1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 17 #include <linux/blkdev.h> 18 #include <linux/debugfs.h> 19 #include <linux/genhd.h> 20 #include <linux/idr.h> 21 #include <linux/kthread.h> 22 #include <linux/workqueue.h> 23 #include <linux/module.h> 24 #include <linux/random.h> 25 #include <linux/reboot.h> 26 #include <linux/sysfs.h> 27 28 unsigned int bch_cutoff_writeback; 29 unsigned int bch_cutoff_writeback_sync; 30 31 static const char bcache_magic[] = { 32 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 33 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 34 }; 35 36 static const char invalid_uuid[] = { 37 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 38 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 39 }; 40 41 static struct kobject *bcache_kobj; 42 struct mutex bch_register_lock; 43 bool bcache_is_reboot; 44 LIST_HEAD(bch_cache_sets); 45 static LIST_HEAD(uncached_devices); 46 47 static int bcache_major; 48 static DEFINE_IDA(bcache_device_idx); 49 static wait_queue_head_t unregister_wait; 50 struct workqueue_struct *bcache_wq; 51 struct workqueue_struct *bch_journal_wq; 52 53 54 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 55 /* limitation of partitions number on single bcache device */ 56 #define BCACHE_MINORS 128 57 /* limitation of bcache devices number on single system */ 58 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 59 60 /* Superblock */ 61 62 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 63 struct cache_sb_disk **res) 64 { 65 const char *err; 66 struct cache_sb_disk *s; 67 struct page *page; 68 unsigned int i; 69 70 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 71 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 72 if (IS_ERR(page)) 73 return "IO error"; 74 s = page_address(page) + offset_in_page(SB_OFFSET); 75 76 sb->offset = le64_to_cpu(s->offset); 77 sb->version = le64_to_cpu(s->version); 78 79 memcpy(sb->magic, s->magic, 16); 80 memcpy(sb->uuid, s->uuid, 16); 81 memcpy(sb->set_uuid, s->set_uuid, 16); 82 memcpy(sb->label, s->label, SB_LABEL_SIZE); 83 84 sb->flags = le64_to_cpu(s->flags); 85 sb->seq = le64_to_cpu(s->seq); 86 sb->last_mount = le32_to_cpu(s->last_mount); 87 sb->first_bucket = le16_to_cpu(s->first_bucket); 88 sb->keys = le16_to_cpu(s->keys); 89 90 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 91 sb->d[i] = le64_to_cpu(s->d[i]); 92 93 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 94 sb->version, sb->flags, sb->seq, sb->keys); 95 96 err = "Not a bcache superblock (bad offset)"; 97 if (sb->offset != SB_SECTOR) 98 goto err; 99 100 err = "Not a bcache superblock (bad magic)"; 101 if (memcmp(sb->magic, bcache_magic, 16)) 102 goto err; 103 104 err = "Too many journal buckets"; 105 if (sb->keys > SB_JOURNAL_BUCKETS) 106 goto err; 107 108 err = "Bad checksum"; 109 if (s->csum != csum_set(s)) 110 goto err; 111 112 err = "Bad UUID"; 113 if (bch_is_zero(sb->uuid, 16)) 114 goto err; 115 116 sb->block_size = le16_to_cpu(s->block_size); 117 118 err = "Superblock block size smaller than device block size"; 119 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 120 goto err; 121 122 switch (sb->version) { 123 case BCACHE_SB_VERSION_BDEV: 124 sb->data_offset = BDEV_DATA_START_DEFAULT; 125 break; 126 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 127 sb->data_offset = le64_to_cpu(s->data_offset); 128 129 err = "Bad data offset"; 130 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 131 goto err; 132 133 break; 134 case BCACHE_SB_VERSION_CDEV: 135 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 136 sb->nbuckets = le64_to_cpu(s->nbuckets); 137 sb->bucket_size = le16_to_cpu(s->bucket_size); 138 139 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 140 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 141 142 err = "Too many buckets"; 143 if (sb->nbuckets > LONG_MAX) 144 goto err; 145 146 err = "Not enough buckets"; 147 if (sb->nbuckets < 1 << 7) 148 goto err; 149 150 err = "Bad block/bucket size"; 151 if (!is_power_of_2(sb->block_size) || 152 sb->block_size > PAGE_SECTORS || 153 !is_power_of_2(sb->bucket_size) || 154 sb->bucket_size < PAGE_SECTORS) 155 goto err; 156 157 err = "Invalid superblock: device too small"; 158 if (get_capacity(bdev->bd_disk) < 159 sb->bucket_size * sb->nbuckets) 160 goto err; 161 162 err = "Bad UUID"; 163 if (bch_is_zero(sb->set_uuid, 16)) 164 goto err; 165 166 err = "Bad cache device number in set"; 167 if (!sb->nr_in_set || 168 sb->nr_in_set <= sb->nr_this_dev || 169 sb->nr_in_set > MAX_CACHES_PER_SET) 170 goto err; 171 172 err = "Journal buckets not sequential"; 173 for (i = 0; i < sb->keys; i++) 174 if (sb->d[i] != sb->first_bucket + i) 175 goto err; 176 177 err = "Too many journal buckets"; 178 if (sb->first_bucket + sb->keys > sb->nbuckets) 179 goto err; 180 181 err = "Invalid superblock: first bucket comes before end of super"; 182 if (sb->first_bucket * sb->bucket_size < 16) 183 goto err; 184 185 break; 186 default: 187 err = "Unsupported superblock version"; 188 goto err; 189 } 190 191 sb->last_mount = (u32)ktime_get_real_seconds(); 192 *res = s; 193 return NULL; 194 err: 195 put_page(page); 196 return err; 197 } 198 199 static void write_bdev_super_endio(struct bio *bio) 200 { 201 struct cached_dev *dc = bio->bi_private; 202 203 if (bio->bi_status) 204 bch_count_backing_io_errors(dc, bio); 205 206 closure_put(&dc->sb_write); 207 } 208 209 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 210 struct bio *bio) 211 { 212 unsigned int i; 213 214 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 215 bio->bi_iter.bi_sector = SB_SECTOR; 216 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 217 offset_in_page(out)); 218 219 out->offset = cpu_to_le64(sb->offset); 220 out->version = cpu_to_le64(sb->version); 221 222 memcpy(out->uuid, sb->uuid, 16); 223 memcpy(out->set_uuid, sb->set_uuid, 16); 224 memcpy(out->label, sb->label, SB_LABEL_SIZE); 225 226 out->flags = cpu_to_le64(sb->flags); 227 out->seq = cpu_to_le64(sb->seq); 228 229 out->last_mount = cpu_to_le32(sb->last_mount); 230 out->first_bucket = cpu_to_le16(sb->first_bucket); 231 out->keys = cpu_to_le16(sb->keys); 232 233 for (i = 0; i < sb->keys; i++) 234 out->d[i] = cpu_to_le64(sb->d[i]); 235 236 out->csum = csum_set(out); 237 238 pr_debug("ver %llu, flags %llu, seq %llu\n", 239 sb->version, sb->flags, sb->seq); 240 241 submit_bio(bio); 242 } 243 244 static void bch_write_bdev_super_unlock(struct closure *cl) 245 { 246 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 247 248 up(&dc->sb_write_mutex); 249 } 250 251 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 252 { 253 struct closure *cl = &dc->sb_write; 254 struct bio *bio = &dc->sb_bio; 255 256 down(&dc->sb_write_mutex); 257 closure_init(cl, parent); 258 259 bio_init(bio, dc->sb_bv, 1); 260 bio_set_dev(bio, dc->bdev); 261 bio->bi_end_io = write_bdev_super_endio; 262 bio->bi_private = dc; 263 264 closure_get(cl); 265 /* I/O request sent to backing device */ 266 __write_super(&dc->sb, dc->sb_disk, bio); 267 268 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 269 } 270 271 static void write_super_endio(struct bio *bio) 272 { 273 struct cache *ca = bio->bi_private; 274 275 /* is_read = 0 */ 276 bch_count_io_errors(ca, bio->bi_status, 0, 277 "writing superblock"); 278 closure_put(&ca->set->sb_write); 279 } 280 281 static void bcache_write_super_unlock(struct closure *cl) 282 { 283 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 284 285 up(&c->sb_write_mutex); 286 } 287 288 void bcache_write_super(struct cache_set *c) 289 { 290 struct closure *cl = &c->sb_write; 291 struct cache *ca; 292 unsigned int i; 293 294 down(&c->sb_write_mutex); 295 closure_init(cl, &c->cl); 296 297 c->sb.seq++; 298 299 for_each_cache(ca, c, i) { 300 struct bio *bio = &ca->sb_bio; 301 302 ca->sb.version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 303 ca->sb.seq = c->sb.seq; 304 ca->sb.last_mount = c->sb.last_mount; 305 306 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 307 308 bio_init(bio, ca->sb_bv, 1); 309 bio_set_dev(bio, ca->bdev); 310 bio->bi_end_io = write_super_endio; 311 bio->bi_private = ca; 312 313 closure_get(cl); 314 __write_super(&ca->sb, ca->sb_disk, bio); 315 } 316 317 closure_return_with_destructor(cl, bcache_write_super_unlock); 318 } 319 320 /* UUID io */ 321 322 static void uuid_endio(struct bio *bio) 323 { 324 struct closure *cl = bio->bi_private; 325 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 326 327 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 328 bch_bbio_free(bio, c); 329 closure_put(cl); 330 } 331 332 static void uuid_io_unlock(struct closure *cl) 333 { 334 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 335 336 up(&c->uuid_write_mutex); 337 } 338 339 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 340 struct bkey *k, struct closure *parent) 341 { 342 struct closure *cl = &c->uuid_write; 343 struct uuid_entry *u; 344 unsigned int i; 345 char buf[80]; 346 347 BUG_ON(!parent); 348 down(&c->uuid_write_mutex); 349 closure_init(cl, parent); 350 351 for (i = 0; i < KEY_PTRS(k); i++) { 352 struct bio *bio = bch_bbio_alloc(c); 353 354 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 355 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 356 357 bio->bi_end_io = uuid_endio; 358 bio->bi_private = cl; 359 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 360 bch_bio_map(bio, c->uuids); 361 362 bch_submit_bbio(bio, c, k, i); 363 364 if (op != REQ_OP_WRITE) 365 break; 366 } 367 368 bch_extent_to_text(buf, sizeof(buf), k); 369 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 370 371 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 372 if (!bch_is_zero(u->uuid, 16)) 373 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 374 u - c->uuids, u->uuid, u->label, 375 u->first_reg, u->last_reg, u->invalidated); 376 377 closure_return_with_destructor(cl, uuid_io_unlock); 378 } 379 380 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 381 { 382 struct bkey *k = &j->uuid_bucket; 383 384 if (__bch_btree_ptr_invalid(c, k)) 385 return "bad uuid pointer"; 386 387 bkey_copy(&c->uuid_bucket, k); 388 uuid_io(c, REQ_OP_READ, 0, k, cl); 389 390 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 391 struct uuid_entry_v0 *u0 = (void *) c->uuids; 392 struct uuid_entry *u1 = (void *) c->uuids; 393 int i; 394 395 closure_sync(cl); 396 397 /* 398 * Since the new uuid entry is bigger than the old, we have to 399 * convert starting at the highest memory address and work down 400 * in order to do it in place 401 */ 402 403 for (i = c->nr_uuids - 1; 404 i >= 0; 405 --i) { 406 memcpy(u1[i].uuid, u0[i].uuid, 16); 407 memcpy(u1[i].label, u0[i].label, 32); 408 409 u1[i].first_reg = u0[i].first_reg; 410 u1[i].last_reg = u0[i].last_reg; 411 u1[i].invalidated = u0[i].invalidated; 412 413 u1[i].flags = 0; 414 u1[i].sectors = 0; 415 } 416 } 417 418 return NULL; 419 } 420 421 static int __uuid_write(struct cache_set *c) 422 { 423 BKEY_PADDED(key) k; 424 struct closure cl; 425 struct cache *ca; 426 427 closure_init_stack(&cl); 428 lockdep_assert_held(&bch_register_lock); 429 430 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 431 return 1; 432 433 SET_KEY_SIZE(&k.key, c->sb.bucket_size); 434 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 435 closure_sync(&cl); 436 437 /* Only one bucket used for uuid write */ 438 ca = PTR_CACHE(c, &k.key, 0); 439 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 440 441 bkey_copy(&c->uuid_bucket, &k.key); 442 bkey_put(c, &k.key); 443 return 0; 444 } 445 446 int bch_uuid_write(struct cache_set *c) 447 { 448 int ret = __uuid_write(c); 449 450 if (!ret) 451 bch_journal_meta(c, NULL); 452 453 return ret; 454 } 455 456 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 457 { 458 struct uuid_entry *u; 459 460 for (u = c->uuids; 461 u < c->uuids + c->nr_uuids; u++) 462 if (!memcmp(u->uuid, uuid, 16)) 463 return u; 464 465 return NULL; 466 } 467 468 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 469 { 470 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 471 472 return uuid_find(c, zero_uuid); 473 } 474 475 /* 476 * Bucket priorities/gens: 477 * 478 * For each bucket, we store on disk its 479 * 8 bit gen 480 * 16 bit priority 481 * 482 * See alloc.c for an explanation of the gen. The priority is used to implement 483 * lru (and in the future other) cache replacement policies; for most purposes 484 * it's just an opaque integer. 485 * 486 * The gens and the priorities don't have a whole lot to do with each other, and 487 * it's actually the gens that must be written out at specific times - it's no 488 * big deal if the priorities don't get written, if we lose them we just reuse 489 * buckets in suboptimal order. 490 * 491 * On disk they're stored in a packed array, and in as many buckets are required 492 * to fit them all. The buckets we use to store them form a list; the journal 493 * header points to the first bucket, the first bucket points to the second 494 * bucket, et cetera. 495 * 496 * This code is used by the allocation code; periodically (whenever it runs out 497 * of buckets to allocate from) the allocation code will invalidate some 498 * buckets, but it can't use those buckets until their new gens are safely on 499 * disk. 500 */ 501 502 static void prio_endio(struct bio *bio) 503 { 504 struct cache *ca = bio->bi_private; 505 506 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 507 bch_bbio_free(bio, ca->set); 508 closure_put(&ca->prio); 509 } 510 511 static void prio_io(struct cache *ca, uint64_t bucket, int op, 512 unsigned long op_flags) 513 { 514 struct closure *cl = &ca->prio; 515 struct bio *bio = bch_bbio_alloc(ca->set); 516 517 closure_init_stack(cl); 518 519 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 520 bio_set_dev(bio, ca->bdev); 521 bio->bi_iter.bi_size = bucket_bytes(ca); 522 523 bio->bi_end_io = prio_endio; 524 bio->bi_private = ca; 525 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 526 bch_bio_map(bio, ca->disk_buckets); 527 528 closure_bio_submit(ca->set, bio, &ca->prio); 529 closure_sync(cl); 530 } 531 532 int bch_prio_write(struct cache *ca, bool wait) 533 { 534 int i; 535 struct bucket *b; 536 struct closure cl; 537 538 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 539 fifo_used(&ca->free[RESERVE_PRIO]), 540 fifo_used(&ca->free[RESERVE_NONE]), 541 fifo_used(&ca->free_inc)); 542 543 /* 544 * Pre-check if there are enough free buckets. In the non-blocking 545 * scenario it's better to fail early rather than starting to allocate 546 * buckets and do a cleanup later in case of failure. 547 */ 548 if (!wait) { 549 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 550 fifo_used(&ca->free[RESERVE_NONE]); 551 if (prio_buckets(ca) > avail) 552 return -ENOMEM; 553 } 554 555 closure_init_stack(&cl); 556 557 lockdep_assert_held(&ca->set->bucket_lock); 558 559 ca->disk_buckets->seq++; 560 561 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 562 &ca->meta_sectors_written); 563 564 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 565 long bucket; 566 struct prio_set *p = ca->disk_buckets; 567 struct bucket_disk *d = p->data; 568 struct bucket_disk *end = d + prios_per_bucket(ca); 569 570 for (b = ca->buckets + i * prios_per_bucket(ca); 571 b < ca->buckets + ca->sb.nbuckets && d < end; 572 b++, d++) { 573 d->prio = cpu_to_le16(b->prio); 574 d->gen = b->gen; 575 } 576 577 p->next_bucket = ca->prio_buckets[i + 1]; 578 p->magic = pset_magic(&ca->sb); 579 p->csum = bch_crc64(&p->magic, bucket_bytes(ca) - 8); 580 581 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 582 BUG_ON(bucket == -1); 583 584 mutex_unlock(&ca->set->bucket_lock); 585 prio_io(ca, bucket, REQ_OP_WRITE, 0); 586 mutex_lock(&ca->set->bucket_lock); 587 588 ca->prio_buckets[i] = bucket; 589 atomic_dec_bug(&ca->buckets[bucket].pin); 590 } 591 592 mutex_unlock(&ca->set->bucket_lock); 593 594 bch_journal_meta(ca->set, &cl); 595 closure_sync(&cl); 596 597 mutex_lock(&ca->set->bucket_lock); 598 599 /* 600 * Don't want the old priorities to get garbage collected until after we 601 * finish writing the new ones, and they're journalled 602 */ 603 for (i = 0; i < prio_buckets(ca); i++) { 604 if (ca->prio_last_buckets[i]) 605 __bch_bucket_free(ca, 606 &ca->buckets[ca->prio_last_buckets[i]]); 607 608 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 609 } 610 return 0; 611 } 612 613 static int prio_read(struct cache *ca, uint64_t bucket) 614 { 615 struct prio_set *p = ca->disk_buckets; 616 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 617 struct bucket *b; 618 unsigned int bucket_nr = 0; 619 int ret = -EIO; 620 621 for (b = ca->buckets; 622 b < ca->buckets + ca->sb.nbuckets; 623 b++, d++) { 624 if (d == end) { 625 ca->prio_buckets[bucket_nr] = bucket; 626 ca->prio_last_buckets[bucket_nr] = bucket; 627 bucket_nr++; 628 629 prio_io(ca, bucket, REQ_OP_READ, 0); 630 631 if (p->csum != 632 bch_crc64(&p->magic, bucket_bytes(ca) - 8)) { 633 pr_warn("bad csum reading priorities\n"); 634 goto out; 635 } 636 637 if (p->magic != pset_magic(&ca->sb)) { 638 pr_warn("bad magic reading priorities\n"); 639 goto out; 640 } 641 642 bucket = p->next_bucket; 643 d = p->data; 644 } 645 646 b->prio = le16_to_cpu(d->prio); 647 b->gen = b->last_gc = d->gen; 648 } 649 650 ret = 0; 651 out: 652 return ret; 653 } 654 655 /* Bcache device */ 656 657 static int open_dev(struct block_device *b, fmode_t mode) 658 { 659 struct bcache_device *d = b->bd_disk->private_data; 660 661 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 662 return -ENXIO; 663 664 closure_get(&d->cl); 665 return 0; 666 } 667 668 static void release_dev(struct gendisk *b, fmode_t mode) 669 { 670 struct bcache_device *d = b->private_data; 671 672 closure_put(&d->cl); 673 } 674 675 static int ioctl_dev(struct block_device *b, fmode_t mode, 676 unsigned int cmd, unsigned long arg) 677 { 678 struct bcache_device *d = b->bd_disk->private_data; 679 680 return d->ioctl(d, mode, cmd, arg); 681 } 682 683 static const struct block_device_operations bcache_cached_ops = { 684 .submit_bio = cached_dev_submit_bio, 685 .open = open_dev, 686 .release = release_dev, 687 .ioctl = ioctl_dev, 688 .owner = THIS_MODULE, 689 }; 690 691 static const struct block_device_operations bcache_flash_ops = { 692 .submit_bio = flash_dev_submit_bio, 693 .open = open_dev, 694 .release = release_dev, 695 .ioctl = ioctl_dev, 696 .owner = THIS_MODULE, 697 }; 698 699 void bcache_device_stop(struct bcache_device *d) 700 { 701 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 702 /* 703 * closure_fn set to 704 * - cached device: cached_dev_flush() 705 * - flash dev: flash_dev_flush() 706 */ 707 closure_queue(&d->cl); 708 } 709 710 static void bcache_device_unlink(struct bcache_device *d) 711 { 712 lockdep_assert_held(&bch_register_lock); 713 714 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 715 unsigned int i; 716 struct cache *ca; 717 718 sysfs_remove_link(&d->c->kobj, d->name); 719 sysfs_remove_link(&d->kobj, "cache"); 720 721 for_each_cache(ca, d->c, i) 722 bd_unlink_disk_holder(ca->bdev, d->disk); 723 } 724 } 725 726 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 727 const char *name) 728 { 729 unsigned int i; 730 struct cache *ca; 731 int ret; 732 733 for_each_cache(ca, d->c, i) 734 bd_link_disk_holder(ca->bdev, d->disk); 735 736 snprintf(d->name, BCACHEDEVNAME_SIZE, 737 "%s%u", name, d->id); 738 739 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 740 if (ret < 0) 741 pr_err("Couldn't create device -> cache set symlink\n"); 742 743 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 744 if (ret < 0) 745 pr_err("Couldn't create cache set -> device symlink\n"); 746 747 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 748 } 749 750 static void bcache_device_detach(struct bcache_device *d) 751 { 752 lockdep_assert_held(&bch_register_lock); 753 754 atomic_dec(&d->c->attached_dev_nr); 755 756 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 757 struct uuid_entry *u = d->c->uuids + d->id; 758 759 SET_UUID_FLASH_ONLY(u, 0); 760 memcpy(u->uuid, invalid_uuid, 16); 761 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 762 bch_uuid_write(d->c); 763 } 764 765 bcache_device_unlink(d); 766 767 d->c->devices[d->id] = NULL; 768 closure_put(&d->c->caching); 769 d->c = NULL; 770 } 771 772 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 773 unsigned int id) 774 { 775 d->id = id; 776 d->c = c; 777 c->devices[id] = d; 778 779 if (id >= c->devices_max_used) 780 c->devices_max_used = id + 1; 781 782 closure_get(&c->caching); 783 } 784 785 static inline int first_minor_to_idx(int first_minor) 786 { 787 return (first_minor/BCACHE_MINORS); 788 } 789 790 static inline int idx_to_first_minor(int idx) 791 { 792 return (idx * BCACHE_MINORS); 793 } 794 795 static void bcache_device_free(struct bcache_device *d) 796 { 797 struct gendisk *disk = d->disk; 798 799 lockdep_assert_held(&bch_register_lock); 800 801 if (disk) 802 pr_info("%s stopped\n", disk->disk_name); 803 else 804 pr_err("bcache device (NULL gendisk) stopped\n"); 805 806 if (d->c) 807 bcache_device_detach(d); 808 809 if (disk) { 810 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 811 812 if (disk_added) 813 del_gendisk(disk); 814 815 if (disk->queue) 816 blk_cleanup_queue(disk->queue); 817 818 ida_simple_remove(&bcache_device_idx, 819 first_minor_to_idx(disk->first_minor)); 820 if (disk_added) 821 put_disk(disk); 822 } 823 824 bioset_exit(&d->bio_split); 825 kvfree(d->full_dirty_stripes); 826 kvfree(d->stripe_sectors_dirty); 827 828 closure_debug_destroy(&d->cl); 829 } 830 831 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 832 sector_t sectors, struct block_device *cached_bdev, 833 const struct block_device_operations *ops) 834 { 835 struct request_queue *q; 836 const size_t max_stripes = min_t(size_t, INT_MAX, 837 SIZE_MAX / sizeof(atomic_t)); 838 size_t n; 839 int idx; 840 841 if (!d->stripe_size) 842 d->stripe_size = 1 << 31; 843 844 d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 845 846 if (!d->nr_stripes || d->nr_stripes > max_stripes) { 847 pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n", 848 (unsigned int)d->nr_stripes); 849 return -ENOMEM; 850 } 851 852 n = d->nr_stripes * sizeof(atomic_t); 853 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 854 if (!d->stripe_sectors_dirty) 855 return -ENOMEM; 856 857 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 858 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 859 if (!d->full_dirty_stripes) 860 return -ENOMEM; 861 862 idx = ida_simple_get(&bcache_device_idx, 0, 863 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 864 if (idx < 0) 865 return idx; 866 867 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 868 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 869 goto err; 870 871 d->disk = alloc_disk(BCACHE_MINORS); 872 if (!d->disk) 873 goto err; 874 875 set_capacity(d->disk, sectors); 876 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 877 878 d->disk->major = bcache_major; 879 d->disk->first_minor = idx_to_first_minor(idx); 880 d->disk->fops = ops; 881 d->disk->private_data = d; 882 883 q = blk_alloc_queue(NUMA_NO_NODE); 884 if (!q) 885 return -ENOMEM; 886 887 d->disk->queue = q; 888 q->limits.max_hw_sectors = UINT_MAX; 889 q->limits.max_sectors = UINT_MAX; 890 q->limits.max_segment_size = UINT_MAX; 891 q->limits.max_segments = BIO_MAX_PAGES; 892 blk_queue_max_discard_sectors(q, UINT_MAX); 893 q->limits.discard_granularity = 512; 894 q->limits.io_min = block_size; 895 q->limits.logical_block_size = block_size; 896 q->limits.physical_block_size = block_size; 897 898 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 899 /* 900 * This should only happen with BCACHE_SB_VERSION_BDEV. 901 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 902 */ 903 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 904 d->disk->disk_name, q->limits.logical_block_size, 905 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 906 907 /* This also adjusts physical block size/min io size if needed */ 908 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 909 } 910 911 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 912 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 913 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 914 915 blk_queue_write_cache(q, true, true); 916 917 return 0; 918 919 err: 920 ida_simple_remove(&bcache_device_idx, idx); 921 return -ENOMEM; 922 923 } 924 925 /* Cached device */ 926 927 static void calc_cached_dev_sectors(struct cache_set *c) 928 { 929 uint64_t sectors = 0; 930 struct cached_dev *dc; 931 932 list_for_each_entry(dc, &c->cached_devs, list) 933 sectors += bdev_sectors(dc->bdev); 934 935 c->cached_dev_sectors = sectors; 936 } 937 938 #define BACKING_DEV_OFFLINE_TIMEOUT 5 939 static int cached_dev_status_update(void *arg) 940 { 941 struct cached_dev *dc = arg; 942 struct request_queue *q; 943 944 /* 945 * If this delayed worker is stopping outside, directly quit here. 946 * dc->io_disable might be set via sysfs interface, so check it 947 * here too. 948 */ 949 while (!kthread_should_stop() && !dc->io_disable) { 950 q = bdev_get_queue(dc->bdev); 951 if (blk_queue_dying(q)) 952 dc->offline_seconds++; 953 else 954 dc->offline_seconds = 0; 955 956 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 957 pr_err("%s: device offline for %d seconds\n", 958 dc->backing_dev_name, 959 BACKING_DEV_OFFLINE_TIMEOUT); 960 pr_err("%s: disable I/O request due to backing device offline\n", 961 dc->disk.name); 962 dc->io_disable = true; 963 /* let others know earlier that io_disable is true */ 964 smp_mb(); 965 bcache_device_stop(&dc->disk); 966 break; 967 } 968 schedule_timeout_interruptible(HZ); 969 } 970 971 wait_for_kthread_stop(); 972 return 0; 973 } 974 975 976 int bch_cached_dev_run(struct cached_dev *dc) 977 { 978 struct bcache_device *d = &dc->disk; 979 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 980 char *env[] = { 981 "DRIVER=bcache", 982 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 983 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 984 NULL, 985 }; 986 987 if (dc->io_disable) { 988 pr_err("I/O disabled on cached dev %s\n", 989 dc->backing_dev_name); 990 kfree(env[1]); 991 kfree(env[2]); 992 kfree(buf); 993 return -EIO; 994 } 995 996 if (atomic_xchg(&dc->running, 1)) { 997 kfree(env[1]); 998 kfree(env[2]); 999 kfree(buf); 1000 pr_info("cached dev %s is running already\n", 1001 dc->backing_dev_name); 1002 return -EBUSY; 1003 } 1004 1005 if (!d->c && 1006 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1007 struct closure cl; 1008 1009 closure_init_stack(&cl); 1010 1011 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1012 bch_write_bdev_super(dc, &cl); 1013 closure_sync(&cl); 1014 } 1015 1016 add_disk(d->disk); 1017 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1018 /* 1019 * won't show up in the uevent file, use udevadm monitor -e instead 1020 * only class / kset properties are persistent 1021 */ 1022 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1023 kfree(env[1]); 1024 kfree(env[2]); 1025 kfree(buf); 1026 1027 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1028 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1029 &d->kobj, "bcache")) { 1030 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1031 return -ENOMEM; 1032 } 1033 1034 dc->status_update_thread = kthread_run(cached_dev_status_update, 1035 dc, "bcache_status_update"); 1036 if (IS_ERR(dc->status_update_thread)) { 1037 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1038 } 1039 1040 return 0; 1041 } 1042 1043 /* 1044 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1045 * work dc->writeback_rate_update is running. Wait until the routine 1046 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1047 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1048 * seconds, give up waiting here and continue to cancel it too. 1049 */ 1050 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1051 { 1052 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1053 1054 do { 1055 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1056 &dc->disk.flags)) 1057 break; 1058 time_out--; 1059 schedule_timeout_interruptible(1); 1060 } while (time_out > 0); 1061 1062 if (time_out == 0) 1063 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1064 1065 cancel_delayed_work_sync(&dc->writeback_rate_update); 1066 } 1067 1068 static void cached_dev_detach_finish(struct work_struct *w) 1069 { 1070 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1071 struct closure cl; 1072 1073 closure_init_stack(&cl); 1074 1075 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1076 BUG_ON(refcount_read(&dc->count)); 1077 1078 1079 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1080 cancel_writeback_rate_update_dwork(dc); 1081 1082 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1083 kthread_stop(dc->writeback_thread); 1084 dc->writeback_thread = NULL; 1085 } 1086 1087 memset(&dc->sb.set_uuid, 0, 16); 1088 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1089 1090 bch_write_bdev_super(dc, &cl); 1091 closure_sync(&cl); 1092 1093 mutex_lock(&bch_register_lock); 1094 1095 calc_cached_dev_sectors(dc->disk.c); 1096 bcache_device_detach(&dc->disk); 1097 list_move(&dc->list, &uncached_devices); 1098 1099 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1100 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1101 1102 mutex_unlock(&bch_register_lock); 1103 1104 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1105 1106 /* Drop ref we took in cached_dev_detach() */ 1107 closure_put(&dc->disk.cl); 1108 } 1109 1110 void bch_cached_dev_detach(struct cached_dev *dc) 1111 { 1112 lockdep_assert_held(&bch_register_lock); 1113 1114 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1115 return; 1116 1117 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1118 return; 1119 1120 /* 1121 * Block the device from being closed and freed until we're finished 1122 * detaching 1123 */ 1124 closure_get(&dc->disk.cl); 1125 1126 bch_writeback_queue(dc); 1127 1128 cached_dev_put(dc); 1129 } 1130 1131 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1132 uint8_t *set_uuid) 1133 { 1134 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1135 struct uuid_entry *u; 1136 struct cached_dev *exist_dc, *t; 1137 int ret = 0; 1138 1139 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1140 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1141 return -ENOENT; 1142 1143 if (dc->disk.c) { 1144 pr_err("Can't attach %s: already attached\n", 1145 dc->backing_dev_name); 1146 return -EINVAL; 1147 } 1148 1149 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1150 pr_err("Can't attach %s: shutting down\n", 1151 dc->backing_dev_name); 1152 return -EINVAL; 1153 } 1154 1155 if (dc->sb.block_size < c->sb.block_size) { 1156 /* Will die */ 1157 pr_err("Couldn't attach %s: block size less than set's block size\n", 1158 dc->backing_dev_name); 1159 return -EINVAL; 1160 } 1161 1162 /* Check whether already attached */ 1163 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1164 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1165 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1166 dc->backing_dev_name); 1167 1168 return -EINVAL; 1169 } 1170 } 1171 1172 u = uuid_find(c, dc->sb.uuid); 1173 1174 if (u && 1175 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1176 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1177 memcpy(u->uuid, invalid_uuid, 16); 1178 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1179 u = NULL; 1180 } 1181 1182 if (!u) { 1183 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1184 pr_err("Couldn't find uuid for %s in set\n", 1185 dc->backing_dev_name); 1186 return -ENOENT; 1187 } 1188 1189 u = uuid_find_empty(c); 1190 if (!u) { 1191 pr_err("Not caching %s, no room for UUID\n", 1192 dc->backing_dev_name); 1193 return -EINVAL; 1194 } 1195 } 1196 1197 /* 1198 * Deadlocks since we're called via sysfs... 1199 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1200 */ 1201 1202 if (bch_is_zero(u->uuid, 16)) { 1203 struct closure cl; 1204 1205 closure_init_stack(&cl); 1206 1207 memcpy(u->uuid, dc->sb.uuid, 16); 1208 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1209 u->first_reg = u->last_reg = rtime; 1210 bch_uuid_write(c); 1211 1212 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1213 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1214 1215 bch_write_bdev_super(dc, &cl); 1216 closure_sync(&cl); 1217 } else { 1218 u->last_reg = rtime; 1219 bch_uuid_write(c); 1220 } 1221 1222 bcache_device_attach(&dc->disk, c, u - c->uuids); 1223 list_move(&dc->list, &c->cached_devs); 1224 calc_cached_dev_sectors(c); 1225 1226 /* 1227 * dc->c must be set before dc->count != 0 - paired with the mb in 1228 * cached_dev_get() 1229 */ 1230 smp_wmb(); 1231 refcount_set(&dc->count, 1); 1232 1233 /* Block writeback thread, but spawn it */ 1234 down_write(&dc->writeback_lock); 1235 if (bch_cached_dev_writeback_start(dc)) { 1236 up_write(&dc->writeback_lock); 1237 pr_err("Couldn't start writeback facilities for %s\n", 1238 dc->disk.disk->disk_name); 1239 return -ENOMEM; 1240 } 1241 1242 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1243 atomic_set(&dc->has_dirty, 1); 1244 bch_writeback_queue(dc); 1245 } 1246 1247 bch_sectors_dirty_init(&dc->disk); 1248 1249 ret = bch_cached_dev_run(dc); 1250 if (ret && (ret != -EBUSY)) { 1251 up_write(&dc->writeback_lock); 1252 /* 1253 * bch_register_lock is held, bcache_device_stop() is not 1254 * able to be directly called. The kthread and kworker 1255 * created previously in bch_cached_dev_writeback_start() 1256 * have to be stopped manually here. 1257 */ 1258 kthread_stop(dc->writeback_thread); 1259 cancel_writeback_rate_update_dwork(dc); 1260 pr_err("Couldn't run cached device %s\n", 1261 dc->backing_dev_name); 1262 return ret; 1263 } 1264 1265 bcache_device_link(&dc->disk, c, "bdev"); 1266 atomic_inc(&c->attached_dev_nr); 1267 1268 /* Allow the writeback thread to proceed */ 1269 up_write(&dc->writeback_lock); 1270 1271 pr_info("Caching %s as %s on set %pU\n", 1272 dc->backing_dev_name, 1273 dc->disk.disk->disk_name, 1274 dc->disk.c->sb.set_uuid); 1275 return 0; 1276 } 1277 1278 /* when dc->disk.kobj released */ 1279 void bch_cached_dev_release(struct kobject *kobj) 1280 { 1281 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1282 disk.kobj); 1283 kfree(dc); 1284 module_put(THIS_MODULE); 1285 } 1286 1287 static void cached_dev_free(struct closure *cl) 1288 { 1289 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1290 1291 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1292 cancel_writeback_rate_update_dwork(dc); 1293 1294 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1295 kthread_stop(dc->writeback_thread); 1296 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1297 kthread_stop(dc->status_update_thread); 1298 1299 mutex_lock(&bch_register_lock); 1300 1301 if (atomic_read(&dc->running)) 1302 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1303 bcache_device_free(&dc->disk); 1304 list_del(&dc->list); 1305 1306 mutex_unlock(&bch_register_lock); 1307 1308 if (dc->sb_disk) 1309 put_page(virt_to_page(dc->sb_disk)); 1310 1311 if (!IS_ERR_OR_NULL(dc->bdev)) 1312 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1313 1314 wake_up(&unregister_wait); 1315 1316 kobject_put(&dc->disk.kobj); 1317 } 1318 1319 static void cached_dev_flush(struct closure *cl) 1320 { 1321 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1322 struct bcache_device *d = &dc->disk; 1323 1324 mutex_lock(&bch_register_lock); 1325 bcache_device_unlink(d); 1326 mutex_unlock(&bch_register_lock); 1327 1328 bch_cache_accounting_destroy(&dc->accounting); 1329 kobject_del(&d->kobj); 1330 1331 continue_at(cl, cached_dev_free, system_wq); 1332 } 1333 1334 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1335 { 1336 int ret; 1337 struct io *io; 1338 struct request_queue *q = bdev_get_queue(dc->bdev); 1339 1340 __module_get(THIS_MODULE); 1341 INIT_LIST_HEAD(&dc->list); 1342 closure_init(&dc->disk.cl, NULL); 1343 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1344 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1345 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1346 sema_init(&dc->sb_write_mutex, 1); 1347 INIT_LIST_HEAD(&dc->io_lru); 1348 spin_lock_init(&dc->io_lock); 1349 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1350 1351 dc->sequential_cutoff = 4 << 20; 1352 1353 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1354 list_add(&io->lru, &dc->io_lru); 1355 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1356 } 1357 1358 dc->disk.stripe_size = q->limits.io_opt >> 9; 1359 1360 if (dc->disk.stripe_size) 1361 dc->partial_stripes_expensive = 1362 q->limits.raid_partial_stripes_expensive; 1363 1364 ret = bcache_device_init(&dc->disk, block_size, 1365 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1366 dc->bdev, &bcache_cached_ops); 1367 if (ret) 1368 return ret; 1369 1370 dc->disk.disk->queue->backing_dev_info->ra_pages = 1371 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1372 q->backing_dev_info->ra_pages); 1373 1374 atomic_set(&dc->io_errors, 0); 1375 dc->io_disable = false; 1376 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1377 /* default to auto */ 1378 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1379 1380 bch_cached_dev_request_init(dc); 1381 bch_cached_dev_writeback_init(dc); 1382 return 0; 1383 } 1384 1385 /* Cached device - bcache superblock */ 1386 1387 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1388 struct block_device *bdev, 1389 struct cached_dev *dc) 1390 { 1391 const char *err = "cannot allocate memory"; 1392 struct cache_set *c; 1393 int ret = -ENOMEM; 1394 1395 bdevname(bdev, dc->backing_dev_name); 1396 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1397 dc->bdev = bdev; 1398 dc->bdev->bd_holder = dc; 1399 dc->sb_disk = sb_disk; 1400 1401 if (cached_dev_init(dc, sb->block_size << 9)) 1402 goto err; 1403 1404 err = "error creating kobject"; 1405 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1406 "bcache")) 1407 goto err; 1408 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1409 goto err; 1410 1411 pr_info("registered backing device %s\n", dc->backing_dev_name); 1412 1413 list_add(&dc->list, &uncached_devices); 1414 /* attach to a matched cache set if it exists */ 1415 list_for_each_entry(c, &bch_cache_sets, list) 1416 bch_cached_dev_attach(dc, c, NULL); 1417 1418 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1419 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1420 err = "failed to run cached device"; 1421 ret = bch_cached_dev_run(dc); 1422 if (ret) 1423 goto err; 1424 } 1425 1426 return 0; 1427 err: 1428 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1429 bcache_device_stop(&dc->disk); 1430 return ret; 1431 } 1432 1433 /* Flash only volumes */ 1434 1435 /* When d->kobj released */ 1436 void bch_flash_dev_release(struct kobject *kobj) 1437 { 1438 struct bcache_device *d = container_of(kobj, struct bcache_device, 1439 kobj); 1440 kfree(d); 1441 } 1442 1443 static void flash_dev_free(struct closure *cl) 1444 { 1445 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1446 1447 mutex_lock(&bch_register_lock); 1448 atomic_long_sub(bcache_dev_sectors_dirty(d), 1449 &d->c->flash_dev_dirty_sectors); 1450 bcache_device_free(d); 1451 mutex_unlock(&bch_register_lock); 1452 kobject_put(&d->kobj); 1453 } 1454 1455 static void flash_dev_flush(struct closure *cl) 1456 { 1457 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1458 1459 mutex_lock(&bch_register_lock); 1460 bcache_device_unlink(d); 1461 mutex_unlock(&bch_register_lock); 1462 kobject_del(&d->kobj); 1463 continue_at(cl, flash_dev_free, system_wq); 1464 } 1465 1466 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1467 { 1468 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1469 GFP_KERNEL); 1470 if (!d) 1471 return -ENOMEM; 1472 1473 closure_init(&d->cl, NULL); 1474 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1475 1476 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1477 1478 if (bcache_device_init(d, block_bytes(c), u->sectors, 1479 NULL, &bcache_flash_ops)) 1480 goto err; 1481 1482 bcache_device_attach(d, c, u - c->uuids); 1483 bch_sectors_dirty_init(d); 1484 bch_flash_dev_request_init(d); 1485 add_disk(d->disk); 1486 1487 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1488 goto err; 1489 1490 bcache_device_link(d, c, "volume"); 1491 1492 return 0; 1493 err: 1494 kobject_put(&d->kobj); 1495 return -ENOMEM; 1496 } 1497 1498 static int flash_devs_run(struct cache_set *c) 1499 { 1500 int ret = 0; 1501 struct uuid_entry *u; 1502 1503 for (u = c->uuids; 1504 u < c->uuids + c->nr_uuids && !ret; 1505 u++) 1506 if (UUID_FLASH_ONLY(u)) 1507 ret = flash_dev_run(c, u); 1508 1509 return ret; 1510 } 1511 1512 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1513 { 1514 struct uuid_entry *u; 1515 1516 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1517 return -EINTR; 1518 1519 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1520 return -EPERM; 1521 1522 u = uuid_find_empty(c); 1523 if (!u) { 1524 pr_err("Can't create volume, no room for UUID\n"); 1525 return -EINVAL; 1526 } 1527 1528 get_random_bytes(u->uuid, 16); 1529 memset(u->label, 0, 32); 1530 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1531 1532 SET_UUID_FLASH_ONLY(u, 1); 1533 u->sectors = size >> 9; 1534 1535 bch_uuid_write(c); 1536 1537 return flash_dev_run(c, u); 1538 } 1539 1540 bool bch_cached_dev_error(struct cached_dev *dc) 1541 { 1542 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1543 return false; 1544 1545 dc->io_disable = true; 1546 /* make others know io_disable is true earlier */ 1547 smp_mb(); 1548 1549 pr_err("stop %s: too many IO errors on backing device %s\n", 1550 dc->disk.disk->disk_name, dc->backing_dev_name); 1551 1552 bcache_device_stop(&dc->disk); 1553 return true; 1554 } 1555 1556 /* Cache set */ 1557 1558 __printf(2, 3) 1559 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1560 { 1561 struct va_format vaf; 1562 va_list args; 1563 1564 if (c->on_error != ON_ERROR_PANIC && 1565 test_bit(CACHE_SET_STOPPING, &c->flags)) 1566 return false; 1567 1568 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1569 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1570 1571 /* 1572 * XXX: we can be called from atomic context 1573 * acquire_console_sem(); 1574 */ 1575 1576 va_start(args, fmt); 1577 1578 vaf.fmt = fmt; 1579 vaf.va = &args; 1580 1581 pr_err("error on %pU: %pV, disabling caching\n", 1582 c->sb.set_uuid, &vaf); 1583 1584 va_end(args); 1585 1586 if (c->on_error == ON_ERROR_PANIC) 1587 panic("panic forced after error\n"); 1588 1589 bch_cache_set_unregister(c); 1590 return true; 1591 } 1592 1593 /* When c->kobj released */ 1594 void bch_cache_set_release(struct kobject *kobj) 1595 { 1596 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1597 1598 kfree(c); 1599 module_put(THIS_MODULE); 1600 } 1601 1602 static void cache_set_free(struct closure *cl) 1603 { 1604 struct cache_set *c = container_of(cl, struct cache_set, cl); 1605 struct cache *ca; 1606 unsigned int i; 1607 1608 debugfs_remove(c->debug); 1609 1610 bch_open_buckets_free(c); 1611 bch_btree_cache_free(c); 1612 bch_journal_free(c); 1613 1614 mutex_lock(&bch_register_lock); 1615 for_each_cache(ca, c, i) 1616 if (ca) { 1617 ca->set = NULL; 1618 c->cache[ca->sb.nr_this_dev] = NULL; 1619 kobject_put(&ca->kobj); 1620 } 1621 1622 bch_bset_sort_state_free(&c->sort); 1623 free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c))); 1624 1625 if (c->moving_gc_wq) 1626 destroy_workqueue(c->moving_gc_wq); 1627 bioset_exit(&c->bio_split); 1628 mempool_exit(&c->fill_iter); 1629 mempool_exit(&c->bio_meta); 1630 mempool_exit(&c->search); 1631 kfree(c->devices); 1632 1633 list_del(&c->list); 1634 mutex_unlock(&bch_register_lock); 1635 1636 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid); 1637 wake_up(&unregister_wait); 1638 1639 closure_debug_destroy(&c->cl); 1640 kobject_put(&c->kobj); 1641 } 1642 1643 static void cache_set_flush(struct closure *cl) 1644 { 1645 struct cache_set *c = container_of(cl, struct cache_set, caching); 1646 struct cache *ca; 1647 struct btree *b; 1648 unsigned int i; 1649 1650 bch_cache_accounting_destroy(&c->accounting); 1651 1652 kobject_put(&c->internal); 1653 kobject_del(&c->kobj); 1654 1655 if (!IS_ERR_OR_NULL(c->gc_thread)) 1656 kthread_stop(c->gc_thread); 1657 1658 if (!IS_ERR_OR_NULL(c->root)) 1659 list_add(&c->root->list, &c->btree_cache); 1660 1661 /* 1662 * Avoid flushing cached nodes if cache set is retiring 1663 * due to too many I/O errors detected. 1664 */ 1665 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1666 list_for_each_entry(b, &c->btree_cache, list) { 1667 mutex_lock(&b->write_lock); 1668 if (btree_node_dirty(b)) 1669 __bch_btree_node_write(b, NULL); 1670 mutex_unlock(&b->write_lock); 1671 } 1672 1673 for_each_cache(ca, c, i) 1674 if (ca->alloc_thread) 1675 kthread_stop(ca->alloc_thread); 1676 1677 if (c->journal.cur) { 1678 cancel_delayed_work_sync(&c->journal.work); 1679 /* flush last journal entry if needed */ 1680 c->journal.work.work.func(&c->journal.work.work); 1681 } 1682 1683 closure_return(cl); 1684 } 1685 1686 /* 1687 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1688 * cache set is unregistering due to too many I/O errors. In this condition, 1689 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1690 * value and whether the broken cache has dirty data: 1691 * 1692 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1693 * BCH_CACHED_STOP_AUTO 0 NO 1694 * BCH_CACHED_STOP_AUTO 1 YES 1695 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1696 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1697 * 1698 * The expected behavior is, if stop_when_cache_set_failed is configured to 1699 * "auto" via sysfs interface, the bcache device will not be stopped if the 1700 * backing device is clean on the broken cache device. 1701 */ 1702 static void conditional_stop_bcache_device(struct cache_set *c, 1703 struct bcache_device *d, 1704 struct cached_dev *dc) 1705 { 1706 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1707 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1708 d->disk->disk_name, c->sb.set_uuid); 1709 bcache_device_stop(d); 1710 } else if (atomic_read(&dc->has_dirty)) { 1711 /* 1712 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1713 * and dc->has_dirty == 1 1714 */ 1715 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1716 d->disk->disk_name); 1717 /* 1718 * There might be a small time gap that cache set is 1719 * released but bcache device is not. Inside this time 1720 * gap, regular I/O requests will directly go into 1721 * backing device as no cache set attached to. This 1722 * behavior may also introduce potential inconsistence 1723 * data in writeback mode while cache is dirty. 1724 * Therefore before calling bcache_device_stop() due 1725 * to a broken cache device, dc->io_disable should be 1726 * explicitly set to true. 1727 */ 1728 dc->io_disable = true; 1729 /* make others know io_disable is true earlier */ 1730 smp_mb(); 1731 bcache_device_stop(d); 1732 } else { 1733 /* 1734 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1735 * and dc->has_dirty == 0 1736 */ 1737 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1738 d->disk->disk_name); 1739 } 1740 } 1741 1742 static void __cache_set_unregister(struct closure *cl) 1743 { 1744 struct cache_set *c = container_of(cl, struct cache_set, caching); 1745 struct cached_dev *dc; 1746 struct bcache_device *d; 1747 size_t i; 1748 1749 mutex_lock(&bch_register_lock); 1750 1751 for (i = 0; i < c->devices_max_used; i++) { 1752 d = c->devices[i]; 1753 if (!d) 1754 continue; 1755 1756 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1757 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1758 dc = container_of(d, struct cached_dev, disk); 1759 bch_cached_dev_detach(dc); 1760 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1761 conditional_stop_bcache_device(c, d, dc); 1762 } else { 1763 bcache_device_stop(d); 1764 } 1765 } 1766 1767 mutex_unlock(&bch_register_lock); 1768 1769 continue_at(cl, cache_set_flush, system_wq); 1770 } 1771 1772 void bch_cache_set_stop(struct cache_set *c) 1773 { 1774 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1775 /* closure_fn set to __cache_set_unregister() */ 1776 closure_queue(&c->caching); 1777 } 1778 1779 void bch_cache_set_unregister(struct cache_set *c) 1780 { 1781 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1782 bch_cache_set_stop(c); 1783 } 1784 1785 #define alloc_bucket_pages(gfp, c) \ 1786 ((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c)))) 1787 1788 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1789 { 1790 int iter_size; 1791 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1792 1793 if (!c) 1794 return NULL; 1795 1796 __module_get(THIS_MODULE); 1797 closure_init(&c->cl, NULL); 1798 set_closure_fn(&c->cl, cache_set_free, system_wq); 1799 1800 closure_init(&c->caching, &c->cl); 1801 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1802 1803 /* Maybe create continue_at_noreturn() and use it here? */ 1804 closure_set_stopped(&c->cl); 1805 closure_put(&c->cl); 1806 1807 kobject_init(&c->kobj, &bch_cache_set_ktype); 1808 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1809 1810 bch_cache_accounting_init(&c->accounting, &c->cl); 1811 1812 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1813 c->sb.block_size = sb->block_size; 1814 c->sb.bucket_size = sb->bucket_size; 1815 c->sb.nr_in_set = sb->nr_in_set; 1816 c->sb.last_mount = sb->last_mount; 1817 c->bucket_bits = ilog2(sb->bucket_size); 1818 c->block_bits = ilog2(sb->block_size); 1819 c->nr_uuids = bucket_bytes(c) / sizeof(struct uuid_entry); 1820 c->devices_max_used = 0; 1821 atomic_set(&c->attached_dev_nr, 0); 1822 c->btree_pages = bucket_pages(c); 1823 if (c->btree_pages > BTREE_MAX_PAGES) 1824 c->btree_pages = max_t(int, c->btree_pages / 4, 1825 BTREE_MAX_PAGES); 1826 1827 sema_init(&c->sb_write_mutex, 1); 1828 mutex_init(&c->bucket_lock); 1829 init_waitqueue_head(&c->btree_cache_wait); 1830 spin_lock_init(&c->btree_cannibalize_lock); 1831 init_waitqueue_head(&c->bucket_wait); 1832 init_waitqueue_head(&c->gc_wait); 1833 sema_init(&c->uuid_write_mutex, 1); 1834 1835 spin_lock_init(&c->btree_gc_time.lock); 1836 spin_lock_init(&c->btree_split_time.lock); 1837 spin_lock_init(&c->btree_read_time.lock); 1838 1839 bch_moving_init_cache_set(c); 1840 1841 INIT_LIST_HEAD(&c->list); 1842 INIT_LIST_HEAD(&c->cached_devs); 1843 INIT_LIST_HEAD(&c->btree_cache); 1844 INIT_LIST_HEAD(&c->btree_cache_freeable); 1845 INIT_LIST_HEAD(&c->btree_cache_freed); 1846 INIT_LIST_HEAD(&c->data_buckets); 1847 1848 iter_size = (sb->bucket_size / sb->block_size + 1) * 1849 sizeof(struct btree_iter_set); 1850 1851 if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) || 1852 mempool_init_slab_pool(&c->search, 32, bch_search_cache) || 1853 mempool_init_kmalloc_pool(&c->bio_meta, 2, 1854 sizeof(struct bbio) + sizeof(struct bio_vec) * 1855 bucket_pages(c)) || 1856 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || 1857 bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1858 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) || 1859 !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) || 1860 !(c->moving_gc_wq = alloc_workqueue("bcache_gc", 1861 WQ_MEM_RECLAIM, 0)) || 1862 bch_journal_alloc(c) || 1863 bch_btree_cache_alloc(c) || 1864 bch_open_buckets_alloc(c) || 1865 bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1866 goto err; 1867 1868 c->congested_read_threshold_us = 2000; 1869 c->congested_write_threshold_us = 20000; 1870 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1871 c->idle_max_writeback_rate_enabled = 1; 1872 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1873 1874 return c; 1875 err: 1876 bch_cache_set_unregister(c); 1877 return NULL; 1878 } 1879 1880 static int run_cache_set(struct cache_set *c) 1881 { 1882 const char *err = "cannot allocate memory"; 1883 struct cached_dev *dc, *t; 1884 struct cache *ca; 1885 struct closure cl; 1886 unsigned int i; 1887 LIST_HEAD(journal); 1888 struct journal_replay *l; 1889 1890 closure_init_stack(&cl); 1891 1892 for_each_cache(ca, c, i) 1893 c->nbuckets += ca->sb.nbuckets; 1894 set_gc_sectors(c); 1895 1896 if (CACHE_SYNC(&c->sb)) { 1897 struct bkey *k; 1898 struct jset *j; 1899 1900 err = "cannot allocate memory for journal"; 1901 if (bch_journal_read(c, &journal)) 1902 goto err; 1903 1904 pr_debug("btree_journal_read() done\n"); 1905 1906 err = "no journal entries found"; 1907 if (list_empty(&journal)) 1908 goto err; 1909 1910 j = &list_entry(journal.prev, struct journal_replay, list)->j; 1911 1912 err = "IO error reading priorities"; 1913 for_each_cache(ca, c, i) { 1914 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 1915 goto err; 1916 } 1917 1918 /* 1919 * If prio_read() fails it'll call cache_set_error and we'll 1920 * tear everything down right away, but if we perhaps checked 1921 * sooner we could avoid journal replay. 1922 */ 1923 1924 k = &j->btree_root; 1925 1926 err = "bad btree root"; 1927 if (__bch_btree_ptr_invalid(c, k)) 1928 goto err; 1929 1930 err = "error reading btree root"; 1931 c->root = bch_btree_node_get(c, NULL, k, 1932 j->btree_level, 1933 true, NULL); 1934 if (IS_ERR_OR_NULL(c->root)) 1935 goto err; 1936 1937 list_del_init(&c->root->list); 1938 rw_unlock(true, c->root); 1939 1940 err = uuid_read(c, j, &cl); 1941 if (err) 1942 goto err; 1943 1944 err = "error in recovery"; 1945 if (bch_btree_check(c)) 1946 goto err; 1947 1948 bch_journal_mark(c, &journal); 1949 bch_initial_gc_finish(c); 1950 pr_debug("btree_check() done\n"); 1951 1952 /* 1953 * bcache_journal_next() can't happen sooner, or 1954 * btree_gc_finish() will give spurious errors about last_gc > 1955 * gc_gen - this is a hack but oh well. 1956 */ 1957 bch_journal_next(&c->journal); 1958 1959 err = "error starting allocator thread"; 1960 for_each_cache(ca, c, i) 1961 if (bch_cache_allocator_start(ca)) 1962 goto err; 1963 1964 /* 1965 * First place it's safe to allocate: btree_check() and 1966 * btree_gc_finish() have to run before we have buckets to 1967 * allocate, and bch_bucket_alloc_set() might cause a journal 1968 * entry to be written so bcache_journal_next() has to be called 1969 * first. 1970 * 1971 * If the uuids were in the old format we have to rewrite them 1972 * before the next journal entry is written: 1973 */ 1974 if (j->version < BCACHE_JSET_VERSION_UUID) 1975 __uuid_write(c); 1976 1977 err = "bcache: replay journal failed"; 1978 if (bch_journal_replay(c, &journal)) 1979 goto err; 1980 } else { 1981 pr_notice("invalidating existing data\n"); 1982 1983 for_each_cache(ca, c, i) { 1984 unsigned int j; 1985 1986 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 1987 2, SB_JOURNAL_BUCKETS); 1988 1989 for (j = 0; j < ca->sb.keys; j++) 1990 ca->sb.d[j] = ca->sb.first_bucket + j; 1991 } 1992 1993 bch_initial_gc_finish(c); 1994 1995 err = "error starting allocator thread"; 1996 for_each_cache(ca, c, i) 1997 if (bch_cache_allocator_start(ca)) 1998 goto err; 1999 2000 mutex_lock(&c->bucket_lock); 2001 for_each_cache(ca, c, i) 2002 bch_prio_write(ca, true); 2003 mutex_unlock(&c->bucket_lock); 2004 2005 err = "cannot allocate new UUID bucket"; 2006 if (__uuid_write(c)) 2007 goto err; 2008 2009 err = "cannot allocate new btree root"; 2010 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2011 if (IS_ERR_OR_NULL(c->root)) 2012 goto err; 2013 2014 mutex_lock(&c->root->write_lock); 2015 bkey_copy_key(&c->root->key, &MAX_KEY); 2016 bch_btree_node_write(c->root, &cl); 2017 mutex_unlock(&c->root->write_lock); 2018 2019 bch_btree_set_root(c->root); 2020 rw_unlock(true, c->root); 2021 2022 /* 2023 * We don't want to write the first journal entry until 2024 * everything is set up - fortunately journal entries won't be 2025 * written until the SET_CACHE_SYNC() here: 2026 */ 2027 SET_CACHE_SYNC(&c->sb, true); 2028 2029 bch_journal_next(&c->journal); 2030 bch_journal_meta(c, &cl); 2031 } 2032 2033 err = "error starting gc thread"; 2034 if (bch_gc_thread_start(c)) 2035 goto err; 2036 2037 closure_sync(&cl); 2038 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2039 bcache_write_super(c); 2040 2041 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2042 bch_cached_dev_attach(dc, c, NULL); 2043 2044 flash_devs_run(c); 2045 2046 set_bit(CACHE_SET_RUNNING, &c->flags); 2047 return 0; 2048 err: 2049 while (!list_empty(&journal)) { 2050 l = list_first_entry(&journal, struct journal_replay, list); 2051 list_del(&l->list); 2052 kfree(l); 2053 } 2054 2055 closure_sync(&cl); 2056 2057 bch_cache_set_error(c, "%s", err); 2058 2059 return -EIO; 2060 } 2061 2062 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2063 { 2064 return ca->sb.block_size == c->sb.block_size && 2065 ca->sb.bucket_size == c->sb.bucket_size && 2066 ca->sb.nr_in_set == c->sb.nr_in_set; 2067 } 2068 2069 static const char *register_cache_set(struct cache *ca) 2070 { 2071 char buf[12]; 2072 const char *err = "cannot allocate memory"; 2073 struct cache_set *c; 2074 2075 list_for_each_entry(c, &bch_cache_sets, list) 2076 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2077 if (c->cache[ca->sb.nr_this_dev]) 2078 return "duplicate cache set member"; 2079 2080 if (!can_attach_cache(ca, c)) 2081 return "cache sb does not match set"; 2082 2083 if (!CACHE_SYNC(&ca->sb)) 2084 SET_CACHE_SYNC(&c->sb, false); 2085 2086 goto found; 2087 } 2088 2089 c = bch_cache_set_alloc(&ca->sb); 2090 if (!c) 2091 return err; 2092 2093 err = "error creating kobject"; 2094 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2095 kobject_add(&c->internal, &c->kobj, "internal")) 2096 goto err; 2097 2098 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2099 goto err; 2100 2101 bch_debug_init_cache_set(c); 2102 2103 list_add(&c->list, &bch_cache_sets); 2104 found: 2105 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2106 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2107 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2108 goto err; 2109 2110 if (ca->sb.seq > c->sb.seq) { 2111 c->sb.version = ca->sb.version; 2112 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2113 c->sb.flags = ca->sb.flags; 2114 c->sb.seq = ca->sb.seq; 2115 pr_debug("set version = %llu\n", c->sb.version); 2116 } 2117 2118 kobject_get(&ca->kobj); 2119 ca->set = c; 2120 ca->set->cache[ca->sb.nr_this_dev] = ca; 2121 c->cache_by_alloc[c->caches_loaded++] = ca; 2122 2123 if (c->caches_loaded == c->sb.nr_in_set) { 2124 err = "failed to run cache set"; 2125 if (run_cache_set(c) < 0) 2126 goto err; 2127 } 2128 2129 return NULL; 2130 err: 2131 bch_cache_set_unregister(c); 2132 return err; 2133 } 2134 2135 /* Cache device */ 2136 2137 /* When ca->kobj released */ 2138 void bch_cache_release(struct kobject *kobj) 2139 { 2140 struct cache *ca = container_of(kobj, struct cache, kobj); 2141 unsigned int i; 2142 2143 if (ca->set) { 2144 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2145 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2146 } 2147 2148 free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca))); 2149 kfree(ca->prio_buckets); 2150 vfree(ca->buckets); 2151 2152 free_heap(&ca->heap); 2153 free_fifo(&ca->free_inc); 2154 2155 for (i = 0; i < RESERVE_NR; i++) 2156 free_fifo(&ca->free[i]); 2157 2158 if (ca->sb_disk) 2159 put_page(virt_to_page(ca->sb_disk)); 2160 2161 if (!IS_ERR_OR_NULL(ca->bdev)) 2162 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2163 2164 kfree(ca); 2165 module_put(THIS_MODULE); 2166 } 2167 2168 static int cache_alloc(struct cache *ca) 2169 { 2170 size_t free; 2171 size_t btree_buckets; 2172 struct bucket *b; 2173 int ret = -ENOMEM; 2174 const char *err = NULL; 2175 2176 __module_get(THIS_MODULE); 2177 kobject_init(&ca->kobj, &bch_cache_ktype); 2178 2179 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2180 2181 /* 2182 * when ca->sb.njournal_buckets is not zero, journal exists, 2183 * and in bch_journal_replay(), tree node may split, 2184 * so bucket of RESERVE_BTREE type is needed, 2185 * the worst situation is all journal buckets are valid journal, 2186 * and all the keys need to replay, 2187 * so the number of RESERVE_BTREE type buckets should be as much 2188 * as journal buckets 2189 */ 2190 btree_buckets = ca->sb.njournal_buckets ?: 8; 2191 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2192 if (!free) { 2193 ret = -EPERM; 2194 err = "ca->sb.nbuckets is too small"; 2195 goto err_free; 2196 } 2197 2198 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2199 GFP_KERNEL)) { 2200 err = "ca->free[RESERVE_BTREE] alloc failed"; 2201 goto err_btree_alloc; 2202 } 2203 2204 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2205 GFP_KERNEL)) { 2206 err = "ca->free[RESERVE_PRIO] alloc failed"; 2207 goto err_prio_alloc; 2208 } 2209 2210 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2211 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2212 goto err_movinggc_alloc; 2213 } 2214 2215 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2216 err = "ca->free[RESERVE_NONE] alloc failed"; 2217 goto err_none_alloc; 2218 } 2219 2220 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2221 err = "ca->free_inc alloc failed"; 2222 goto err_free_inc_alloc; 2223 } 2224 2225 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2226 err = "ca->heap alloc failed"; 2227 goto err_heap_alloc; 2228 } 2229 2230 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2231 ca->sb.nbuckets)); 2232 if (!ca->buckets) { 2233 err = "ca->buckets alloc failed"; 2234 goto err_buckets_alloc; 2235 } 2236 2237 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2238 prio_buckets(ca), 2), 2239 GFP_KERNEL); 2240 if (!ca->prio_buckets) { 2241 err = "ca->prio_buckets alloc failed"; 2242 goto err_prio_buckets_alloc; 2243 } 2244 2245 ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca); 2246 if (!ca->disk_buckets) { 2247 err = "ca->disk_buckets alloc failed"; 2248 goto err_disk_buckets_alloc; 2249 } 2250 2251 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2252 2253 for_each_bucket(b, ca) 2254 atomic_set(&b->pin, 0); 2255 return 0; 2256 2257 err_disk_buckets_alloc: 2258 kfree(ca->prio_buckets); 2259 err_prio_buckets_alloc: 2260 vfree(ca->buckets); 2261 err_buckets_alloc: 2262 free_heap(&ca->heap); 2263 err_heap_alloc: 2264 free_fifo(&ca->free_inc); 2265 err_free_inc_alloc: 2266 free_fifo(&ca->free[RESERVE_NONE]); 2267 err_none_alloc: 2268 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2269 err_movinggc_alloc: 2270 free_fifo(&ca->free[RESERVE_PRIO]); 2271 err_prio_alloc: 2272 free_fifo(&ca->free[RESERVE_BTREE]); 2273 err_btree_alloc: 2274 err_free: 2275 module_put(THIS_MODULE); 2276 if (err) 2277 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2278 return ret; 2279 } 2280 2281 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2282 struct block_device *bdev, struct cache *ca) 2283 { 2284 const char *err = NULL; /* must be set for any error case */ 2285 int ret = 0; 2286 2287 bdevname(bdev, ca->cache_dev_name); 2288 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2289 ca->bdev = bdev; 2290 ca->bdev->bd_holder = ca; 2291 ca->sb_disk = sb_disk; 2292 2293 if (blk_queue_discard(bdev_get_queue(bdev))) 2294 ca->discard = CACHE_DISCARD(&ca->sb); 2295 2296 ret = cache_alloc(ca); 2297 if (ret != 0) { 2298 /* 2299 * If we failed here, it means ca->kobj is not initialized yet, 2300 * kobject_put() won't be called and there is no chance to 2301 * call blkdev_put() to bdev in bch_cache_release(). So we 2302 * explicitly call blkdev_put() here. 2303 */ 2304 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2305 if (ret == -ENOMEM) 2306 err = "cache_alloc(): -ENOMEM"; 2307 else if (ret == -EPERM) 2308 err = "cache_alloc(): cache device is too small"; 2309 else 2310 err = "cache_alloc(): unknown error"; 2311 goto err; 2312 } 2313 2314 if (kobject_add(&ca->kobj, 2315 &part_to_dev(bdev->bd_part)->kobj, 2316 "bcache")) { 2317 err = "error calling kobject_add"; 2318 ret = -ENOMEM; 2319 goto out; 2320 } 2321 2322 mutex_lock(&bch_register_lock); 2323 err = register_cache_set(ca); 2324 mutex_unlock(&bch_register_lock); 2325 2326 if (err) { 2327 ret = -ENODEV; 2328 goto out; 2329 } 2330 2331 pr_info("registered cache device %s\n", ca->cache_dev_name); 2332 2333 out: 2334 kobject_put(&ca->kobj); 2335 2336 err: 2337 if (err) 2338 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2339 2340 return ret; 2341 } 2342 2343 /* Global interfaces/init */ 2344 2345 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2346 const char *buffer, size_t size); 2347 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2348 struct kobj_attribute *attr, 2349 const char *buffer, size_t size); 2350 2351 kobj_attribute_write(register, register_bcache); 2352 kobj_attribute_write(register_quiet, register_bcache); 2353 kobj_attribute_write(register_async, register_bcache); 2354 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2355 2356 static bool bch_is_open_backing(struct block_device *bdev) 2357 { 2358 struct cache_set *c, *tc; 2359 struct cached_dev *dc, *t; 2360 2361 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2362 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2363 if (dc->bdev == bdev) 2364 return true; 2365 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2366 if (dc->bdev == bdev) 2367 return true; 2368 return false; 2369 } 2370 2371 static bool bch_is_open_cache(struct block_device *bdev) 2372 { 2373 struct cache_set *c, *tc; 2374 struct cache *ca; 2375 unsigned int i; 2376 2377 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2378 for_each_cache(ca, c, i) 2379 if (ca->bdev == bdev) 2380 return true; 2381 return false; 2382 } 2383 2384 static bool bch_is_open(struct block_device *bdev) 2385 { 2386 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2387 } 2388 2389 struct async_reg_args { 2390 struct delayed_work reg_work; 2391 char *path; 2392 struct cache_sb *sb; 2393 struct cache_sb_disk *sb_disk; 2394 struct block_device *bdev; 2395 }; 2396 2397 static void register_bdev_worker(struct work_struct *work) 2398 { 2399 int fail = false; 2400 struct async_reg_args *args = 2401 container_of(work, struct async_reg_args, reg_work.work); 2402 struct cached_dev *dc; 2403 2404 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2405 if (!dc) { 2406 fail = true; 2407 put_page(virt_to_page(args->sb_disk)); 2408 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2409 goto out; 2410 } 2411 2412 mutex_lock(&bch_register_lock); 2413 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2414 fail = true; 2415 mutex_unlock(&bch_register_lock); 2416 2417 out: 2418 if (fail) 2419 pr_info("error %s: fail to register backing device\n", 2420 args->path); 2421 kfree(args->sb); 2422 kfree(args->path); 2423 kfree(args); 2424 module_put(THIS_MODULE); 2425 } 2426 2427 static void register_cache_worker(struct work_struct *work) 2428 { 2429 int fail = false; 2430 struct async_reg_args *args = 2431 container_of(work, struct async_reg_args, reg_work.work); 2432 struct cache *ca; 2433 2434 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2435 if (!ca) { 2436 fail = true; 2437 put_page(virt_to_page(args->sb_disk)); 2438 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2439 goto out; 2440 } 2441 2442 /* blkdev_put() will be called in bch_cache_release() */ 2443 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2444 fail = true; 2445 2446 out: 2447 if (fail) 2448 pr_info("error %s: fail to register cache device\n", 2449 args->path); 2450 kfree(args->sb); 2451 kfree(args->path); 2452 kfree(args); 2453 module_put(THIS_MODULE); 2454 } 2455 2456 static void register_device_aync(struct async_reg_args *args) 2457 { 2458 if (SB_IS_BDEV(args->sb)) 2459 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2460 else 2461 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2462 2463 /* 10 jiffies is enough for a delay */ 2464 queue_delayed_work(system_wq, &args->reg_work, 10); 2465 } 2466 2467 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2468 const char *buffer, size_t size) 2469 { 2470 const char *err; 2471 char *path = NULL; 2472 struct cache_sb *sb; 2473 struct cache_sb_disk *sb_disk; 2474 struct block_device *bdev; 2475 ssize_t ret; 2476 2477 ret = -EBUSY; 2478 err = "failed to reference bcache module"; 2479 if (!try_module_get(THIS_MODULE)) 2480 goto out; 2481 2482 /* For latest state of bcache_is_reboot */ 2483 smp_mb(); 2484 err = "bcache is in reboot"; 2485 if (bcache_is_reboot) 2486 goto out_module_put; 2487 2488 ret = -ENOMEM; 2489 err = "cannot allocate memory"; 2490 path = kstrndup(buffer, size, GFP_KERNEL); 2491 if (!path) 2492 goto out_module_put; 2493 2494 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2495 if (!sb) 2496 goto out_free_path; 2497 2498 ret = -EINVAL; 2499 err = "failed to open device"; 2500 bdev = blkdev_get_by_path(strim(path), 2501 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2502 sb); 2503 if (IS_ERR(bdev)) { 2504 if (bdev == ERR_PTR(-EBUSY)) { 2505 bdev = lookup_bdev(strim(path)); 2506 mutex_lock(&bch_register_lock); 2507 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2508 err = "device already registered"; 2509 else 2510 err = "device busy"; 2511 mutex_unlock(&bch_register_lock); 2512 if (!IS_ERR(bdev)) 2513 bdput(bdev); 2514 if (attr == &ksysfs_register_quiet) 2515 goto done; 2516 } 2517 goto out_free_sb; 2518 } 2519 2520 err = "failed to set blocksize"; 2521 if (set_blocksize(bdev, 4096)) 2522 goto out_blkdev_put; 2523 2524 err = read_super(sb, bdev, &sb_disk); 2525 if (err) 2526 goto out_blkdev_put; 2527 2528 err = "failed to register device"; 2529 if (attr == &ksysfs_register_async) { 2530 /* register in asynchronous way */ 2531 struct async_reg_args *args = 2532 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2533 2534 if (!args) { 2535 ret = -ENOMEM; 2536 err = "cannot allocate memory"; 2537 goto out_put_sb_page; 2538 } 2539 2540 args->path = path; 2541 args->sb = sb; 2542 args->sb_disk = sb_disk; 2543 args->bdev = bdev; 2544 register_device_aync(args); 2545 /* No wait and returns to user space */ 2546 goto async_done; 2547 } 2548 2549 if (SB_IS_BDEV(sb)) { 2550 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2551 2552 if (!dc) 2553 goto out_put_sb_page; 2554 2555 mutex_lock(&bch_register_lock); 2556 ret = register_bdev(sb, sb_disk, bdev, dc); 2557 mutex_unlock(&bch_register_lock); 2558 /* blkdev_put() will be called in cached_dev_free() */ 2559 if (ret < 0) 2560 goto out_free_sb; 2561 } else { 2562 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2563 2564 if (!ca) 2565 goto out_put_sb_page; 2566 2567 /* blkdev_put() will be called in bch_cache_release() */ 2568 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2569 goto out_free_sb; 2570 } 2571 2572 done: 2573 kfree(sb); 2574 kfree(path); 2575 module_put(THIS_MODULE); 2576 async_done: 2577 return size; 2578 2579 out_put_sb_page: 2580 put_page(virt_to_page(sb_disk)); 2581 out_blkdev_put: 2582 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2583 out_free_sb: 2584 kfree(sb); 2585 out_free_path: 2586 kfree(path); 2587 path = NULL; 2588 out_module_put: 2589 module_put(THIS_MODULE); 2590 out: 2591 pr_info("error %s: %s\n", path?path:"", err); 2592 return ret; 2593 } 2594 2595 2596 struct pdev { 2597 struct list_head list; 2598 struct cached_dev *dc; 2599 }; 2600 2601 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2602 struct kobj_attribute *attr, 2603 const char *buffer, 2604 size_t size) 2605 { 2606 LIST_HEAD(pending_devs); 2607 ssize_t ret = size; 2608 struct cached_dev *dc, *tdc; 2609 struct pdev *pdev, *tpdev; 2610 struct cache_set *c, *tc; 2611 2612 mutex_lock(&bch_register_lock); 2613 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2614 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2615 if (!pdev) 2616 break; 2617 pdev->dc = dc; 2618 list_add(&pdev->list, &pending_devs); 2619 } 2620 2621 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2622 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2623 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2624 char *set_uuid = c->sb.uuid; 2625 2626 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2627 list_del(&pdev->list); 2628 kfree(pdev); 2629 break; 2630 } 2631 } 2632 } 2633 mutex_unlock(&bch_register_lock); 2634 2635 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2636 pr_info("delete pdev %p\n", pdev); 2637 list_del(&pdev->list); 2638 bcache_device_stop(&pdev->dc->disk); 2639 kfree(pdev); 2640 } 2641 2642 return ret; 2643 } 2644 2645 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2646 { 2647 if (bcache_is_reboot) 2648 return NOTIFY_DONE; 2649 2650 if (code == SYS_DOWN || 2651 code == SYS_HALT || 2652 code == SYS_POWER_OFF) { 2653 DEFINE_WAIT(wait); 2654 unsigned long start = jiffies; 2655 bool stopped = false; 2656 2657 struct cache_set *c, *tc; 2658 struct cached_dev *dc, *tdc; 2659 2660 mutex_lock(&bch_register_lock); 2661 2662 if (bcache_is_reboot) 2663 goto out; 2664 2665 /* New registration is rejected since now */ 2666 bcache_is_reboot = true; 2667 /* 2668 * Make registering caller (if there is) on other CPU 2669 * core know bcache_is_reboot set to true earlier 2670 */ 2671 smp_mb(); 2672 2673 if (list_empty(&bch_cache_sets) && 2674 list_empty(&uncached_devices)) 2675 goto out; 2676 2677 mutex_unlock(&bch_register_lock); 2678 2679 pr_info("Stopping all devices:\n"); 2680 2681 /* 2682 * The reason bch_register_lock is not held to call 2683 * bch_cache_set_stop() and bcache_device_stop() is to 2684 * avoid potential deadlock during reboot, because cache 2685 * set or bcache device stopping process will acqurie 2686 * bch_register_lock too. 2687 * 2688 * We are safe here because bcache_is_reboot sets to 2689 * true already, register_bcache() will reject new 2690 * registration now. bcache_is_reboot also makes sure 2691 * bcache_reboot() won't be re-entered on by other thread, 2692 * so there is no race in following list iteration by 2693 * list_for_each_entry_safe(). 2694 */ 2695 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2696 bch_cache_set_stop(c); 2697 2698 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2699 bcache_device_stop(&dc->disk); 2700 2701 2702 /* 2703 * Give an early chance for other kthreads and 2704 * kworkers to stop themselves 2705 */ 2706 schedule(); 2707 2708 /* What's a condition variable? */ 2709 while (1) { 2710 long timeout = start + 10 * HZ - jiffies; 2711 2712 mutex_lock(&bch_register_lock); 2713 stopped = list_empty(&bch_cache_sets) && 2714 list_empty(&uncached_devices); 2715 2716 if (timeout < 0 || stopped) 2717 break; 2718 2719 prepare_to_wait(&unregister_wait, &wait, 2720 TASK_UNINTERRUPTIBLE); 2721 2722 mutex_unlock(&bch_register_lock); 2723 schedule_timeout(timeout); 2724 } 2725 2726 finish_wait(&unregister_wait, &wait); 2727 2728 if (stopped) 2729 pr_info("All devices stopped\n"); 2730 else 2731 pr_notice("Timeout waiting for devices to be closed\n"); 2732 out: 2733 mutex_unlock(&bch_register_lock); 2734 } 2735 2736 return NOTIFY_DONE; 2737 } 2738 2739 static struct notifier_block reboot = { 2740 .notifier_call = bcache_reboot, 2741 .priority = INT_MAX, /* before any real devices */ 2742 }; 2743 2744 static void bcache_exit(void) 2745 { 2746 bch_debug_exit(); 2747 bch_request_exit(); 2748 if (bcache_kobj) 2749 kobject_put(bcache_kobj); 2750 if (bcache_wq) 2751 destroy_workqueue(bcache_wq); 2752 if (bch_journal_wq) 2753 destroy_workqueue(bch_journal_wq); 2754 2755 if (bcache_major) 2756 unregister_blkdev(bcache_major, "bcache"); 2757 unregister_reboot_notifier(&reboot); 2758 mutex_destroy(&bch_register_lock); 2759 } 2760 2761 /* Check and fixup module parameters */ 2762 static void check_module_parameters(void) 2763 { 2764 if (bch_cutoff_writeback_sync == 0) 2765 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2766 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2767 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2768 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2769 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2770 } 2771 2772 if (bch_cutoff_writeback == 0) 2773 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2774 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2775 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2776 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2777 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2778 } 2779 2780 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2781 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2782 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2783 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2784 } 2785 } 2786 2787 static int __init bcache_init(void) 2788 { 2789 static const struct attribute *files[] = { 2790 &ksysfs_register.attr, 2791 &ksysfs_register_quiet.attr, 2792 #ifdef CONFIG_BCACHE_ASYNC_REGISTRAION 2793 &ksysfs_register_async.attr, 2794 #endif 2795 &ksysfs_pendings_cleanup.attr, 2796 NULL 2797 }; 2798 2799 check_module_parameters(); 2800 2801 mutex_init(&bch_register_lock); 2802 init_waitqueue_head(&unregister_wait); 2803 register_reboot_notifier(&reboot); 2804 2805 bcache_major = register_blkdev(0, "bcache"); 2806 if (bcache_major < 0) { 2807 unregister_reboot_notifier(&reboot); 2808 mutex_destroy(&bch_register_lock); 2809 return bcache_major; 2810 } 2811 2812 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2813 if (!bcache_wq) 2814 goto err; 2815 2816 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2817 if (!bch_journal_wq) 2818 goto err; 2819 2820 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2821 if (!bcache_kobj) 2822 goto err; 2823 2824 if (bch_request_init() || 2825 sysfs_create_files(bcache_kobj, files)) 2826 goto err; 2827 2828 bch_debug_init(); 2829 closure_debug_init(); 2830 2831 bcache_is_reboot = false; 2832 2833 return 0; 2834 err: 2835 bcache_exit(); 2836 return -ENOMEM; 2837 } 2838 2839 /* 2840 * Module hooks 2841 */ 2842 module_exit(bcache_exit); 2843 module_init(bcache_init); 2844 2845 module_param(bch_cutoff_writeback, uint, 0); 2846 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2847 2848 module_param(bch_cutoff_writeback_sync, uint, 0); 2849 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2850 2851 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2852 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2853 MODULE_LICENSE("GPL"); 2854