAX_VECS; 954 blk_queue_max_discard_sectors(q, UINT_MAX); 955 q->limits.discard_granularity = 512; 956 q->limits.io_min = block_size; 957 q->limits.logical_block_size = block_size; 958 q->limits.physical_block_size = block_size; 959 960 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 961 /* 962 * This should only happen with BCACHE_SB_VERSION_BDEV. 963 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 964 */ 965 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 966 d->disk->disk_name, q->limits.logical_block_size, 967 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 968 969 /* This also adjusts physical block size/min io size if needed */ 970 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 971 } 972 973 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 974 975 blk_queue_write_cache(q, true, true); 976 977 return 0; 978 979 out_bioset_exit: 980 bioset_exit(&d->bio_split); 981 out_ida_remove: 982 ida_simple_remove(&bcache_device_idx, idx); 983 out_free_full_dirty_stripes: 984 kvfree(d->full_dirty_stripes); 985 out_free_stripe_sectors_dirty: 986 kvfree(d->stripe_sectors_dirty); 987 return -ENOMEM; 988 989 } 990 991 /* Cached device */ 992 993 static void calc_cached_dev_sectors(struct cache_set *c) 994 { 995 uint64_t sectors = 0; 996 struct cached_dev *dc; 997 998 list_for_each_entry(dc, &c->cached_devs, list) 999 sectors += bdev_nr_sectors(dc->bdev); 1000 1001 c->cached_dev_sectors = sectors; 1002 } 1003 1004 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1005 static int cached_dev_status_update(void *arg) 1006 { 1007 struct cached_dev *dc = arg; 1008 struct request_queue *q; 1009 1010 /* 1011 * If this delayed worker is stopping outside, directly quit here. 1012 * dc->io_disable might be set via sysfs interface, so check it 1013 * here too. 1014 */ 1015 while (!kthread_should_stop() && !dc->io_disable) { 1016 q = bdev_get_queue(dc->bdev); 1017 if (blk_queue_dying(q)) 1018 dc->offline_seconds++; 1019 else 1020 dc->offline_seconds = 0; 1021 1022 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1023 pr_err("%pg: device offline for %d seconds\n", 1024 dc->bdev, 1025 BACKING_DEV_OFFLINE_TIMEOUT); 1026 pr_err("%s: disable I/O request due to backing device offline\n", 1027 dc->disk.name); 1028 dc->io_disable = true; 1029 /* let others know earlier that io_disable is true */ 1030 smp_mb(); 1031 bcache_device_stop(&dc->disk); 1032 break; 1033 } 1034 schedule_timeout_interruptible(HZ); 1035 } 1036 1037 wait_for_kthread_stop(); 1038 return 0; 1039 } 1040 1041 1042 int bch_cached_dev_run(struct cached_dev *dc) 1043 { 1044 int ret = 0; 1045 struct bcache_device *d = &dc->disk; 1046 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1047 char *env[] = { 1048 "DRIVER=bcache", 1049 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1050 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1051 NULL, 1052 }; 1053 1054 if (dc->io_disable) { 1055 pr_err("I/O disabled on cached dev %pg\n", dc->bdev); 1056 ret = -EIO; 1057 goto out; 1058 } 1059 1060 if (atomic_xchg(&dc->running, 1)) { 1061 pr_info("cached dev %pg is running already\n", dc->bdev); 1062 ret = -EBUSY; 1063 goto out; 1064 } 1065 1066 if (!d->c && 1067 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1068 struct closure cl; 1069 1070 closure_init_stack(&cl); 1071 1072 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1073 bch_write_bdev_super(dc, &cl); 1074 closure_sync(&cl); 1075 } 1076 1077 ret = add_disk(d->disk); 1078 if (ret) 1079 goto out; 1080 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1081 /* 1082 * won't show up in the uevent file, use udevadm monitor -e instead 1083 * only class / kset properties are persistent 1084 */ 1085 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1086 1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1089 &d->kobj, "bcache")) { 1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1091 ret = -ENOMEM; 1092 goto out; 1093 } 1094 1095 dc->status_update_thread = kthread_run(cached_dev_status_update, 1096 dc, "bcache_status_update"); 1097 if (IS_ERR(dc->status_update_thread)) { 1098 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1099 } 1100 1101 out: 1102 kfree(env[1]); 1103 kfree(env[2]); 1104 kfree(buf); 1105 return ret; 1106 } 1107 1108 /* 1109 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1110 * work dc->writeback_rate_update is running. Wait until the routine 1111 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1112 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1113 * seconds, give up waiting here and continue to cancel it too. 1114 */ 1115 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1116 { 1117 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1118 1119 do { 1120 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1121 &dc->disk.flags)) 1122 break; 1123 time_out--; 1124 schedule_timeout_interruptible(1); 1125 } while (time_out > 0); 1126 1127 if (time_out == 0) 1128 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1129 1130 cancel_delayed_work_sync(&dc->writeback_rate_update); 1131 } 1132 1133 static void cached_dev_detach_finish(struct work_struct *w) 1134 { 1135 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1136 struct cache_set *c = dc->disk.c; 1137 1138 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1139 BUG_ON(refcount_read(&dc->count)); 1140 1141 1142 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1143 cancel_writeback_rate_update_dwork(dc); 1144 1145 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1146 kthread_stop(dc->writeback_thread); 1147 dc->writeback_thread = NULL; 1148 } 1149 1150 mutex_lock(&bch_register_lock); 1151 1152 bcache_device_detach(&dc->disk); 1153 list_move(&dc->list, &uncached_devices); 1154 calc_cached_dev_sectors(c); 1155 1156 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1157 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1158 1159 mutex_unlock(&bch_register_lock); 1160 1161 pr_info("Caching disabled for %pg\n", dc->bdev); 1162 1163 /* Drop ref we took in cached_dev_detach() */ 1164 closure_put(&dc->disk.cl); 1165 } 1166 1167 void bch_cached_dev_detach(struct cached_dev *dc) 1168 { 1169 lockdep_assert_held(&bch_register_lock); 1170 1171 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1172 return; 1173 1174 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1175 return; 1176 1177 /* 1178 * Block the device from being closed and freed until we're finished 1179 * detaching 1180 */ 1181 closure_get(&dc->disk.cl); 1182 1183 bch_writeback_queue(dc); 1184 1185 cached_dev_put(dc); 1186 } 1187 1188 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1189 uint8_t *set_uuid) 1190 { 1191 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1192 struct uuid_entry *u; 1193 struct cached_dev *exist_dc, *t; 1194 int ret = 0; 1195 1196 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1197 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1198 return -ENOENT; 1199 1200 if (dc->disk.c) { 1201 pr_err("Can't attach %pg: already attached\n", dc->bdev); 1202 return -EINVAL; 1203 } 1204 1205 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1206 pr_err("Can't attach %pg: shutting down\n", dc->bdev); 1207 return -EINVAL; 1208 } 1209 1210 if (dc->sb.block_size < c->cache->sb.block_size) { 1211 /* Will die */ 1212 pr_err("Couldn't attach %pg: block size less than set's block size\n", 1213 dc->bdev); 1214 return -EINVAL; 1215 } 1216 1217 /* Check whether already attached */ 1218 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1219 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1220 pr_err("Tried to attach %pg but duplicate UUID already attached\n", 1221 dc->bdev); 1222 1223 return -EINVAL; 1224 } 1225 } 1226 1227 u = uuid_find(c, dc->sb.uuid); 1228 1229 if (u && 1230 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1231 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1232 memcpy(u->uuid, invalid_uuid, 16); 1233 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1234 u = NULL; 1235 } 1236 1237 if (!u) { 1238 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1239 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev); 1240 return -ENOENT; 1241 } 1242 1243 u = uuid_find_empty(c); 1244 if (!u) { 1245 pr_err("Not caching %pg, no room for UUID\n", dc->bdev); 1246 return -EINVAL; 1247 } 1248 } 1249 1250 /* 1251 * Deadlocks since we're called via sysfs... 1252 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1253 */ 1254 1255 if (bch_is_zero(u->uuid, 16)) { 1256 struct closure cl; 1257 1258 closure_init_stack(&cl); 1259 1260 memcpy(u->uuid, dc->sb.uuid, 16); 1261 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1262 u->first_reg = u->last_reg = rtime; 1263 bch_uuid_write(c); 1264 1265 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1266 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1267 1268 bch_write_bdev_super(dc, &cl); 1269 closure_sync(&cl); 1270 } else { 1271 u->last_reg = rtime; 1272 bch_uuid_write(c); 1273 } 1274 1275 bcache_device_attach(&dc->disk, c, u - c->uuids); 1276 list_move(&dc->list, &c->cached_devs); 1277 calc_cached_dev_sectors(c); 1278 1279 /* 1280 * dc->c must be set before dc->count != 0 - paired with the mb in 1281 * cached_dev_get() 1282 */ 1283 smp_wmb(); 1284 refcount_set(&dc->count, 1); 1285 1286 /* Block writeback thread, but spawn it */ 1287 down_write(&dc->writeback_lock); 1288 if (bch_cached_dev_writeback_start(dc)) { 1289 up_write(&dc->writeback_lock); 1290 pr_err("Couldn't start writeback facilities for %s\n", 1291 dc->disk.disk->disk_name); 1292 return -ENOMEM; 1293 } 1294 1295 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1296 atomic_set(&dc->has_dirty, 1); 1297 bch_writeback_queue(dc); 1298 } 1299 1300 bch_sectors_dirty_init(&dc->disk); 1301 1302 ret = bch_cached_dev_run(dc); 1303 if (ret && (ret != -EBUSY)) { 1304 up_write(&dc->writeback_lock); 1305 /* 1306 * bch_register_lock is held, bcache_device_stop() is not 1307 * able to be directly called. The kthread and kworker 1308 * created previously in bch_cached_dev_writeback_start() 1309 * have to be stopped manually here. 1310 */ 1311 kthread_stop(dc->writeback_thread); 1312 cancel_writeback_rate_update_dwork(dc); 1313 pr_err("Couldn't run cached device %pg\n", dc->bdev); 1314 return ret; 1315 } 1316 1317 bcache_device_link(&dc->disk, c, "bdev"); 1318 atomic_inc(&c->attached_dev_nr); 1319 1320 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1321 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1322 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1323 set_disk_ro(dc->disk.disk, 1); 1324 } 1325 1326 /* Allow the writeback thread to proceed */ 1327 up_write(&dc->writeback_lock); 1328 1329 pr_info("Caching %pg as %s on set %pU\n", 1330 dc->bdev, 1331 dc->disk.disk->disk_name, 1332 dc->disk.c->set_uuid); 1333 return 0; 1334 } 1335 1336 /* when dc->disk.kobj released */ 1337 void bch_cached_dev_release(struct kobject *kobj) 1338 { 1339 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1340 disk.kobj); 1341 kfree(dc); 1342 module_put(THIS_MODULE); 1343 } 1344 1345 static void cached_dev_free(struct closure *cl) 1346 { 1347 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1348 1349 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1350 cancel_writeback_rate_update_dwork(dc); 1351 1352 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1353 kthread_stop(dc->writeback_thread); 1354 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1355 kthread_stop(dc->status_update_thread); 1356 1357 mutex_lock(&bch_register_lock); 1358 1359 if (atomic_read(&dc->running)) { 1360 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1361 del_gendisk(dc->disk.disk); 1362 } 1363 bcache_device_free(&dc->disk); 1364 list_del(&dc->list); 1365 1366 mutex_unlock(&bch_register_lock); 1367 1368 if (dc->sb_disk) 1369 put_page(virt_to_page(dc->sb_disk)); 1370 1371 if (!IS_ERR_OR_NULL(dc->bdev)) 1372 blkdev_put(dc->bdev, bcache_kobj); 1373 1374 wake_up(&unregister_wait); 1375 1376 kobject_put(&dc->disk.kobj); 1377 } 1378 1379 static void cached_dev_flush(struct closure *cl) 1380 { 1381 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1382 struct bcache_device *d = &dc->disk; 1383 1384 mutex_lock(&bch_register_lock); 1385 bcache_device_unlink(d); 1386 mutex_unlock(&bch_register_lock); 1387 1388 bch_cache_accounting_destroy(&dc->accounting); 1389 kobject_del(&d->kobj); 1390 1391 continue_at(cl, cached_dev_free, system_wq); 1392 } 1393 1394 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1395 { 1396 int ret; 1397 struct io *io; 1398 struct request_queue *q = bdev_get_queue(dc->bdev); 1399 1400 __module_get(THIS_MODULE); 1401 INIT_LIST_HEAD(&dc->list); 1402 closure_init(&dc->disk.cl, NULL); 1403 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1404 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1405 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1406 sema_init(&dc->sb_write_mutex, 1); 1407 INIT_LIST_HEAD(&dc->io_lru); 1408 spin_lock_init(&dc->io_lock); 1409 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1410 1411 dc->sequential_cutoff = 4 << 20; 1412 1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1414 list_add(&io->lru, &dc->io_lru); 1415 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1416 } 1417 1418 dc->disk.stripe_size = q->limits.io_opt >> 9; 1419 1420 if (dc->disk.stripe_size) 1421 dc->partial_stripes_expensive = 1422 q->limits.raid_partial_stripes_expensive; 1423 1424 ret = bcache_device_init(&dc->disk, block_size, 1425 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1426 dc->bdev, &bcache_cached_ops); 1427 if (ret) 1428 return ret; 1429 1430 blk_queue_io_opt(dc->disk.disk->queue, 1431 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1432 1433 atomic_set(&dc->io_errors, 0); 1434 dc->io_disable = false; 1435 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1436 /* default to auto */ 1437 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1438 1439 bch_cached_dev_request_init(dc); 1440 bch_cached_dev_writeback_init(dc); 1441 return 0; 1442 } 1443 1444 /* Cached device - bcache superblock */ 1445 1446 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1447 struct block_device *bdev, 1448 struct cached_dev *dc) 1449 { 1450 const char *err = "cannot allocate memory"; 1451 struct cache_set *c; 1452 int ret = -ENOMEM; 1453 1454 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1455 dc->bdev = bdev; 1456 dc->bdev->bd_holder = dc; 1457 dc->sb_disk = sb_disk; 1458 1459 if (cached_dev_init(dc, sb->block_size << 9)) 1460 goto err; 1461 1462 err = "error creating kobject"; 1463 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1464 goto err; 1465 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1466 goto err; 1467 1468 pr_info("registered backing device %pg\n", dc->bdev); 1469 1470 list_add(&dc->list, &uncached_devices); 1471 /* attach to a matched cache set if it exists */ 1472 list_for_each_entry(c, &bch_cache_sets, list) 1473 bch_cached_dev_attach(dc, c, NULL); 1474 1475 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1476 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1477 err = "failed to run cached device"; 1478 ret = bch_cached_dev_run(dc); 1479 if (ret) 1480 goto err; 1481 } 1482 1483 return 0; 1484 err: 1485 pr_notice("error %pg: %s\n", dc->bdev, err); 1486 bcache_device_stop(&dc->disk); 1487 return ret; 1488 } 1489 1490 /* Flash only volumes */ 1491 1492 /* When d->kobj released */ 1493 void bch_flash_dev_release(struct kobject *kobj) 1494 { 1495 struct bcache_device *d = container_of(kobj, struct bcache_device, 1496 kobj); 1497 kfree(d); 1498 } 1499 1500 static void flash_dev_free(struct closure *cl) 1501 { 1502 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1503 1504 mutex_lock(&bch_register_lock); 1505 atomic_long_sub(bcache_dev_sectors_dirty(d), 1506 &d->c->flash_dev_dirty_sectors); 1507 del_gendisk(d->disk); 1508 bcache_device_free(d); 1509 mutex_unlock(&bch_register_lock); 1510 kobject_put(&d->kobj); 1511 } 1512 1513 static void flash_dev_flush(struct closure *cl) 1514 { 1515 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1516 1517 mutex_lock(&bch_register_lock); 1518 bcache_device_unlink(d); 1519 mutex_unlock(&bch_register_lock); 1520 kobject_del(&d->kobj); 1521 continue_at(cl, flash_dev_free, system_wq); 1522 } 1523 1524 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1525 { 1526 int err = -ENOMEM; 1527 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1528 GFP_KERNEL); 1529 if (!d) 1530 goto err_ret; 1531 1532 closure_init(&d->cl, NULL); 1533 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1534 1535 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1536 1537 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1538 NULL, &bcache_flash_ops)) 1539 goto err; 1540 1541 bcache_device_attach(d, c, u - c->uuids); 1542 bch_sectors_dirty_init(d); 1543 bch_flash_dev_request_init(d); 1544 err = add_disk(d->disk); 1545 if (err) 1546 goto err; 1547 1548 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"); 1549 if (err) 1550 goto err; 1551 1552 bcache_device_link(d, c, "volume"); 1553 1554 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1555 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1556 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1557 set_disk_ro(d->disk, 1); 1558 } 1559 1560 return 0; 1561 err: 1562 kobject_put(&d->kobj); 1563 err_ret: 1564 return err; 1565 } 1566 1567 static int flash_devs_run(struct cache_set *c) 1568 { 1569 int ret = 0; 1570 struct uuid_entry *u; 1571 1572 for (u = c->uuids; 1573 u < c->uuids + c->nr_uuids && !ret; 1574 u++) 1575 if (UUID_FLASH_ONLY(u)) 1576 ret = flash_dev_run(c, u); 1577 1578 return ret; 1579 } 1580 1581 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1582 { 1583 struct uuid_entry *u; 1584 1585 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1586 return -EINTR; 1587 1588 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1589 return -EPERM; 1590 1591 u = uuid_find_empty(c); 1592 if (!u) { 1593 pr_err("Can't create volume, no room for UUID\n"); 1594 return -EINVAL; 1595 } 1596 1597 get_random_bytes(u->uuid, 16); 1598 memset(u->label, 0, 32); 1599 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1600 1601 SET_UUID_FLASH_ONLY(u, 1); 1602 u->sectors = size >> 9; 1603 1604 bch_uuid_write(c); 1605 1606 return flash_dev_run(c, u); 1607 } 1608 1609 bool bch_cached_dev_error(struct cached_dev *dc) 1610 { 1611 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1612 return false; 1613 1614 dc->io_disable = true; 1615 /* make others know io_disable is true earlier */ 1616 smp_mb(); 1617 1618 pr_err("stop %s: too many IO errors on backing device %pg\n", 1619 dc->disk.disk->disk_name, dc->bdev); 1620 1621 bcache_device_stop(&dc->disk); 1622 return true; 1623 } 1624 1625 /* Cache set */ 1626 1627 __printf(2, 3) 1628 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1629 { 1630 struct va_format vaf; 1631 va_list args; 1632 1633 if (c->on_error != ON_ERROR_PANIC && 1634 test_bit(CACHE_SET_STOPPING, &c->flags)) 1635 return false; 1636 1637 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1638 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1639 1640 /* 1641 * XXX: we can be called from atomic context 1642 * acquire_console_sem(); 1643 */ 1644 1645 va_start(args, fmt); 1646 1647 vaf.fmt = fmt; 1648 vaf.va = &args; 1649 1650 pr_err("error on %pU: %pV, disabling caching\n", 1651 c->set_uuid, &vaf); 1652 1653 va_end(args); 1654 1655 if (c->on_error == ON_ERROR_PANIC) 1656 panic("panic forced after error\n"); 1657 1658 bch_cache_set_unregister(c); 1659 return true; 1660 } 1661 1662 /* When c->kobj released */ 1663 void bch_cache_set_release(struct kobject *kobj) 1664 { 1665 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1666 1667 kfree(c); 1668 module_put(THIS_MODULE); 1669 } 1670 1671 static void cache_set_free(struct closure *cl) 1672 { 1673 struct cache_set *c = container_of(cl, struct cache_set, cl); 1674 struct cache *ca; 1675 1676 debugfs_remove(c->debug); 1677 1678 bch_open_buckets_free(c); 1679 bch_btree_cache_free(c); 1680 bch_journal_free(c); 1681 1682 mutex_lock(&bch_register_lock); 1683 bch_bset_sort_state_free(&c->sort); 1684 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1685 1686 ca = c->cache; 1687 if (ca) { 1688 ca->set = NULL; 1689 c->cache = NULL; 1690 kobject_put(&ca->kobj); 1691 } 1692 1693 1694 if (c->moving_gc_wq) 1695 destroy_workqueue(c->moving_gc_wq); 1696 bioset_exit(&c->bio_split); 1697 mempool_exit(&c->fill_iter); 1698 mempool_exit(&c->bio_meta); 1699 mempool_exit(&c->search); 1700 kfree(c->devices); 1701 1702 list_del(&c->list); 1703 mutex_unlock(&bch_register_lock); 1704 1705 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1706 wake_up(&unregister_wait); 1707 1708 closure_debug_destroy(&c->cl); 1709 kobject_put(&c->kobj); 1710 } 1711 1712 static void cache_set_flush(struct closure *cl) 1713 { 1714 struct cache_set *c = container_of(cl, struct cache_set, caching); 1715 struct cache *ca = c->cache; 1716 struct btree *b; 1717 1718 bch_cache_accounting_destroy(&c->accounting); 1719 1720 kobject_put(&c->internal); 1721 kobject_del(&c->kobj); 1722 1723 if (!IS_ERR_OR_NULL(c->gc_thread)) 1724 kthread_stop(c->gc_thread); 1725 1726 if (!IS_ERR(c->root)) 1727 list_add(&c->root->list, &c->btree_cache); 1728 1729 /* 1730 * Avoid flushing cached nodes if cache set is retiring 1731 * due to too many I/O errors detected. 1732 */ 1733 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1734 list_for_each_entry(b, &c->btree_cache, list) { 1735 mutex_lock(&b->write_lock); 1736 if (btree_node_dirty(b)) 1737 __bch_btree_node_write(b, NULL); 1738 mutex_unlock(&b->write_lock); 1739 } 1740 1741 if (ca->alloc_thread) 1742 kthread_stop(ca->alloc_thread); 1743 1744 if (c->journal.cur) { 1745 cancel_delayed_work_sync(&c->journal.work); 1746 /* flush last journal entry if needed */ 1747 c->journal.work.work.func(&c->journal.work.work); 1748 } 1749 1750 closure_return(cl); 1751 } 1752 1753 /* 1754 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1755 * cache set is unregistering due to too many I/O errors. In this condition, 1756 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1757 * value and whether the broken cache has dirty data: 1758 * 1759 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1760 * BCH_CACHED_STOP_AUTO 0 NO 1761 * BCH_CACHED_STOP_AUTO 1 YES 1762 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1763 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1764 * 1765 * The expected behavior is, if stop_when_cache_set_failed is configured to 1766 * "auto" via sysfs interface, the bcache device will not be stopped if the 1767 * backing device is clean on the broken cache device. 1768 */ 1769 static void conditional_stop_bcache_device(struct cache_set *c, 1770 struct bcache_device *d, 1771 struct cached_dev *dc) 1772 { 1773 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1774 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1775 d->disk->disk_name, c->set_uuid); 1776 bcache_device_stop(d); 1777 } else if (atomic_read(&dc->has_dirty)) { 1778 /* 1779 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1780 * and dc->has_dirty == 1 1781 */ 1782 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1783 d->disk->disk_name); 1784 /* 1785 * There might be a small time gap that cache set is 1786 * released but bcache device is not. Inside this time 1787 * gap, regular I/O requests will directly go into 1788 * backing device as no cache set attached to. This 1789 * behavior may also introduce potential inconsistence 1790 * data in writeback mode while cache is dirty. 1791 * Therefore before calling bcache_device_stop() due 1792 * to a broken cache device, dc->io_disable should be 1793 * explicitly set to true. 1794 */ 1795 dc->io_disable = true; 1796 /* make others know io_disable is true earlier */ 1797 smp_mb(); 1798 bcache_device_stop(d); 1799 } else { 1800 /* 1801 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1802 * and dc->has_dirty == 0 1803 */ 1804 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1805 d->disk->disk_name); 1806 } 1807 } 1808 1809 static void __cache_set_unregister(struct closure *cl) 1810 { 1811 struct cache_set *c = container_of(cl, struct cache_set, caching); 1812 struct cached_dev *dc; 1813 struct bcache_device *d; 1814 size_t i; 1815 1816 mutex_lock(&bch_register_lock); 1817 1818 for (i = 0; i < c->devices_max_used; i++) { 1819 d = c->devices[i]; 1820 if (!d) 1821 continue; 1822 1823 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1824 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1825 dc = container_of(d, struct cached_dev, disk); 1826 bch_cached_dev_detach(dc); 1827 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1828 conditional_stop_bcache_device(c, d, dc); 1829 } else { 1830 bcache_device_stop(d); 1831 } 1832 } 1833 1834 mutex_unlock(&bch_register_lock); 1835 1836 continue_at(cl, cache_set_flush, system_wq); 1837 } 1838 1839 void bch_cache_set_stop(struct cache_set *c) 1840 { 1841 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1842 /* closure_fn set to __cache_set_unregister() */ 1843 closure_queue(&c->caching); 1844 } 1845 1846 void bch_cache_set_unregister(struct cache_set *c) 1847 { 1848 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1849 bch_cache_set_stop(c); 1850 } 1851 1852 #define alloc_meta_bucket_pages(gfp, sb) \ 1853 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1854 1855 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1856 { 1857 int iter_size; 1858 struct cache *ca = container_of(sb, struct cache, sb); 1859 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1860 1861 if (!c) 1862 return NULL; 1863 1864 __module_get(THIS_MODULE); 1865 closure_init(&c->cl, NULL); 1866 set_closure_fn(&c->cl, cache_set_free, system_wq); 1867 1868 closure_init(&c->caching, &c->cl); 1869 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1870 1871 /* Maybe create continue_at_noreturn() and use it here? */ 1872 closure_set_stopped(&c->cl); 1873 closure_put(&c->cl); 1874 1875 kobject_init(&c->kobj, &bch_cache_set_ktype); 1876 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1877 1878 bch_cache_accounting_init(&c->accounting, &c->cl); 1879 1880 memcpy(c->set_uuid, sb->set_uuid, 16); 1881 1882 c->cache = ca; 1883 c->cache->set = c; 1884 c->bucket_bits = ilog2(sb->bucket_size); 1885 c->block_bits = ilog2(sb->block_size); 1886 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1887 c->devices_max_used = 0; 1888 atomic_set(&c->attached_dev_nr, 0); 1889 c->btree_pages = meta_bucket_pages(sb); 1890 if (c->btree_pages > BTREE_MAX_PAGES) 1891 c->btree_pages = max_t(int, c->btree_pages / 4, 1892 BTREE_MAX_PAGES); 1893 1894 sema_init(&c->sb_write_mutex, 1); 1895 mutex_init(&c->bucket_lock); 1896 init_waitqueue_head(&c->btree_cache_wait); 1897 spin_lock_init(&c->btree_cannibalize_lock); 1898 init_waitqueue_head(&c->bucket_wait); 1899 init_waitqueue_head(&c->gc_wait); 1900 sema_init(&c->uuid_write_mutex, 1); 1901 1902 spin_lock_init(&c->btree_gc_time.lock); 1903 spin_lock_init(&c->btree_split_time.lock); 1904 spin_lock_init(&c->btree_read_time.lock); 1905 1906 bch_moving_init_cache_set(c); 1907 1908 INIT_LIST_HEAD(&c->list); 1909 INIT_LIST_HEAD(&c->cached_devs); 1910 INIT_LIST_HEAD(&c->btree_cache); 1911 INIT_LIST_HEAD(&c->btree_cache_freeable); 1912 INIT_LIST_HEAD(&c->btree_cache_freed); 1913 INIT_LIST_HEAD(&c->data_buckets); 1914 1915 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1916 sizeof(struct btree_iter_set); 1917 1918 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1919 if (!c->devices) 1920 goto err; 1921 1922 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1923 goto err; 1924 1925 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1926 sizeof(struct bbio) + 1927 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1928 goto err; 1929 1930 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1931 goto err; 1932 1933 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1934 BIOSET_NEED_RESCUER)) 1935 goto err; 1936 1937 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1938 if (!c->uuids) 1939 goto err; 1940 1941 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1942 if (!c->moving_gc_wq) 1943 goto err; 1944 1945 if (bch_journal_alloc(c)) 1946 goto err; 1947 1948 if (bch_btree_cache_alloc(c)) 1949 goto err; 1950 1951 if (bch_open_buckets_alloc(c)) 1952 goto err; 1953 1954 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1955 goto err; 1956 1957 c->congested_read_threshold_us = 2000; 1958 c->congested_write_threshold_us = 20000; 1959 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1960 c->idle_max_writeback_rate_enabled = 1; 1961 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1962 1963 return c; 1964 err: 1965 bch_cache_set_unregister(c); 1966 return NULL; 1967 } 1968 1969 static int run_cache_set(struct cache_set *c) 1970 { 1971 const char *err = "cannot allocate memory"; 1972 struct cached_dev *dc, *t; 1973 struct cache *ca = c->cache; 1974 struct closure cl; 1975 LIST_HEAD(journal); 1976 struct journal_replay *l; 1977 1978 closure_init_stack(&cl); 1979 1980 c->nbuckets = ca->sb.nbuckets; 1981 set_gc_sectors(c); 1982 1983 if (CACHE_SYNC(&c->cache->sb)) { 1984 struct bkey *k; 1985 struct jset *j; 1986 1987 err = "cannot allocate memory for journal"; 1988 if (bch_journal_read(c, &journal)) 1989 goto err; 1990 1991 pr_debug("btree_journal_read() done\n"); 1992 1993 err = "no journal entries found"; 1994 if (list_empty(&journal)) 1995 goto err; 1996 1997 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1998 1999 err = "IO error reading priorities"; 2000 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2001 goto err; 2002 2003 /* 2004 * If prio_read() fails it'll call cache_set_error and we'll 2005 * tear everything down right away, but if we perhaps checked 2006 * sooner we could avoid journal replay. 2007 */ 2008 2009 k = &j->btree_root; 2010 2011 err = "bad btree root"; 2012 if (__bch_btree_ptr_invalid(c, k)) 2013 goto err; 2014 2015 err = "error reading btree root"; 2016 c->root = bch_btree_node_get(c, NULL, k, 2017 j->btree_level, 2018 true, NULL); 2019 if (IS_ERR_OR_NULL(c->root)) 2020 goto err; 2021 2022 list_del_init(&c->root->list); 2023 rw_unlock(true, c->root); 2024 2025 err = uuid_read(c, j, &cl); 2026 if (err) 2027 goto err; 2028 2029 err = "error in recovery"; 2030 if (bch_btree_check(c)) 2031 goto err; 2032 2033 bch_journal_mark(c, &journal); 2034 bch_initial_gc_finish(c); 2035 pr_debug("btree_check() done\n"); 2036 2037 /* 2038 * bcache_journal_next() can't happen sooner, or 2039 * btree_gc_finish() will give spurious errors about last_gc > 2040 * gc_gen - this is a hack but oh well. 2041 */ 2042 bch_journal_next(&c->journal); 2043 2044 err = "error starting allocator thread"; 2045 if (bch_cache_allocator_start(ca)) 2046 goto err; 2047 2048 /* 2049 * First place it's safe to allocate: btree_check() and 2050 * btree_gc_finish() have to run before we have buckets to 2051 * allocate, and bch_bucket_alloc_set() might cause a journal 2052 * entry to be written so bcache_journal_next() has to be called 2053 * first. 2054 * 2055 * If the uuids were in the old format we have to rewrite them 2056 * before the next journal entry is written: 2057 */ 2058 if (j->version < BCACHE_JSET_VERSION_UUID) 2059 __uuid_write(c); 2060 2061 err = "bcache: replay journal failed"; 2062 if (bch_journal_replay(c, &journal)) 2063 goto err; 2064 } else { 2065 unsigned int j; 2066 2067 pr_notice("invalidating existing data\n"); 2068 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2069 2, SB_JOURNAL_BUCKETS); 2070 2071 for (j = 0; j < ca->sb.keys; j++) 2072 ca->sb.d[j] = ca->sb.first_bucket + j; 2073 2074 bch_initial_gc_finish(c); 2075 2076 err = "error starting allocator thread"; 2077 if (bch_cache_allocator_start(ca)) 2078 goto err; 2079 2080 mutex_lock(&c->bucket_lock); 2081 bch_prio_write(ca, true); 2082 mutex_unlock(&c->bucket_lock); 2083 2084 err = "cannot allocate new UUID bucket"; 2085 if (__uuid_write(c)) 2086 goto err; 2087 2088 err = "cannot allocate new btree root"; 2089 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2090 if (IS_ERR(c->root)) 2091 goto err; 2092 2093 mutex_lock(&c->root->write_lock); 2094 bkey_copy_key(&c->root->key, &MAX_KEY); 2095 bch_btree_node_write(c->root, &cl); 2096 mutex_unlock(&c->root->write_lock); 2097 2098 bch_btree_set_root(c->root); 2099 rw_unlock(true, c->root); 2100 2101 /* 2102 * We don't want to write the first journal entry until 2103 * everything is set up - fortunately journal entries won't be 2104 * written until the SET_CACHE_SYNC() here: 2105 */ 2106 SET_CACHE_SYNC(&c->cache->sb, true); 2107 2108 bch_journal_next(&c->journal); 2109 bch_journal_meta(c, &cl); 2110 } 2111 2112 err = "error starting gc thread"; 2113 if (bch_gc_thread_start(c)) 2114 goto err; 2115 2116 closure_sync(&cl); 2117 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2118 bcache_write_super(c); 2119 2120 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2121 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2122 2123 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2124 bch_cached_dev_attach(dc, c, NULL); 2125 2126 flash_devs_run(c); 2127 2128 bch_journal_space_reserve(&c->journal); 2129 set_bit(CACHE_SET_RUNNING, &c->flags); 2130 return 0; 2131 err: 2132 while (!list_empty(&journal)) { 2133 l = list_first_entry(&journal, struct journal_replay, list); 2134 list_del(&l->list); 2135 kfree(l); 2136 } 2137 2138 closure_sync(&cl); 2139 2140 bch_cache_set_error(c, "%s", err); 2141 2142 return -EIO; 2143 } 2144 2145 static const char *register_cache_set(struct cache *ca) 2146 { 2147 char buf[12]; 2148 const char *err = "cannot allocate memory"; 2149 struct cache_set *c; 2150 2151 list_for_each_entry(c, &bch_cache_sets, list) 2152 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2153 if (c->cache) 2154 return "duplicate cache set member"; 2155 2156 goto found; 2157 } 2158 2159 c = bch_cache_set_alloc(&ca->sb); 2160 if (!c) 2161 return err; 2162 2163 err = "error creating kobject"; 2164 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2165 kobject_add(&c->internal, &c->kobj, "internal")) 2166 goto err; 2167 2168 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2169 goto err; 2170 2171 bch_debug_init_cache_set(c); 2172 2173 list_add(&c->list, &bch_cache_sets); 2174 found: 2175 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2176 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2177 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2178 goto err; 2179 2180 kobject_get(&ca->kobj); 2181 ca->set = c; 2182 ca->set->cache = ca; 2183 2184 err = "failed to run cache set"; 2185 if (run_cache_set(c) < 0) 2186 goto err; 2187 2188 return NULL; 2189 err: 2190 bch_cache_set_unregister(c); 2191 return err; 2192 } 2193 2194 /* Cache device */ 2195 2196 /* When ca->kobj released */ 2197 void bch_cache_release(struct kobject *kobj) 2198 { 2199 struct cache *ca = container_of(kobj, struct cache, kobj); 2200 unsigned int i; 2201 2202 if (ca->set) { 2203 BUG_ON(ca->set->cache != ca); 2204 ca->set->cache = NULL; 2205 } 2206 2207 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2208 kfree(ca->prio_buckets); 2209 vfree(ca->buckets); 2210 2211 free_heap(&ca->heap); 2212 free_fifo(&ca->free_inc); 2213 2214 for (i = 0; i < RESERVE_NR; i++) 2215 free_fifo(&ca->free[i]); 2216 2217 if (ca->sb_disk) 2218 put_page(virt_to_page(ca->sb_disk)); 2219 2220 if (!IS_ERR_OR_NULL(ca->bdev)) 2221 blkdev_put(ca->bdev, bcache_kobj); 2222 2223 kfree(ca); 2224 module_put(THIS_MODULE); 2225 } 2226 2227 static int cache_alloc(struct cache *ca) 2228 { 2229 size_t free; 2230 size_t btree_buckets; 2231 struct bucket *b; 2232 int ret = -ENOMEM; 2233 const char *err = NULL; 2234 2235 __module_get(THIS_MODULE); 2236 kobject_init(&ca->kobj, &bch_cache_ktype); 2237 2238 bio_init(&ca->journal.bio, NULL, ca->journal.bio.bi_inline_vecs, 8, 0); 2239 2240 /* 2241 * when ca->sb.njournal_buckets is not zero, journal exists, 2242 * and in bch_journal_replay(), tree node may split, 2243 * so bucket of RESERVE_BTREE type is needed, 2244 * the worst situation is all journal buckets are valid journal, 2245 * and all the keys need to replay, 2246 * so the number of RESERVE_BTREE type buckets should be as much 2247 * as journal buckets 2248 */ 2249 btree_buckets = ca->sb.njournal_buckets ?: 8; 2250 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2251 if (!free) { 2252 ret = -EPERM; 2253 err = "ca->sb.nbuckets is too small"; 2254 goto err_free; 2255 } 2256 2257 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2258 GFP_KERNEL)) { 2259 err = "ca->free[RESERVE_BTREE] alloc failed"; 2260 goto err_btree_alloc; 2261 } 2262 2263 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2264 GFP_KERNEL)) { 2265 err = "ca->free[RESERVE_PRIO] alloc failed"; 2266 goto err_prio_alloc; 2267 } 2268 2269 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2270 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2271 goto err_movinggc_alloc; 2272 } 2273 2274 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2275 err = "ca->free[RESERVE_NONE] alloc failed"; 2276 goto err_none_alloc; 2277 } 2278 2279 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2280 err = "ca->free_inc alloc failed"; 2281 goto err_free_inc_alloc; 2282 } 2283 2284 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2285 err = "ca->heap alloc failed"; 2286 goto err_heap_alloc; 2287 } 2288 2289 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2290 ca->sb.nbuckets)); 2291 if (!ca->buckets) { 2292 err = "ca->buckets alloc failed"; 2293 goto err_buckets_alloc; 2294 } 2295 2296 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2297 prio_buckets(ca), 2), 2298 GFP_KERNEL); 2299 if (!ca->prio_buckets) { 2300 err = "ca->prio_buckets alloc failed"; 2301 goto err_prio_buckets_alloc; 2302 } 2303 2304 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2305 if (!ca->disk_buckets) { 2306 err = "ca->disk_buckets alloc failed"; 2307 goto err_disk_buckets_alloc; 2308 } 2309 2310 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2311 2312 for_each_bucket(b, ca) 2313 atomic_set(&b->pin, 0); 2314 return 0; 2315 2316 err_disk_buckets_alloc: 2317 kfree(ca->prio_buckets); 2318 err_prio_buckets_alloc: 2319 vfree(ca->buckets); 2320 err_buckets_alloc: 2321 free_heap(&ca->heap); 2322 err_heap_alloc: 2323 free_fifo(&ca->free_inc); 2324 err_free_inc_alloc: 2325 free_fifo(&ca->free[RESERVE_NONE]); 2326 err_none_alloc: 2327 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2328 err_movinggc_alloc: 2329 free_fifo(&ca->free[RESERVE_PRIO]); 2330 err_prio_alloc: 2331 free_fifo(&ca->free[RESERVE_BTREE]); 2332 err_btree_alloc: 2333 err_free: 2334 module_put(THIS_MODULE); 2335 if (err) 2336 pr_notice("error %pg: %s\n", ca->bdev, err); 2337 return ret; 2338 } 2339 2340 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2341 struct block_device *bdev, struct cache *ca) 2342 { 2343 const char *err = NULL; /* must be set for any error case */ 2344 int ret = 0; 2345 2346 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2347 ca->bdev = bdev; 2348 ca->bdev->bd_holder = ca; 2349 ca->sb_disk = sb_disk; 2350 2351 if (bdev_max_discard_sectors((bdev))) 2352 ca->discard = CACHE_DISCARD(&ca->sb); 2353 2354 ret = cache_alloc(ca); 2355 if (ret != 0) { 2356 /* 2357 * If we failed here, it means ca->kobj is not initialized yet, 2358 * kobject_put() won't be called and there is no chance to 2359 * call blkdev_put() to bdev in bch_cache_release(). So we 2360 * explicitly call blkdev_put() here. 2361 */ 2362 blkdev_put(bdev, bcache_kobj); 2363 if (ret == -ENOMEM) 2364 err = "cache_alloc(): -ENOMEM"; 2365 else if (ret == -EPERM) 2366 err = "cache_alloc(): cache device is too small"; 2367 else 2368 err = "cache_alloc(): unknown error"; 2369 goto err; 2370 } 2371 2372 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2373 err = "error calling kobject_add"; 2374 ret = -ENOMEM; 2375 goto out; 2376 } 2377 2378 mutex_lock(&bch_register_lock); 2379 err = register_cache_set(ca); 2380 mutex_unlock(&bch_register_lock); 2381 2382 if (err) { 2383 ret = -ENODEV; 2384 goto out; 2385 } 2386 2387 pr_info("registered cache device %pg\n", ca->bdev); 2388 2389 out: 2390 kobject_put(&ca->kobj); 2391 2392 err: 2393 if (err) 2394 pr_notice("error %pg: %s\n", ca->bdev, err); 2395 2396 return ret; 2397 } 2398 2399 /* Global interfaces/init */ 2400 2401 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2402 const char *buffer, size_t size); 2403 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2404 struct kobj_attribute *attr, 2405 const char *buffer, size_t size); 2406 2407 kobj_attribute_write(register, register_bcache); 2408 kobj_attribute_write(register_quiet, register_bcache); 2409 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2410 2411 static bool bch_is_open_backing(dev_t dev) 2412 { 2413 struct cache_set *c, *tc; 2414 struct cached_dev *dc, *t; 2415 2416 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2417 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2418 if (dc->bdev->bd_dev == dev) 2419 return true; 2420 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2421 if (dc->bdev->bd_dev == dev) 2422 return true; 2423 return false; 2424 } 2425 2426 static bool bch_is_open_cache(dev_t dev) 2427 { 2428 struct cache_set *c, *tc; 2429 2430 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2431 struct cache *ca = c->cache; 2432 2433 if (ca->bdev->bd_dev == dev) 2434 return true; 2435 } 2436 2437 return false; 2438 } 2439 2440 static bool bch_is_open(dev_t dev) 2441 { 2442 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2443 } 2444 2445 struct async_reg_args { 2446 struct delayed_work reg_work; 2447 char *path; 2448 struct cache_sb *sb; 2449 struct cache_sb_disk *sb_disk; 2450 struct block_device *bdev; 2451 }; 2452 2453 static void register_bdev_worker(struct work_struct *work) 2454 { 2455 int fail = false; 2456 struct async_reg_args *args = 2457 container_of(work, struct async_reg_args, reg_work.work); 2458 struct cached_dev *dc; 2459 2460 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2461 if (!dc) { 2462 fail = true; 2463 put_page(virt_to_page(args->sb_disk)); 2464 blkdev_put(args->bdev, bcache_kobj); 2465 goto out; 2466 } 2467 2468 mutex_lock(&bch_register_lock); 2469 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2470 fail = true; 2471 mutex_unlock(&bch_register_lock); 2472 2473 out: 2474 if (fail) 2475 pr_info("error %s: fail to register backing device\n", 2476 args->path); 2477 kfree(args->sb); 2478 kfree(args->path); 2479 kfree(args); 2480 module_put(THIS_MODULE); 2481 } 2482 2483 static void register_cache_worker(struct work_struct *work) 2484 { 2485 int fail = false; 2486 struct async_reg_args *args = 2487 container_of(work, struct async_reg_args, reg_work.work); 2488 struct cache *ca; 2489 2490 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2491 if (!ca) { 2492 fail = true; 2493 put_page(virt_to_page(args->sb_disk)); 2494 blkdev_put(args->bdev, bcache_kobj); 2495 goto out; 2496 } 2497 2498 /* blkdev_put() will be called in bch_cache_release() */ 2499 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2500 fail = true; 2501 2502 out: 2503 if (fail) 2504 pr_info("error %s: fail to register cache device\n", 2505 args->path); 2506 kfree(args->sb); 2507 kfree(args->path); 2508 kfree(args); 2509 module_put(THIS_MODULE); 2510 } 2511 2512 static void register_device_async(struct async_reg_args *args) 2513 { 2514 if (SB_IS_BDEV(args->sb)) 2515 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2516 else 2517 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2518 2519 /* 10 jiffies is enough for a delay */ 2520 queue_delayed_work(system_wq, &args->reg_work, 10); 2521 } 2522 2523 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2524 const char *buffer, size_t size) 2525 { 2526 const char *err; 2527 char *path = NULL; 2528 struct cache_sb *sb; 2529 struct cache_sb_disk *sb_disk; 2530 struct block_device *bdev; 2531 ssize_t ret; 2532 bool async_registration = false; 2533 2534 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2535 async_registration = true; 2536 #endif 2537 2538 ret = -EBUSY; 2539 err = "failed to reference bcache module"; 2540 if (!try_module_get(THIS_MODULE)) 2541 goto out; 2542 2543 /* For latest state of bcache_is_reboot */ 2544 smp_mb(); 2545 err = "bcache is in reboot"; 2546 if (bcache_is_reboot) 2547 goto out_module_put; 2548 2549 ret = -ENOMEM; 2550 err = "cannot allocate memory"; 2551 path = kstrndup(buffer, size, GFP_KERNEL); 2552 if (!path) 2553 goto out_module_put; 2554 2555 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2556 if (!sb) 2557 goto out_free_path; 2558 2559 ret = -EINVAL; 2560 err = "failed to open device"; 2561 bdev = blkdev_get_by_path(strim(path), BLK_OPEN_READ | BLK_OPEN_WRITE, 2562 bcache_kobj, NULL); 2563 if (IS_ERR(bdev)) { 2564 if (bdev == ERR_PTR(-EBUSY)) { 2565 dev_t dev; 2566 2567 mutex_lock(&bch_register_lock); 2568 if (lookup_bdev(strim(path), &dev) == 0 && 2569 bch_is_open(dev)) 2570 err = "device already registered"; 2571 else 2572 err = "device busy"; 2573 mutex_unlock(&bch_register_lock); 2574 if (attr == &ksysfs_register_quiet) 2575 goto done; 2576 } 2577 goto out_free_sb; 2578 } 2579 2580 err = "failed to set blocksize"; 2581 if (set_blocksize(bdev, 4096)) 2582 goto out_blkdev_put; 2583 2584 err = read_super(sb, bdev, &sb_disk); 2585 if (err) 2586 goto out_blkdev_put; 2587 2588 err = "failed to register device"; 2589 2590 if (async_registration) { 2591 /* register in asynchronous way */ 2592 struct async_reg_args *args = 2593 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2594 2595 if (!args) { 2596 ret = -ENOMEM; 2597 err = "cannot allocate memory"; 2598 goto out_put_sb_page; 2599 } 2600 2601 args->path = path; 2602 args->sb = sb; 2603 args->sb_disk = sb_disk; 2604 args->bdev = bdev; 2605 register_device_async(args); 2606 /* No wait and returns to user space */ 2607 goto async_done; 2608 } 2609 2610 if (SB_IS_BDEV(sb)) { 2611 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2612 2613 if (!dc) { 2614 ret = -ENOMEM; 2615 err = "cannot allocate memory"; 2616 goto out_put_sb_page; 2617 } 2618 2619 mutex_lock(&bch_register_lock); 2620 ret = register_bdev(sb, sb_disk, bdev, dc); 2621 mutex_unlock(&bch_register_lock); 2622 /* blkdev_put() will be called in cached_dev_free() */ 2623 if (ret < 0) 2624 goto out_free_sb; 2625 } else { 2626 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2627 2628 if (!ca) { 2629 ret = -ENOMEM; 2630 err = "cannot allocate memory"; 2631 goto out_put_sb_page; 2632 } 2633 2634 /* blkdev_put() will be called in bch_cache_release() */ 2635 ret = register_cache(sb, sb_disk, bdev, ca); 2636 if (ret) 2637 goto out_free_sb; 2638 } 2639 2640 done: 2641 kfree(sb); 2642 kfree(path); 2643 module_put(THIS_MODULE); 2644 async_done: 2645 return size; 2646 2647 out_put_sb_page: 2648 put_page(virt_to_page(sb_disk)); 2649 out_blkdev_put: 2650 blkdev_put(bdev, register_bcache); 2651 out_free_sb: 2652 kfree(sb); 2653 out_free_path: 2654 kfree(path); 2655 path = NULL; 2656 out_module_put: 2657 module_put(THIS_MODULE); 2658 out: 2659 pr_info("error %s: %s\n", path?path:"", err); 2660 return ret; 2661 } 2662 2663 2664 struct pdev { 2665 struct list_head list; 2666 struct cached_dev *dc; 2667 }; 2668 2669 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2670 struct kobj_attribute *attr, 2671 const char *buffer, 2672 size_t size) 2673 { 2674 LIST_HEAD(pending_devs); 2675 ssize_t ret = size; 2676 struct cached_dev *dc, *tdc; 2677 struct pdev *pdev, *tpdev; 2678 struct cache_set *c, *tc; 2679 2680 mutex_lock(&bch_register_lock); 2681 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2682 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2683 if (!pdev) 2684 break; 2685 pdev->dc = dc; 2686 list_add(&pdev->list, &pending_devs); 2687 } 2688 2689 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2690 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2691 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2692 char *set_uuid = c->set_uuid; 2693 2694 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2695 list_del(&pdev->list); 2696 kfree(pdev); 2697 break; 2698 } 2699 } 2700 } 2701 mutex_unlock(&bch_register_lock); 2702 2703 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2704 pr_info("delete pdev %p\n", pdev); 2705 list_del(&pdev->list); 2706 bcache_device_stop(&pdev->dc->disk); 2707 kfree(pdev); 2708 } 2709 2710 return ret; 2711 } 2712 2713 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2714 { 2715 if (bcache_is_reboot) 2716 return NOTIFY_DONE; 2717 2718 if (code == SYS_DOWN || 2719 code == SYS_HALT || 2720 code == SYS_POWER_OFF) { 2721 DEFINE_WAIT(wait); 2722 unsigned long start = jiffies; 2723 bool stopped = false; 2724 2725 struct cache_set *c, *tc; 2726 struct cached_dev *dc, *tdc; 2727 2728 mutex_lock(&bch_register_lock); 2729 2730 if (bcache_is_reboot) 2731 goto out; 2732 2733 /* New registration is rejected since now */ 2734 bcache_is_reboot = true; 2735 /* 2736 * Make registering caller (if there is) on other CPU 2737 * core know bcache_is_reboot set to true earlier 2738 */ 2739 smp_mb(); 2740 2741 if (list_empty(&bch_cache_sets) && 2742 list_empty(&uncached_devices)) 2743 goto out; 2744 2745 mutex_unlock(&bch_register_lock); 2746 2747 pr_info("Stopping all devices:\n"); 2748 2749 /* 2750 * The reason bch_register_lock is not held to call 2751 * bch_cache_set_stop() and bcache_device_stop() is to 2752 * avoid potential deadlock during reboot, because cache 2753 * set or bcache device stopping process will acquire 2754 * bch_register_lock too. 2755 * 2756 * We are safe here because bcache_is_reboot sets to 2757 * true already, register_bcache() will reject new 2758 * registration now. bcache_is_reboot also makes sure 2759 * bcache_reboot() won't be re-entered on by other thread, 2760 * so there is no race in following list iteration by 2761 * list_for_each_entry_safe(). 2762 */ 2763 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2764 bch_cache_set_stop(c); 2765 2766 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2767 bcache_device_stop(&dc->disk); 2768 2769 2770 /* 2771 * Give an early chance for other kthreads and 2772 * kworkers to stop themselves 2773 */ 2774 schedule(); 2775 2776 /* What's a condition variable? */ 2777 while (1) { 2778 long timeout = start + 10 * HZ - jiffies; 2779 2780 mutex_lock(&bch_register_lock); 2781 stopped = list_empty(&bch_cache_sets) && 2782 list_empty(&uncached_devices); 2783 2784 if (timeout < 0 || stopped) 2785 break; 2786 2787 prepare_to_wait(&unregister_wait, &wait, 2788 TASK_UNINTERRUPTIBLE); 2789 2790 mutex_unlock(&bch_register_lock); 2791 schedule_timeout(timeout); 2792 } 2793 2794 finish_wait(&unregister_wait, &wait); 2795 2796 if (stopped) 2797 pr_info("All devices stopped\n"); 2798 else 2799 pr_notice("Timeout waiting for devices to be closed\n"); 2800 out: 2801 mutex_unlock(&bch_register_lock); 2802 } 2803 2804 return NOTIFY_DONE; 2805 } 2806 2807 static struct notifier_block reboot = { 2808 .notifier_call = bcache_reboot, 2809 .priority = INT_MAX, /* before any real devices */ 2810 }; 2811 2812 static void bcache_exit(void) 2813 { 2814 bch_debug_exit(); 2815 bch_request_exit(); 2816 if (bcache_kobj) 2817 kobject_put(bcache_kobj); 2818 if (bcache_wq) 2819 destroy_workqueue(bcache_wq); 2820 if (bch_journal_wq) 2821 destroy_workqueue(bch_journal_wq); 2822 if (bch_flush_wq) 2823 destroy_workqueue(bch_flush_wq); 2824 bch_btree_exit(); 2825 2826 if (bcache_major) 2827 unregister_blkdev(bcache_major, "bcache"); 2828 unregister_reboot_notifier(&reboot); 2829 mutex_destroy(&bch_register_lock); 2830 } 2831 2832 /* Check and fixup module parameters */ 2833 static void check_module_parameters(void) 2834 { 2835 if (bch_cutoff_writeback_sync == 0) 2836 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2837 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2838 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2839 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2840 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2841 } 2842 2843 if (bch_cutoff_writeback == 0) 2844 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2845 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2846 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2847 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2848 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2849 } 2850 2851 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2852 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2853 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2854 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2855 } 2856 } 2857 2858 static int __init bcache_init(void) 2859 { 2860 static const struct attribute *files[] = { 2861 &ksysfs_register.attr, 2862 &ksysfs_register_quiet.attr, 2863 &ksysfs_pendings_cleanup.attr, 2864 NULL 2865 }; 2866 2867 check_module_parameters(); 2868 2869 mutex_init(&bch_register_lock); 2870 init_waitqueue_head(&unregister_wait); 2871 register_reboot_notifier(&reboot); 2872 2873 bcache_major = register_blkdev(0, "bcache"); 2874 if (bcache_major < 0) { 2875 unregister_reboot_notifier(&reboot); 2876 mutex_destroy(&bch_register_lock); 2877 return bcache_major; 2878 } 2879 2880 if (bch_btree_init()) 2881 goto err; 2882 2883 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2884 if (!bcache_wq) 2885 goto err; 2886 2887 /* 2888 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2889 * 2890 * 1. It used `system_wq` before which also does no memory reclaim. 2891 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2892 * reduced throughput can be observed. 2893 * 2894 * We still want to user our own queue to not congest the `system_wq`. 2895 */ 2896 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2897 if (!bch_flush_wq) 2898 goto err; 2899 2900 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2901 if (!bch_journal_wq) 2902 goto err; 2903 2904 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2905 if (!bcache_kobj) 2906 goto err; 2907 2908 if (bch_request_init() || 2909 sysfs_create_files(bcache_kobj, files)) 2910 goto err; 2911 2912 bch_debug_init(); 2913 closure_debug_init(); 2914 2915 bcache_is_reboot = false; 2916 2917 return 0; 2918 err: 2919 bcache_exit(); 2920 return -ENOMEM; 2921 } 2922 2923 /* 2924 * Module hooks 2925 */ 2926 module_exit(bcache_exit); 2927 module_init(bcache_init); 2928 2929 module_param(bch_cutoff_writeback, uint, 0); 2930 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2931 2932 module_param(bch_cutoff_writeback_sync, uint, 0); 2933 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2934 2935 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2936 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2937 MODULE_LICENSE("GPL"); 2938