xref: /openbmc/linux/drivers/md/bcache/super.c (revision 51ad5b54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/workqueue.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27 
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
30 
31 static const char bcache_magic[] = {
32 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35 
36 static const char invalid_uuid[] = {
37 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40 
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 bool bcache_is_reboot;
44 LIST_HEAD(bch_cache_sets);
45 static LIST_HEAD(uncached_devices);
46 
47 static int bcache_major;
48 static DEFINE_IDA(bcache_device_idx);
49 static wait_queue_head_t unregister_wait;
50 struct workqueue_struct *bcache_wq;
51 struct workqueue_struct *bch_journal_wq;
52 
53 
54 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
55 /* limitation of partitions number on single bcache device */
56 #define BCACHE_MINORS		128
57 /* limitation of bcache devices number on single system */
58 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
59 
60 /* Superblock */
61 
62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
63 			      struct cache_sb_disk **res)
64 {
65 	const char *err;
66 	struct cache_sb_disk *s;
67 	struct page *page;
68 	unsigned int i;
69 
70 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
71 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
72 	if (IS_ERR(page))
73 		return "IO error";
74 	s = page_address(page) + offset_in_page(SB_OFFSET);
75 
76 	sb->offset		= le64_to_cpu(s->offset);
77 	sb->version		= le64_to_cpu(s->version);
78 
79 	memcpy(sb->magic,	s->magic, 16);
80 	memcpy(sb->uuid,	s->uuid, 16);
81 	memcpy(sb->set_uuid,	s->set_uuid, 16);
82 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
83 
84 	sb->flags		= le64_to_cpu(s->flags);
85 	sb->seq			= le64_to_cpu(s->seq);
86 	sb->last_mount		= le32_to_cpu(s->last_mount);
87 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
88 	sb->keys		= le16_to_cpu(s->keys);
89 
90 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
91 		sb->d[i] = le64_to_cpu(s->d[i]);
92 
93 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
94 		 sb->version, sb->flags, sb->seq, sb->keys);
95 
96 	err = "Not a bcache superblock (bad offset)";
97 	if (sb->offset != SB_SECTOR)
98 		goto err;
99 
100 	err = "Not a bcache superblock (bad magic)";
101 	if (memcmp(sb->magic, bcache_magic, 16))
102 		goto err;
103 
104 	err = "Too many journal buckets";
105 	if (sb->keys > SB_JOURNAL_BUCKETS)
106 		goto err;
107 
108 	err = "Bad checksum";
109 	if (s->csum != csum_set(s))
110 		goto err;
111 
112 	err = "Bad UUID";
113 	if (bch_is_zero(sb->uuid, 16))
114 		goto err;
115 
116 	sb->block_size	= le16_to_cpu(s->block_size);
117 
118 	err = "Superblock block size smaller than device block size";
119 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
120 		goto err;
121 
122 	switch (sb->version) {
123 	case BCACHE_SB_VERSION_BDEV:
124 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
125 		break;
126 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
127 		sb->data_offset	= le64_to_cpu(s->data_offset);
128 
129 		err = "Bad data offset";
130 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
131 			goto err;
132 
133 		break;
134 	case BCACHE_SB_VERSION_CDEV:
135 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
136 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
137 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
138 
139 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
140 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
141 
142 		err = "Too many buckets";
143 		if (sb->nbuckets > LONG_MAX)
144 			goto err;
145 
146 		err = "Not enough buckets";
147 		if (sb->nbuckets < 1 << 7)
148 			goto err;
149 
150 		err = "Bad block/bucket size";
151 		if (!is_power_of_2(sb->block_size) ||
152 		    sb->block_size > PAGE_SECTORS ||
153 		    !is_power_of_2(sb->bucket_size) ||
154 		    sb->bucket_size < PAGE_SECTORS)
155 			goto err;
156 
157 		err = "Invalid superblock: device too small";
158 		if (get_capacity(bdev->bd_disk) <
159 		    sb->bucket_size * sb->nbuckets)
160 			goto err;
161 
162 		err = "Bad UUID";
163 		if (bch_is_zero(sb->set_uuid, 16))
164 			goto err;
165 
166 		err = "Bad cache device number in set";
167 		if (!sb->nr_in_set ||
168 		    sb->nr_in_set <= sb->nr_this_dev ||
169 		    sb->nr_in_set > MAX_CACHES_PER_SET)
170 			goto err;
171 
172 		err = "Journal buckets not sequential";
173 		for (i = 0; i < sb->keys; i++)
174 			if (sb->d[i] != sb->first_bucket + i)
175 				goto err;
176 
177 		err = "Too many journal buckets";
178 		if (sb->first_bucket + sb->keys > sb->nbuckets)
179 			goto err;
180 
181 		err = "Invalid superblock: first bucket comes before end of super";
182 		if (sb->first_bucket * sb->bucket_size < 16)
183 			goto err;
184 
185 		break;
186 	default:
187 		err = "Unsupported superblock version";
188 		goto err;
189 	}
190 
191 	sb->last_mount = (u32)ktime_get_real_seconds();
192 	*res = s;
193 	return NULL;
194 err:
195 	put_page(page);
196 	return err;
197 }
198 
199 static void write_bdev_super_endio(struct bio *bio)
200 {
201 	struct cached_dev *dc = bio->bi_private;
202 
203 	if (bio->bi_status)
204 		bch_count_backing_io_errors(dc, bio);
205 
206 	closure_put(&dc->sb_write);
207 }
208 
209 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
210 		struct bio *bio)
211 {
212 	unsigned int i;
213 
214 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
215 	bio->bi_iter.bi_sector	= SB_SECTOR;
216 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
217 			offset_in_page(out));
218 
219 	out->offset		= cpu_to_le64(sb->offset);
220 	out->version		= cpu_to_le64(sb->version);
221 
222 	memcpy(out->uuid,	sb->uuid, 16);
223 	memcpy(out->set_uuid,	sb->set_uuid, 16);
224 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
225 
226 	out->flags		= cpu_to_le64(sb->flags);
227 	out->seq		= cpu_to_le64(sb->seq);
228 
229 	out->last_mount		= cpu_to_le32(sb->last_mount);
230 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
231 	out->keys		= cpu_to_le16(sb->keys);
232 
233 	for (i = 0; i < sb->keys; i++)
234 		out->d[i] = cpu_to_le64(sb->d[i]);
235 
236 	out->csum = csum_set(out);
237 
238 	pr_debug("ver %llu, flags %llu, seq %llu\n",
239 		 sb->version, sb->flags, sb->seq);
240 
241 	submit_bio(bio);
242 }
243 
244 static void bch_write_bdev_super_unlock(struct closure *cl)
245 {
246 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
247 
248 	up(&dc->sb_write_mutex);
249 }
250 
251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
252 {
253 	struct closure *cl = &dc->sb_write;
254 	struct bio *bio = &dc->sb_bio;
255 
256 	down(&dc->sb_write_mutex);
257 	closure_init(cl, parent);
258 
259 	bio_init(bio, dc->sb_bv, 1);
260 	bio_set_dev(bio, dc->bdev);
261 	bio->bi_end_io	= write_bdev_super_endio;
262 	bio->bi_private = dc;
263 
264 	closure_get(cl);
265 	/* I/O request sent to backing device */
266 	__write_super(&dc->sb, dc->sb_disk, bio);
267 
268 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
269 }
270 
271 static void write_super_endio(struct bio *bio)
272 {
273 	struct cache *ca = bio->bi_private;
274 
275 	/* is_read = 0 */
276 	bch_count_io_errors(ca, bio->bi_status, 0,
277 			    "writing superblock");
278 	closure_put(&ca->set->sb_write);
279 }
280 
281 static void bcache_write_super_unlock(struct closure *cl)
282 {
283 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
284 
285 	up(&c->sb_write_mutex);
286 }
287 
288 void bcache_write_super(struct cache_set *c)
289 {
290 	struct closure *cl = &c->sb_write;
291 	struct cache *ca;
292 	unsigned int i;
293 
294 	down(&c->sb_write_mutex);
295 	closure_init(cl, &c->cl);
296 
297 	c->sb.seq++;
298 
299 	for_each_cache(ca, c, i) {
300 		struct bio *bio = &ca->sb_bio;
301 
302 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
303 		ca->sb.seq		= c->sb.seq;
304 		ca->sb.last_mount	= c->sb.last_mount;
305 
306 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
307 
308 		bio_init(bio, ca->sb_bv, 1);
309 		bio_set_dev(bio, ca->bdev);
310 		bio->bi_end_io	= write_super_endio;
311 		bio->bi_private = ca;
312 
313 		closure_get(cl);
314 		__write_super(&ca->sb, ca->sb_disk, bio);
315 	}
316 
317 	closure_return_with_destructor(cl, bcache_write_super_unlock);
318 }
319 
320 /* UUID io */
321 
322 static void uuid_endio(struct bio *bio)
323 {
324 	struct closure *cl = bio->bi_private;
325 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
326 
327 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
328 	bch_bbio_free(bio, c);
329 	closure_put(cl);
330 }
331 
332 static void uuid_io_unlock(struct closure *cl)
333 {
334 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
335 
336 	up(&c->uuid_write_mutex);
337 }
338 
339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
340 		    struct bkey *k, struct closure *parent)
341 {
342 	struct closure *cl = &c->uuid_write;
343 	struct uuid_entry *u;
344 	unsigned int i;
345 	char buf[80];
346 
347 	BUG_ON(!parent);
348 	down(&c->uuid_write_mutex);
349 	closure_init(cl, parent);
350 
351 	for (i = 0; i < KEY_PTRS(k); i++) {
352 		struct bio *bio = bch_bbio_alloc(c);
353 
354 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
355 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
356 
357 		bio->bi_end_io	= uuid_endio;
358 		bio->bi_private = cl;
359 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
360 		bch_bio_map(bio, c->uuids);
361 
362 		bch_submit_bbio(bio, c, k, i);
363 
364 		if (op != REQ_OP_WRITE)
365 			break;
366 	}
367 
368 	bch_extent_to_text(buf, sizeof(buf), k);
369 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
370 
371 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
372 		if (!bch_is_zero(u->uuid, 16))
373 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
374 				 u - c->uuids, u->uuid, u->label,
375 				 u->first_reg, u->last_reg, u->invalidated);
376 
377 	closure_return_with_destructor(cl, uuid_io_unlock);
378 }
379 
380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
381 {
382 	struct bkey *k = &j->uuid_bucket;
383 
384 	if (__bch_btree_ptr_invalid(c, k))
385 		return "bad uuid pointer";
386 
387 	bkey_copy(&c->uuid_bucket, k);
388 	uuid_io(c, REQ_OP_READ, 0, k, cl);
389 
390 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
391 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
392 		struct uuid_entry	*u1 = (void *) c->uuids;
393 		int i;
394 
395 		closure_sync(cl);
396 
397 		/*
398 		 * Since the new uuid entry is bigger than the old, we have to
399 		 * convert starting at the highest memory address and work down
400 		 * in order to do it in place
401 		 */
402 
403 		for (i = c->nr_uuids - 1;
404 		     i >= 0;
405 		     --i) {
406 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
407 			memcpy(u1[i].label,	u0[i].label, 32);
408 
409 			u1[i].first_reg		= u0[i].first_reg;
410 			u1[i].last_reg		= u0[i].last_reg;
411 			u1[i].invalidated	= u0[i].invalidated;
412 
413 			u1[i].flags	= 0;
414 			u1[i].sectors	= 0;
415 		}
416 	}
417 
418 	return NULL;
419 }
420 
421 static int __uuid_write(struct cache_set *c)
422 {
423 	BKEY_PADDED(key) k;
424 	struct closure cl;
425 	struct cache *ca;
426 
427 	closure_init_stack(&cl);
428 	lockdep_assert_held(&bch_register_lock);
429 
430 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
431 		return 1;
432 
433 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
434 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
435 	closure_sync(&cl);
436 
437 	/* Only one bucket used for uuid write */
438 	ca = PTR_CACHE(c, &k.key, 0);
439 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
440 
441 	bkey_copy(&c->uuid_bucket, &k.key);
442 	bkey_put(c, &k.key);
443 	return 0;
444 }
445 
446 int bch_uuid_write(struct cache_set *c)
447 {
448 	int ret = __uuid_write(c);
449 
450 	if (!ret)
451 		bch_journal_meta(c, NULL);
452 
453 	return ret;
454 }
455 
456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
457 {
458 	struct uuid_entry *u;
459 
460 	for (u = c->uuids;
461 	     u < c->uuids + c->nr_uuids; u++)
462 		if (!memcmp(u->uuid, uuid, 16))
463 			return u;
464 
465 	return NULL;
466 }
467 
468 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
469 {
470 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
471 
472 	return uuid_find(c, zero_uuid);
473 }
474 
475 /*
476  * Bucket priorities/gens:
477  *
478  * For each bucket, we store on disk its
479  *   8 bit gen
480  *  16 bit priority
481  *
482  * See alloc.c for an explanation of the gen. The priority is used to implement
483  * lru (and in the future other) cache replacement policies; for most purposes
484  * it's just an opaque integer.
485  *
486  * The gens and the priorities don't have a whole lot to do with each other, and
487  * it's actually the gens that must be written out at specific times - it's no
488  * big deal if the priorities don't get written, if we lose them we just reuse
489  * buckets in suboptimal order.
490  *
491  * On disk they're stored in a packed array, and in as many buckets are required
492  * to fit them all. The buckets we use to store them form a list; the journal
493  * header points to the first bucket, the first bucket points to the second
494  * bucket, et cetera.
495  *
496  * This code is used by the allocation code; periodically (whenever it runs out
497  * of buckets to allocate from) the allocation code will invalidate some
498  * buckets, but it can't use those buckets until their new gens are safely on
499  * disk.
500  */
501 
502 static void prio_endio(struct bio *bio)
503 {
504 	struct cache *ca = bio->bi_private;
505 
506 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
507 	bch_bbio_free(bio, ca->set);
508 	closure_put(&ca->prio);
509 }
510 
511 static void prio_io(struct cache *ca, uint64_t bucket, int op,
512 		    unsigned long op_flags)
513 {
514 	struct closure *cl = &ca->prio;
515 	struct bio *bio = bch_bbio_alloc(ca->set);
516 
517 	closure_init_stack(cl);
518 
519 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
520 	bio_set_dev(bio, ca->bdev);
521 	bio->bi_iter.bi_size	= bucket_bytes(ca);
522 
523 	bio->bi_end_io	= prio_endio;
524 	bio->bi_private = ca;
525 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
526 	bch_bio_map(bio, ca->disk_buckets);
527 
528 	closure_bio_submit(ca->set, bio, &ca->prio);
529 	closure_sync(cl);
530 }
531 
532 int bch_prio_write(struct cache *ca, bool wait)
533 {
534 	int i;
535 	struct bucket *b;
536 	struct closure cl;
537 
538 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
539 		 fifo_used(&ca->free[RESERVE_PRIO]),
540 		 fifo_used(&ca->free[RESERVE_NONE]),
541 		 fifo_used(&ca->free_inc));
542 
543 	/*
544 	 * Pre-check if there are enough free buckets. In the non-blocking
545 	 * scenario it's better to fail early rather than starting to allocate
546 	 * buckets and do a cleanup later in case of failure.
547 	 */
548 	if (!wait) {
549 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
550 			       fifo_used(&ca->free[RESERVE_NONE]);
551 		if (prio_buckets(ca) > avail)
552 			return -ENOMEM;
553 	}
554 
555 	closure_init_stack(&cl);
556 
557 	lockdep_assert_held(&ca->set->bucket_lock);
558 
559 	ca->disk_buckets->seq++;
560 
561 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
562 			&ca->meta_sectors_written);
563 
564 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
565 		long bucket;
566 		struct prio_set *p = ca->disk_buckets;
567 		struct bucket_disk *d = p->data;
568 		struct bucket_disk *end = d + prios_per_bucket(ca);
569 
570 		for (b = ca->buckets + i * prios_per_bucket(ca);
571 		     b < ca->buckets + ca->sb.nbuckets && d < end;
572 		     b++, d++) {
573 			d->prio = cpu_to_le16(b->prio);
574 			d->gen = b->gen;
575 		}
576 
577 		p->next_bucket	= ca->prio_buckets[i + 1];
578 		p->magic	= pset_magic(&ca->sb);
579 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
580 
581 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
582 		BUG_ON(bucket == -1);
583 
584 		mutex_unlock(&ca->set->bucket_lock);
585 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
586 		mutex_lock(&ca->set->bucket_lock);
587 
588 		ca->prio_buckets[i] = bucket;
589 		atomic_dec_bug(&ca->buckets[bucket].pin);
590 	}
591 
592 	mutex_unlock(&ca->set->bucket_lock);
593 
594 	bch_journal_meta(ca->set, &cl);
595 	closure_sync(&cl);
596 
597 	mutex_lock(&ca->set->bucket_lock);
598 
599 	/*
600 	 * Don't want the old priorities to get garbage collected until after we
601 	 * finish writing the new ones, and they're journalled
602 	 */
603 	for (i = 0; i < prio_buckets(ca); i++) {
604 		if (ca->prio_last_buckets[i])
605 			__bch_bucket_free(ca,
606 				&ca->buckets[ca->prio_last_buckets[i]]);
607 
608 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
609 	}
610 	return 0;
611 }
612 
613 static int prio_read(struct cache *ca, uint64_t bucket)
614 {
615 	struct prio_set *p = ca->disk_buckets;
616 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
617 	struct bucket *b;
618 	unsigned int bucket_nr = 0;
619 	int ret = -EIO;
620 
621 	for (b = ca->buckets;
622 	     b < ca->buckets + ca->sb.nbuckets;
623 	     b++, d++) {
624 		if (d == end) {
625 			ca->prio_buckets[bucket_nr] = bucket;
626 			ca->prio_last_buckets[bucket_nr] = bucket;
627 			bucket_nr++;
628 
629 			prio_io(ca, bucket, REQ_OP_READ, 0);
630 
631 			if (p->csum !=
632 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8)) {
633 				pr_warn("bad csum reading priorities\n");
634 				goto out;
635 			}
636 
637 			if (p->magic != pset_magic(&ca->sb)) {
638 				pr_warn("bad magic reading priorities\n");
639 				goto out;
640 			}
641 
642 			bucket = p->next_bucket;
643 			d = p->data;
644 		}
645 
646 		b->prio = le16_to_cpu(d->prio);
647 		b->gen = b->last_gc = d->gen;
648 	}
649 
650 	ret = 0;
651 out:
652 	return ret;
653 }
654 
655 /* Bcache device */
656 
657 static int open_dev(struct block_device *b, fmode_t mode)
658 {
659 	struct bcache_device *d = b->bd_disk->private_data;
660 
661 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
662 		return -ENXIO;
663 
664 	closure_get(&d->cl);
665 	return 0;
666 }
667 
668 static void release_dev(struct gendisk *b, fmode_t mode)
669 {
670 	struct bcache_device *d = b->private_data;
671 
672 	closure_put(&d->cl);
673 }
674 
675 static int ioctl_dev(struct block_device *b, fmode_t mode,
676 		     unsigned int cmd, unsigned long arg)
677 {
678 	struct bcache_device *d = b->bd_disk->private_data;
679 
680 	return d->ioctl(d, mode, cmd, arg);
681 }
682 
683 static const struct block_device_operations bcache_ops = {
684 	.open		= open_dev,
685 	.release	= release_dev,
686 	.ioctl		= ioctl_dev,
687 	.owner		= THIS_MODULE,
688 };
689 
690 void bcache_device_stop(struct bcache_device *d)
691 {
692 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
693 		/*
694 		 * closure_fn set to
695 		 * - cached device: cached_dev_flush()
696 		 * - flash dev: flash_dev_flush()
697 		 */
698 		closure_queue(&d->cl);
699 }
700 
701 static void bcache_device_unlink(struct bcache_device *d)
702 {
703 	lockdep_assert_held(&bch_register_lock);
704 
705 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
706 		unsigned int i;
707 		struct cache *ca;
708 
709 		sysfs_remove_link(&d->c->kobj, d->name);
710 		sysfs_remove_link(&d->kobj, "cache");
711 
712 		for_each_cache(ca, d->c, i)
713 			bd_unlink_disk_holder(ca->bdev, d->disk);
714 	}
715 }
716 
717 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
718 			       const char *name)
719 {
720 	unsigned int i;
721 	struct cache *ca;
722 	int ret;
723 
724 	for_each_cache(ca, d->c, i)
725 		bd_link_disk_holder(ca->bdev, d->disk);
726 
727 	snprintf(d->name, BCACHEDEVNAME_SIZE,
728 		 "%s%u", name, d->id);
729 
730 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
731 	if (ret < 0)
732 		pr_err("Couldn't create device -> cache set symlink\n");
733 
734 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
735 	if (ret < 0)
736 		pr_err("Couldn't create cache set -> device symlink\n");
737 
738 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
739 }
740 
741 static void bcache_device_detach(struct bcache_device *d)
742 {
743 	lockdep_assert_held(&bch_register_lock);
744 
745 	atomic_dec(&d->c->attached_dev_nr);
746 
747 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
748 		struct uuid_entry *u = d->c->uuids + d->id;
749 
750 		SET_UUID_FLASH_ONLY(u, 0);
751 		memcpy(u->uuid, invalid_uuid, 16);
752 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
753 		bch_uuid_write(d->c);
754 	}
755 
756 	bcache_device_unlink(d);
757 
758 	d->c->devices[d->id] = NULL;
759 	closure_put(&d->c->caching);
760 	d->c = NULL;
761 }
762 
763 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
764 				 unsigned int id)
765 {
766 	d->id = id;
767 	d->c = c;
768 	c->devices[id] = d;
769 
770 	if (id >= c->devices_max_used)
771 		c->devices_max_used = id + 1;
772 
773 	closure_get(&c->caching);
774 }
775 
776 static inline int first_minor_to_idx(int first_minor)
777 {
778 	return (first_minor/BCACHE_MINORS);
779 }
780 
781 static inline int idx_to_first_minor(int idx)
782 {
783 	return (idx * BCACHE_MINORS);
784 }
785 
786 static void bcache_device_free(struct bcache_device *d)
787 {
788 	struct gendisk *disk = d->disk;
789 
790 	lockdep_assert_held(&bch_register_lock);
791 
792 	if (disk)
793 		pr_info("%s stopped\n", disk->disk_name);
794 	else
795 		pr_err("bcache device (NULL gendisk) stopped\n");
796 
797 	if (d->c)
798 		bcache_device_detach(d);
799 
800 	if (disk) {
801 		bool disk_added = (disk->flags & GENHD_FL_UP) != 0;
802 
803 		if (disk_added)
804 			del_gendisk(disk);
805 
806 		if (disk->queue)
807 			blk_cleanup_queue(disk->queue);
808 
809 		ida_simple_remove(&bcache_device_idx,
810 				  first_minor_to_idx(disk->first_minor));
811 		if (disk_added)
812 			put_disk(disk);
813 	}
814 
815 	bioset_exit(&d->bio_split);
816 	kvfree(d->full_dirty_stripes);
817 	kvfree(d->stripe_sectors_dirty);
818 
819 	closure_debug_destroy(&d->cl);
820 }
821 
822 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
823 			      sector_t sectors, make_request_fn make_request_fn,
824 			      struct block_device *cached_bdev)
825 {
826 	struct request_queue *q;
827 	const size_t max_stripes = min_t(size_t, INT_MAX,
828 					 SIZE_MAX / sizeof(atomic_t));
829 	size_t n;
830 	int idx;
831 
832 	if (!d->stripe_size)
833 		d->stripe_size = 1 << 31;
834 
835 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
836 
837 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
838 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n",
839 			(unsigned int)d->nr_stripes);
840 		return -ENOMEM;
841 	}
842 
843 	n = d->nr_stripes * sizeof(atomic_t);
844 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
845 	if (!d->stripe_sectors_dirty)
846 		return -ENOMEM;
847 
848 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
849 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
850 	if (!d->full_dirty_stripes)
851 		return -ENOMEM;
852 
853 	idx = ida_simple_get(&bcache_device_idx, 0,
854 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
855 	if (idx < 0)
856 		return idx;
857 
858 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
859 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
860 		goto err;
861 
862 	d->disk = alloc_disk(BCACHE_MINORS);
863 	if (!d->disk)
864 		goto err;
865 
866 	set_capacity(d->disk, sectors);
867 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
868 
869 	d->disk->major		= bcache_major;
870 	d->disk->first_minor	= idx_to_first_minor(idx);
871 	d->disk->fops		= &bcache_ops;
872 	d->disk->private_data	= d;
873 
874 	q = blk_alloc_queue(make_request_fn, NUMA_NO_NODE);
875 	if (!q)
876 		return -ENOMEM;
877 
878 	d->disk->queue			= q;
879 	q->queuedata			= d;
880 	q->backing_dev_info->congested_data = d;
881 	q->limits.max_hw_sectors	= UINT_MAX;
882 	q->limits.max_sectors		= UINT_MAX;
883 	q->limits.max_segment_size	= UINT_MAX;
884 	q->limits.max_segments		= BIO_MAX_PAGES;
885 	blk_queue_max_discard_sectors(q, UINT_MAX);
886 	q->limits.discard_granularity	= 512;
887 	q->limits.io_min		= block_size;
888 	q->limits.logical_block_size	= block_size;
889 	q->limits.physical_block_size	= block_size;
890 
891 	if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) {
892 		/*
893 		 * This should only happen with BCACHE_SB_VERSION_BDEV.
894 		 * Block/page size is checked for BCACHE_SB_VERSION_CDEV.
895 		 */
896 		pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n",
897 			d->disk->disk_name, q->limits.logical_block_size,
898 			PAGE_SIZE, bdev_logical_block_size(cached_bdev));
899 
900 		/* This also adjusts physical block size/min io size if needed */
901 		blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev));
902 	}
903 
904 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
905 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
906 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
907 
908 	blk_queue_write_cache(q, true, true);
909 
910 	return 0;
911 
912 err:
913 	ida_simple_remove(&bcache_device_idx, idx);
914 	return -ENOMEM;
915 
916 }
917 
918 /* Cached device */
919 
920 static void calc_cached_dev_sectors(struct cache_set *c)
921 {
922 	uint64_t sectors = 0;
923 	struct cached_dev *dc;
924 
925 	list_for_each_entry(dc, &c->cached_devs, list)
926 		sectors += bdev_sectors(dc->bdev);
927 
928 	c->cached_dev_sectors = sectors;
929 }
930 
931 #define BACKING_DEV_OFFLINE_TIMEOUT 5
932 static int cached_dev_status_update(void *arg)
933 {
934 	struct cached_dev *dc = arg;
935 	struct request_queue *q;
936 
937 	/*
938 	 * If this delayed worker is stopping outside, directly quit here.
939 	 * dc->io_disable might be set via sysfs interface, so check it
940 	 * here too.
941 	 */
942 	while (!kthread_should_stop() && !dc->io_disable) {
943 		q = bdev_get_queue(dc->bdev);
944 		if (blk_queue_dying(q))
945 			dc->offline_seconds++;
946 		else
947 			dc->offline_seconds = 0;
948 
949 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
950 			pr_err("%s: device offline for %d seconds\n",
951 			       dc->backing_dev_name,
952 			       BACKING_DEV_OFFLINE_TIMEOUT);
953 			pr_err("%s: disable I/O request due to backing device offline\n",
954 			       dc->disk.name);
955 			dc->io_disable = true;
956 			/* let others know earlier that io_disable is true */
957 			smp_mb();
958 			bcache_device_stop(&dc->disk);
959 			break;
960 		}
961 		schedule_timeout_interruptible(HZ);
962 	}
963 
964 	wait_for_kthread_stop();
965 	return 0;
966 }
967 
968 
969 int bch_cached_dev_run(struct cached_dev *dc)
970 {
971 	struct bcache_device *d = &dc->disk;
972 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
973 	char *env[] = {
974 		"DRIVER=bcache",
975 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
976 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
977 		NULL,
978 	};
979 
980 	if (dc->io_disable) {
981 		pr_err("I/O disabled on cached dev %s\n",
982 		       dc->backing_dev_name);
983 		kfree(env[1]);
984 		kfree(env[2]);
985 		kfree(buf);
986 		return -EIO;
987 	}
988 
989 	if (atomic_xchg(&dc->running, 1)) {
990 		kfree(env[1]);
991 		kfree(env[2]);
992 		kfree(buf);
993 		pr_info("cached dev %s is running already\n",
994 		       dc->backing_dev_name);
995 		return -EBUSY;
996 	}
997 
998 	if (!d->c &&
999 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
1000 		struct closure cl;
1001 
1002 		closure_init_stack(&cl);
1003 
1004 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
1005 		bch_write_bdev_super(dc, &cl);
1006 		closure_sync(&cl);
1007 	}
1008 
1009 	add_disk(d->disk);
1010 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
1011 	/*
1012 	 * won't show up in the uevent file, use udevadm monitor -e instead
1013 	 * only class / kset properties are persistent
1014 	 */
1015 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
1016 	kfree(env[1]);
1017 	kfree(env[2]);
1018 	kfree(buf);
1019 
1020 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1021 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1022 			      &d->kobj, "bcache")) {
1023 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1024 		return -ENOMEM;
1025 	}
1026 
1027 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1028 					       dc, "bcache_status_update");
1029 	if (IS_ERR(dc->status_update_thread)) {
1030 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 /*
1037  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1038  * work dc->writeback_rate_update is running. Wait until the routine
1039  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1040  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1041  * seconds, give up waiting here and continue to cancel it too.
1042  */
1043 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1044 {
1045 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1046 
1047 	do {
1048 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1049 			      &dc->disk.flags))
1050 			break;
1051 		time_out--;
1052 		schedule_timeout_interruptible(1);
1053 	} while (time_out > 0);
1054 
1055 	if (time_out == 0)
1056 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1057 
1058 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1059 }
1060 
1061 static void cached_dev_detach_finish(struct work_struct *w)
1062 {
1063 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1064 	struct closure cl;
1065 
1066 	closure_init_stack(&cl);
1067 
1068 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1069 	BUG_ON(refcount_read(&dc->count));
1070 
1071 
1072 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1073 		cancel_writeback_rate_update_dwork(dc);
1074 
1075 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1076 		kthread_stop(dc->writeback_thread);
1077 		dc->writeback_thread = NULL;
1078 	}
1079 
1080 	memset(&dc->sb.set_uuid, 0, 16);
1081 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1082 
1083 	bch_write_bdev_super(dc, &cl);
1084 	closure_sync(&cl);
1085 
1086 	mutex_lock(&bch_register_lock);
1087 
1088 	calc_cached_dev_sectors(dc->disk.c);
1089 	bcache_device_detach(&dc->disk);
1090 	list_move(&dc->list, &uncached_devices);
1091 
1092 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1093 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1094 
1095 	mutex_unlock(&bch_register_lock);
1096 
1097 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1098 
1099 	/* Drop ref we took in cached_dev_detach() */
1100 	closure_put(&dc->disk.cl);
1101 }
1102 
1103 void bch_cached_dev_detach(struct cached_dev *dc)
1104 {
1105 	lockdep_assert_held(&bch_register_lock);
1106 
1107 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1108 		return;
1109 
1110 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1111 		return;
1112 
1113 	/*
1114 	 * Block the device from being closed and freed until we're finished
1115 	 * detaching
1116 	 */
1117 	closure_get(&dc->disk.cl);
1118 
1119 	bch_writeback_queue(dc);
1120 
1121 	cached_dev_put(dc);
1122 }
1123 
1124 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1125 			  uint8_t *set_uuid)
1126 {
1127 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1128 	struct uuid_entry *u;
1129 	struct cached_dev *exist_dc, *t;
1130 	int ret = 0;
1131 
1132 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1133 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1134 		return -ENOENT;
1135 
1136 	if (dc->disk.c) {
1137 		pr_err("Can't attach %s: already attached\n",
1138 		       dc->backing_dev_name);
1139 		return -EINVAL;
1140 	}
1141 
1142 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1143 		pr_err("Can't attach %s: shutting down\n",
1144 		       dc->backing_dev_name);
1145 		return -EINVAL;
1146 	}
1147 
1148 	if (dc->sb.block_size < c->sb.block_size) {
1149 		/* Will die */
1150 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1151 		       dc->backing_dev_name);
1152 		return -EINVAL;
1153 	}
1154 
1155 	/* Check whether already attached */
1156 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1157 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1158 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1159 				dc->backing_dev_name);
1160 
1161 			return -EINVAL;
1162 		}
1163 	}
1164 
1165 	u = uuid_find(c, dc->sb.uuid);
1166 
1167 	if (u &&
1168 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1169 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1170 		memcpy(u->uuid, invalid_uuid, 16);
1171 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1172 		u = NULL;
1173 	}
1174 
1175 	if (!u) {
1176 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1177 			pr_err("Couldn't find uuid for %s in set\n",
1178 			       dc->backing_dev_name);
1179 			return -ENOENT;
1180 		}
1181 
1182 		u = uuid_find_empty(c);
1183 		if (!u) {
1184 			pr_err("Not caching %s, no room for UUID\n",
1185 			       dc->backing_dev_name);
1186 			return -EINVAL;
1187 		}
1188 	}
1189 
1190 	/*
1191 	 * Deadlocks since we're called via sysfs...
1192 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1193 	 */
1194 
1195 	if (bch_is_zero(u->uuid, 16)) {
1196 		struct closure cl;
1197 
1198 		closure_init_stack(&cl);
1199 
1200 		memcpy(u->uuid, dc->sb.uuid, 16);
1201 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1202 		u->first_reg = u->last_reg = rtime;
1203 		bch_uuid_write(c);
1204 
1205 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1206 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1207 
1208 		bch_write_bdev_super(dc, &cl);
1209 		closure_sync(&cl);
1210 	} else {
1211 		u->last_reg = rtime;
1212 		bch_uuid_write(c);
1213 	}
1214 
1215 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1216 	list_move(&dc->list, &c->cached_devs);
1217 	calc_cached_dev_sectors(c);
1218 
1219 	/*
1220 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1221 	 * cached_dev_get()
1222 	 */
1223 	smp_wmb();
1224 	refcount_set(&dc->count, 1);
1225 
1226 	/* Block writeback thread, but spawn it */
1227 	down_write(&dc->writeback_lock);
1228 	if (bch_cached_dev_writeback_start(dc)) {
1229 		up_write(&dc->writeback_lock);
1230 		pr_err("Couldn't start writeback facilities for %s\n",
1231 		       dc->disk.disk->disk_name);
1232 		return -ENOMEM;
1233 	}
1234 
1235 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1236 		atomic_set(&dc->has_dirty, 1);
1237 		bch_writeback_queue(dc);
1238 	}
1239 
1240 	bch_sectors_dirty_init(&dc->disk);
1241 
1242 	ret = bch_cached_dev_run(dc);
1243 	if (ret && (ret != -EBUSY)) {
1244 		up_write(&dc->writeback_lock);
1245 		/*
1246 		 * bch_register_lock is held, bcache_device_stop() is not
1247 		 * able to be directly called. The kthread and kworker
1248 		 * created previously in bch_cached_dev_writeback_start()
1249 		 * have to be stopped manually here.
1250 		 */
1251 		kthread_stop(dc->writeback_thread);
1252 		cancel_writeback_rate_update_dwork(dc);
1253 		pr_err("Couldn't run cached device %s\n",
1254 		       dc->backing_dev_name);
1255 		return ret;
1256 	}
1257 
1258 	bcache_device_link(&dc->disk, c, "bdev");
1259 	atomic_inc(&c->attached_dev_nr);
1260 
1261 	/* Allow the writeback thread to proceed */
1262 	up_write(&dc->writeback_lock);
1263 
1264 	pr_info("Caching %s as %s on set %pU\n",
1265 		dc->backing_dev_name,
1266 		dc->disk.disk->disk_name,
1267 		dc->disk.c->sb.set_uuid);
1268 	return 0;
1269 }
1270 
1271 /* when dc->disk.kobj released */
1272 void bch_cached_dev_release(struct kobject *kobj)
1273 {
1274 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1275 					     disk.kobj);
1276 	kfree(dc);
1277 	module_put(THIS_MODULE);
1278 }
1279 
1280 static void cached_dev_free(struct closure *cl)
1281 {
1282 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1283 
1284 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1285 		cancel_writeback_rate_update_dwork(dc);
1286 
1287 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1288 		kthread_stop(dc->writeback_thread);
1289 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1290 		kthread_stop(dc->status_update_thread);
1291 
1292 	mutex_lock(&bch_register_lock);
1293 
1294 	if (atomic_read(&dc->running))
1295 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1296 	bcache_device_free(&dc->disk);
1297 	list_del(&dc->list);
1298 
1299 	mutex_unlock(&bch_register_lock);
1300 
1301 	if (dc->sb_disk)
1302 		put_page(virt_to_page(dc->sb_disk));
1303 
1304 	if (!IS_ERR_OR_NULL(dc->bdev))
1305 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1306 
1307 	wake_up(&unregister_wait);
1308 
1309 	kobject_put(&dc->disk.kobj);
1310 }
1311 
1312 static void cached_dev_flush(struct closure *cl)
1313 {
1314 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1315 	struct bcache_device *d = &dc->disk;
1316 
1317 	mutex_lock(&bch_register_lock);
1318 	bcache_device_unlink(d);
1319 	mutex_unlock(&bch_register_lock);
1320 
1321 	bch_cache_accounting_destroy(&dc->accounting);
1322 	kobject_del(&d->kobj);
1323 
1324 	continue_at(cl, cached_dev_free, system_wq);
1325 }
1326 
1327 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1328 {
1329 	int ret;
1330 	struct io *io;
1331 	struct request_queue *q = bdev_get_queue(dc->bdev);
1332 
1333 	__module_get(THIS_MODULE);
1334 	INIT_LIST_HEAD(&dc->list);
1335 	closure_init(&dc->disk.cl, NULL);
1336 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1337 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1338 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1339 	sema_init(&dc->sb_write_mutex, 1);
1340 	INIT_LIST_HEAD(&dc->io_lru);
1341 	spin_lock_init(&dc->io_lock);
1342 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1343 
1344 	dc->sequential_cutoff		= 4 << 20;
1345 
1346 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1347 		list_add(&io->lru, &dc->io_lru);
1348 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1349 	}
1350 
1351 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1352 
1353 	if (dc->disk.stripe_size)
1354 		dc->partial_stripes_expensive =
1355 			q->limits.raid_partial_stripes_expensive;
1356 
1357 	ret = bcache_device_init(&dc->disk, block_size,
1358 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1359 			 cached_dev_make_request, dc->bdev);
1360 	if (ret)
1361 		return ret;
1362 
1363 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1364 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1365 		    q->backing_dev_info->ra_pages);
1366 
1367 	atomic_set(&dc->io_errors, 0);
1368 	dc->io_disable = false;
1369 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1370 	/* default to auto */
1371 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1372 
1373 	bch_cached_dev_request_init(dc);
1374 	bch_cached_dev_writeback_init(dc);
1375 	return 0;
1376 }
1377 
1378 /* Cached device - bcache superblock */
1379 
1380 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1381 				 struct block_device *bdev,
1382 				 struct cached_dev *dc)
1383 {
1384 	const char *err = "cannot allocate memory";
1385 	struct cache_set *c;
1386 	int ret = -ENOMEM;
1387 
1388 	bdevname(bdev, dc->backing_dev_name);
1389 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1390 	dc->bdev = bdev;
1391 	dc->bdev->bd_holder = dc;
1392 	dc->sb_disk = sb_disk;
1393 
1394 	if (cached_dev_init(dc, sb->block_size << 9))
1395 		goto err;
1396 
1397 	err = "error creating kobject";
1398 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1399 			"bcache"))
1400 		goto err;
1401 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1402 		goto err;
1403 
1404 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1405 
1406 	list_add(&dc->list, &uncached_devices);
1407 	/* attach to a matched cache set if it exists */
1408 	list_for_each_entry(c, &bch_cache_sets, list)
1409 		bch_cached_dev_attach(dc, c, NULL);
1410 
1411 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1412 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1413 		err = "failed to run cached device";
1414 		ret = bch_cached_dev_run(dc);
1415 		if (ret)
1416 			goto err;
1417 	}
1418 
1419 	return 0;
1420 err:
1421 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1422 	bcache_device_stop(&dc->disk);
1423 	return ret;
1424 }
1425 
1426 /* Flash only volumes */
1427 
1428 /* When d->kobj released */
1429 void bch_flash_dev_release(struct kobject *kobj)
1430 {
1431 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1432 					       kobj);
1433 	kfree(d);
1434 }
1435 
1436 static void flash_dev_free(struct closure *cl)
1437 {
1438 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1439 
1440 	mutex_lock(&bch_register_lock);
1441 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1442 			&d->c->flash_dev_dirty_sectors);
1443 	bcache_device_free(d);
1444 	mutex_unlock(&bch_register_lock);
1445 	kobject_put(&d->kobj);
1446 }
1447 
1448 static void flash_dev_flush(struct closure *cl)
1449 {
1450 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1451 
1452 	mutex_lock(&bch_register_lock);
1453 	bcache_device_unlink(d);
1454 	mutex_unlock(&bch_register_lock);
1455 	kobject_del(&d->kobj);
1456 	continue_at(cl, flash_dev_free, system_wq);
1457 }
1458 
1459 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1460 {
1461 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1462 					  GFP_KERNEL);
1463 	if (!d)
1464 		return -ENOMEM;
1465 
1466 	closure_init(&d->cl, NULL);
1467 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1468 
1469 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1470 
1471 	if (bcache_device_init(d, block_bytes(c), u->sectors,
1472 			flash_dev_make_request, NULL))
1473 		goto err;
1474 
1475 	bcache_device_attach(d, c, u - c->uuids);
1476 	bch_sectors_dirty_init(d);
1477 	bch_flash_dev_request_init(d);
1478 	add_disk(d->disk);
1479 
1480 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1481 		goto err;
1482 
1483 	bcache_device_link(d, c, "volume");
1484 
1485 	return 0;
1486 err:
1487 	kobject_put(&d->kobj);
1488 	return -ENOMEM;
1489 }
1490 
1491 static int flash_devs_run(struct cache_set *c)
1492 {
1493 	int ret = 0;
1494 	struct uuid_entry *u;
1495 
1496 	for (u = c->uuids;
1497 	     u < c->uuids + c->nr_uuids && !ret;
1498 	     u++)
1499 		if (UUID_FLASH_ONLY(u))
1500 			ret = flash_dev_run(c, u);
1501 
1502 	return ret;
1503 }
1504 
1505 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1506 {
1507 	struct uuid_entry *u;
1508 
1509 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1510 		return -EINTR;
1511 
1512 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1513 		return -EPERM;
1514 
1515 	u = uuid_find_empty(c);
1516 	if (!u) {
1517 		pr_err("Can't create volume, no room for UUID\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	get_random_bytes(u->uuid, 16);
1522 	memset(u->label, 0, 32);
1523 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1524 
1525 	SET_UUID_FLASH_ONLY(u, 1);
1526 	u->sectors = size >> 9;
1527 
1528 	bch_uuid_write(c);
1529 
1530 	return flash_dev_run(c, u);
1531 }
1532 
1533 bool bch_cached_dev_error(struct cached_dev *dc)
1534 {
1535 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1536 		return false;
1537 
1538 	dc->io_disable = true;
1539 	/* make others know io_disable is true earlier */
1540 	smp_mb();
1541 
1542 	pr_err("stop %s: too many IO errors on backing device %s\n",
1543 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1544 
1545 	bcache_device_stop(&dc->disk);
1546 	return true;
1547 }
1548 
1549 /* Cache set */
1550 
1551 __printf(2, 3)
1552 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1553 {
1554 	struct va_format vaf;
1555 	va_list args;
1556 
1557 	if (c->on_error != ON_ERROR_PANIC &&
1558 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1559 		return false;
1560 
1561 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1562 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1563 
1564 	/*
1565 	 * XXX: we can be called from atomic context
1566 	 * acquire_console_sem();
1567 	 */
1568 
1569 	va_start(args, fmt);
1570 
1571 	vaf.fmt = fmt;
1572 	vaf.va = &args;
1573 
1574 	pr_err("error on %pU: %pV, disabling caching\n",
1575 	       c->sb.set_uuid, &vaf);
1576 
1577 	va_end(args);
1578 
1579 	if (c->on_error == ON_ERROR_PANIC)
1580 		panic("panic forced after error\n");
1581 
1582 	bch_cache_set_unregister(c);
1583 	return true;
1584 }
1585 
1586 /* When c->kobj released */
1587 void bch_cache_set_release(struct kobject *kobj)
1588 {
1589 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1590 
1591 	kfree(c);
1592 	module_put(THIS_MODULE);
1593 }
1594 
1595 static void cache_set_free(struct closure *cl)
1596 {
1597 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1598 	struct cache *ca;
1599 	unsigned int i;
1600 
1601 	debugfs_remove(c->debug);
1602 
1603 	bch_open_buckets_free(c);
1604 	bch_btree_cache_free(c);
1605 	bch_journal_free(c);
1606 
1607 	mutex_lock(&bch_register_lock);
1608 	for_each_cache(ca, c, i)
1609 		if (ca) {
1610 			ca->set = NULL;
1611 			c->cache[ca->sb.nr_this_dev] = NULL;
1612 			kobject_put(&ca->kobj);
1613 		}
1614 
1615 	bch_bset_sort_state_free(&c->sort);
1616 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1617 
1618 	if (c->moving_gc_wq)
1619 		destroy_workqueue(c->moving_gc_wq);
1620 	bioset_exit(&c->bio_split);
1621 	mempool_exit(&c->fill_iter);
1622 	mempool_exit(&c->bio_meta);
1623 	mempool_exit(&c->search);
1624 	kfree(c->devices);
1625 
1626 	list_del(&c->list);
1627 	mutex_unlock(&bch_register_lock);
1628 
1629 	pr_info("Cache set %pU unregistered\n", c->sb.set_uuid);
1630 	wake_up(&unregister_wait);
1631 
1632 	closure_debug_destroy(&c->cl);
1633 	kobject_put(&c->kobj);
1634 }
1635 
1636 static void cache_set_flush(struct closure *cl)
1637 {
1638 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1639 	struct cache *ca;
1640 	struct btree *b;
1641 	unsigned int i;
1642 
1643 	bch_cache_accounting_destroy(&c->accounting);
1644 
1645 	kobject_put(&c->internal);
1646 	kobject_del(&c->kobj);
1647 
1648 	if (!IS_ERR_OR_NULL(c->gc_thread))
1649 		kthread_stop(c->gc_thread);
1650 
1651 	if (!IS_ERR_OR_NULL(c->root))
1652 		list_add(&c->root->list, &c->btree_cache);
1653 
1654 	/*
1655 	 * Avoid flushing cached nodes if cache set is retiring
1656 	 * due to too many I/O errors detected.
1657 	 */
1658 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1659 		list_for_each_entry(b, &c->btree_cache, list) {
1660 			mutex_lock(&b->write_lock);
1661 			if (btree_node_dirty(b))
1662 				__bch_btree_node_write(b, NULL);
1663 			mutex_unlock(&b->write_lock);
1664 		}
1665 
1666 	for_each_cache(ca, c, i)
1667 		if (ca->alloc_thread)
1668 			kthread_stop(ca->alloc_thread);
1669 
1670 	if (c->journal.cur) {
1671 		cancel_delayed_work_sync(&c->journal.work);
1672 		/* flush last journal entry if needed */
1673 		c->journal.work.work.func(&c->journal.work.work);
1674 	}
1675 
1676 	closure_return(cl);
1677 }
1678 
1679 /*
1680  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1681  * cache set is unregistering due to too many I/O errors. In this condition,
1682  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1683  * value and whether the broken cache has dirty data:
1684  *
1685  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1686  *  BCH_CACHED_STOP_AUTO               0               NO
1687  *  BCH_CACHED_STOP_AUTO               1               YES
1688  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1689  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1690  *
1691  * The expected behavior is, if stop_when_cache_set_failed is configured to
1692  * "auto" via sysfs interface, the bcache device will not be stopped if the
1693  * backing device is clean on the broken cache device.
1694  */
1695 static void conditional_stop_bcache_device(struct cache_set *c,
1696 					   struct bcache_device *d,
1697 					   struct cached_dev *dc)
1698 {
1699 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1700 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1701 			d->disk->disk_name, c->sb.set_uuid);
1702 		bcache_device_stop(d);
1703 	} else if (atomic_read(&dc->has_dirty)) {
1704 		/*
1705 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1706 		 * and dc->has_dirty == 1
1707 		 */
1708 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1709 			d->disk->disk_name);
1710 		/*
1711 		 * There might be a small time gap that cache set is
1712 		 * released but bcache device is not. Inside this time
1713 		 * gap, regular I/O requests will directly go into
1714 		 * backing device as no cache set attached to. This
1715 		 * behavior may also introduce potential inconsistence
1716 		 * data in writeback mode while cache is dirty.
1717 		 * Therefore before calling bcache_device_stop() due
1718 		 * to a broken cache device, dc->io_disable should be
1719 		 * explicitly set to true.
1720 		 */
1721 		dc->io_disable = true;
1722 		/* make others know io_disable is true earlier */
1723 		smp_mb();
1724 		bcache_device_stop(d);
1725 	} else {
1726 		/*
1727 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1728 		 * and dc->has_dirty == 0
1729 		 */
1730 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1731 			d->disk->disk_name);
1732 	}
1733 }
1734 
1735 static void __cache_set_unregister(struct closure *cl)
1736 {
1737 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1738 	struct cached_dev *dc;
1739 	struct bcache_device *d;
1740 	size_t i;
1741 
1742 	mutex_lock(&bch_register_lock);
1743 
1744 	for (i = 0; i < c->devices_max_used; i++) {
1745 		d = c->devices[i];
1746 		if (!d)
1747 			continue;
1748 
1749 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1750 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1751 			dc = container_of(d, struct cached_dev, disk);
1752 			bch_cached_dev_detach(dc);
1753 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1754 				conditional_stop_bcache_device(c, d, dc);
1755 		} else {
1756 			bcache_device_stop(d);
1757 		}
1758 	}
1759 
1760 	mutex_unlock(&bch_register_lock);
1761 
1762 	continue_at(cl, cache_set_flush, system_wq);
1763 }
1764 
1765 void bch_cache_set_stop(struct cache_set *c)
1766 {
1767 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1768 		/* closure_fn set to __cache_set_unregister() */
1769 		closure_queue(&c->caching);
1770 }
1771 
1772 void bch_cache_set_unregister(struct cache_set *c)
1773 {
1774 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1775 	bch_cache_set_stop(c);
1776 }
1777 
1778 #define alloc_bucket_pages(gfp, c)			\
1779 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1780 
1781 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1782 {
1783 	int iter_size;
1784 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1785 
1786 	if (!c)
1787 		return NULL;
1788 
1789 	__module_get(THIS_MODULE);
1790 	closure_init(&c->cl, NULL);
1791 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1792 
1793 	closure_init(&c->caching, &c->cl);
1794 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1795 
1796 	/* Maybe create continue_at_noreturn() and use it here? */
1797 	closure_set_stopped(&c->cl);
1798 	closure_put(&c->cl);
1799 
1800 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1801 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1802 
1803 	bch_cache_accounting_init(&c->accounting, &c->cl);
1804 
1805 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1806 	c->sb.block_size	= sb->block_size;
1807 	c->sb.bucket_size	= sb->bucket_size;
1808 	c->sb.nr_in_set		= sb->nr_in_set;
1809 	c->sb.last_mount	= sb->last_mount;
1810 	c->bucket_bits		= ilog2(sb->bucket_size);
1811 	c->block_bits		= ilog2(sb->block_size);
1812 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1813 	c->devices_max_used	= 0;
1814 	atomic_set(&c->attached_dev_nr, 0);
1815 	c->btree_pages		= bucket_pages(c);
1816 	if (c->btree_pages > BTREE_MAX_PAGES)
1817 		c->btree_pages = max_t(int, c->btree_pages / 4,
1818 				       BTREE_MAX_PAGES);
1819 
1820 	sema_init(&c->sb_write_mutex, 1);
1821 	mutex_init(&c->bucket_lock);
1822 	init_waitqueue_head(&c->btree_cache_wait);
1823 	spin_lock_init(&c->btree_cannibalize_lock);
1824 	init_waitqueue_head(&c->bucket_wait);
1825 	init_waitqueue_head(&c->gc_wait);
1826 	sema_init(&c->uuid_write_mutex, 1);
1827 
1828 	spin_lock_init(&c->btree_gc_time.lock);
1829 	spin_lock_init(&c->btree_split_time.lock);
1830 	spin_lock_init(&c->btree_read_time.lock);
1831 
1832 	bch_moving_init_cache_set(c);
1833 
1834 	INIT_LIST_HEAD(&c->list);
1835 	INIT_LIST_HEAD(&c->cached_devs);
1836 	INIT_LIST_HEAD(&c->btree_cache);
1837 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1838 	INIT_LIST_HEAD(&c->btree_cache_freed);
1839 	INIT_LIST_HEAD(&c->data_buckets);
1840 
1841 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1842 		sizeof(struct btree_iter_set);
1843 
1844 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1845 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1846 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1847 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1848 				bucket_pages(c)) ||
1849 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1850 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1851 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1852 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1853 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1854 						WQ_MEM_RECLAIM, 0)) ||
1855 	    bch_journal_alloc(c) ||
1856 	    bch_btree_cache_alloc(c) ||
1857 	    bch_open_buckets_alloc(c) ||
1858 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1859 		goto err;
1860 
1861 	c->congested_read_threshold_us	= 2000;
1862 	c->congested_write_threshold_us	= 20000;
1863 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1864 	c->idle_max_writeback_rate_enabled = 1;
1865 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1866 
1867 	return c;
1868 err:
1869 	bch_cache_set_unregister(c);
1870 	return NULL;
1871 }
1872 
1873 static int run_cache_set(struct cache_set *c)
1874 {
1875 	const char *err = "cannot allocate memory";
1876 	struct cached_dev *dc, *t;
1877 	struct cache *ca;
1878 	struct closure cl;
1879 	unsigned int i;
1880 	LIST_HEAD(journal);
1881 	struct journal_replay *l;
1882 
1883 	closure_init_stack(&cl);
1884 
1885 	for_each_cache(ca, c, i)
1886 		c->nbuckets += ca->sb.nbuckets;
1887 	set_gc_sectors(c);
1888 
1889 	if (CACHE_SYNC(&c->sb)) {
1890 		struct bkey *k;
1891 		struct jset *j;
1892 
1893 		err = "cannot allocate memory for journal";
1894 		if (bch_journal_read(c, &journal))
1895 			goto err;
1896 
1897 		pr_debug("btree_journal_read() done\n");
1898 
1899 		err = "no journal entries found";
1900 		if (list_empty(&journal))
1901 			goto err;
1902 
1903 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1904 
1905 		err = "IO error reading priorities";
1906 		for_each_cache(ca, c, i) {
1907 			if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1908 				goto err;
1909 		}
1910 
1911 		/*
1912 		 * If prio_read() fails it'll call cache_set_error and we'll
1913 		 * tear everything down right away, but if we perhaps checked
1914 		 * sooner we could avoid journal replay.
1915 		 */
1916 
1917 		k = &j->btree_root;
1918 
1919 		err = "bad btree root";
1920 		if (__bch_btree_ptr_invalid(c, k))
1921 			goto err;
1922 
1923 		err = "error reading btree root";
1924 		c->root = bch_btree_node_get(c, NULL, k,
1925 					     j->btree_level,
1926 					     true, NULL);
1927 		if (IS_ERR_OR_NULL(c->root))
1928 			goto err;
1929 
1930 		list_del_init(&c->root->list);
1931 		rw_unlock(true, c->root);
1932 
1933 		err = uuid_read(c, j, &cl);
1934 		if (err)
1935 			goto err;
1936 
1937 		err = "error in recovery";
1938 		if (bch_btree_check(c))
1939 			goto err;
1940 
1941 		bch_journal_mark(c, &journal);
1942 		bch_initial_gc_finish(c);
1943 		pr_debug("btree_check() done\n");
1944 
1945 		/*
1946 		 * bcache_journal_next() can't happen sooner, or
1947 		 * btree_gc_finish() will give spurious errors about last_gc >
1948 		 * gc_gen - this is a hack but oh well.
1949 		 */
1950 		bch_journal_next(&c->journal);
1951 
1952 		err = "error starting allocator thread";
1953 		for_each_cache(ca, c, i)
1954 			if (bch_cache_allocator_start(ca))
1955 				goto err;
1956 
1957 		/*
1958 		 * First place it's safe to allocate: btree_check() and
1959 		 * btree_gc_finish() have to run before we have buckets to
1960 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1961 		 * entry to be written so bcache_journal_next() has to be called
1962 		 * first.
1963 		 *
1964 		 * If the uuids were in the old format we have to rewrite them
1965 		 * before the next journal entry is written:
1966 		 */
1967 		if (j->version < BCACHE_JSET_VERSION_UUID)
1968 			__uuid_write(c);
1969 
1970 		err = "bcache: replay journal failed";
1971 		if (bch_journal_replay(c, &journal))
1972 			goto err;
1973 	} else {
1974 		pr_notice("invalidating existing data\n");
1975 
1976 		for_each_cache(ca, c, i) {
1977 			unsigned int j;
1978 
1979 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1980 					      2, SB_JOURNAL_BUCKETS);
1981 
1982 			for (j = 0; j < ca->sb.keys; j++)
1983 				ca->sb.d[j] = ca->sb.first_bucket + j;
1984 		}
1985 
1986 		bch_initial_gc_finish(c);
1987 
1988 		err = "error starting allocator thread";
1989 		for_each_cache(ca, c, i)
1990 			if (bch_cache_allocator_start(ca))
1991 				goto err;
1992 
1993 		mutex_lock(&c->bucket_lock);
1994 		for_each_cache(ca, c, i)
1995 			bch_prio_write(ca, true);
1996 		mutex_unlock(&c->bucket_lock);
1997 
1998 		err = "cannot allocate new UUID bucket";
1999 		if (__uuid_write(c))
2000 			goto err;
2001 
2002 		err = "cannot allocate new btree root";
2003 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
2004 		if (IS_ERR_OR_NULL(c->root))
2005 			goto err;
2006 
2007 		mutex_lock(&c->root->write_lock);
2008 		bkey_copy_key(&c->root->key, &MAX_KEY);
2009 		bch_btree_node_write(c->root, &cl);
2010 		mutex_unlock(&c->root->write_lock);
2011 
2012 		bch_btree_set_root(c->root);
2013 		rw_unlock(true, c->root);
2014 
2015 		/*
2016 		 * We don't want to write the first journal entry until
2017 		 * everything is set up - fortunately journal entries won't be
2018 		 * written until the SET_CACHE_SYNC() here:
2019 		 */
2020 		SET_CACHE_SYNC(&c->sb, true);
2021 
2022 		bch_journal_next(&c->journal);
2023 		bch_journal_meta(c, &cl);
2024 	}
2025 
2026 	err = "error starting gc thread";
2027 	if (bch_gc_thread_start(c))
2028 		goto err;
2029 
2030 	closure_sync(&cl);
2031 	c->sb.last_mount = (u32)ktime_get_real_seconds();
2032 	bcache_write_super(c);
2033 
2034 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2035 		bch_cached_dev_attach(dc, c, NULL);
2036 
2037 	flash_devs_run(c);
2038 
2039 	set_bit(CACHE_SET_RUNNING, &c->flags);
2040 	return 0;
2041 err:
2042 	while (!list_empty(&journal)) {
2043 		l = list_first_entry(&journal, struct journal_replay, list);
2044 		list_del(&l->list);
2045 		kfree(l);
2046 	}
2047 
2048 	closure_sync(&cl);
2049 
2050 	bch_cache_set_error(c, "%s", err);
2051 
2052 	return -EIO;
2053 }
2054 
2055 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2056 {
2057 	return ca->sb.block_size	== c->sb.block_size &&
2058 		ca->sb.bucket_size	== c->sb.bucket_size &&
2059 		ca->sb.nr_in_set	== c->sb.nr_in_set;
2060 }
2061 
2062 static const char *register_cache_set(struct cache *ca)
2063 {
2064 	char buf[12];
2065 	const char *err = "cannot allocate memory";
2066 	struct cache_set *c;
2067 
2068 	list_for_each_entry(c, &bch_cache_sets, list)
2069 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2070 			if (c->cache[ca->sb.nr_this_dev])
2071 				return "duplicate cache set member";
2072 
2073 			if (!can_attach_cache(ca, c))
2074 				return "cache sb does not match set";
2075 
2076 			if (!CACHE_SYNC(&ca->sb))
2077 				SET_CACHE_SYNC(&c->sb, false);
2078 
2079 			goto found;
2080 		}
2081 
2082 	c = bch_cache_set_alloc(&ca->sb);
2083 	if (!c)
2084 		return err;
2085 
2086 	err = "error creating kobject";
2087 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2088 	    kobject_add(&c->internal, &c->kobj, "internal"))
2089 		goto err;
2090 
2091 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2092 		goto err;
2093 
2094 	bch_debug_init_cache_set(c);
2095 
2096 	list_add(&c->list, &bch_cache_sets);
2097 found:
2098 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2099 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2100 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2101 		goto err;
2102 
2103 	if (ca->sb.seq > c->sb.seq) {
2104 		c->sb.version		= ca->sb.version;
2105 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2106 		c->sb.flags             = ca->sb.flags;
2107 		c->sb.seq		= ca->sb.seq;
2108 		pr_debug("set version = %llu\n", c->sb.version);
2109 	}
2110 
2111 	kobject_get(&ca->kobj);
2112 	ca->set = c;
2113 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2114 	c->cache_by_alloc[c->caches_loaded++] = ca;
2115 
2116 	if (c->caches_loaded == c->sb.nr_in_set) {
2117 		err = "failed to run cache set";
2118 		if (run_cache_set(c) < 0)
2119 			goto err;
2120 	}
2121 
2122 	return NULL;
2123 err:
2124 	bch_cache_set_unregister(c);
2125 	return err;
2126 }
2127 
2128 /* Cache device */
2129 
2130 /* When ca->kobj released */
2131 void bch_cache_release(struct kobject *kobj)
2132 {
2133 	struct cache *ca = container_of(kobj, struct cache, kobj);
2134 	unsigned int i;
2135 
2136 	if (ca->set) {
2137 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2138 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2139 	}
2140 
2141 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2142 	kfree(ca->prio_buckets);
2143 	vfree(ca->buckets);
2144 
2145 	free_heap(&ca->heap);
2146 	free_fifo(&ca->free_inc);
2147 
2148 	for (i = 0; i < RESERVE_NR; i++)
2149 		free_fifo(&ca->free[i]);
2150 
2151 	if (ca->sb_disk)
2152 		put_page(virt_to_page(ca->sb_disk));
2153 
2154 	if (!IS_ERR_OR_NULL(ca->bdev))
2155 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2156 
2157 	kfree(ca);
2158 	module_put(THIS_MODULE);
2159 }
2160 
2161 static int cache_alloc(struct cache *ca)
2162 {
2163 	size_t free;
2164 	size_t btree_buckets;
2165 	struct bucket *b;
2166 	int ret = -ENOMEM;
2167 	const char *err = NULL;
2168 
2169 	__module_get(THIS_MODULE);
2170 	kobject_init(&ca->kobj, &bch_cache_ktype);
2171 
2172 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2173 
2174 	/*
2175 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2176 	 * and in bch_journal_replay(), tree node may split,
2177 	 * so bucket of RESERVE_BTREE type is needed,
2178 	 * the worst situation is all journal buckets are valid journal,
2179 	 * and all the keys need to replay,
2180 	 * so the number of  RESERVE_BTREE type buckets should be as much
2181 	 * as journal buckets
2182 	 */
2183 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2184 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2185 	if (!free) {
2186 		ret = -EPERM;
2187 		err = "ca->sb.nbuckets is too small";
2188 		goto err_free;
2189 	}
2190 
2191 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2192 						GFP_KERNEL)) {
2193 		err = "ca->free[RESERVE_BTREE] alloc failed";
2194 		goto err_btree_alloc;
2195 	}
2196 
2197 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2198 							GFP_KERNEL)) {
2199 		err = "ca->free[RESERVE_PRIO] alloc failed";
2200 		goto err_prio_alloc;
2201 	}
2202 
2203 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2204 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2205 		goto err_movinggc_alloc;
2206 	}
2207 
2208 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2209 		err = "ca->free[RESERVE_NONE] alloc failed";
2210 		goto err_none_alloc;
2211 	}
2212 
2213 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2214 		err = "ca->free_inc alloc failed";
2215 		goto err_free_inc_alloc;
2216 	}
2217 
2218 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2219 		err = "ca->heap alloc failed";
2220 		goto err_heap_alloc;
2221 	}
2222 
2223 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2224 			      ca->sb.nbuckets));
2225 	if (!ca->buckets) {
2226 		err = "ca->buckets alloc failed";
2227 		goto err_buckets_alloc;
2228 	}
2229 
2230 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2231 				   prio_buckets(ca), 2),
2232 				   GFP_KERNEL);
2233 	if (!ca->prio_buckets) {
2234 		err = "ca->prio_buckets alloc failed";
2235 		goto err_prio_buckets_alloc;
2236 	}
2237 
2238 	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2239 	if (!ca->disk_buckets) {
2240 		err = "ca->disk_buckets alloc failed";
2241 		goto err_disk_buckets_alloc;
2242 	}
2243 
2244 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2245 
2246 	for_each_bucket(b, ca)
2247 		atomic_set(&b->pin, 0);
2248 	return 0;
2249 
2250 err_disk_buckets_alloc:
2251 	kfree(ca->prio_buckets);
2252 err_prio_buckets_alloc:
2253 	vfree(ca->buckets);
2254 err_buckets_alloc:
2255 	free_heap(&ca->heap);
2256 err_heap_alloc:
2257 	free_fifo(&ca->free_inc);
2258 err_free_inc_alloc:
2259 	free_fifo(&ca->free[RESERVE_NONE]);
2260 err_none_alloc:
2261 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2262 err_movinggc_alloc:
2263 	free_fifo(&ca->free[RESERVE_PRIO]);
2264 err_prio_alloc:
2265 	free_fifo(&ca->free[RESERVE_BTREE]);
2266 err_btree_alloc:
2267 err_free:
2268 	module_put(THIS_MODULE);
2269 	if (err)
2270 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2271 	return ret;
2272 }
2273 
2274 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2275 				struct block_device *bdev, struct cache *ca)
2276 {
2277 	const char *err = NULL; /* must be set for any error case */
2278 	int ret = 0;
2279 
2280 	bdevname(bdev, ca->cache_dev_name);
2281 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2282 	ca->bdev = bdev;
2283 	ca->bdev->bd_holder = ca;
2284 	ca->sb_disk = sb_disk;
2285 
2286 	if (blk_queue_discard(bdev_get_queue(bdev)))
2287 		ca->discard = CACHE_DISCARD(&ca->sb);
2288 
2289 	ret = cache_alloc(ca);
2290 	if (ret != 0) {
2291 		/*
2292 		 * If we failed here, it means ca->kobj is not initialized yet,
2293 		 * kobject_put() won't be called and there is no chance to
2294 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2295 		 * explicitly call blkdev_put() here.
2296 		 */
2297 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2298 		if (ret == -ENOMEM)
2299 			err = "cache_alloc(): -ENOMEM";
2300 		else if (ret == -EPERM)
2301 			err = "cache_alloc(): cache device is too small";
2302 		else
2303 			err = "cache_alloc(): unknown error";
2304 		goto err;
2305 	}
2306 
2307 	if (kobject_add(&ca->kobj,
2308 			&part_to_dev(bdev->bd_part)->kobj,
2309 			"bcache")) {
2310 		err = "error calling kobject_add";
2311 		ret = -ENOMEM;
2312 		goto out;
2313 	}
2314 
2315 	mutex_lock(&bch_register_lock);
2316 	err = register_cache_set(ca);
2317 	mutex_unlock(&bch_register_lock);
2318 
2319 	if (err) {
2320 		ret = -ENODEV;
2321 		goto out;
2322 	}
2323 
2324 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2325 
2326 out:
2327 	kobject_put(&ca->kobj);
2328 
2329 err:
2330 	if (err)
2331 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2332 
2333 	return ret;
2334 }
2335 
2336 /* Global interfaces/init */
2337 
2338 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2339 			       const char *buffer, size_t size);
2340 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2341 					 struct kobj_attribute *attr,
2342 					 const char *buffer, size_t size);
2343 
2344 kobj_attribute_write(register,		register_bcache);
2345 kobj_attribute_write(register_quiet,	register_bcache);
2346 kobj_attribute_write(register_async,	register_bcache);
2347 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2348 
2349 static bool bch_is_open_backing(struct block_device *bdev)
2350 {
2351 	struct cache_set *c, *tc;
2352 	struct cached_dev *dc, *t;
2353 
2354 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2355 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2356 			if (dc->bdev == bdev)
2357 				return true;
2358 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2359 		if (dc->bdev == bdev)
2360 			return true;
2361 	return false;
2362 }
2363 
2364 static bool bch_is_open_cache(struct block_device *bdev)
2365 {
2366 	struct cache_set *c, *tc;
2367 	struct cache *ca;
2368 	unsigned int i;
2369 
2370 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2371 		for_each_cache(ca, c, i)
2372 			if (ca->bdev == bdev)
2373 				return true;
2374 	return false;
2375 }
2376 
2377 static bool bch_is_open(struct block_device *bdev)
2378 {
2379 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2380 }
2381 
2382 struct async_reg_args {
2383 	struct delayed_work reg_work;
2384 	char *path;
2385 	struct cache_sb *sb;
2386 	struct cache_sb_disk *sb_disk;
2387 	struct block_device *bdev;
2388 };
2389 
2390 static void register_bdev_worker(struct work_struct *work)
2391 {
2392 	int fail = false;
2393 	struct async_reg_args *args =
2394 		container_of(work, struct async_reg_args, reg_work.work);
2395 	struct cached_dev *dc;
2396 
2397 	dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2398 	if (!dc) {
2399 		fail = true;
2400 		put_page(virt_to_page(args->sb_disk));
2401 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2402 		goto out;
2403 	}
2404 
2405 	mutex_lock(&bch_register_lock);
2406 	if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0)
2407 		fail = true;
2408 	mutex_unlock(&bch_register_lock);
2409 
2410 out:
2411 	if (fail)
2412 		pr_info("error %s: fail to register backing device\n",
2413 			args->path);
2414 	kfree(args->sb);
2415 	kfree(args->path);
2416 	kfree(args);
2417 	module_put(THIS_MODULE);
2418 }
2419 
2420 static void register_cache_worker(struct work_struct *work)
2421 {
2422 	int fail = false;
2423 	struct async_reg_args *args =
2424 		container_of(work, struct async_reg_args, reg_work.work);
2425 	struct cache *ca;
2426 
2427 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2428 	if (!ca) {
2429 		fail = true;
2430 		put_page(virt_to_page(args->sb_disk));
2431 		blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2432 		goto out;
2433 	}
2434 
2435 	/* blkdev_put() will be called in bch_cache_release() */
2436 	if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0)
2437 		fail = true;
2438 
2439 out:
2440 	if (fail)
2441 		pr_info("error %s: fail to register cache device\n",
2442 			args->path);
2443 	kfree(args->sb);
2444 	kfree(args->path);
2445 	kfree(args);
2446 	module_put(THIS_MODULE);
2447 }
2448 
2449 static void register_device_aync(struct async_reg_args *args)
2450 {
2451 	if (SB_IS_BDEV(args->sb))
2452 		INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker);
2453 	else
2454 		INIT_DELAYED_WORK(&args->reg_work, register_cache_worker);
2455 
2456 	/* 10 jiffies is enough for a delay */
2457 	queue_delayed_work(system_wq, &args->reg_work, 10);
2458 }
2459 
2460 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2461 			       const char *buffer, size_t size)
2462 {
2463 	const char *err;
2464 	char *path = NULL;
2465 	struct cache_sb *sb;
2466 	struct cache_sb_disk *sb_disk;
2467 	struct block_device *bdev;
2468 	ssize_t ret;
2469 
2470 	ret = -EBUSY;
2471 	err = "failed to reference bcache module";
2472 	if (!try_module_get(THIS_MODULE))
2473 		goto out;
2474 
2475 	/* For latest state of bcache_is_reboot */
2476 	smp_mb();
2477 	err = "bcache is in reboot";
2478 	if (bcache_is_reboot)
2479 		goto out_module_put;
2480 
2481 	ret = -ENOMEM;
2482 	err = "cannot allocate memory";
2483 	path = kstrndup(buffer, size, GFP_KERNEL);
2484 	if (!path)
2485 		goto out_module_put;
2486 
2487 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2488 	if (!sb)
2489 		goto out_free_path;
2490 
2491 	ret = -EINVAL;
2492 	err = "failed to open device";
2493 	bdev = blkdev_get_by_path(strim(path),
2494 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2495 				  sb);
2496 	if (IS_ERR(bdev)) {
2497 		if (bdev == ERR_PTR(-EBUSY)) {
2498 			bdev = lookup_bdev(strim(path));
2499 			mutex_lock(&bch_register_lock);
2500 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2501 				err = "device already registered";
2502 			else
2503 				err = "device busy";
2504 			mutex_unlock(&bch_register_lock);
2505 			if (!IS_ERR(bdev))
2506 				bdput(bdev);
2507 			if (attr == &ksysfs_register_quiet)
2508 				goto done;
2509 		}
2510 		goto out_free_sb;
2511 	}
2512 
2513 	err = "failed to set blocksize";
2514 	if (set_blocksize(bdev, 4096))
2515 		goto out_blkdev_put;
2516 
2517 	err = read_super(sb, bdev, &sb_disk);
2518 	if (err)
2519 		goto out_blkdev_put;
2520 
2521 	err = "failed to register device";
2522 	if (attr == &ksysfs_register_async) {
2523 		/* register in asynchronous way */
2524 		struct async_reg_args *args =
2525 			kzalloc(sizeof(struct async_reg_args), GFP_KERNEL);
2526 
2527 		if (!args) {
2528 			ret = -ENOMEM;
2529 			err = "cannot allocate memory";
2530 			goto out_put_sb_page;
2531 		}
2532 
2533 		args->path	= path;
2534 		args->sb	= sb;
2535 		args->sb_disk	= sb_disk;
2536 		args->bdev	= bdev;
2537 		register_device_aync(args);
2538 		/* No wait and returns to user space */
2539 		goto async_done;
2540 	}
2541 
2542 	if (SB_IS_BDEV(sb)) {
2543 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2544 
2545 		if (!dc)
2546 			goto out_put_sb_page;
2547 
2548 		mutex_lock(&bch_register_lock);
2549 		ret = register_bdev(sb, sb_disk, bdev, dc);
2550 		mutex_unlock(&bch_register_lock);
2551 		/* blkdev_put() will be called in cached_dev_free() */
2552 		if (ret < 0)
2553 			goto out_free_sb;
2554 	} else {
2555 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2556 
2557 		if (!ca)
2558 			goto out_put_sb_page;
2559 
2560 		/* blkdev_put() will be called in bch_cache_release() */
2561 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2562 			goto out_free_sb;
2563 	}
2564 
2565 done:
2566 	kfree(sb);
2567 	kfree(path);
2568 	module_put(THIS_MODULE);
2569 async_done:
2570 	return size;
2571 
2572 out_put_sb_page:
2573 	put_page(virt_to_page(sb_disk));
2574 out_blkdev_put:
2575 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2576 out_free_sb:
2577 	kfree(sb);
2578 out_free_path:
2579 	kfree(path);
2580 	path = NULL;
2581 out_module_put:
2582 	module_put(THIS_MODULE);
2583 out:
2584 	pr_info("error %s: %s\n", path?path:"", err);
2585 	return ret;
2586 }
2587 
2588 
2589 struct pdev {
2590 	struct list_head list;
2591 	struct cached_dev *dc;
2592 };
2593 
2594 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2595 					 struct kobj_attribute *attr,
2596 					 const char *buffer,
2597 					 size_t size)
2598 {
2599 	LIST_HEAD(pending_devs);
2600 	ssize_t ret = size;
2601 	struct cached_dev *dc, *tdc;
2602 	struct pdev *pdev, *tpdev;
2603 	struct cache_set *c, *tc;
2604 
2605 	mutex_lock(&bch_register_lock);
2606 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2607 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2608 		if (!pdev)
2609 			break;
2610 		pdev->dc = dc;
2611 		list_add(&pdev->list, &pending_devs);
2612 	}
2613 
2614 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2615 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2616 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2617 			char *set_uuid = c->sb.uuid;
2618 
2619 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2620 				list_del(&pdev->list);
2621 				kfree(pdev);
2622 				break;
2623 			}
2624 		}
2625 	}
2626 	mutex_unlock(&bch_register_lock);
2627 
2628 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2629 		pr_info("delete pdev %p\n", pdev);
2630 		list_del(&pdev->list);
2631 		bcache_device_stop(&pdev->dc->disk);
2632 		kfree(pdev);
2633 	}
2634 
2635 	return ret;
2636 }
2637 
2638 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2639 {
2640 	if (bcache_is_reboot)
2641 		return NOTIFY_DONE;
2642 
2643 	if (code == SYS_DOWN ||
2644 	    code == SYS_HALT ||
2645 	    code == SYS_POWER_OFF) {
2646 		DEFINE_WAIT(wait);
2647 		unsigned long start = jiffies;
2648 		bool stopped = false;
2649 
2650 		struct cache_set *c, *tc;
2651 		struct cached_dev *dc, *tdc;
2652 
2653 		mutex_lock(&bch_register_lock);
2654 
2655 		if (bcache_is_reboot)
2656 			goto out;
2657 
2658 		/* New registration is rejected since now */
2659 		bcache_is_reboot = true;
2660 		/*
2661 		 * Make registering caller (if there is) on other CPU
2662 		 * core know bcache_is_reboot set to true earlier
2663 		 */
2664 		smp_mb();
2665 
2666 		if (list_empty(&bch_cache_sets) &&
2667 		    list_empty(&uncached_devices))
2668 			goto out;
2669 
2670 		mutex_unlock(&bch_register_lock);
2671 
2672 		pr_info("Stopping all devices:\n");
2673 
2674 		/*
2675 		 * The reason bch_register_lock is not held to call
2676 		 * bch_cache_set_stop() and bcache_device_stop() is to
2677 		 * avoid potential deadlock during reboot, because cache
2678 		 * set or bcache device stopping process will acqurie
2679 		 * bch_register_lock too.
2680 		 *
2681 		 * We are safe here because bcache_is_reboot sets to
2682 		 * true already, register_bcache() will reject new
2683 		 * registration now. bcache_is_reboot also makes sure
2684 		 * bcache_reboot() won't be re-entered on by other thread,
2685 		 * so there is no race in following list iteration by
2686 		 * list_for_each_entry_safe().
2687 		 */
2688 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2689 			bch_cache_set_stop(c);
2690 
2691 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2692 			bcache_device_stop(&dc->disk);
2693 
2694 
2695 		/*
2696 		 * Give an early chance for other kthreads and
2697 		 * kworkers to stop themselves
2698 		 */
2699 		schedule();
2700 
2701 		/* What's a condition variable? */
2702 		while (1) {
2703 			long timeout = start + 10 * HZ - jiffies;
2704 
2705 			mutex_lock(&bch_register_lock);
2706 			stopped = list_empty(&bch_cache_sets) &&
2707 				list_empty(&uncached_devices);
2708 
2709 			if (timeout < 0 || stopped)
2710 				break;
2711 
2712 			prepare_to_wait(&unregister_wait, &wait,
2713 					TASK_UNINTERRUPTIBLE);
2714 
2715 			mutex_unlock(&bch_register_lock);
2716 			schedule_timeout(timeout);
2717 		}
2718 
2719 		finish_wait(&unregister_wait, &wait);
2720 
2721 		if (stopped)
2722 			pr_info("All devices stopped\n");
2723 		else
2724 			pr_notice("Timeout waiting for devices to be closed\n");
2725 out:
2726 		mutex_unlock(&bch_register_lock);
2727 	}
2728 
2729 	return NOTIFY_DONE;
2730 }
2731 
2732 static struct notifier_block reboot = {
2733 	.notifier_call	= bcache_reboot,
2734 	.priority	= INT_MAX, /* before any real devices */
2735 };
2736 
2737 static void bcache_exit(void)
2738 {
2739 	bch_debug_exit();
2740 	bch_request_exit();
2741 	if (bcache_kobj)
2742 		kobject_put(bcache_kobj);
2743 	if (bcache_wq)
2744 		destroy_workqueue(bcache_wq);
2745 	if (bch_journal_wq)
2746 		destroy_workqueue(bch_journal_wq);
2747 
2748 	if (bcache_major)
2749 		unregister_blkdev(bcache_major, "bcache");
2750 	unregister_reboot_notifier(&reboot);
2751 	mutex_destroy(&bch_register_lock);
2752 }
2753 
2754 /* Check and fixup module parameters */
2755 static void check_module_parameters(void)
2756 {
2757 	if (bch_cutoff_writeback_sync == 0)
2758 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2759 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2760 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2761 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2762 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2763 	}
2764 
2765 	if (bch_cutoff_writeback == 0)
2766 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2767 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2768 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2769 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2770 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2771 	}
2772 
2773 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2774 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2775 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2776 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2777 	}
2778 }
2779 
2780 static int __init bcache_init(void)
2781 {
2782 	static const struct attribute *files[] = {
2783 		&ksysfs_register.attr,
2784 		&ksysfs_register_quiet.attr,
2785 #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION
2786 		&ksysfs_register_async.attr,
2787 #endif
2788 		&ksysfs_pendings_cleanup.attr,
2789 		NULL
2790 	};
2791 
2792 	check_module_parameters();
2793 
2794 	mutex_init(&bch_register_lock);
2795 	init_waitqueue_head(&unregister_wait);
2796 	register_reboot_notifier(&reboot);
2797 
2798 	bcache_major = register_blkdev(0, "bcache");
2799 	if (bcache_major < 0) {
2800 		unregister_reboot_notifier(&reboot);
2801 		mutex_destroy(&bch_register_lock);
2802 		return bcache_major;
2803 	}
2804 
2805 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2806 	if (!bcache_wq)
2807 		goto err;
2808 
2809 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2810 	if (!bch_journal_wq)
2811 		goto err;
2812 
2813 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2814 	if (!bcache_kobj)
2815 		goto err;
2816 
2817 	if (bch_request_init() ||
2818 	    sysfs_create_files(bcache_kobj, files))
2819 		goto err;
2820 
2821 	bch_debug_init();
2822 	closure_debug_init();
2823 
2824 	bcache_is_reboot = false;
2825 
2826 	return 0;
2827 err:
2828 	bcache_exit();
2829 	return -ENOMEM;
2830 }
2831 
2832 /*
2833  * Module hooks
2834  */
2835 module_exit(bcache_exit);
2836 module_init(bcache_init);
2837 
2838 module_param(bch_cutoff_writeback, uint, 0);
2839 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2840 
2841 module_param(bch_cutoff_writeback_sync, uint, 0);
2842 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2843 
2844 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2845 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2846 MODULE_LICENSE("GPL");
2847