1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/pagemap.h> 20 #include <linux/debugfs.h> 21 #include <linux/genhd.h> 22 #include <linux/idr.h> 23 #include <linux/kthread.h> 24 #include <linux/workqueue.h> 25 #include <linux/module.h> 26 #include <linux/random.h> 27 #include <linux/reboot.h> 28 #include <linux/sysfs.h> 29 30 unsigned int bch_cutoff_writeback; 31 unsigned int bch_cutoff_writeback_sync; 32 33 static const char bcache_magic[] = { 34 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 35 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 36 }; 37 38 static const char invalid_uuid[] = { 39 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 40 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 41 }; 42 43 static struct kobject *bcache_kobj; 44 struct mutex bch_register_lock; 45 bool bcache_is_reboot; 46 LIST_HEAD(bch_cache_sets); 47 static LIST_HEAD(uncached_devices); 48 49 static int bcache_major; 50 static DEFINE_IDA(bcache_device_idx); 51 static wait_queue_head_t unregister_wait; 52 struct workqueue_struct *bcache_wq; 53 struct workqueue_struct *bch_flush_wq; 54 struct workqueue_struct *bch_journal_wq; 55 56 57 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 58 /* limitation of partitions number on single bcache device */ 59 #define BCACHE_MINORS 128 60 /* limitation of bcache devices number on single system */ 61 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 62 63 /* Superblock */ 64 65 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 66 { 67 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 68 69 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 70 if (bch_has_feature_large_bucket(sb)) { 71 unsigned int max, order; 72 73 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 74 order = le16_to_cpu(s->bucket_size); 75 /* 76 * bcache tool will make sure the overflow won't 77 * happen, an error message here is enough. 78 */ 79 if (order > max) 80 pr_err("Bucket size (1 << %u) overflows\n", 81 order); 82 bucket_size = 1 << order; 83 } else if (bch_has_feature_obso_large_bucket(sb)) { 84 bucket_size += 85 le16_to_cpu(s->obso_bucket_size_hi) << 16; 86 } 87 } 88 89 return bucket_size; 90 } 91 92 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 93 struct cache_sb_disk *s) 94 { 95 const char *err; 96 unsigned int i; 97 98 sb->first_bucket= le16_to_cpu(s->first_bucket); 99 sb->nbuckets = le64_to_cpu(s->nbuckets); 100 sb->bucket_size = get_bucket_size(sb, s); 101 102 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 103 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 104 105 err = "Too many journal buckets"; 106 if (sb->keys > SB_JOURNAL_BUCKETS) 107 goto err; 108 109 err = "Too many buckets"; 110 if (sb->nbuckets > LONG_MAX) 111 goto err; 112 113 err = "Not enough buckets"; 114 if (sb->nbuckets < 1 << 7) 115 goto err; 116 117 err = "Bad block size (not power of 2)"; 118 if (!is_power_of_2(sb->block_size)) 119 goto err; 120 121 err = "Bad block size (larger than page size)"; 122 if (sb->block_size > PAGE_SECTORS) 123 goto err; 124 125 err = "Bad bucket size (not power of 2)"; 126 if (!is_power_of_2(sb->bucket_size)) 127 goto err; 128 129 err = "Bad bucket size (smaller than page size)"; 130 if (sb->bucket_size < PAGE_SECTORS) 131 goto err; 132 133 err = "Invalid superblock: device too small"; 134 if (get_capacity(bdev->bd_disk) < 135 sb->bucket_size * sb->nbuckets) 136 goto err; 137 138 err = "Bad UUID"; 139 if (bch_is_zero(sb->set_uuid, 16)) 140 goto err; 141 142 err = "Bad cache device number in set"; 143 if (!sb->nr_in_set || 144 sb->nr_in_set <= sb->nr_this_dev || 145 sb->nr_in_set > MAX_CACHES_PER_SET) 146 goto err; 147 148 err = "Journal buckets not sequential"; 149 for (i = 0; i < sb->keys; i++) 150 if (sb->d[i] != sb->first_bucket + i) 151 goto err; 152 153 err = "Too many journal buckets"; 154 if (sb->first_bucket + sb->keys > sb->nbuckets) 155 goto err; 156 157 err = "Invalid superblock: first bucket comes before end of super"; 158 if (sb->first_bucket * sb->bucket_size < 16) 159 goto err; 160 161 err = NULL; 162 err: 163 return err; 164 } 165 166 167 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 168 struct cache_sb_disk **res) 169 { 170 const char *err; 171 struct cache_sb_disk *s; 172 struct page *page; 173 unsigned int i; 174 175 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 176 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 177 if (IS_ERR(page)) 178 return "IO error"; 179 s = page_address(page) + offset_in_page(SB_OFFSET); 180 181 sb->offset = le64_to_cpu(s->offset); 182 sb->version = le64_to_cpu(s->version); 183 184 memcpy(sb->magic, s->magic, 16); 185 memcpy(sb->uuid, s->uuid, 16); 186 memcpy(sb->set_uuid, s->set_uuid, 16); 187 memcpy(sb->label, s->label, SB_LABEL_SIZE); 188 189 sb->flags = le64_to_cpu(s->flags); 190 sb->seq = le64_to_cpu(s->seq); 191 sb->last_mount = le32_to_cpu(s->last_mount); 192 sb->keys = le16_to_cpu(s->keys); 193 194 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 195 sb->d[i] = le64_to_cpu(s->d[i]); 196 197 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 198 sb->version, sb->flags, sb->seq, sb->keys); 199 200 err = "Not a bcache superblock (bad offset)"; 201 if (sb->offset != SB_SECTOR) 202 goto err; 203 204 err = "Not a bcache superblock (bad magic)"; 205 if (memcmp(sb->magic, bcache_magic, 16)) 206 goto err; 207 208 err = "Bad checksum"; 209 if (s->csum != csum_set(s)) 210 goto err; 211 212 err = "Bad UUID"; 213 if (bch_is_zero(sb->uuid, 16)) 214 goto err; 215 216 sb->block_size = le16_to_cpu(s->block_size); 217 218 err = "Superblock block size smaller than device block size"; 219 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 220 goto err; 221 222 switch (sb->version) { 223 case BCACHE_SB_VERSION_BDEV: 224 sb->data_offset = BDEV_DATA_START_DEFAULT; 225 break; 226 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 227 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 228 sb->data_offset = le64_to_cpu(s->data_offset); 229 230 err = "Bad data offset"; 231 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 232 goto err; 233 234 break; 235 case BCACHE_SB_VERSION_CDEV: 236 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 237 err = read_super_common(sb, bdev, s); 238 if (err) 239 goto err; 240 break; 241 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 242 /* 243 * Feature bits are needed in read_super_common(), 244 * convert them firstly. 245 */ 246 sb->feature_compat = le64_to_cpu(s->feature_compat); 247 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 248 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 249 250 /* Check incompatible features */ 251 err = "Unsupported compatible feature found"; 252 if (bch_has_unknown_compat_features(sb)) 253 goto err; 254 255 err = "Unsupported read-only compatible feature found"; 256 if (bch_has_unknown_ro_compat_features(sb)) 257 goto err; 258 259 err = "Unsupported incompatible feature found"; 260 if (bch_has_unknown_incompat_features(sb)) 261 goto err; 262 263 err = read_super_common(sb, bdev, s); 264 if (err) 265 goto err; 266 break; 267 default: 268 err = "Unsupported superblock version"; 269 goto err; 270 } 271 272 sb->last_mount = (u32)ktime_get_real_seconds(); 273 *res = s; 274 return NULL; 275 err: 276 put_page(page); 277 return err; 278 } 279 280 static void write_bdev_super_endio(struct bio *bio) 281 { 282 struct cached_dev *dc = bio->bi_private; 283 284 if (bio->bi_status) 285 bch_count_backing_io_errors(dc, bio); 286 287 closure_put(&dc->sb_write); 288 } 289 290 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 291 struct bio *bio) 292 { 293 unsigned int i; 294 295 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 296 bio->bi_iter.bi_sector = SB_SECTOR; 297 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 298 offset_in_page(out)); 299 300 out->offset = cpu_to_le64(sb->offset); 301 302 memcpy(out->uuid, sb->uuid, 16); 303 memcpy(out->set_uuid, sb->set_uuid, 16); 304 memcpy(out->label, sb->label, SB_LABEL_SIZE); 305 306 out->flags = cpu_to_le64(sb->flags); 307 out->seq = cpu_to_le64(sb->seq); 308 309 out->last_mount = cpu_to_le32(sb->last_mount); 310 out->first_bucket = cpu_to_le16(sb->first_bucket); 311 out->keys = cpu_to_le16(sb->keys); 312 313 for (i = 0; i < sb->keys; i++) 314 out->d[i] = cpu_to_le64(sb->d[i]); 315 316 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 317 out->feature_compat = cpu_to_le64(sb->feature_compat); 318 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 319 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 320 } 321 322 out->version = cpu_to_le64(sb->version); 323 out->csum = csum_set(out); 324 325 pr_debug("ver %llu, flags %llu, seq %llu\n", 326 sb->version, sb->flags, sb->seq); 327 328 submit_bio(bio); 329 } 330 331 static void bch_write_bdev_super_unlock(struct closure *cl) 332 { 333 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 334 335 up(&dc->sb_write_mutex); 336 } 337 338 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 339 { 340 struct closure *cl = &dc->sb_write; 341 struct bio *bio = &dc->sb_bio; 342 343 down(&dc->sb_write_mutex); 344 closure_init(cl, parent); 345 346 bio_init(bio, dc->sb_bv, 1); 347 bio_set_dev(bio, dc->bdev); 348 bio->bi_end_io = write_bdev_super_endio; 349 bio->bi_private = dc; 350 351 closure_get(cl); 352 /* I/O request sent to backing device */ 353 __write_super(&dc->sb, dc->sb_disk, bio); 354 355 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 356 } 357 358 static void write_super_endio(struct bio *bio) 359 { 360 struct cache *ca = bio->bi_private; 361 362 /* is_read = 0 */ 363 bch_count_io_errors(ca, bio->bi_status, 0, 364 "writing superblock"); 365 closure_put(&ca->set->sb_write); 366 } 367 368 static void bcache_write_super_unlock(struct closure *cl) 369 { 370 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 371 372 up(&c->sb_write_mutex); 373 } 374 375 void bcache_write_super(struct cache_set *c) 376 { 377 struct closure *cl = &c->sb_write; 378 struct cache *ca = c->cache; 379 struct bio *bio = &ca->sb_bio; 380 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 381 382 down(&c->sb_write_mutex); 383 closure_init(cl, &c->cl); 384 385 ca->sb.seq++; 386 387 if (ca->sb.version < version) 388 ca->sb.version = version; 389 390 bio_init(bio, ca->sb_bv, 1); 391 bio_set_dev(bio, ca->bdev); 392 bio->bi_end_io = write_super_endio; 393 bio->bi_private = ca; 394 395 closure_get(cl); 396 __write_super(&ca->sb, ca->sb_disk, bio); 397 398 closure_return_with_destructor(cl, bcache_write_super_unlock); 399 } 400 401 /* UUID io */ 402 403 static void uuid_endio(struct bio *bio) 404 { 405 struct closure *cl = bio->bi_private; 406 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 407 408 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 409 bch_bbio_free(bio, c); 410 closure_put(cl); 411 } 412 413 static void uuid_io_unlock(struct closure *cl) 414 { 415 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 416 417 up(&c->uuid_write_mutex); 418 } 419 420 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 421 struct bkey *k, struct closure *parent) 422 { 423 struct closure *cl = &c->uuid_write; 424 struct uuid_entry *u; 425 unsigned int i; 426 char buf[80]; 427 428 BUG_ON(!parent); 429 down(&c->uuid_write_mutex); 430 closure_init(cl, parent); 431 432 for (i = 0; i < KEY_PTRS(k); i++) { 433 struct bio *bio = bch_bbio_alloc(c); 434 435 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 436 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 437 438 bio->bi_end_io = uuid_endio; 439 bio->bi_private = cl; 440 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 441 bch_bio_map(bio, c->uuids); 442 443 bch_submit_bbio(bio, c, k, i); 444 445 if (op != REQ_OP_WRITE) 446 break; 447 } 448 449 bch_extent_to_text(buf, sizeof(buf), k); 450 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 451 452 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 453 if (!bch_is_zero(u->uuid, 16)) 454 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 455 u - c->uuids, u->uuid, u->label, 456 u->first_reg, u->last_reg, u->invalidated); 457 458 closure_return_with_destructor(cl, uuid_io_unlock); 459 } 460 461 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 462 { 463 struct bkey *k = &j->uuid_bucket; 464 465 if (__bch_btree_ptr_invalid(c, k)) 466 return "bad uuid pointer"; 467 468 bkey_copy(&c->uuid_bucket, k); 469 uuid_io(c, REQ_OP_READ, 0, k, cl); 470 471 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 472 struct uuid_entry_v0 *u0 = (void *) c->uuids; 473 struct uuid_entry *u1 = (void *) c->uuids; 474 int i; 475 476 closure_sync(cl); 477 478 /* 479 * Since the new uuid entry is bigger than the old, we have to 480 * convert starting at the highest memory address and work down 481 * in order to do it in place 482 */ 483 484 for (i = c->nr_uuids - 1; 485 i >= 0; 486 --i) { 487 memcpy(u1[i].uuid, u0[i].uuid, 16); 488 memcpy(u1[i].label, u0[i].label, 32); 489 490 u1[i].first_reg = u0[i].first_reg; 491 u1[i].last_reg = u0[i].last_reg; 492 u1[i].invalidated = u0[i].invalidated; 493 494 u1[i].flags = 0; 495 u1[i].sectors = 0; 496 } 497 } 498 499 return NULL; 500 } 501 502 static int __uuid_write(struct cache_set *c) 503 { 504 BKEY_PADDED(key) k; 505 struct closure cl; 506 struct cache *ca = c->cache; 507 unsigned int size; 508 509 closure_init_stack(&cl); 510 lockdep_assert_held(&bch_register_lock); 511 512 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 513 return 1; 514 515 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 516 SET_KEY_SIZE(&k.key, size); 517 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 518 closure_sync(&cl); 519 520 /* Only one bucket used for uuid write */ 521 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 522 523 bkey_copy(&c->uuid_bucket, &k.key); 524 bkey_put(c, &k.key); 525 return 0; 526 } 527 528 int bch_uuid_write(struct cache_set *c) 529 { 530 int ret = __uuid_write(c); 531 532 if (!ret) 533 bch_journal_meta(c, NULL); 534 535 return ret; 536 } 537 538 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 539 { 540 struct uuid_entry *u; 541 542 for (u = c->uuids; 543 u < c->uuids + c->nr_uuids; u++) 544 if (!memcmp(u->uuid, uuid, 16)) 545 return u; 546 547 return NULL; 548 } 549 550 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 551 { 552 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 553 554 return uuid_find(c, zero_uuid); 555 } 556 557 /* 558 * Bucket priorities/gens: 559 * 560 * For each bucket, we store on disk its 561 * 8 bit gen 562 * 16 bit priority 563 * 564 * See alloc.c for an explanation of the gen. The priority is used to implement 565 * lru (and in the future other) cache replacement policies; for most purposes 566 * it's just an opaque integer. 567 * 568 * The gens and the priorities don't have a whole lot to do with each other, and 569 * it's actually the gens that must be written out at specific times - it's no 570 * big deal if the priorities don't get written, if we lose them we just reuse 571 * buckets in suboptimal order. 572 * 573 * On disk they're stored in a packed array, and in as many buckets are required 574 * to fit them all. The buckets we use to store them form a list; the journal 575 * header points to the first bucket, the first bucket points to the second 576 * bucket, et cetera. 577 * 578 * This code is used by the allocation code; periodically (whenever it runs out 579 * of buckets to allocate from) the allocation code will invalidate some 580 * buckets, but it can't use those buckets until their new gens are safely on 581 * disk. 582 */ 583 584 static void prio_endio(struct bio *bio) 585 { 586 struct cache *ca = bio->bi_private; 587 588 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 589 bch_bbio_free(bio, ca->set); 590 closure_put(&ca->prio); 591 } 592 593 static void prio_io(struct cache *ca, uint64_t bucket, int op, 594 unsigned long op_flags) 595 { 596 struct closure *cl = &ca->prio; 597 struct bio *bio = bch_bbio_alloc(ca->set); 598 599 closure_init_stack(cl); 600 601 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 602 bio_set_dev(bio, ca->bdev); 603 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 604 605 bio->bi_end_io = prio_endio; 606 bio->bi_private = ca; 607 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 608 bch_bio_map(bio, ca->disk_buckets); 609 610 closure_bio_submit(ca->set, bio, &ca->prio); 611 closure_sync(cl); 612 } 613 614 int bch_prio_write(struct cache *ca, bool wait) 615 { 616 int i; 617 struct bucket *b; 618 struct closure cl; 619 620 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 621 fifo_used(&ca->free[RESERVE_PRIO]), 622 fifo_used(&ca->free[RESERVE_NONE]), 623 fifo_used(&ca->free_inc)); 624 625 /* 626 * Pre-check if there are enough free buckets. In the non-blocking 627 * scenario it's better to fail early rather than starting to allocate 628 * buckets and do a cleanup later in case of failure. 629 */ 630 if (!wait) { 631 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 632 fifo_used(&ca->free[RESERVE_NONE]); 633 if (prio_buckets(ca) > avail) 634 return -ENOMEM; 635 } 636 637 closure_init_stack(&cl); 638 639 lockdep_assert_held(&ca->set->bucket_lock); 640 641 ca->disk_buckets->seq++; 642 643 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 644 &ca->meta_sectors_written); 645 646 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 647 long bucket; 648 struct prio_set *p = ca->disk_buckets; 649 struct bucket_disk *d = p->data; 650 struct bucket_disk *end = d + prios_per_bucket(ca); 651 652 for (b = ca->buckets + i * prios_per_bucket(ca); 653 b < ca->buckets + ca->sb.nbuckets && d < end; 654 b++, d++) { 655 d->prio = cpu_to_le16(b->prio); 656 d->gen = b->gen; 657 } 658 659 p->next_bucket = ca->prio_buckets[i + 1]; 660 p->magic = pset_magic(&ca->sb); 661 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 662 663 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 664 BUG_ON(bucket == -1); 665 666 mutex_unlock(&ca->set->bucket_lock); 667 prio_io(ca, bucket, REQ_OP_WRITE, 0); 668 mutex_lock(&ca->set->bucket_lock); 669 670 ca->prio_buckets[i] = bucket; 671 atomic_dec_bug(&ca->buckets[bucket].pin); 672 } 673 674 mutex_unlock(&ca->set->bucket_lock); 675 676 bch_journal_meta(ca->set, &cl); 677 closure_sync(&cl); 678 679 mutex_lock(&ca->set->bucket_lock); 680 681 /* 682 * Don't want the old priorities to get garbage collected until after we 683 * finish writing the new ones, and they're journalled 684 */ 685 for (i = 0; i < prio_buckets(ca); i++) { 686 if (ca->prio_last_buckets[i]) 687 __bch_bucket_free(ca, 688 &ca->buckets[ca->prio_last_buckets[i]]); 689 690 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 691 } 692 return 0; 693 } 694 695 static int prio_read(struct cache *ca, uint64_t bucket) 696 { 697 struct prio_set *p = ca->disk_buckets; 698 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 699 struct bucket *b; 700 unsigned int bucket_nr = 0; 701 int ret = -EIO; 702 703 for (b = ca->buckets; 704 b < ca->buckets + ca->sb.nbuckets; 705 b++, d++) { 706 if (d == end) { 707 ca->prio_buckets[bucket_nr] = bucket; 708 ca->prio_last_buckets[bucket_nr] = bucket; 709 bucket_nr++; 710 711 prio_io(ca, bucket, REQ_OP_READ, 0); 712 713 if (p->csum != 714 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 715 pr_warn("bad csum reading priorities\n"); 716 goto out; 717 } 718 719 if (p->magic != pset_magic(&ca->sb)) { 720 pr_warn("bad magic reading priorities\n"); 721 goto out; 722 } 723 724 bucket = p->next_bucket; 725 d = p->data; 726 } 727 728 b->prio = le16_to_cpu(d->prio); 729 b->gen = b->last_gc = d->gen; 730 } 731 732 ret = 0; 733 out: 734 return ret; 735 } 736 737 /* Bcache device */ 738 739 static int open_dev(struct block_device *b, fmode_t mode) 740 { 741 struct bcache_device *d = b->bd_disk->private_data; 742 743 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 744 return -ENXIO; 745 746 closure_get(&d->cl); 747 return 0; 748 } 749 750 static void release_dev(struct gendisk *b, fmode_t mode) 751 { 752 struct bcache_device *d = b->private_data; 753 754 closure_put(&d->cl); 755 } 756 757 static int ioctl_dev(struct block_device *b, fmode_t mode, 758 unsigned int cmd, unsigned long arg) 759 { 760 struct bcache_device *d = b->bd_disk->private_data; 761 762 return d->ioctl(d, mode, cmd, arg); 763 } 764 765 static const struct block_device_operations bcache_cached_ops = { 766 .submit_bio = cached_dev_submit_bio, 767 .open = open_dev, 768 .release = release_dev, 769 .ioctl = ioctl_dev, 770 .owner = THIS_MODULE, 771 }; 772 773 static const struct block_device_operations bcache_flash_ops = { 774 .submit_bio = flash_dev_submit_bio, 775 .open = open_dev, 776 .release = release_dev, 777 .ioctl = ioctl_dev, 778 .owner = THIS_MODULE, 779 }; 780 781 void bcache_device_stop(struct bcache_device *d) 782 { 783 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 784 /* 785 * closure_fn set to 786 * - cached device: cached_dev_flush() 787 * - flash dev: flash_dev_flush() 788 */ 789 closure_queue(&d->cl); 790 } 791 792 static void bcache_device_unlink(struct bcache_device *d) 793 { 794 lockdep_assert_held(&bch_register_lock); 795 796 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 797 struct cache *ca = d->c->cache; 798 799 sysfs_remove_link(&d->c->kobj, d->name); 800 sysfs_remove_link(&d->kobj, "cache"); 801 802 bd_unlink_disk_holder(ca->bdev, d->disk); 803 } 804 } 805 806 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 807 const char *name) 808 { 809 struct cache *ca = c->cache; 810 int ret; 811 812 bd_link_disk_holder(ca->bdev, d->disk); 813 814 snprintf(d->name, BCACHEDEVNAME_SIZE, 815 "%s%u", name, d->id); 816 817 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 818 if (ret < 0) 819 pr_err("Couldn't create device -> cache set symlink\n"); 820 821 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 822 if (ret < 0) 823 pr_err("Couldn't create cache set -> device symlink\n"); 824 825 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 826 } 827 828 static void bcache_device_detach(struct bcache_device *d) 829 { 830 lockdep_assert_held(&bch_register_lock); 831 832 atomic_dec(&d->c->attached_dev_nr); 833 834 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 835 struct uuid_entry *u = d->c->uuids + d->id; 836 837 SET_UUID_FLASH_ONLY(u, 0); 838 memcpy(u->uuid, invalid_uuid, 16); 839 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 840 bch_uuid_write(d->c); 841 } 842 843 bcache_device_unlink(d); 844 845 d->c->devices[d->id] = NULL; 846 closure_put(&d->c->caching); 847 d->c = NULL; 848 } 849 850 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 851 unsigned int id) 852 { 853 d->id = id; 854 d->c = c; 855 c->devices[id] = d; 856 857 if (id >= c->devices_max_used) 858 c->devices_max_used = id + 1; 859 860 closure_get(&c->caching); 861 } 862 863 static inline int first_minor_to_idx(int first_minor) 864 { 865 return (first_minor/BCACHE_MINORS); 866 } 867 868 static inline int idx_to_first_minor(int idx) 869 { 870 return (idx * BCACHE_MINORS); 871 } 872 873 static void bcache_device_free(struct bcache_device *d) 874 { 875 struct gendisk *disk = d->disk; 876 877 lockdep_assert_held(&bch_register_lock); 878 879 if (disk) 880 pr_info("%s stopped\n", disk->disk_name); 881 else 882 pr_err("bcache device (NULL gendisk) stopped\n"); 883 884 if (d->c) 885 bcache_device_detach(d); 886 887 if (disk) { 888 ida_simple_remove(&bcache_device_idx, 889 first_minor_to_idx(disk->first_minor)); 890 blk_cleanup_disk(disk); 891 } 892 893 bioset_exit(&d->bio_split); 894 kvfree(d->full_dirty_stripes); 895 kvfree(d->stripe_sectors_dirty); 896 897 closure_debug_destroy(&d->cl); 898 } 899 900 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 901 sector_t sectors, struct block_device *cached_bdev, 902 const struct block_device_operations *ops) 903 { 904 struct request_queue *q; 905 const size_t max_stripes = min_t(size_t, INT_MAX, 906 SIZE_MAX / sizeof(atomic_t)); 907 uint64_t n; 908 int idx; 909 910 if (!d->stripe_size) 911 d->stripe_size = 1 << 31; 912 913 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 914 if (!n || n > max_stripes) { 915 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 916 n); 917 return -ENOMEM; 918 } 919 d->nr_stripes = n; 920 921 n = d->nr_stripes * sizeof(atomic_t); 922 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 923 if (!d->stripe_sectors_dirty) 924 return -ENOMEM; 925 926 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 927 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 928 if (!d->full_dirty_stripes) 929 goto out_free_stripe_sectors_dirty; 930 931 idx = ida_simple_get(&bcache_device_idx, 0, 932 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 933 if (idx < 0) 934 goto out_free_full_dirty_stripes; 935 936 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 937 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 938 goto out_ida_remove; 939 940 d->disk = blk_alloc_disk(NUMA_NO_NODE); 941 if (!d->disk) 942 goto out_bioset_exit; 943 944 set_capacity(d->disk, sectors); 945 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 946 947 d->disk->major = bcache_major; 948 d->disk->first_minor = idx_to_first_minor(idx); 949 d->disk->minors = BCACHE_MINORS; 950 d->disk->fops = ops; 951 d->disk->private_data = d; 952 953 q = d->disk->queue; 954 q->limits.max_hw_sectors = UINT_MAX; 955 q->limits.max_sectors = UINT_MAX; 956 q->limits.max_segment_size = UINT_MAX; 957 q->limits.max_segments = BIO_MAX_VECS; 958 blk_queue_max_discard_sectors(q, UINT_MAX); 959 q->limits.discard_granularity = 512; 960 q->limits.io_min = block_size; 961 q->limits.logical_block_size = block_size; 962 q->limits.physical_block_size = block_size; 963 964 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 965 /* 966 * This should only happen with BCACHE_SB_VERSION_BDEV. 967 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 968 */ 969 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 970 d->disk->disk_name, q->limits.logical_block_size, 971 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 972 973 /* This also adjusts physical block size/min io size if needed */ 974 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 975 } 976 977 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 978 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 979 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 980 981 blk_queue_write_cache(q, true, true); 982 983 return 0; 984 985 out_bioset_exit: 986 bioset_exit(&d->bio_split); 987 out_ida_remove: 988 ida_simple_remove(&bcache_device_idx, idx); 989 out_free_full_dirty_stripes: 990 kvfree(d->full_dirty_stripes); 991 out_free_stripe_sectors_dirty: 992 kvfree(d->stripe_sectors_dirty); 993 return -ENOMEM; 994 995 } 996 997 /* Cached device */ 998 999 static void calc_cached_dev_sectors(struct cache_set *c) 1000 { 1001 uint64_t sectors = 0; 1002 struct cached_dev *dc; 1003 1004 list_for_each_entry(dc, &c->cached_devs, list) 1005 sectors += bdev_nr_sectors(dc->bdev); 1006 1007 c->cached_dev_sectors = sectors; 1008 } 1009 1010 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1011 static int cached_dev_status_update(void *arg) 1012 { 1013 struct cached_dev *dc = arg; 1014 struct request_queue *q; 1015 1016 /* 1017 * If this delayed worker is stopping outside, directly quit here. 1018 * dc->io_disable might be set via sysfs interface, so check it 1019 * here too. 1020 */ 1021 while (!kthread_should_stop() && !dc->io_disable) { 1022 q = bdev_get_queue(dc->bdev); 1023 if (blk_queue_dying(q)) 1024 dc->offline_seconds++; 1025 else 1026 dc->offline_seconds = 0; 1027 1028 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1029 pr_err("%pg: device offline for %d seconds\n", 1030 dc->bdev, 1031 BACKING_DEV_OFFLINE_TIMEOUT); 1032 pr_err("%s: disable I/O request due to backing device offline\n", 1033 dc->disk.name); 1034 dc->io_disable = true; 1035 /* let others know earlier that io_disable is true */ 1036 smp_mb(); 1037 bcache_device_stop(&dc->disk); 1038 break; 1039 } 1040 schedule_timeout_interruptible(HZ); 1041 } 1042 1043 wait_for_kthread_stop(); 1044 return 0; 1045 } 1046 1047 1048 int bch_cached_dev_run(struct cached_dev *dc) 1049 { 1050 int ret = 0; 1051 struct bcache_device *d = &dc->disk; 1052 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1053 char *env[] = { 1054 "DRIVER=bcache", 1055 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1056 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1057 NULL, 1058 }; 1059 1060 if (dc->io_disable) { 1061 pr_err("I/O disabled on cached dev %pg\n", dc->bdev); 1062 ret = -EIO; 1063 goto out; 1064 } 1065 1066 if (atomic_xchg(&dc->running, 1)) { 1067 pr_info("cached dev %pg is running already\n", dc->bdev); 1068 ret = -EBUSY; 1069 goto out; 1070 } 1071 1072 if (!d->c && 1073 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1074 struct closure cl; 1075 1076 closure_init_stack(&cl); 1077 1078 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1079 bch_write_bdev_super(dc, &cl); 1080 closure_sync(&cl); 1081 } 1082 1083 ret = add_disk(d->disk); 1084 if (ret) 1085 goto out; 1086 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1087 /* 1088 * won't show up in the uevent file, use udevadm monitor -e instead 1089 * only class / kset properties are persistent 1090 */ 1091 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1092 1093 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1094 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1095 &d->kobj, "bcache")) { 1096 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1097 ret = -ENOMEM; 1098 goto out; 1099 } 1100 1101 dc->status_update_thread = kthread_run(cached_dev_status_update, 1102 dc, "bcache_status_update"); 1103 if (IS_ERR(dc->status_update_thread)) { 1104 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1105 } 1106 1107 out: 1108 kfree(env[1]); 1109 kfree(env[2]); 1110 kfree(buf); 1111 return ret; 1112 } 1113 1114 /* 1115 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1116 * work dc->writeback_rate_update is running. Wait until the routine 1117 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1118 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1119 * seconds, give up waiting here and continue to cancel it too. 1120 */ 1121 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1122 { 1123 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1124 1125 do { 1126 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1127 &dc->disk.flags)) 1128 break; 1129 time_out--; 1130 schedule_timeout_interruptible(1); 1131 } while (time_out > 0); 1132 1133 if (time_out == 0) 1134 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1135 1136 cancel_delayed_work_sync(&dc->writeback_rate_update); 1137 } 1138 1139 static void cached_dev_detach_finish(struct work_struct *w) 1140 { 1141 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1142 1143 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1144 BUG_ON(refcount_read(&dc->count)); 1145 1146 1147 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1148 cancel_writeback_rate_update_dwork(dc); 1149 1150 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1151 kthread_stop(dc->writeback_thread); 1152 dc->writeback_thread = NULL; 1153 } 1154 1155 mutex_lock(&bch_register_lock); 1156 1157 bcache_device_detach(&dc->disk); 1158 list_move(&dc->list, &uncached_devices); 1159 calc_cached_dev_sectors(dc->disk.c); 1160 1161 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1162 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1163 1164 mutex_unlock(&bch_register_lock); 1165 1166 pr_info("Caching disabled for %pg\n", dc->bdev); 1167 1168 /* Drop ref we took in cached_dev_detach() */ 1169 closure_put(&dc->disk.cl); 1170 } 1171 1172 void bch_cached_dev_detach(struct cached_dev *dc) 1173 { 1174 lockdep_assert_held(&bch_register_lock); 1175 1176 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1177 return; 1178 1179 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1180 return; 1181 1182 /* 1183 * Block the device from being closed and freed until we're finished 1184 * detaching 1185 */ 1186 closure_get(&dc->disk.cl); 1187 1188 bch_writeback_queue(dc); 1189 1190 cached_dev_put(dc); 1191 } 1192 1193 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1194 uint8_t *set_uuid) 1195 { 1196 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1197 struct uuid_entry *u; 1198 struct cached_dev *exist_dc, *t; 1199 int ret = 0; 1200 1201 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1202 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1203 return -ENOENT; 1204 1205 if (dc->disk.c) { 1206 pr_err("Can't attach %pg: already attached\n", dc->bdev); 1207 return -EINVAL; 1208 } 1209 1210 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1211 pr_err("Can't attach %pg: shutting down\n", dc->bdev); 1212 return -EINVAL; 1213 } 1214 1215 if (dc->sb.block_size < c->cache->sb.block_size) { 1216 /* Will die */ 1217 pr_err("Couldn't attach %pg: block size less than set's block size\n", 1218 dc->bdev); 1219 return -EINVAL; 1220 } 1221 1222 /* Check whether already attached */ 1223 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1224 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1225 pr_err("Tried to attach %pg but duplicate UUID already attached\n", 1226 dc->bdev); 1227 1228 return -EINVAL; 1229 } 1230 } 1231 1232 u = uuid_find(c, dc->sb.uuid); 1233 1234 if (u && 1235 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1236 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1237 memcpy(u->uuid, invalid_uuid, 16); 1238 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1239 u = NULL; 1240 } 1241 1242 if (!u) { 1243 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1244 pr_err("Couldn't find uuid for %pg in set\n", dc->bdev); 1245 return -ENOENT; 1246 } 1247 1248 u = uuid_find_empty(c); 1249 if (!u) { 1250 pr_err("Not caching %pg, no room for UUID\n", dc->bdev); 1251 return -EINVAL; 1252 } 1253 } 1254 1255 /* 1256 * Deadlocks since we're called via sysfs... 1257 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1258 */ 1259 1260 if (bch_is_zero(u->uuid, 16)) { 1261 struct closure cl; 1262 1263 closure_init_stack(&cl); 1264 1265 memcpy(u->uuid, dc->sb.uuid, 16); 1266 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1267 u->first_reg = u->last_reg = rtime; 1268 bch_uuid_write(c); 1269 1270 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1271 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1272 1273 bch_write_bdev_super(dc, &cl); 1274 closure_sync(&cl); 1275 } else { 1276 u->last_reg = rtime; 1277 bch_uuid_write(c); 1278 } 1279 1280 bcache_device_attach(&dc->disk, c, u - c->uuids); 1281 list_move(&dc->list, &c->cached_devs); 1282 calc_cached_dev_sectors(c); 1283 1284 /* 1285 * dc->c must be set before dc->count != 0 - paired with the mb in 1286 * cached_dev_get() 1287 */ 1288 smp_wmb(); 1289 refcount_set(&dc->count, 1); 1290 1291 /* Block writeback thread, but spawn it */ 1292 down_write(&dc->writeback_lock); 1293 if (bch_cached_dev_writeback_start(dc)) { 1294 up_write(&dc->writeback_lock); 1295 pr_err("Couldn't start writeback facilities for %s\n", 1296 dc->disk.disk->disk_name); 1297 return -ENOMEM; 1298 } 1299 1300 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1301 atomic_set(&dc->has_dirty, 1); 1302 bch_writeback_queue(dc); 1303 } 1304 1305 bch_sectors_dirty_init(&dc->disk); 1306 1307 ret = bch_cached_dev_run(dc); 1308 if (ret && (ret != -EBUSY)) { 1309 up_write(&dc->writeback_lock); 1310 /* 1311 * bch_register_lock is held, bcache_device_stop() is not 1312 * able to be directly called. The kthread and kworker 1313 * created previously in bch_cached_dev_writeback_start() 1314 * have to be stopped manually here. 1315 */ 1316 kthread_stop(dc->writeback_thread); 1317 cancel_writeback_rate_update_dwork(dc); 1318 pr_err("Couldn't run cached device %pg\n", dc->bdev); 1319 return ret; 1320 } 1321 1322 bcache_device_link(&dc->disk, c, "bdev"); 1323 atomic_inc(&c->attached_dev_nr); 1324 1325 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1326 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1327 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1328 set_disk_ro(dc->disk.disk, 1); 1329 } 1330 1331 /* Allow the writeback thread to proceed */ 1332 up_write(&dc->writeback_lock); 1333 1334 pr_info("Caching %pg as %s on set %pU\n", 1335 dc->bdev, 1336 dc->disk.disk->disk_name, 1337 dc->disk.c->set_uuid); 1338 return 0; 1339 } 1340 1341 /* when dc->disk.kobj released */ 1342 void bch_cached_dev_release(struct kobject *kobj) 1343 { 1344 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1345 disk.kobj); 1346 kfree(dc); 1347 module_put(THIS_MODULE); 1348 } 1349 1350 static void cached_dev_free(struct closure *cl) 1351 { 1352 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1353 1354 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1355 cancel_writeback_rate_update_dwork(dc); 1356 1357 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1358 kthread_stop(dc->writeback_thread); 1359 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1360 kthread_stop(dc->status_update_thread); 1361 1362 mutex_lock(&bch_register_lock); 1363 1364 if (atomic_read(&dc->running)) { 1365 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1366 del_gendisk(dc->disk.disk); 1367 } 1368 bcache_device_free(&dc->disk); 1369 list_del(&dc->list); 1370 1371 mutex_unlock(&bch_register_lock); 1372 1373 if (dc->sb_disk) 1374 put_page(virt_to_page(dc->sb_disk)); 1375 1376 if (!IS_ERR_OR_NULL(dc->bdev)) 1377 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1378 1379 wake_up(&unregister_wait); 1380 1381 kobject_put(&dc->disk.kobj); 1382 } 1383 1384 static void cached_dev_flush(struct closure *cl) 1385 { 1386 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1387 struct bcache_device *d = &dc->disk; 1388 1389 mutex_lock(&bch_register_lock); 1390 bcache_device_unlink(d); 1391 mutex_unlock(&bch_register_lock); 1392 1393 bch_cache_accounting_destroy(&dc->accounting); 1394 kobject_del(&d->kobj); 1395 1396 continue_at(cl, cached_dev_free, system_wq); 1397 } 1398 1399 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1400 { 1401 int ret; 1402 struct io *io; 1403 struct request_queue *q = bdev_get_queue(dc->bdev); 1404 1405 __module_get(THIS_MODULE); 1406 INIT_LIST_HEAD(&dc->list); 1407 closure_init(&dc->disk.cl, NULL); 1408 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1409 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1410 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1411 sema_init(&dc->sb_write_mutex, 1); 1412 INIT_LIST_HEAD(&dc->io_lru); 1413 spin_lock_init(&dc->io_lock); 1414 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1415 1416 dc->sequential_cutoff = 4 << 20; 1417 1418 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1419 list_add(&io->lru, &dc->io_lru); 1420 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1421 } 1422 1423 dc->disk.stripe_size = q->limits.io_opt >> 9; 1424 1425 if (dc->disk.stripe_size) 1426 dc->partial_stripes_expensive = 1427 q->limits.raid_partial_stripes_expensive; 1428 1429 ret = bcache_device_init(&dc->disk, block_size, 1430 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1431 dc->bdev, &bcache_cached_ops); 1432 if (ret) 1433 return ret; 1434 1435 blk_queue_io_opt(dc->disk.disk->queue, 1436 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1437 1438 atomic_set(&dc->io_errors, 0); 1439 dc->io_disable = false; 1440 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1441 /* default to auto */ 1442 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1443 1444 bch_cached_dev_request_init(dc); 1445 bch_cached_dev_writeback_init(dc); 1446 return 0; 1447 } 1448 1449 /* Cached device - bcache superblock */ 1450 1451 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1452 struct block_device *bdev, 1453 struct cached_dev *dc) 1454 { 1455 const char *err = "cannot allocate memory"; 1456 struct cache_set *c; 1457 int ret = -ENOMEM; 1458 1459 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1460 dc->bdev = bdev; 1461 dc->bdev->bd_holder = dc; 1462 dc->sb_disk = sb_disk; 1463 1464 if (cached_dev_init(dc, sb->block_size << 9)) 1465 goto err; 1466 1467 err = "error creating kobject"; 1468 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1469 goto err; 1470 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1471 goto err; 1472 1473 pr_info("registered backing device %pg\n", dc->bdev); 1474 1475 list_add(&dc->list, &uncached_devices); 1476 /* attach to a matched cache set if it exists */ 1477 list_for_each_entry(c, &bch_cache_sets, list) 1478 bch_cached_dev_attach(dc, c, NULL); 1479 1480 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1481 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1482 err = "failed to run cached device"; 1483 ret = bch_cached_dev_run(dc); 1484 if (ret) 1485 goto err; 1486 } 1487 1488 return 0; 1489 err: 1490 pr_notice("error %pg: %s\n", dc->bdev, err); 1491 bcache_device_stop(&dc->disk); 1492 return ret; 1493 } 1494 1495 /* Flash only volumes */ 1496 1497 /* When d->kobj released */ 1498 void bch_flash_dev_release(struct kobject *kobj) 1499 { 1500 struct bcache_device *d = container_of(kobj, struct bcache_device, 1501 kobj); 1502 kfree(d); 1503 } 1504 1505 static void flash_dev_free(struct closure *cl) 1506 { 1507 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1508 1509 mutex_lock(&bch_register_lock); 1510 atomic_long_sub(bcache_dev_sectors_dirty(d), 1511 &d->c->flash_dev_dirty_sectors); 1512 del_gendisk(d->disk); 1513 bcache_device_free(d); 1514 mutex_unlock(&bch_register_lock); 1515 kobject_put(&d->kobj); 1516 } 1517 1518 static void flash_dev_flush(struct closure *cl) 1519 { 1520 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1521 1522 mutex_lock(&bch_register_lock); 1523 bcache_device_unlink(d); 1524 mutex_unlock(&bch_register_lock); 1525 kobject_del(&d->kobj); 1526 continue_at(cl, flash_dev_free, system_wq); 1527 } 1528 1529 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1530 { 1531 int err = -ENOMEM; 1532 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1533 GFP_KERNEL); 1534 if (!d) 1535 goto err_ret; 1536 1537 closure_init(&d->cl, NULL); 1538 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1539 1540 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1541 1542 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1543 NULL, &bcache_flash_ops)) 1544 goto err; 1545 1546 bcache_device_attach(d, c, u - c->uuids); 1547 bch_sectors_dirty_init(d); 1548 bch_flash_dev_request_init(d); 1549 err = add_disk(d->disk); 1550 if (err) 1551 goto err; 1552 1553 err = kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"); 1554 if (err) 1555 goto err; 1556 1557 bcache_device_link(d, c, "volume"); 1558 1559 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1560 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1561 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1562 set_disk_ro(d->disk, 1); 1563 } 1564 1565 return 0; 1566 err: 1567 kobject_put(&d->kobj); 1568 err_ret: 1569 return err; 1570 } 1571 1572 static int flash_devs_run(struct cache_set *c) 1573 { 1574 int ret = 0; 1575 struct uuid_entry *u; 1576 1577 for (u = c->uuids; 1578 u < c->uuids + c->nr_uuids && !ret; 1579 u++) 1580 if (UUID_FLASH_ONLY(u)) 1581 ret = flash_dev_run(c, u); 1582 1583 return ret; 1584 } 1585 1586 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1587 { 1588 struct uuid_entry *u; 1589 1590 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1591 return -EINTR; 1592 1593 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1594 return -EPERM; 1595 1596 u = uuid_find_empty(c); 1597 if (!u) { 1598 pr_err("Can't create volume, no room for UUID\n"); 1599 return -EINVAL; 1600 } 1601 1602 get_random_bytes(u->uuid, 16); 1603 memset(u->label, 0, 32); 1604 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1605 1606 SET_UUID_FLASH_ONLY(u, 1); 1607 u->sectors = size >> 9; 1608 1609 bch_uuid_write(c); 1610 1611 return flash_dev_run(c, u); 1612 } 1613 1614 bool bch_cached_dev_error(struct cached_dev *dc) 1615 { 1616 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1617 return false; 1618 1619 dc->io_disable = true; 1620 /* make others know io_disable is true earlier */ 1621 smp_mb(); 1622 1623 pr_err("stop %s: too many IO errors on backing device %pg\n", 1624 dc->disk.disk->disk_name, dc->bdev); 1625 1626 bcache_device_stop(&dc->disk); 1627 return true; 1628 } 1629 1630 /* Cache set */ 1631 1632 __printf(2, 3) 1633 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1634 { 1635 struct va_format vaf; 1636 va_list args; 1637 1638 if (c->on_error != ON_ERROR_PANIC && 1639 test_bit(CACHE_SET_STOPPING, &c->flags)) 1640 return false; 1641 1642 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1643 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1644 1645 /* 1646 * XXX: we can be called from atomic context 1647 * acquire_console_sem(); 1648 */ 1649 1650 va_start(args, fmt); 1651 1652 vaf.fmt = fmt; 1653 vaf.va = &args; 1654 1655 pr_err("error on %pU: %pV, disabling caching\n", 1656 c->set_uuid, &vaf); 1657 1658 va_end(args); 1659 1660 if (c->on_error == ON_ERROR_PANIC) 1661 panic("panic forced after error\n"); 1662 1663 bch_cache_set_unregister(c); 1664 return true; 1665 } 1666 1667 /* When c->kobj released */ 1668 void bch_cache_set_release(struct kobject *kobj) 1669 { 1670 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1671 1672 kfree(c); 1673 module_put(THIS_MODULE); 1674 } 1675 1676 static void cache_set_free(struct closure *cl) 1677 { 1678 struct cache_set *c = container_of(cl, struct cache_set, cl); 1679 struct cache *ca; 1680 1681 debugfs_remove(c->debug); 1682 1683 bch_open_buckets_free(c); 1684 bch_btree_cache_free(c); 1685 bch_journal_free(c); 1686 1687 mutex_lock(&bch_register_lock); 1688 bch_bset_sort_state_free(&c->sort); 1689 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1690 1691 ca = c->cache; 1692 if (ca) { 1693 ca->set = NULL; 1694 c->cache = NULL; 1695 kobject_put(&ca->kobj); 1696 } 1697 1698 1699 if (c->moving_gc_wq) 1700 destroy_workqueue(c->moving_gc_wq); 1701 bioset_exit(&c->bio_split); 1702 mempool_exit(&c->fill_iter); 1703 mempool_exit(&c->bio_meta); 1704 mempool_exit(&c->search); 1705 kfree(c->devices); 1706 1707 list_del(&c->list); 1708 mutex_unlock(&bch_register_lock); 1709 1710 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1711 wake_up(&unregister_wait); 1712 1713 closure_debug_destroy(&c->cl); 1714 kobject_put(&c->kobj); 1715 } 1716 1717 static void cache_set_flush(struct closure *cl) 1718 { 1719 struct cache_set *c = container_of(cl, struct cache_set, caching); 1720 struct cache *ca = c->cache; 1721 struct btree *b; 1722 1723 bch_cache_accounting_destroy(&c->accounting); 1724 1725 kobject_put(&c->internal); 1726 kobject_del(&c->kobj); 1727 1728 if (!IS_ERR_OR_NULL(c->gc_thread)) 1729 kthread_stop(c->gc_thread); 1730 1731 if (!IS_ERR_OR_NULL(c->root)) 1732 list_add(&c->root->list, &c->btree_cache); 1733 1734 /* 1735 * Avoid flushing cached nodes if cache set is retiring 1736 * due to too many I/O errors detected. 1737 */ 1738 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1739 list_for_each_entry(b, &c->btree_cache, list) { 1740 mutex_lock(&b->write_lock); 1741 if (btree_node_dirty(b)) 1742 __bch_btree_node_write(b, NULL); 1743 mutex_unlock(&b->write_lock); 1744 } 1745 1746 if (ca->alloc_thread) 1747 kthread_stop(ca->alloc_thread); 1748 1749 if (c->journal.cur) { 1750 cancel_delayed_work_sync(&c->journal.work); 1751 /* flush last journal entry if needed */ 1752 c->journal.work.work.func(&c->journal.work.work); 1753 } 1754 1755 closure_return(cl); 1756 } 1757 1758 /* 1759 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1760 * cache set is unregistering due to too many I/O errors. In this condition, 1761 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1762 * value and whether the broken cache has dirty data: 1763 * 1764 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1765 * BCH_CACHED_STOP_AUTO 0 NO 1766 * BCH_CACHED_STOP_AUTO 1 YES 1767 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1768 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1769 * 1770 * The expected behavior is, if stop_when_cache_set_failed is configured to 1771 * "auto" via sysfs interface, the bcache device will not be stopped if the 1772 * backing device is clean on the broken cache device. 1773 */ 1774 static void conditional_stop_bcache_device(struct cache_set *c, 1775 struct bcache_device *d, 1776 struct cached_dev *dc) 1777 { 1778 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1779 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1780 d->disk->disk_name, c->set_uuid); 1781 bcache_device_stop(d); 1782 } else if (atomic_read(&dc->has_dirty)) { 1783 /* 1784 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1785 * and dc->has_dirty == 1 1786 */ 1787 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1788 d->disk->disk_name); 1789 /* 1790 * There might be a small time gap that cache set is 1791 * released but bcache device is not. Inside this time 1792 * gap, regular I/O requests will directly go into 1793 * backing device as no cache set attached to. This 1794 * behavior may also introduce potential inconsistence 1795 * data in writeback mode while cache is dirty. 1796 * Therefore before calling bcache_device_stop() due 1797 * to a broken cache device, dc->io_disable should be 1798 * explicitly set to true. 1799 */ 1800 dc->io_disable = true; 1801 /* make others know io_disable is true earlier */ 1802 smp_mb(); 1803 bcache_device_stop(d); 1804 } else { 1805 /* 1806 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1807 * and dc->has_dirty == 0 1808 */ 1809 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1810 d->disk->disk_name); 1811 } 1812 } 1813 1814 static void __cache_set_unregister(struct closure *cl) 1815 { 1816 struct cache_set *c = container_of(cl, struct cache_set, caching); 1817 struct cached_dev *dc; 1818 struct bcache_device *d; 1819 size_t i; 1820 1821 mutex_lock(&bch_register_lock); 1822 1823 for (i = 0; i < c->devices_max_used; i++) { 1824 d = c->devices[i]; 1825 if (!d) 1826 continue; 1827 1828 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1829 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1830 dc = container_of(d, struct cached_dev, disk); 1831 bch_cached_dev_detach(dc); 1832 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1833 conditional_stop_bcache_device(c, d, dc); 1834 } else { 1835 bcache_device_stop(d); 1836 } 1837 } 1838 1839 mutex_unlock(&bch_register_lock); 1840 1841 continue_at(cl, cache_set_flush, system_wq); 1842 } 1843 1844 void bch_cache_set_stop(struct cache_set *c) 1845 { 1846 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1847 /* closure_fn set to __cache_set_unregister() */ 1848 closure_queue(&c->caching); 1849 } 1850 1851 void bch_cache_set_unregister(struct cache_set *c) 1852 { 1853 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1854 bch_cache_set_stop(c); 1855 } 1856 1857 #define alloc_meta_bucket_pages(gfp, sb) \ 1858 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1859 1860 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1861 { 1862 int iter_size; 1863 struct cache *ca = container_of(sb, struct cache, sb); 1864 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1865 1866 if (!c) 1867 return NULL; 1868 1869 __module_get(THIS_MODULE); 1870 closure_init(&c->cl, NULL); 1871 set_closure_fn(&c->cl, cache_set_free, system_wq); 1872 1873 closure_init(&c->caching, &c->cl); 1874 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1875 1876 /* Maybe create continue_at_noreturn() and use it here? */ 1877 closure_set_stopped(&c->cl); 1878 closure_put(&c->cl); 1879 1880 kobject_init(&c->kobj, &bch_cache_set_ktype); 1881 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1882 1883 bch_cache_accounting_init(&c->accounting, &c->cl); 1884 1885 memcpy(c->set_uuid, sb->set_uuid, 16); 1886 1887 c->cache = ca; 1888 c->cache->set = c; 1889 c->bucket_bits = ilog2(sb->bucket_size); 1890 c->block_bits = ilog2(sb->block_size); 1891 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1892 c->devices_max_used = 0; 1893 atomic_set(&c->attached_dev_nr, 0); 1894 c->btree_pages = meta_bucket_pages(sb); 1895 if (c->btree_pages > BTREE_MAX_PAGES) 1896 c->btree_pages = max_t(int, c->btree_pages / 4, 1897 BTREE_MAX_PAGES); 1898 1899 sema_init(&c->sb_write_mutex, 1); 1900 mutex_init(&c->bucket_lock); 1901 init_waitqueue_head(&c->btree_cache_wait); 1902 spin_lock_init(&c->btree_cannibalize_lock); 1903 init_waitqueue_head(&c->bucket_wait); 1904 init_waitqueue_head(&c->gc_wait); 1905 sema_init(&c->uuid_write_mutex, 1); 1906 1907 spin_lock_init(&c->btree_gc_time.lock); 1908 spin_lock_init(&c->btree_split_time.lock); 1909 spin_lock_init(&c->btree_read_time.lock); 1910 1911 bch_moving_init_cache_set(c); 1912 1913 INIT_LIST_HEAD(&c->list); 1914 INIT_LIST_HEAD(&c->cached_devs); 1915 INIT_LIST_HEAD(&c->btree_cache); 1916 INIT_LIST_HEAD(&c->btree_cache_freeable); 1917 INIT_LIST_HEAD(&c->btree_cache_freed); 1918 INIT_LIST_HEAD(&c->data_buckets); 1919 1920 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1921 sizeof(struct btree_iter_set); 1922 1923 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1924 if (!c->devices) 1925 goto err; 1926 1927 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1928 goto err; 1929 1930 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1931 sizeof(struct bbio) + 1932 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1933 goto err; 1934 1935 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1936 goto err; 1937 1938 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1939 BIOSET_NEED_RESCUER)) 1940 goto err; 1941 1942 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1943 if (!c->uuids) 1944 goto err; 1945 1946 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1947 if (!c->moving_gc_wq) 1948 goto err; 1949 1950 if (bch_journal_alloc(c)) 1951 goto err; 1952 1953 if (bch_btree_cache_alloc(c)) 1954 goto err; 1955 1956 if (bch_open_buckets_alloc(c)) 1957 goto err; 1958 1959 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1960 goto err; 1961 1962 c->congested_read_threshold_us = 2000; 1963 c->congested_write_threshold_us = 20000; 1964 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1965 c->idle_max_writeback_rate_enabled = 1; 1966 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1967 1968 return c; 1969 err: 1970 bch_cache_set_unregister(c); 1971 return NULL; 1972 } 1973 1974 static int run_cache_set(struct cache_set *c) 1975 { 1976 const char *err = "cannot allocate memory"; 1977 struct cached_dev *dc, *t; 1978 struct cache *ca = c->cache; 1979 struct closure cl; 1980 LIST_HEAD(journal); 1981 struct journal_replay *l; 1982 1983 closure_init_stack(&cl); 1984 1985 c->nbuckets = ca->sb.nbuckets; 1986 set_gc_sectors(c); 1987 1988 if (CACHE_SYNC(&c->cache->sb)) { 1989 struct bkey *k; 1990 struct jset *j; 1991 1992 err = "cannot allocate memory for journal"; 1993 if (bch_journal_read(c, &journal)) 1994 goto err; 1995 1996 pr_debug("btree_journal_read() done\n"); 1997 1998 err = "no journal entries found"; 1999 if (list_empty(&journal)) 2000 goto err; 2001 2002 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2003 2004 err = "IO error reading priorities"; 2005 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2006 goto err; 2007 2008 /* 2009 * If prio_read() fails it'll call cache_set_error and we'll 2010 * tear everything down right away, but if we perhaps checked 2011 * sooner we could avoid journal replay. 2012 */ 2013 2014 k = &j->btree_root; 2015 2016 err = "bad btree root"; 2017 if (__bch_btree_ptr_invalid(c, k)) 2018 goto err; 2019 2020 err = "error reading btree root"; 2021 c->root = bch_btree_node_get(c, NULL, k, 2022 j->btree_level, 2023 true, NULL); 2024 if (IS_ERR_OR_NULL(c->root)) 2025 goto err; 2026 2027 list_del_init(&c->root->list); 2028 rw_unlock(true, c->root); 2029 2030 err = uuid_read(c, j, &cl); 2031 if (err) 2032 goto err; 2033 2034 err = "error in recovery"; 2035 if (bch_btree_check(c)) 2036 goto err; 2037 2038 bch_journal_mark(c, &journal); 2039 bch_initial_gc_finish(c); 2040 pr_debug("btree_check() done\n"); 2041 2042 /* 2043 * bcache_journal_next() can't happen sooner, or 2044 * btree_gc_finish() will give spurious errors about last_gc > 2045 * gc_gen - this is a hack but oh well. 2046 */ 2047 bch_journal_next(&c->journal); 2048 2049 err = "error starting allocator thread"; 2050 if (bch_cache_allocator_start(ca)) 2051 goto err; 2052 2053 /* 2054 * First place it's safe to allocate: btree_check() and 2055 * btree_gc_finish() have to run before we have buckets to 2056 * allocate, and bch_bucket_alloc_set() might cause a journal 2057 * entry to be written so bcache_journal_next() has to be called 2058 * first. 2059 * 2060 * If the uuids were in the old format we have to rewrite them 2061 * before the next journal entry is written: 2062 */ 2063 if (j->version < BCACHE_JSET_VERSION_UUID) 2064 __uuid_write(c); 2065 2066 err = "bcache: replay journal failed"; 2067 if (bch_journal_replay(c, &journal)) 2068 goto err; 2069 } else { 2070 unsigned int j; 2071 2072 pr_notice("invalidating existing data\n"); 2073 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2074 2, SB_JOURNAL_BUCKETS); 2075 2076 for (j = 0; j < ca->sb.keys; j++) 2077 ca->sb.d[j] = ca->sb.first_bucket + j; 2078 2079 bch_initial_gc_finish(c); 2080 2081 err = "error starting allocator thread"; 2082 if (bch_cache_allocator_start(ca)) 2083 goto err; 2084 2085 mutex_lock(&c->bucket_lock); 2086 bch_prio_write(ca, true); 2087 mutex_unlock(&c->bucket_lock); 2088 2089 err = "cannot allocate new UUID bucket"; 2090 if (__uuid_write(c)) 2091 goto err; 2092 2093 err = "cannot allocate new btree root"; 2094 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2095 if (IS_ERR_OR_NULL(c->root)) 2096 goto err; 2097 2098 mutex_lock(&c->root->write_lock); 2099 bkey_copy_key(&c->root->key, &MAX_KEY); 2100 bch_btree_node_write(c->root, &cl); 2101 mutex_unlock(&c->root->write_lock); 2102 2103 bch_btree_set_root(c->root); 2104 rw_unlock(true, c->root); 2105 2106 /* 2107 * We don't want to write the first journal entry until 2108 * everything is set up - fortunately journal entries won't be 2109 * written until the SET_CACHE_SYNC() here: 2110 */ 2111 SET_CACHE_SYNC(&c->cache->sb, true); 2112 2113 bch_journal_next(&c->journal); 2114 bch_journal_meta(c, &cl); 2115 } 2116 2117 err = "error starting gc thread"; 2118 if (bch_gc_thread_start(c)) 2119 goto err; 2120 2121 closure_sync(&cl); 2122 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2123 bcache_write_super(c); 2124 2125 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2126 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2127 2128 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2129 bch_cached_dev_attach(dc, c, NULL); 2130 2131 flash_devs_run(c); 2132 2133 set_bit(CACHE_SET_RUNNING, &c->flags); 2134 return 0; 2135 err: 2136 while (!list_empty(&journal)) { 2137 l = list_first_entry(&journal, struct journal_replay, list); 2138 list_del(&l->list); 2139 kfree(l); 2140 } 2141 2142 closure_sync(&cl); 2143 2144 bch_cache_set_error(c, "%s", err); 2145 2146 return -EIO; 2147 } 2148 2149 static const char *register_cache_set(struct cache *ca) 2150 { 2151 char buf[12]; 2152 const char *err = "cannot allocate memory"; 2153 struct cache_set *c; 2154 2155 list_for_each_entry(c, &bch_cache_sets, list) 2156 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2157 if (c->cache) 2158 return "duplicate cache set member"; 2159 2160 goto found; 2161 } 2162 2163 c = bch_cache_set_alloc(&ca->sb); 2164 if (!c) 2165 return err; 2166 2167 err = "error creating kobject"; 2168 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2169 kobject_add(&c->internal, &c->kobj, "internal")) 2170 goto err; 2171 2172 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2173 goto err; 2174 2175 bch_debug_init_cache_set(c); 2176 2177 list_add(&c->list, &bch_cache_sets); 2178 found: 2179 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2180 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2181 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2182 goto err; 2183 2184 kobject_get(&ca->kobj); 2185 ca->set = c; 2186 ca->set->cache = ca; 2187 2188 err = "failed to run cache set"; 2189 if (run_cache_set(c) < 0) 2190 goto err; 2191 2192 return NULL; 2193 err: 2194 bch_cache_set_unregister(c); 2195 return err; 2196 } 2197 2198 /* Cache device */ 2199 2200 /* When ca->kobj released */ 2201 void bch_cache_release(struct kobject *kobj) 2202 { 2203 struct cache *ca = container_of(kobj, struct cache, kobj); 2204 unsigned int i; 2205 2206 if (ca->set) { 2207 BUG_ON(ca->set->cache != ca); 2208 ca->set->cache = NULL; 2209 } 2210 2211 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2212 kfree(ca->prio_buckets); 2213 vfree(ca->buckets); 2214 2215 free_heap(&ca->heap); 2216 free_fifo(&ca->free_inc); 2217 2218 for (i = 0; i < RESERVE_NR; i++) 2219 free_fifo(&ca->free[i]); 2220 2221 if (ca->sb_disk) 2222 put_page(virt_to_page(ca->sb_disk)); 2223 2224 if (!IS_ERR_OR_NULL(ca->bdev)) 2225 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2226 2227 kfree(ca); 2228 module_put(THIS_MODULE); 2229 } 2230 2231 static int cache_alloc(struct cache *ca) 2232 { 2233 size_t free; 2234 size_t btree_buckets; 2235 struct bucket *b; 2236 int ret = -ENOMEM; 2237 const char *err = NULL; 2238 2239 __module_get(THIS_MODULE); 2240 kobject_init(&ca->kobj, &bch_cache_ktype); 2241 2242 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2243 2244 /* 2245 * when ca->sb.njournal_buckets is not zero, journal exists, 2246 * and in bch_journal_replay(), tree node may split, 2247 * so bucket of RESERVE_BTREE type is needed, 2248 * the worst situation is all journal buckets are valid journal, 2249 * and all the keys need to replay, 2250 * so the number of RESERVE_BTREE type buckets should be as much 2251 * as journal buckets 2252 */ 2253 btree_buckets = ca->sb.njournal_buckets ?: 8; 2254 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2255 if (!free) { 2256 ret = -EPERM; 2257 err = "ca->sb.nbuckets is too small"; 2258 goto err_free; 2259 } 2260 2261 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2262 GFP_KERNEL)) { 2263 err = "ca->free[RESERVE_BTREE] alloc failed"; 2264 goto err_btree_alloc; 2265 } 2266 2267 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2268 GFP_KERNEL)) { 2269 err = "ca->free[RESERVE_PRIO] alloc failed"; 2270 goto err_prio_alloc; 2271 } 2272 2273 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2274 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2275 goto err_movinggc_alloc; 2276 } 2277 2278 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2279 err = "ca->free[RESERVE_NONE] alloc failed"; 2280 goto err_none_alloc; 2281 } 2282 2283 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2284 err = "ca->free_inc alloc failed"; 2285 goto err_free_inc_alloc; 2286 } 2287 2288 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2289 err = "ca->heap alloc failed"; 2290 goto err_heap_alloc; 2291 } 2292 2293 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2294 ca->sb.nbuckets)); 2295 if (!ca->buckets) { 2296 err = "ca->buckets alloc failed"; 2297 goto err_buckets_alloc; 2298 } 2299 2300 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2301 prio_buckets(ca), 2), 2302 GFP_KERNEL); 2303 if (!ca->prio_buckets) { 2304 err = "ca->prio_buckets alloc failed"; 2305 goto err_prio_buckets_alloc; 2306 } 2307 2308 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2309 if (!ca->disk_buckets) { 2310 err = "ca->disk_buckets alloc failed"; 2311 goto err_disk_buckets_alloc; 2312 } 2313 2314 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2315 2316 for_each_bucket(b, ca) 2317 atomic_set(&b->pin, 0); 2318 return 0; 2319 2320 err_disk_buckets_alloc: 2321 kfree(ca->prio_buckets); 2322 err_prio_buckets_alloc: 2323 vfree(ca->buckets); 2324 err_buckets_alloc: 2325 free_heap(&ca->heap); 2326 err_heap_alloc: 2327 free_fifo(&ca->free_inc); 2328 err_free_inc_alloc: 2329 free_fifo(&ca->free[RESERVE_NONE]); 2330 err_none_alloc: 2331 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2332 err_movinggc_alloc: 2333 free_fifo(&ca->free[RESERVE_PRIO]); 2334 err_prio_alloc: 2335 free_fifo(&ca->free[RESERVE_BTREE]); 2336 err_btree_alloc: 2337 err_free: 2338 module_put(THIS_MODULE); 2339 if (err) 2340 pr_notice("error %pg: %s\n", ca->bdev, err); 2341 return ret; 2342 } 2343 2344 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2345 struct block_device *bdev, struct cache *ca) 2346 { 2347 const char *err = NULL; /* must be set for any error case */ 2348 int ret = 0; 2349 2350 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2351 ca->bdev = bdev; 2352 ca->bdev->bd_holder = ca; 2353 ca->sb_disk = sb_disk; 2354 2355 if (blk_queue_discard(bdev_get_queue(bdev))) 2356 ca->discard = CACHE_DISCARD(&ca->sb); 2357 2358 ret = cache_alloc(ca); 2359 if (ret != 0) { 2360 /* 2361 * If we failed here, it means ca->kobj is not initialized yet, 2362 * kobject_put() won't be called and there is no chance to 2363 * call blkdev_put() to bdev in bch_cache_release(). So we 2364 * explicitly call blkdev_put() here. 2365 */ 2366 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2367 if (ret == -ENOMEM) 2368 err = "cache_alloc(): -ENOMEM"; 2369 else if (ret == -EPERM) 2370 err = "cache_alloc(): cache device is too small"; 2371 else 2372 err = "cache_alloc(): unknown error"; 2373 goto err; 2374 } 2375 2376 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2377 err = "error calling kobject_add"; 2378 ret = -ENOMEM; 2379 goto out; 2380 } 2381 2382 mutex_lock(&bch_register_lock); 2383 err = register_cache_set(ca); 2384 mutex_unlock(&bch_register_lock); 2385 2386 if (err) { 2387 ret = -ENODEV; 2388 goto out; 2389 } 2390 2391 pr_info("registered cache device %pg\n", ca->bdev); 2392 2393 out: 2394 kobject_put(&ca->kobj); 2395 2396 err: 2397 if (err) 2398 pr_notice("error %pg: %s\n", ca->bdev, err); 2399 2400 return ret; 2401 } 2402 2403 /* Global interfaces/init */ 2404 2405 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2406 const char *buffer, size_t size); 2407 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2408 struct kobj_attribute *attr, 2409 const char *buffer, size_t size); 2410 2411 kobj_attribute_write(register, register_bcache); 2412 kobj_attribute_write(register_quiet, register_bcache); 2413 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2414 2415 static bool bch_is_open_backing(dev_t dev) 2416 { 2417 struct cache_set *c, *tc; 2418 struct cached_dev *dc, *t; 2419 2420 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2421 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2422 if (dc->bdev->bd_dev == dev) 2423 return true; 2424 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2425 if (dc->bdev->bd_dev == dev) 2426 return true; 2427 return false; 2428 } 2429 2430 static bool bch_is_open_cache(dev_t dev) 2431 { 2432 struct cache_set *c, *tc; 2433 2434 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2435 struct cache *ca = c->cache; 2436 2437 if (ca->bdev->bd_dev == dev) 2438 return true; 2439 } 2440 2441 return false; 2442 } 2443 2444 static bool bch_is_open(dev_t dev) 2445 { 2446 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2447 } 2448 2449 struct async_reg_args { 2450 struct delayed_work reg_work; 2451 char *path; 2452 struct cache_sb *sb; 2453 struct cache_sb_disk *sb_disk; 2454 struct block_device *bdev; 2455 }; 2456 2457 static void register_bdev_worker(struct work_struct *work) 2458 { 2459 int fail = false; 2460 struct async_reg_args *args = 2461 container_of(work, struct async_reg_args, reg_work.work); 2462 struct cached_dev *dc; 2463 2464 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2465 if (!dc) { 2466 fail = true; 2467 put_page(virt_to_page(args->sb_disk)); 2468 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2469 goto out; 2470 } 2471 2472 mutex_lock(&bch_register_lock); 2473 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2474 fail = true; 2475 mutex_unlock(&bch_register_lock); 2476 2477 out: 2478 if (fail) 2479 pr_info("error %s: fail to register backing device\n", 2480 args->path); 2481 kfree(args->sb); 2482 kfree(args->path); 2483 kfree(args); 2484 module_put(THIS_MODULE); 2485 } 2486 2487 static void register_cache_worker(struct work_struct *work) 2488 { 2489 int fail = false; 2490 struct async_reg_args *args = 2491 container_of(work, struct async_reg_args, reg_work.work); 2492 struct cache *ca; 2493 2494 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2495 if (!ca) { 2496 fail = true; 2497 put_page(virt_to_page(args->sb_disk)); 2498 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2499 goto out; 2500 } 2501 2502 /* blkdev_put() will be called in bch_cache_release() */ 2503 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2504 fail = true; 2505 2506 out: 2507 if (fail) 2508 pr_info("error %s: fail to register cache device\n", 2509 args->path); 2510 kfree(args->sb); 2511 kfree(args->path); 2512 kfree(args); 2513 module_put(THIS_MODULE); 2514 } 2515 2516 static void register_device_async(struct async_reg_args *args) 2517 { 2518 if (SB_IS_BDEV(args->sb)) 2519 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2520 else 2521 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2522 2523 /* 10 jiffies is enough for a delay */ 2524 queue_delayed_work(system_wq, &args->reg_work, 10); 2525 } 2526 2527 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2528 const char *buffer, size_t size) 2529 { 2530 const char *err; 2531 char *path = NULL; 2532 struct cache_sb *sb; 2533 struct cache_sb_disk *sb_disk; 2534 struct block_device *bdev; 2535 ssize_t ret; 2536 bool async_registration = false; 2537 2538 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2539 async_registration = true; 2540 #endif 2541 2542 ret = -EBUSY; 2543 err = "failed to reference bcache module"; 2544 if (!try_module_get(THIS_MODULE)) 2545 goto out; 2546 2547 /* For latest state of bcache_is_reboot */ 2548 smp_mb(); 2549 err = "bcache is in reboot"; 2550 if (bcache_is_reboot) 2551 goto out_module_put; 2552 2553 ret = -ENOMEM; 2554 err = "cannot allocate memory"; 2555 path = kstrndup(buffer, size, GFP_KERNEL); 2556 if (!path) 2557 goto out_module_put; 2558 2559 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2560 if (!sb) 2561 goto out_free_path; 2562 2563 ret = -EINVAL; 2564 err = "failed to open device"; 2565 bdev = blkdev_get_by_path(strim(path), 2566 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2567 sb); 2568 if (IS_ERR(bdev)) { 2569 if (bdev == ERR_PTR(-EBUSY)) { 2570 dev_t dev; 2571 2572 mutex_lock(&bch_register_lock); 2573 if (lookup_bdev(strim(path), &dev) == 0 && 2574 bch_is_open(dev)) 2575 err = "device already registered"; 2576 else 2577 err = "device busy"; 2578 mutex_unlock(&bch_register_lock); 2579 if (attr == &ksysfs_register_quiet) 2580 goto done; 2581 } 2582 goto out_free_sb; 2583 } 2584 2585 err = "failed to set blocksize"; 2586 if (set_blocksize(bdev, 4096)) 2587 goto out_blkdev_put; 2588 2589 err = read_super(sb, bdev, &sb_disk); 2590 if (err) 2591 goto out_blkdev_put; 2592 2593 err = "failed to register device"; 2594 2595 if (async_registration) { 2596 /* register in asynchronous way */ 2597 struct async_reg_args *args = 2598 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2599 2600 if (!args) { 2601 ret = -ENOMEM; 2602 err = "cannot allocate memory"; 2603 goto out_put_sb_page; 2604 } 2605 2606 args->path = path; 2607 args->sb = sb; 2608 args->sb_disk = sb_disk; 2609 args->bdev = bdev; 2610 register_device_async(args); 2611 /* No wait and returns to user space */ 2612 goto async_done; 2613 } 2614 2615 if (SB_IS_BDEV(sb)) { 2616 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2617 2618 if (!dc) { 2619 ret = -ENOMEM; 2620 err = "cannot allocate memory"; 2621 goto out_put_sb_page; 2622 } 2623 2624 mutex_lock(&bch_register_lock); 2625 ret = register_bdev(sb, sb_disk, bdev, dc); 2626 mutex_unlock(&bch_register_lock); 2627 /* blkdev_put() will be called in cached_dev_free() */ 2628 if (ret < 0) 2629 goto out_free_sb; 2630 } else { 2631 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2632 2633 if (!ca) { 2634 ret = -ENOMEM; 2635 err = "cannot allocate memory"; 2636 goto out_put_sb_page; 2637 } 2638 2639 /* blkdev_put() will be called in bch_cache_release() */ 2640 ret = register_cache(sb, sb_disk, bdev, ca); 2641 if (ret) 2642 goto out_free_sb; 2643 } 2644 2645 done: 2646 kfree(sb); 2647 kfree(path); 2648 module_put(THIS_MODULE); 2649 async_done: 2650 return size; 2651 2652 out_put_sb_page: 2653 put_page(virt_to_page(sb_disk)); 2654 out_blkdev_put: 2655 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2656 out_free_sb: 2657 kfree(sb); 2658 out_free_path: 2659 kfree(path); 2660 path = NULL; 2661 out_module_put: 2662 module_put(THIS_MODULE); 2663 out: 2664 pr_info("error %s: %s\n", path?path:"", err); 2665 return ret; 2666 } 2667 2668 2669 struct pdev { 2670 struct list_head list; 2671 struct cached_dev *dc; 2672 }; 2673 2674 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2675 struct kobj_attribute *attr, 2676 const char *buffer, 2677 size_t size) 2678 { 2679 LIST_HEAD(pending_devs); 2680 ssize_t ret = size; 2681 struct cached_dev *dc, *tdc; 2682 struct pdev *pdev, *tpdev; 2683 struct cache_set *c, *tc; 2684 2685 mutex_lock(&bch_register_lock); 2686 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2687 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2688 if (!pdev) 2689 break; 2690 pdev->dc = dc; 2691 list_add(&pdev->list, &pending_devs); 2692 } 2693 2694 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2695 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2696 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2697 char *set_uuid = c->set_uuid; 2698 2699 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2700 list_del(&pdev->list); 2701 kfree(pdev); 2702 break; 2703 } 2704 } 2705 } 2706 mutex_unlock(&bch_register_lock); 2707 2708 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2709 pr_info("delete pdev %p\n", pdev); 2710 list_del(&pdev->list); 2711 bcache_device_stop(&pdev->dc->disk); 2712 kfree(pdev); 2713 } 2714 2715 return ret; 2716 } 2717 2718 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2719 { 2720 if (bcache_is_reboot) 2721 return NOTIFY_DONE; 2722 2723 if (code == SYS_DOWN || 2724 code == SYS_HALT || 2725 code == SYS_POWER_OFF) { 2726 DEFINE_WAIT(wait); 2727 unsigned long start = jiffies; 2728 bool stopped = false; 2729 2730 struct cache_set *c, *tc; 2731 struct cached_dev *dc, *tdc; 2732 2733 mutex_lock(&bch_register_lock); 2734 2735 if (bcache_is_reboot) 2736 goto out; 2737 2738 /* New registration is rejected since now */ 2739 bcache_is_reboot = true; 2740 /* 2741 * Make registering caller (if there is) on other CPU 2742 * core know bcache_is_reboot set to true earlier 2743 */ 2744 smp_mb(); 2745 2746 if (list_empty(&bch_cache_sets) && 2747 list_empty(&uncached_devices)) 2748 goto out; 2749 2750 mutex_unlock(&bch_register_lock); 2751 2752 pr_info("Stopping all devices:\n"); 2753 2754 /* 2755 * The reason bch_register_lock is not held to call 2756 * bch_cache_set_stop() and bcache_device_stop() is to 2757 * avoid potential deadlock during reboot, because cache 2758 * set or bcache device stopping process will acquire 2759 * bch_register_lock too. 2760 * 2761 * We are safe here because bcache_is_reboot sets to 2762 * true already, register_bcache() will reject new 2763 * registration now. bcache_is_reboot also makes sure 2764 * bcache_reboot() won't be re-entered on by other thread, 2765 * so there is no race in following list iteration by 2766 * list_for_each_entry_safe(). 2767 */ 2768 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2769 bch_cache_set_stop(c); 2770 2771 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2772 bcache_device_stop(&dc->disk); 2773 2774 2775 /* 2776 * Give an early chance for other kthreads and 2777 * kworkers to stop themselves 2778 */ 2779 schedule(); 2780 2781 /* What's a condition variable? */ 2782 while (1) { 2783 long timeout = start + 10 * HZ - jiffies; 2784 2785 mutex_lock(&bch_register_lock); 2786 stopped = list_empty(&bch_cache_sets) && 2787 list_empty(&uncached_devices); 2788 2789 if (timeout < 0 || stopped) 2790 break; 2791 2792 prepare_to_wait(&unregister_wait, &wait, 2793 TASK_UNINTERRUPTIBLE); 2794 2795 mutex_unlock(&bch_register_lock); 2796 schedule_timeout(timeout); 2797 } 2798 2799 finish_wait(&unregister_wait, &wait); 2800 2801 if (stopped) 2802 pr_info("All devices stopped\n"); 2803 else 2804 pr_notice("Timeout waiting for devices to be closed\n"); 2805 out: 2806 mutex_unlock(&bch_register_lock); 2807 } 2808 2809 return NOTIFY_DONE; 2810 } 2811 2812 static struct notifier_block reboot = { 2813 .notifier_call = bcache_reboot, 2814 .priority = INT_MAX, /* before any real devices */ 2815 }; 2816 2817 static void bcache_exit(void) 2818 { 2819 bch_debug_exit(); 2820 bch_request_exit(); 2821 if (bcache_kobj) 2822 kobject_put(bcache_kobj); 2823 if (bcache_wq) 2824 destroy_workqueue(bcache_wq); 2825 if (bch_journal_wq) 2826 destroy_workqueue(bch_journal_wq); 2827 if (bch_flush_wq) 2828 destroy_workqueue(bch_flush_wq); 2829 bch_btree_exit(); 2830 2831 if (bcache_major) 2832 unregister_blkdev(bcache_major, "bcache"); 2833 unregister_reboot_notifier(&reboot); 2834 mutex_destroy(&bch_register_lock); 2835 } 2836 2837 /* Check and fixup module parameters */ 2838 static void check_module_parameters(void) 2839 { 2840 if (bch_cutoff_writeback_sync == 0) 2841 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2842 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2843 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2844 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2845 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2846 } 2847 2848 if (bch_cutoff_writeback == 0) 2849 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2850 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2851 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2852 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2853 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2854 } 2855 2856 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2857 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2858 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2859 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2860 } 2861 } 2862 2863 static int __init bcache_init(void) 2864 { 2865 static const struct attribute *files[] = { 2866 &ksysfs_register.attr, 2867 &ksysfs_register_quiet.attr, 2868 &ksysfs_pendings_cleanup.attr, 2869 NULL 2870 }; 2871 2872 check_module_parameters(); 2873 2874 mutex_init(&bch_register_lock); 2875 init_waitqueue_head(&unregister_wait); 2876 register_reboot_notifier(&reboot); 2877 2878 bcache_major = register_blkdev(0, "bcache"); 2879 if (bcache_major < 0) { 2880 unregister_reboot_notifier(&reboot); 2881 mutex_destroy(&bch_register_lock); 2882 return bcache_major; 2883 } 2884 2885 if (bch_btree_init()) 2886 goto err; 2887 2888 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2889 if (!bcache_wq) 2890 goto err; 2891 2892 /* 2893 * Let's not make this `WQ_MEM_RECLAIM` for the following reasons: 2894 * 2895 * 1. It used `system_wq` before which also does no memory reclaim. 2896 * 2. With `WQ_MEM_RECLAIM` desktop stalls, increased boot times, and 2897 * reduced throughput can be observed. 2898 * 2899 * We still want to user our own queue to not congest the `system_wq`. 2900 */ 2901 bch_flush_wq = alloc_workqueue("bch_flush", 0, 0); 2902 if (!bch_flush_wq) 2903 goto err; 2904 2905 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2906 if (!bch_journal_wq) 2907 goto err; 2908 2909 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2910 if (!bcache_kobj) 2911 goto err; 2912 2913 if (bch_request_init() || 2914 sysfs_create_files(bcache_kobj, files)) 2915 goto err; 2916 2917 bch_debug_init(); 2918 closure_debug_init(); 2919 2920 bcache_is_reboot = false; 2921 2922 return 0; 2923 err: 2924 bcache_exit(); 2925 return -ENOMEM; 2926 } 2927 2928 /* 2929 * Module hooks 2930 */ 2931 module_exit(bcache_exit); 2932 module_init(bcache_init); 2933 2934 module_param(bch_cutoff_writeback, uint, 0); 2935 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2936 2937 module_param(bch_cutoff_writeback_sync, uint, 0); 2938 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2939 2940 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2941 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2942 MODULE_LICENSE("GPL"); 2943