xref: /openbmc/linux/drivers/md/bcache/super.c (revision 46f5aa88)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 unsigned int bch_cutoff_writeback;
28 unsigned int bch_cutoff_writeback_sync;
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 static struct kobject *bcache_kobj;
41 struct mutex bch_register_lock;
42 bool bcache_is_reboot;
43 LIST_HEAD(bch_cache_sets);
44 static LIST_HEAD(uncached_devices);
45 
46 static int bcache_major;
47 static DEFINE_IDA(bcache_device_idx);
48 static wait_queue_head_t unregister_wait;
49 struct workqueue_struct *bcache_wq;
50 struct workqueue_struct *bch_journal_wq;
51 
52 
53 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
54 /* limitation of partitions number on single bcache device */
55 #define BCACHE_MINORS		128
56 /* limitation of bcache devices number on single system */
57 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
58 
59 /* Superblock */
60 
61 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
62 			      struct cache_sb_disk **res)
63 {
64 	const char *err;
65 	struct cache_sb_disk *s;
66 	struct page *page;
67 	unsigned int i;
68 
69 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
70 				   SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL);
71 	if (IS_ERR(page))
72 		return "IO error";
73 	s = page_address(page) + offset_in_page(SB_OFFSET);
74 
75 	sb->offset		= le64_to_cpu(s->offset);
76 	sb->version		= le64_to_cpu(s->version);
77 
78 	memcpy(sb->magic,	s->magic, 16);
79 	memcpy(sb->uuid,	s->uuid, 16);
80 	memcpy(sb->set_uuid,	s->set_uuid, 16);
81 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
82 
83 	sb->flags		= le64_to_cpu(s->flags);
84 	sb->seq			= le64_to_cpu(s->seq);
85 	sb->last_mount		= le32_to_cpu(s->last_mount);
86 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
87 	sb->keys		= le16_to_cpu(s->keys);
88 
89 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
90 		sb->d[i] = le64_to_cpu(s->d[i]);
91 
92 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n",
93 		 sb->version, sb->flags, sb->seq, sb->keys);
94 
95 	err = "Not a bcache superblock (bad offset)";
96 	if (sb->offset != SB_SECTOR)
97 		goto err;
98 
99 	err = "Not a bcache superblock (bad magic)";
100 	if (memcmp(sb->magic, bcache_magic, 16))
101 		goto err;
102 
103 	err = "Too many journal buckets";
104 	if (sb->keys > SB_JOURNAL_BUCKETS)
105 		goto err;
106 
107 	err = "Bad checksum";
108 	if (s->csum != csum_set(s))
109 		goto err;
110 
111 	err = "Bad UUID";
112 	if (bch_is_zero(sb->uuid, 16))
113 		goto err;
114 
115 	sb->block_size	= le16_to_cpu(s->block_size);
116 
117 	err = "Superblock block size smaller than device block size";
118 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
119 		goto err;
120 
121 	switch (sb->version) {
122 	case BCACHE_SB_VERSION_BDEV:
123 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
124 		break;
125 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
126 		sb->data_offset	= le64_to_cpu(s->data_offset);
127 
128 		err = "Bad data offset";
129 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
130 			goto err;
131 
132 		break;
133 	case BCACHE_SB_VERSION_CDEV:
134 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
135 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
136 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
137 
138 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
139 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
140 
141 		err = "Too many buckets";
142 		if (sb->nbuckets > LONG_MAX)
143 			goto err;
144 
145 		err = "Not enough buckets";
146 		if (sb->nbuckets < 1 << 7)
147 			goto err;
148 
149 		err = "Bad block/bucket size";
150 		if (!is_power_of_2(sb->block_size) ||
151 		    sb->block_size > PAGE_SECTORS ||
152 		    !is_power_of_2(sb->bucket_size) ||
153 		    sb->bucket_size < PAGE_SECTORS)
154 			goto err;
155 
156 		err = "Invalid superblock: device too small";
157 		if (get_capacity(bdev->bd_disk) <
158 		    sb->bucket_size * sb->nbuckets)
159 			goto err;
160 
161 		err = "Bad UUID";
162 		if (bch_is_zero(sb->set_uuid, 16))
163 			goto err;
164 
165 		err = "Bad cache device number in set";
166 		if (!sb->nr_in_set ||
167 		    sb->nr_in_set <= sb->nr_this_dev ||
168 		    sb->nr_in_set > MAX_CACHES_PER_SET)
169 			goto err;
170 
171 		err = "Journal buckets not sequential";
172 		for (i = 0; i < sb->keys; i++)
173 			if (sb->d[i] != sb->first_bucket + i)
174 				goto err;
175 
176 		err = "Too many journal buckets";
177 		if (sb->first_bucket + sb->keys > sb->nbuckets)
178 			goto err;
179 
180 		err = "Invalid superblock: first bucket comes before end of super";
181 		if (sb->first_bucket * sb->bucket_size < 16)
182 			goto err;
183 
184 		break;
185 	default:
186 		err = "Unsupported superblock version";
187 		goto err;
188 	}
189 
190 	sb->last_mount = (u32)ktime_get_real_seconds();
191 	*res = s;
192 	return NULL;
193 err:
194 	put_page(page);
195 	return err;
196 }
197 
198 static void write_bdev_super_endio(struct bio *bio)
199 {
200 	struct cached_dev *dc = bio->bi_private;
201 
202 	if (bio->bi_status)
203 		bch_count_backing_io_errors(dc, bio);
204 
205 	closure_put(&dc->sb_write);
206 }
207 
208 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out,
209 		struct bio *bio)
210 {
211 	unsigned int i;
212 
213 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META;
214 	bio->bi_iter.bi_sector	= SB_SECTOR;
215 	__bio_add_page(bio, virt_to_page(out), SB_SIZE,
216 			offset_in_page(out));
217 
218 	out->offset		= cpu_to_le64(sb->offset);
219 	out->version		= cpu_to_le64(sb->version);
220 
221 	memcpy(out->uuid,	sb->uuid, 16);
222 	memcpy(out->set_uuid,	sb->set_uuid, 16);
223 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
224 
225 	out->flags		= cpu_to_le64(sb->flags);
226 	out->seq		= cpu_to_le64(sb->seq);
227 
228 	out->last_mount		= cpu_to_le32(sb->last_mount);
229 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
230 	out->keys		= cpu_to_le16(sb->keys);
231 
232 	for (i = 0; i < sb->keys; i++)
233 		out->d[i] = cpu_to_le64(sb->d[i]);
234 
235 	out->csum = csum_set(out);
236 
237 	pr_debug("ver %llu, flags %llu, seq %llu\n",
238 		 sb->version, sb->flags, sb->seq);
239 
240 	submit_bio(bio);
241 }
242 
243 static void bch_write_bdev_super_unlock(struct closure *cl)
244 {
245 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
246 
247 	up(&dc->sb_write_mutex);
248 }
249 
250 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
251 {
252 	struct closure *cl = &dc->sb_write;
253 	struct bio *bio = &dc->sb_bio;
254 
255 	down(&dc->sb_write_mutex);
256 	closure_init(cl, parent);
257 
258 	bio_init(bio, dc->sb_bv, 1);
259 	bio_set_dev(bio, dc->bdev);
260 	bio->bi_end_io	= write_bdev_super_endio;
261 	bio->bi_private = dc;
262 
263 	closure_get(cl);
264 	/* I/O request sent to backing device */
265 	__write_super(&dc->sb, dc->sb_disk, bio);
266 
267 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
268 }
269 
270 static void write_super_endio(struct bio *bio)
271 {
272 	struct cache *ca = bio->bi_private;
273 
274 	/* is_read = 0 */
275 	bch_count_io_errors(ca, bio->bi_status, 0,
276 			    "writing superblock");
277 	closure_put(&ca->set->sb_write);
278 }
279 
280 static void bcache_write_super_unlock(struct closure *cl)
281 {
282 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
283 
284 	up(&c->sb_write_mutex);
285 }
286 
287 void bcache_write_super(struct cache_set *c)
288 {
289 	struct closure *cl = &c->sb_write;
290 	struct cache *ca;
291 	unsigned int i;
292 
293 	down(&c->sb_write_mutex);
294 	closure_init(cl, &c->cl);
295 
296 	c->sb.seq++;
297 
298 	for_each_cache(ca, c, i) {
299 		struct bio *bio = &ca->sb_bio;
300 
301 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
302 		ca->sb.seq		= c->sb.seq;
303 		ca->sb.last_mount	= c->sb.last_mount;
304 
305 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
306 
307 		bio_init(bio, ca->sb_bv, 1);
308 		bio_set_dev(bio, ca->bdev);
309 		bio->bi_end_io	= write_super_endio;
310 		bio->bi_private = ca;
311 
312 		closure_get(cl);
313 		__write_super(&ca->sb, ca->sb_disk, bio);
314 	}
315 
316 	closure_return_with_destructor(cl, bcache_write_super_unlock);
317 }
318 
319 /* UUID io */
320 
321 static void uuid_endio(struct bio *bio)
322 {
323 	struct closure *cl = bio->bi_private;
324 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
325 
326 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
327 	bch_bbio_free(bio, c);
328 	closure_put(cl);
329 }
330 
331 static void uuid_io_unlock(struct closure *cl)
332 {
333 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
334 
335 	up(&c->uuid_write_mutex);
336 }
337 
338 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
339 		    struct bkey *k, struct closure *parent)
340 {
341 	struct closure *cl = &c->uuid_write;
342 	struct uuid_entry *u;
343 	unsigned int i;
344 	char buf[80];
345 
346 	BUG_ON(!parent);
347 	down(&c->uuid_write_mutex);
348 	closure_init(cl, parent);
349 
350 	for (i = 0; i < KEY_PTRS(k); i++) {
351 		struct bio *bio = bch_bbio_alloc(c);
352 
353 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
354 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
355 
356 		bio->bi_end_io	= uuid_endio;
357 		bio->bi_private = cl;
358 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
359 		bch_bio_map(bio, c->uuids);
360 
361 		bch_submit_bbio(bio, c, k, i);
362 
363 		if (op != REQ_OP_WRITE)
364 			break;
365 	}
366 
367 	bch_extent_to_text(buf, sizeof(buf), k);
368 	pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf);
369 
370 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
371 		if (!bch_is_zero(u->uuid, 16))
372 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n",
373 				 u - c->uuids, u->uuid, u->label,
374 				 u->first_reg, u->last_reg, u->invalidated);
375 
376 	closure_return_with_destructor(cl, uuid_io_unlock);
377 }
378 
379 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
380 {
381 	struct bkey *k = &j->uuid_bucket;
382 
383 	if (__bch_btree_ptr_invalid(c, k))
384 		return "bad uuid pointer";
385 
386 	bkey_copy(&c->uuid_bucket, k);
387 	uuid_io(c, REQ_OP_READ, 0, k, cl);
388 
389 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
390 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
391 		struct uuid_entry	*u1 = (void *) c->uuids;
392 		int i;
393 
394 		closure_sync(cl);
395 
396 		/*
397 		 * Since the new uuid entry is bigger than the old, we have to
398 		 * convert starting at the highest memory address and work down
399 		 * in order to do it in place
400 		 */
401 
402 		for (i = c->nr_uuids - 1;
403 		     i >= 0;
404 		     --i) {
405 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
406 			memcpy(u1[i].label,	u0[i].label, 32);
407 
408 			u1[i].first_reg		= u0[i].first_reg;
409 			u1[i].last_reg		= u0[i].last_reg;
410 			u1[i].invalidated	= u0[i].invalidated;
411 
412 			u1[i].flags	= 0;
413 			u1[i].sectors	= 0;
414 		}
415 	}
416 
417 	return NULL;
418 }
419 
420 static int __uuid_write(struct cache_set *c)
421 {
422 	BKEY_PADDED(key) k;
423 	struct closure cl;
424 	struct cache *ca;
425 
426 	closure_init_stack(&cl);
427 	lockdep_assert_held(&bch_register_lock);
428 
429 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
430 		return 1;
431 
432 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
433 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
434 	closure_sync(&cl);
435 
436 	/* Only one bucket used for uuid write */
437 	ca = PTR_CACHE(c, &k.key, 0);
438 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
439 
440 	bkey_copy(&c->uuid_bucket, &k.key);
441 	bkey_put(c, &k.key);
442 	return 0;
443 }
444 
445 int bch_uuid_write(struct cache_set *c)
446 {
447 	int ret = __uuid_write(c);
448 
449 	if (!ret)
450 		bch_journal_meta(c, NULL);
451 
452 	return ret;
453 }
454 
455 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
456 {
457 	struct uuid_entry *u;
458 
459 	for (u = c->uuids;
460 	     u < c->uuids + c->nr_uuids; u++)
461 		if (!memcmp(u->uuid, uuid, 16))
462 			return u;
463 
464 	return NULL;
465 }
466 
467 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
468 {
469 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
470 
471 	return uuid_find(c, zero_uuid);
472 }
473 
474 /*
475  * Bucket priorities/gens:
476  *
477  * For each bucket, we store on disk its
478  *   8 bit gen
479  *  16 bit priority
480  *
481  * See alloc.c for an explanation of the gen. The priority is used to implement
482  * lru (and in the future other) cache replacement policies; for most purposes
483  * it's just an opaque integer.
484  *
485  * The gens and the priorities don't have a whole lot to do with each other, and
486  * it's actually the gens that must be written out at specific times - it's no
487  * big deal if the priorities don't get written, if we lose them we just reuse
488  * buckets in suboptimal order.
489  *
490  * On disk they're stored in a packed array, and in as many buckets are required
491  * to fit them all. The buckets we use to store them form a list; the journal
492  * header points to the first bucket, the first bucket points to the second
493  * bucket, et cetera.
494  *
495  * This code is used by the allocation code; periodically (whenever it runs out
496  * of buckets to allocate from) the allocation code will invalidate some
497  * buckets, but it can't use those buckets until their new gens are safely on
498  * disk.
499  */
500 
501 static void prio_endio(struct bio *bio)
502 {
503 	struct cache *ca = bio->bi_private;
504 
505 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
506 	bch_bbio_free(bio, ca->set);
507 	closure_put(&ca->prio);
508 }
509 
510 static void prio_io(struct cache *ca, uint64_t bucket, int op,
511 		    unsigned long op_flags)
512 {
513 	struct closure *cl = &ca->prio;
514 	struct bio *bio = bch_bbio_alloc(ca->set);
515 
516 	closure_init_stack(cl);
517 
518 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
519 	bio_set_dev(bio, ca->bdev);
520 	bio->bi_iter.bi_size	= bucket_bytes(ca);
521 
522 	bio->bi_end_io	= prio_endio;
523 	bio->bi_private = ca;
524 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
525 	bch_bio_map(bio, ca->disk_buckets);
526 
527 	closure_bio_submit(ca->set, bio, &ca->prio);
528 	closure_sync(cl);
529 }
530 
531 int bch_prio_write(struct cache *ca, bool wait)
532 {
533 	int i;
534 	struct bucket *b;
535 	struct closure cl;
536 
537 	pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n",
538 		 fifo_used(&ca->free[RESERVE_PRIO]),
539 		 fifo_used(&ca->free[RESERVE_NONE]),
540 		 fifo_used(&ca->free_inc));
541 
542 	/*
543 	 * Pre-check if there are enough free buckets. In the non-blocking
544 	 * scenario it's better to fail early rather than starting to allocate
545 	 * buckets and do a cleanup later in case of failure.
546 	 */
547 	if (!wait) {
548 		size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) +
549 			       fifo_used(&ca->free[RESERVE_NONE]);
550 		if (prio_buckets(ca) > avail)
551 			return -ENOMEM;
552 	}
553 
554 	closure_init_stack(&cl);
555 
556 	lockdep_assert_held(&ca->set->bucket_lock);
557 
558 	ca->disk_buckets->seq++;
559 
560 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
561 			&ca->meta_sectors_written);
562 
563 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
564 		long bucket;
565 		struct prio_set *p = ca->disk_buckets;
566 		struct bucket_disk *d = p->data;
567 		struct bucket_disk *end = d + prios_per_bucket(ca);
568 
569 		for (b = ca->buckets + i * prios_per_bucket(ca);
570 		     b < ca->buckets + ca->sb.nbuckets && d < end;
571 		     b++, d++) {
572 			d->prio = cpu_to_le16(b->prio);
573 			d->gen = b->gen;
574 		}
575 
576 		p->next_bucket	= ca->prio_buckets[i + 1];
577 		p->magic	= pset_magic(&ca->sb);
578 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
579 
580 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait);
581 		BUG_ON(bucket == -1);
582 
583 		mutex_unlock(&ca->set->bucket_lock);
584 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
585 		mutex_lock(&ca->set->bucket_lock);
586 
587 		ca->prio_buckets[i] = bucket;
588 		atomic_dec_bug(&ca->buckets[bucket].pin);
589 	}
590 
591 	mutex_unlock(&ca->set->bucket_lock);
592 
593 	bch_journal_meta(ca->set, &cl);
594 	closure_sync(&cl);
595 
596 	mutex_lock(&ca->set->bucket_lock);
597 
598 	/*
599 	 * Don't want the old priorities to get garbage collected until after we
600 	 * finish writing the new ones, and they're journalled
601 	 */
602 	for (i = 0; i < prio_buckets(ca); i++) {
603 		if (ca->prio_last_buckets[i])
604 			__bch_bucket_free(ca,
605 				&ca->buckets[ca->prio_last_buckets[i]]);
606 
607 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
608 	}
609 	return 0;
610 }
611 
612 static int prio_read(struct cache *ca, uint64_t bucket)
613 {
614 	struct prio_set *p = ca->disk_buckets;
615 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
616 	struct bucket *b;
617 	unsigned int bucket_nr = 0;
618 	int ret = -EIO;
619 
620 	for (b = ca->buckets;
621 	     b < ca->buckets + ca->sb.nbuckets;
622 	     b++, d++) {
623 		if (d == end) {
624 			ca->prio_buckets[bucket_nr] = bucket;
625 			ca->prio_last_buckets[bucket_nr] = bucket;
626 			bucket_nr++;
627 
628 			prio_io(ca, bucket, REQ_OP_READ, 0);
629 
630 			if (p->csum !=
631 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8)) {
632 				pr_warn("bad csum reading priorities\n");
633 				goto out;
634 			}
635 
636 			if (p->magic != pset_magic(&ca->sb)) {
637 				pr_warn("bad magic reading priorities\n");
638 				goto out;
639 			}
640 
641 			bucket = p->next_bucket;
642 			d = p->data;
643 		}
644 
645 		b->prio = le16_to_cpu(d->prio);
646 		b->gen = b->last_gc = d->gen;
647 	}
648 
649 	ret = 0;
650 out:
651 	return ret;
652 }
653 
654 /* Bcache device */
655 
656 static int open_dev(struct block_device *b, fmode_t mode)
657 {
658 	struct bcache_device *d = b->bd_disk->private_data;
659 
660 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
661 		return -ENXIO;
662 
663 	closure_get(&d->cl);
664 	return 0;
665 }
666 
667 static void release_dev(struct gendisk *b, fmode_t mode)
668 {
669 	struct bcache_device *d = b->private_data;
670 
671 	closure_put(&d->cl);
672 }
673 
674 static int ioctl_dev(struct block_device *b, fmode_t mode,
675 		     unsigned int cmd, unsigned long arg)
676 {
677 	struct bcache_device *d = b->bd_disk->private_data;
678 
679 	return d->ioctl(d, mode, cmd, arg);
680 }
681 
682 static const struct block_device_operations bcache_ops = {
683 	.open		= open_dev,
684 	.release	= release_dev,
685 	.ioctl		= ioctl_dev,
686 	.owner		= THIS_MODULE,
687 };
688 
689 void bcache_device_stop(struct bcache_device *d)
690 {
691 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
692 		/*
693 		 * closure_fn set to
694 		 * - cached device: cached_dev_flush()
695 		 * - flash dev: flash_dev_flush()
696 		 */
697 		closure_queue(&d->cl);
698 }
699 
700 static void bcache_device_unlink(struct bcache_device *d)
701 {
702 	lockdep_assert_held(&bch_register_lock);
703 
704 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
705 		unsigned int i;
706 		struct cache *ca;
707 
708 		sysfs_remove_link(&d->c->kobj, d->name);
709 		sysfs_remove_link(&d->kobj, "cache");
710 
711 		for_each_cache(ca, d->c, i)
712 			bd_unlink_disk_holder(ca->bdev, d->disk);
713 	}
714 }
715 
716 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
717 			       const char *name)
718 {
719 	unsigned int i;
720 	struct cache *ca;
721 	int ret;
722 
723 	for_each_cache(ca, d->c, i)
724 		bd_link_disk_holder(ca->bdev, d->disk);
725 
726 	snprintf(d->name, BCACHEDEVNAME_SIZE,
727 		 "%s%u", name, d->id);
728 
729 	ret = sysfs_create_link(&d->kobj, &c->kobj, "cache");
730 	if (ret < 0)
731 		pr_err("Couldn't create device -> cache set symlink\n");
732 
733 	ret = sysfs_create_link(&c->kobj, &d->kobj, d->name);
734 	if (ret < 0)
735 		pr_err("Couldn't create cache set -> device symlink\n");
736 
737 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
738 }
739 
740 static void bcache_device_detach(struct bcache_device *d)
741 {
742 	lockdep_assert_held(&bch_register_lock);
743 
744 	atomic_dec(&d->c->attached_dev_nr);
745 
746 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
747 		struct uuid_entry *u = d->c->uuids + d->id;
748 
749 		SET_UUID_FLASH_ONLY(u, 0);
750 		memcpy(u->uuid, invalid_uuid, 16);
751 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
752 		bch_uuid_write(d->c);
753 	}
754 
755 	bcache_device_unlink(d);
756 
757 	d->c->devices[d->id] = NULL;
758 	closure_put(&d->c->caching);
759 	d->c = NULL;
760 }
761 
762 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
763 				 unsigned int id)
764 {
765 	d->id = id;
766 	d->c = c;
767 	c->devices[id] = d;
768 
769 	if (id >= c->devices_max_used)
770 		c->devices_max_used = id + 1;
771 
772 	closure_get(&c->caching);
773 }
774 
775 static inline int first_minor_to_idx(int first_minor)
776 {
777 	return (first_minor/BCACHE_MINORS);
778 }
779 
780 static inline int idx_to_first_minor(int idx)
781 {
782 	return (idx * BCACHE_MINORS);
783 }
784 
785 static void bcache_device_free(struct bcache_device *d)
786 {
787 	struct gendisk *disk = d->disk;
788 
789 	lockdep_assert_held(&bch_register_lock);
790 
791 	if (disk)
792 		pr_info("%s stopped\n", disk->disk_name);
793 	else
794 		pr_err("bcache device (NULL gendisk) stopped\n");
795 
796 	if (d->c)
797 		bcache_device_detach(d);
798 
799 	if (disk) {
800 		if (disk->flags & GENHD_FL_UP)
801 			del_gendisk(disk);
802 
803 		if (disk->queue)
804 			blk_cleanup_queue(disk->queue);
805 
806 		ida_simple_remove(&bcache_device_idx,
807 				  first_minor_to_idx(disk->first_minor));
808 		put_disk(disk);
809 	}
810 
811 	bioset_exit(&d->bio_split);
812 	kvfree(d->full_dirty_stripes);
813 	kvfree(d->stripe_sectors_dirty);
814 
815 	closure_debug_destroy(&d->cl);
816 }
817 
818 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
819 			      sector_t sectors, make_request_fn make_request_fn)
820 {
821 	struct request_queue *q;
822 	const size_t max_stripes = min_t(size_t, INT_MAX,
823 					 SIZE_MAX / sizeof(atomic_t));
824 	size_t n;
825 	int idx;
826 
827 	if (!d->stripe_size)
828 		d->stripe_size = 1 << 31;
829 
830 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
831 
832 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
833 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)\n",
834 			(unsigned int)d->nr_stripes);
835 		return -ENOMEM;
836 	}
837 
838 	n = d->nr_stripes * sizeof(atomic_t);
839 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
840 	if (!d->stripe_sectors_dirty)
841 		return -ENOMEM;
842 
843 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
844 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
845 	if (!d->full_dirty_stripes)
846 		return -ENOMEM;
847 
848 	idx = ida_simple_get(&bcache_device_idx, 0,
849 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
850 	if (idx < 0)
851 		return idx;
852 
853 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
854 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
855 		goto err;
856 
857 	d->disk = alloc_disk(BCACHE_MINORS);
858 	if (!d->disk)
859 		goto err;
860 
861 	set_capacity(d->disk, sectors);
862 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
863 
864 	d->disk->major		= bcache_major;
865 	d->disk->first_minor	= idx_to_first_minor(idx);
866 	d->disk->fops		= &bcache_ops;
867 	d->disk->private_data	= d;
868 
869 	q = blk_alloc_queue(make_request_fn, NUMA_NO_NODE);
870 	if (!q)
871 		return -ENOMEM;
872 
873 	d->disk->queue			= q;
874 	q->queuedata			= d;
875 	q->backing_dev_info->congested_data = d;
876 	q->limits.max_hw_sectors	= UINT_MAX;
877 	q->limits.max_sectors		= UINT_MAX;
878 	q->limits.max_segment_size	= UINT_MAX;
879 	q->limits.max_segments		= BIO_MAX_PAGES;
880 	blk_queue_max_discard_sectors(q, UINT_MAX);
881 	q->limits.discard_granularity	= 512;
882 	q->limits.io_min		= block_size;
883 	q->limits.logical_block_size	= block_size;
884 	q->limits.physical_block_size	= block_size;
885 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
886 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
887 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
888 
889 	blk_queue_write_cache(q, true, true);
890 
891 	return 0;
892 
893 err:
894 	ida_simple_remove(&bcache_device_idx, idx);
895 	return -ENOMEM;
896 
897 }
898 
899 /* Cached device */
900 
901 static void calc_cached_dev_sectors(struct cache_set *c)
902 {
903 	uint64_t sectors = 0;
904 	struct cached_dev *dc;
905 
906 	list_for_each_entry(dc, &c->cached_devs, list)
907 		sectors += bdev_sectors(dc->bdev);
908 
909 	c->cached_dev_sectors = sectors;
910 }
911 
912 #define BACKING_DEV_OFFLINE_TIMEOUT 5
913 static int cached_dev_status_update(void *arg)
914 {
915 	struct cached_dev *dc = arg;
916 	struct request_queue *q;
917 
918 	/*
919 	 * If this delayed worker is stopping outside, directly quit here.
920 	 * dc->io_disable might be set via sysfs interface, so check it
921 	 * here too.
922 	 */
923 	while (!kthread_should_stop() && !dc->io_disable) {
924 		q = bdev_get_queue(dc->bdev);
925 		if (blk_queue_dying(q))
926 			dc->offline_seconds++;
927 		else
928 			dc->offline_seconds = 0;
929 
930 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
931 			pr_err("%s: device offline for %d seconds\n",
932 			       dc->backing_dev_name,
933 			       BACKING_DEV_OFFLINE_TIMEOUT);
934 			pr_err("%s: disable I/O request due to backing device offline\n",
935 			       dc->disk.name);
936 			dc->io_disable = true;
937 			/* let others know earlier that io_disable is true */
938 			smp_mb();
939 			bcache_device_stop(&dc->disk);
940 			break;
941 		}
942 		schedule_timeout_interruptible(HZ);
943 	}
944 
945 	wait_for_kthread_stop();
946 	return 0;
947 }
948 
949 
950 int bch_cached_dev_run(struct cached_dev *dc)
951 {
952 	struct bcache_device *d = &dc->disk;
953 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
954 	char *env[] = {
955 		"DRIVER=bcache",
956 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
957 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
958 		NULL,
959 	};
960 
961 	if (dc->io_disable) {
962 		pr_err("I/O disabled on cached dev %s\n",
963 		       dc->backing_dev_name);
964 		kfree(env[1]);
965 		kfree(env[2]);
966 		kfree(buf);
967 		return -EIO;
968 	}
969 
970 	if (atomic_xchg(&dc->running, 1)) {
971 		kfree(env[1]);
972 		kfree(env[2]);
973 		kfree(buf);
974 		pr_info("cached dev %s is running already\n",
975 		       dc->backing_dev_name);
976 		return -EBUSY;
977 	}
978 
979 	if (!d->c &&
980 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
981 		struct closure cl;
982 
983 		closure_init_stack(&cl);
984 
985 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
986 		bch_write_bdev_super(dc, &cl);
987 		closure_sync(&cl);
988 	}
989 
990 	add_disk(d->disk);
991 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
992 	/*
993 	 * won't show up in the uevent file, use udevadm monitor -e instead
994 	 * only class / kset properties are persistent
995 	 */
996 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
997 	kfree(env[1]);
998 	kfree(env[2]);
999 	kfree(buf);
1000 
1001 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
1002 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj,
1003 			      &d->kobj, "bcache")) {
1004 		pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n");
1005 		return -ENOMEM;
1006 	}
1007 
1008 	dc->status_update_thread = kthread_run(cached_dev_status_update,
1009 					       dc, "bcache_status_update");
1010 	if (IS_ERR(dc->status_update_thread)) {
1011 		pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n");
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
1019  * work dc->writeback_rate_update is running. Wait until the routine
1020  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
1021  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
1022  * seconds, give up waiting here and continue to cancel it too.
1023  */
1024 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
1025 {
1026 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
1027 
1028 	do {
1029 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
1030 			      &dc->disk.flags))
1031 			break;
1032 		time_out--;
1033 		schedule_timeout_interruptible(1);
1034 	} while (time_out > 0);
1035 
1036 	if (time_out == 0)
1037 		pr_warn("give up waiting for dc->writeback_write_update to quit\n");
1038 
1039 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1040 }
1041 
1042 static void cached_dev_detach_finish(struct work_struct *w)
1043 {
1044 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
1045 	struct closure cl;
1046 
1047 	closure_init_stack(&cl);
1048 
1049 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
1050 	BUG_ON(refcount_read(&dc->count));
1051 
1052 
1053 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1054 		cancel_writeback_rate_update_dwork(dc);
1055 
1056 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1057 		kthread_stop(dc->writeback_thread);
1058 		dc->writeback_thread = NULL;
1059 	}
1060 
1061 	memset(&dc->sb.set_uuid, 0, 16);
1062 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1063 
1064 	bch_write_bdev_super(dc, &cl);
1065 	closure_sync(&cl);
1066 
1067 	mutex_lock(&bch_register_lock);
1068 
1069 	calc_cached_dev_sectors(dc->disk.c);
1070 	bcache_device_detach(&dc->disk);
1071 	list_move(&dc->list, &uncached_devices);
1072 
1073 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1074 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1075 
1076 	mutex_unlock(&bch_register_lock);
1077 
1078 	pr_info("Caching disabled for %s\n", dc->backing_dev_name);
1079 
1080 	/* Drop ref we took in cached_dev_detach() */
1081 	closure_put(&dc->disk.cl);
1082 }
1083 
1084 void bch_cached_dev_detach(struct cached_dev *dc)
1085 {
1086 	lockdep_assert_held(&bch_register_lock);
1087 
1088 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1089 		return;
1090 
1091 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1092 		return;
1093 
1094 	/*
1095 	 * Block the device from being closed and freed until we're finished
1096 	 * detaching
1097 	 */
1098 	closure_get(&dc->disk.cl);
1099 
1100 	bch_writeback_queue(dc);
1101 
1102 	cached_dev_put(dc);
1103 }
1104 
1105 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1106 			  uint8_t *set_uuid)
1107 {
1108 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1109 	struct uuid_entry *u;
1110 	struct cached_dev *exist_dc, *t;
1111 	int ret = 0;
1112 
1113 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1114 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1115 		return -ENOENT;
1116 
1117 	if (dc->disk.c) {
1118 		pr_err("Can't attach %s: already attached\n",
1119 		       dc->backing_dev_name);
1120 		return -EINVAL;
1121 	}
1122 
1123 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1124 		pr_err("Can't attach %s: shutting down\n",
1125 		       dc->backing_dev_name);
1126 		return -EINVAL;
1127 	}
1128 
1129 	if (dc->sb.block_size < c->sb.block_size) {
1130 		/* Will die */
1131 		pr_err("Couldn't attach %s: block size less than set's block size\n",
1132 		       dc->backing_dev_name);
1133 		return -EINVAL;
1134 	}
1135 
1136 	/* Check whether already attached */
1137 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1138 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1139 			pr_err("Tried to attach %s but duplicate UUID already attached\n",
1140 				dc->backing_dev_name);
1141 
1142 			return -EINVAL;
1143 		}
1144 	}
1145 
1146 	u = uuid_find(c, dc->sb.uuid);
1147 
1148 	if (u &&
1149 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1150 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1151 		memcpy(u->uuid, invalid_uuid, 16);
1152 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1153 		u = NULL;
1154 	}
1155 
1156 	if (!u) {
1157 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1158 			pr_err("Couldn't find uuid for %s in set\n",
1159 			       dc->backing_dev_name);
1160 			return -ENOENT;
1161 		}
1162 
1163 		u = uuid_find_empty(c);
1164 		if (!u) {
1165 			pr_err("Not caching %s, no room for UUID\n",
1166 			       dc->backing_dev_name);
1167 			return -EINVAL;
1168 		}
1169 	}
1170 
1171 	/*
1172 	 * Deadlocks since we're called via sysfs...
1173 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1174 	 */
1175 
1176 	if (bch_is_zero(u->uuid, 16)) {
1177 		struct closure cl;
1178 
1179 		closure_init_stack(&cl);
1180 
1181 		memcpy(u->uuid, dc->sb.uuid, 16);
1182 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1183 		u->first_reg = u->last_reg = rtime;
1184 		bch_uuid_write(c);
1185 
1186 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1187 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1188 
1189 		bch_write_bdev_super(dc, &cl);
1190 		closure_sync(&cl);
1191 	} else {
1192 		u->last_reg = rtime;
1193 		bch_uuid_write(c);
1194 	}
1195 
1196 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1197 	list_move(&dc->list, &c->cached_devs);
1198 	calc_cached_dev_sectors(c);
1199 
1200 	/*
1201 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1202 	 * cached_dev_get()
1203 	 */
1204 	smp_wmb();
1205 	refcount_set(&dc->count, 1);
1206 
1207 	/* Block writeback thread, but spawn it */
1208 	down_write(&dc->writeback_lock);
1209 	if (bch_cached_dev_writeback_start(dc)) {
1210 		up_write(&dc->writeback_lock);
1211 		pr_err("Couldn't start writeback facilities for %s\n",
1212 		       dc->disk.disk->disk_name);
1213 		return -ENOMEM;
1214 	}
1215 
1216 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1217 		atomic_set(&dc->has_dirty, 1);
1218 		bch_writeback_queue(dc);
1219 	}
1220 
1221 	bch_sectors_dirty_init(&dc->disk);
1222 
1223 	ret = bch_cached_dev_run(dc);
1224 	if (ret && (ret != -EBUSY)) {
1225 		up_write(&dc->writeback_lock);
1226 		/*
1227 		 * bch_register_lock is held, bcache_device_stop() is not
1228 		 * able to be directly called. The kthread and kworker
1229 		 * created previously in bch_cached_dev_writeback_start()
1230 		 * have to be stopped manually here.
1231 		 */
1232 		kthread_stop(dc->writeback_thread);
1233 		cancel_writeback_rate_update_dwork(dc);
1234 		pr_err("Couldn't run cached device %s\n",
1235 		       dc->backing_dev_name);
1236 		return ret;
1237 	}
1238 
1239 	bcache_device_link(&dc->disk, c, "bdev");
1240 	atomic_inc(&c->attached_dev_nr);
1241 
1242 	/* Allow the writeback thread to proceed */
1243 	up_write(&dc->writeback_lock);
1244 
1245 	pr_info("Caching %s as %s on set %pU\n",
1246 		dc->backing_dev_name,
1247 		dc->disk.disk->disk_name,
1248 		dc->disk.c->sb.set_uuid);
1249 	return 0;
1250 }
1251 
1252 /* when dc->disk.kobj released */
1253 void bch_cached_dev_release(struct kobject *kobj)
1254 {
1255 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1256 					     disk.kobj);
1257 	kfree(dc);
1258 	module_put(THIS_MODULE);
1259 }
1260 
1261 static void cached_dev_free(struct closure *cl)
1262 {
1263 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1264 
1265 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1266 		cancel_writeback_rate_update_dwork(dc);
1267 
1268 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1269 		kthread_stop(dc->writeback_thread);
1270 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1271 		kthread_stop(dc->status_update_thread);
1272 
1273 	mutex_lock(&bch_register_lock);
1274 
1275 	if (atomic_read(&dc->running))
1276 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1277 	bcache_device_free(&dc->disk);
1278 	list_del(&dc->list);
1279 
1280 	mutex_unlock(&bch_register_lock);
1281 
1282 	if (dc->sb_disk)
1283 		put_page(virt_to_page(dc->sb_disk));
1284 
1285 	if (!IS_ERR_OR_NULL(dc->bdev))
1286 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1287 
1288 	wake_up(&unregister_wait);
1289 
1290 	kobject_put(&dc->disk.kobj);
1291 }
1292 
1293 static void cached_dev_flush(struct closure *cl)
1294 {
1295 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1296 	struct bcache_device *d = &dc->disk;
1297 
1298 	mutex_lock(&bch_register_lock);
1299 	bcache_device_unlink(d);
1300 	mutex_unlock(&bch_register_lock);
1301 
1302 	bch_cache_accounting_destroy(&dc->accounting);
1303 	kobject_del(&d->kobj);
1304 
1305 	continue_at(cl, cached_dev_free, system_wq);
1306 }
1307 
1308 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1309 {
1310 	int ret;
1311 	struct io *io;
1312 	struct request_queue *q = bdev_get_queue(dc->bdev);
1313 
1314 	__module_get(THIS_MODULE);
1315 	INIT_LIST_HEAD(&dc->list);
1316 	closure_init(&dc->disk.cl, NULL);
1317 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1318 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1319 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1320 	sema_init(&dc->sb_write_mutex, 1);
1321 	INIT_LIST_HEAD(&dc->io_lru);
1322 	spin_lock_init(&dc->io_lock);
1323 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1324 
1325 	dc->sequential_cutoff		= 4 << 20;
1326 
1327 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1328 		list_add(&io->lru, &dc->io_lru);
1329 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1330 	}
1331 
1332 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1333 
1334 	if (dc->disk.stripe_size)
1335 		dc->partial_stripes_expensive =
1336 			q->limits.raid_partial_stripes_expensive;
1337 
1338 	ret = bcache_device_init(&dc->disk, block_size,
1339 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset,
1340 			 cached_dev_make_request);
1341 	if (ret)
1342 		return ret;
1343 
1344 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1345 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1346 		    q->backing_dev_info->ra_pages);
1347 
1348 	atomic_set(&dc->io_errors, 0);
1349 	dc->io_disable = false;
1350 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1351 	/* default to auto */
1352 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1353 
1354 	bch_cached_dev_request_init(dc);
1355 	bch_cached_dev_writeback_init(dc);
1356 	return 0;
1357 }
1358 
1359 /* Cached device - bcache superblock */
1360 
1361 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
1362 				 struct block_device *bdev,
1363 				 struct cached_dev *dc)
1364 {
1365 	const char *err = "cannot allocate memory";
1366 	struct cache_set *c;
1367 	int ret = -ENOMEM;
1368 
1369 	bdevname(bdev, dc->backing_dev_name);
1370 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1371 	dc->bdev = bdev;
1372 	dc->bdev->bd_holder = dc;
1373 	dc->sb_disk = sb_disk;
1374 
1375 	if (cached_dev_init(dc, sb->block_size << 9))
1376 		goto err;
1377 
1378 	err = "error creating kobject";
1379 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1380 			"bcache"))
1381 		goto err;
1382 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1383 		goto err;
1384 
1385 	pr_info("registered backing device %s\n", dc->backing_dev_name);
1386 
1387 	list_add(&dc->list, &uncached_devices);
1388 	/* attach to a matched cache set if it exists */
1389 	list_for_each_entry(c, &bch_cache_sets, list)
1390 		bch_cached_dev_attach(dc, c, NULL);
1391 
1392 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1393 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) {
1394 		err = "failed to run cached device";
1395 		ret = bch_cached_dev_run(dc);
1396 		if (ret)
1397 			goto err;
1398 	}
1399 
1400 	return 0;
1401 err:
1402 	pr_notice("error %s: %s\n", dc->backing_dev_name, err);
1403 	bcache_device_stop(&dc->disk);
1404 	return ret;
1405 }
1406 
1407 /* Flash only volumes */
1408 
1409 /* When d->kobj released */
1410 void bch_flash_dev_release(struct kobject *kobj)
1411 {
1412 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1413 					       kobj);
1414 	kfree(d);
1415 }
1416 
1417 static void flash_dev_free(struct closure *cl)
1418 {
1419 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1420 
1421 	mutex_lock(&bch_register_lock);
1422 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1423 			&d->c->flash_dev_dirty_sectors);
1424 	bcache_device_free(d);
1425 	mutex_unlock(&bch_register_lock);
1426 	kobject_put(&d->kobj);
1427 }
1428 
1429 static void flash_dev_flush(struct closure *cl)
1430 {
1431 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1432 
1433 	mutex_lock(&bch_register_lock);
1434 	bcache_device_unlink(d);
1435 	mutex_unlock(&bch_register_lock);
1436 	kobject_del(&d->kobj);
1437 	continue_at(cl, flash_dev_free, system_wq);
1438 }
1439 
1440 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1441 {
1442 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1443 					  GFP_KERNEL);
1444 	if (!d)
1445 		return -ENOMEM;
1446 
1447 	closure_init(&d->cl, NULL);
1448 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1449 
1450 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1451 
1452 	if (bcache_device_init(d, block_bytes(c), u->sectors,
1453 			flash_dev_make_request))
1454 		goto err;
1455 
1456 	bcache_device_attach(d, c, u - c->uuids);
1457 	bch_sectors_dirty_init(d);
1458 	bch_flash_dev_request_init(d);
1459 	add_disk(d->disk);
1460 
1461 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1462 		goto err;
1463 
1464 	bcache_device_link(d, c, "volume");
1465 
1466 	return 0;
1467 err:
1468 	kobject_put(&d->kobj);
1469 	return -ENOMEM;
1470 }
1471 
1472 static int flash_devs_run(struct cache_set *c)
1473 {
1474 	int ret = 0;
1475 	struct uuid_entry *u;
1476 
1477 	for (u = c->uuids;
1478 	     u < c->uuids + c->nr_uuids && !ret;
1479 	     u++)
1480 		if (UUID_FLASH_ONLY(u))
1481 			ret = flash_dev_run(c, u);
1482 
1483 	return ret;
1484 }
1485 
1486 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1487 {
1488 	struct uuid_entry *u;
1489 
1490 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1491 		return -EINTR;
1492 
1493 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1494 		return -EPERM;
1495 
1496 	u = uuid_find_empty(c);
1497 	if (!u) {
1498 		pr_err("Can't create volume, no room for UUID\n");
1499 		return -EINVAL;
1500 	}
1501 
1502 	get_random_bytes(u->uuid, 16);
1503 	memset(u->label, 0, 32);
1504 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1505 
1506 	SET_UUID_FLASH_ONLY(u, 1);
1507 	u->sectors = size >> 9;
1508 
1509 	bch_uuid_write(c);
1510 
1511 	return flash_dev_run(c, u);
1512 }
1513 
1514 bool bch_cached_dev_error(struct cached_dev *dc)
1515 {
1516 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1517 		return false;
1518 
1519 	dc->io_disable = true;
1520 	/* make others know io_disable is true earlier */
1521 	smp_mb();
1522 
1523 	pr_err("stop %s: too many IO errors on backing device %s\n",
1524 	       dc->disk.disk->disk_name, dc->backing_dev_name);
1525 
1526 	bcache_device_stop(&dc->disk);
1527 	return true;
1528 }
1529 
1530 /* Cache set */
1531 
1532 __printf(2, 3)
1533 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1534 {
1535 	struct va_format vaf;
1536 	va_list args;
1537 
1538 	if (c->on_error != ON_ERROR_PANIC &&
1539 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1540 		return false;
1541 
1542 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1543 		pr_info("CACHE_SET_IO_DISABLE already set\n");
1544 
1545 	/*
1546 	 * XXX: we can be called from atomic context
1547 	 * acquire_console_sem();
1548 	 */
1549 
1550 	va_start(args, fmt);
1551 
1552 	vaf.fmt = fmt;
1553 	vaf.va = &args;
1554 
1555 	pr_err("error on %pU: %pV, disabling caching\n",
1556 	       c->sb.set_uuid, &vaf);
1557 
1558 	va_end(args);
1559 
1560 	if (c->on_error == ON_ERROR_PANIC)
1561 		panic("panic forced after error\n");
1562 
1563 	bch_cache_set_unregister(c);
1564 	return true;
1565 }
1566 
1567 /* When c->kobj released */
1568 void bch_cache_set_release(struct kobject *kobj)
1569 {
1570 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1571 
1572 	kfree(c);
1573 	module_put(THIS_MODULE);
1574 }
1575 
1576 static void cache_set_free(struct closure *cl)
1577 {
1578 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1579 	struct cache *ca;
1580 	unsigned int i;
1581 
1582 	debugfs_remove(c->debug);
1583 
1584 	bch_open_buckets_free(c);
1585 	bch_btree_cache_free(c);
1586 	bch_journal_free(c);
1587 
1588 	mutex_lock(&bch_register_lock);
1589 	for_each_cache(ca, c, i)
1590 		if (ca) {
1591 			ca->set = NULL;
1592 			c->cache[ca->sb.nr_this_dev] = NULL;
1593 			kobject_put(&ca->kobj);
1594 		}
1595 
1596 	bch_bset_sort_state_free(&c->sort);
1597 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1598 
1599 	if (c->moving_gc_wq)
1600 		destroy_workqueue(c->moving_gc_wq);
1601 	bioset_exit(&c->bio_split);
1602 	mempool_exit(&c->fill_iter);
1603 	mempool_exit(&c->bio_meta);
1604 	mempool_exit(&c->search);
1605 	kfree(c->devices);
1606 
1607 	list_del(&c->list);
1608 	mutex_unlock(&bch_register_lock);
1609 
1610 	pr_info("Cache set %pU unregistered\n", c->sb.set_uuid);
1611 	wake_up(&unregister_wait);
1612 
1613 	closure_debug_destroy(&c->cl);
1614 	kobject_put(&c->kobj);
1615 }
1616 
1617 static void cache_set_flush(struct closure *cl)
1618 {
1619 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1620 	struct cache *ca;
1621 	struct btree *b;
1622 	unsigned int i;
1623 
1624 	bch_cache_accounting_destroy(&c->accounting);
1625 
1626 	kobject_put(&c->internal);
1627 	kobject_del(&c->kobj);
1628 
1629 	if (!IS_ERR_OR_NULL(c->gc_thread))
1630 		kthread_stop(c->gc_thread);
1631 
1632 	if (!IS_ERR_OR_NULL(c->root))
1633 		list_add(&c->root->list, &c->btree_cache);
1634 
1635 	/*
1636 	 * Avoid flushing cached nodes if cache set is retiring
1637 	 * due to too many I/O errors detected.
1638 	 */
1639 	if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1640 		list_for_each_entry(b, &c->btree_cache, list) {
1641 			mutex_lock(&b->write_lock);
1642 			if (btree_node_dirty(b))
1643 				__bch_btree_node_write(b, NULL);
1644 			mutex_unlock(&b->write_lock);
1645 		}
1646 
1647 	for_each_cache(ca, c, i)
1648 		if (ca->alloc_thread)
1649 			kthread_stop(ca->alloc_thread);
1650 
1651 	if (c->journal.cur) {
1652 		cancel_delayed_work_sync(&c->journal.work);
1653 		/* flush last journal entry if needed */
1654 		c->journal.work.work.func(&c->journal.work.work);
1655 	}
1656 
1657 	closure_return(cl);
1658 }
1659 
1660 /*
1661  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1662  * cache set is unregistering due to too many I/O errors. In this condition,
1663  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1664  * value and whether the broken cache has dirty data:
1665  *
1666  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1667  *  BCH_CACHED_STOP_AUTO               0               NO
1668  *  BCH_CACHED_STOP_AUTO               1               YES
1669  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1670  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1671  *
1672  * The expected behavior is, if stop_when_cache_set_failed is configured to
1673  * "auto" via sysfs interface, the bcache device will not be stopped if the
1674  * backing device is clean on the broken cache device.
1675  */
1676 static void conditional_stop_bcache_device(struct cache_set *c,
1677 					   struct bcache_device *d,
1678 					   struct cached_dev *dc)
1679 {
1680 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1681 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n",
1682 			d->disk->disk_name, c->sb.set_uuid);
1683 		bcache_device_stop(d);
1684 	} else if (atomic_read(&dc->has_dirty)) {
1685 		/*
1686 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1687 		 * and dc->has_dirty == 1
1688 		 */
1689 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n",
1690 			d->disk->disk_name);
1691 		/*
1692 		 * There might be a small time gap that cache set is
1693 		 * released but bcache device is not. Inside this time
1694 		 * gap, regular I/O requests will directly go into
1695 		 * backing device as no cache set attached to. This
1696 		 * behavior may also introduce potential inconsistence
1697 		 * data in writeback mode while cache is dirty.
1698 		 * Therefore before calling bcache_device_stop() due
1699 		 * to a broken cache device, dc->io_disable should be
1700 		 * explicitly set to true.
1701 		 */
1702 		dc->io_disable = true;
1703 		/* make others know io_disable is true earlier */
1704 		smp_mb();
1705 		bcache_device_stop(d);
1706 	} else {
1707 		/*
1708 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1709 		 * and dc->has_dirty == 0
1710 		 */
1711 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n",
1712 			d->disk->disk_name);
1713 	}
1714 }
1715 
1716 static void __cache_set_unregister(struct closure *cl)
1717 {
1718 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1719 	struct cached_dev *dc;
1720 	struct bcache_device *d;
1721 	size_t i;
1722 
1723 	mutex_lock(&bch_register_lock);
1724 
1725 	for (i = 0; i < c->devices_max_used; i++) {
1726 		d = c->devices[i];
1727 		if (!d)
1728 			continue;
1729 
1730 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1731 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1732 			dc = container_of(d, struct cached_dev, disk);
1733 			bch_cached_dev_detach(dc);
1734 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1735 				conditional_stop_bcache_device(c, d, dc);
1736 		} else {
1737 			bcache_device_stop(d);
1738 		}
1739 	}
1740 
1741 	mutex_unlock(&bch_register_lock);
1742 
1743 	continue_at(cl, cache_set_flush, system_wq);
1744 }
1745 
1746 void bch_cache_set_stop(struct cache_set *c)
1747 {
1748 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1749 		/* closure_fn set to __cache_set_unregister() */
1750 		closure_queue(&c->caching);
1751 }
1752 
1753 void bch_cache_set_unregister(struct cache_set *c)
1754 {
1755 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1756 	bch_cache_set_stop(c);
1757 }
1758 
1759 #define alloc_bucket_pages(gfp, c)			\
1760 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1761 
1762 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1763 {
1764 	int iter_size;
1765 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1766 
1767 	if (!c)
1768 		return NULL;
1769 
1770 	__module_get(THIS_MODULE);
1771 	closure_init(&c->cl, NULL);
1772 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1773 
1774 	closure_init(&c->caching, &c->cl);
1775 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1776 
1777 	/* Maybe create continue_at_noreturn() and use it here? */
1778 	closure_set_stopped(&c->cl);
1779 	closure_put(&c->cl);
1780 
1781 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1782 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1783 
1784 	bch_cache_accounting_init(&c->accounting, &c->cl);
1785 
1786 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1787 	c->sb.block_size	= sb->block_size;
1788 	c->sb.bucket_size	= sb->bucket_size;
1789 	c->sb.nr_in_set		= sb->nr_in_set;
1790 	c->sb.last_mount	= sb->last_mount;
1791 	c->bucket_bits		= ilog2(sb->bucket_size);
1792 	c->block_bits		= ilog2(sb->block_size);
1793 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1794 	c->devices_max_used	= 0;
1795 	atomic_set(&c->attached_dev_nr, 0);
1796 	c->btree_pages		= bucket_pages(c);
1797 	if (c->btree_pages > BTREE_MAX_PAGES)
1798 		c->btree_pages = max_t(int, c->btree_pages / 4,
1799 				       BTREE_MAX_PAGES);
1800 
1801 	sema_init(&c->sb_write_mutex, 1);
1802 	mutex_init(&c->bucket_lock);
1803 	init_waitqueue_head(&c->btree_cache_wait);
1804 	spin_lock_init(&c->btree_cannibalize_lock);
1805 	init_waitqueue_head(&c->bucket_wait);
1806 	init_waitqueue_head(&c->gc_wait);
1807 	sema_init(&c->uuid_write_mutex, 1);
1808 
1809 	spin_lock_init(&c->btree_gc_time.lock);
1810 	spin_lock_init(&c->btree_split_time.lock);
1811 	spin_lock_init(&c->btree_read_time.lock);
1812 
1813 	bch_moving_init_cache_set(c);
1814 
1815 	INIT_LIST_HEAD(&c->list);
1816 	INIT_LIST_HEAD(&c->cached_devs);
1817 	INIT_LIST_HEAD(&c->btree_cache);
1818 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1819 	INIT_LIST_HEAD(&c->btree_cache_freed);
1820 	INIT_LIST_HEAD(&c->data_buckets);
1821 
1822 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1823 		sizeof(struct btree_iter_set);
1824 
1825 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1826 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1827 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1828 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1829 				bucket_pages(c)) ||
1830 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1831 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1832 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1833 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1834 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1835 						WQ_MEM_RECLAIM, 0)) ||
1836 	    bch_journal_alloc(c) ||
1837 	    bch_btree_cache_alloc(c) ||
1838 	    bch_open_buckets_alloc(c) ||
1839 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1840 		goto err;
1841 
1842 	c->congested_read_threshold_us	= 2000;
1843 	c->congested_write_threshold_us	= 20000;
1844 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1845 	c->idle_max_writeback_rate_enabled = 1;
1846 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1847 
1848 	return c;
1849 err:
1850 	bch_cache_set_unregister(c);
1851 	return NULL;
1852 }
1853 
1854 static int run_cache_set(struct cache_set *c)
1855 {
1856 	const char *err = "cannot allocate memory";
1857 	struct cached_dev *dc, *t;
1858 	struct cache *ca;
1859 	struct closure cl;
1860 	unsigned int i;
1861 	LIST_HEAD(journal);
1862 	struct journal_replay *l;
1863 
1864 	closure_init_stack(&cl);
1865 
1866 	for_each_cache(ca, c, i)
1867 		c->nbuckets += ca->sb.nbuckets;
1868 	set_gc_sectors(c);
1869 
1870 	if (CACHE_SYNC(&c->sb)) {
1871 		struct bkey *k;
1872 		struct jset *j;
1873 
1874 		err = "cannot allocate memory for journal";
1875 		if (bch_journal_read(c, &journal))
1876 			goto err;
1877 
1878 		pr_debug("btree_journal_read() done\n");
1879 
1880 		err = "no journal entries found";
1881 		if (list_empty(&journal))
1882 			goto err;
1883 
1884 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1885 
1886 		err = "IO error reading priorities";
1887 		for_each_cache(ca, c, i) {
1888 			if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]))
1889 				goto err;
1890 		}
1891 
1892 		/*
1893 		 * If prio_read() fails it'll call cache_set_error and we'll
1894 		 * tear everything down right away, but if we perhaps checked
1895 		 * sooner we could avoid journal replay.
1896 		 */
1897 
1898 		k = &j->btree_root;
1899 
1900 		err = "bad btree root";
1901 		if (__bch_btree_ptr_invalid(c, k))
1902 			goto err;
1903 
1904 		err = "error reading btree root";
1905 		c->root = bch_btree_node_get(c, NULL, k,
1906 					     j->btree_level,
1907 					     true, NULL);
1908 		if (IS_ERR_OR_NULL(c->root))
1909 			goto err;
1910 
1911 		list_del_init(&c->root->list);
1912 		rw_unlock(true, c->root);
1913 
1914 		err = uuid_read(c, j, &cl);
1915 		if (err)
1916 			goto err;
1917 
1918 		err = "error in recovery";
1919 		if (bch_btree_check(c))
1920 			goto err;
1921 
1922 		bch_journal_mark(c, &journal);
1923 		bch_initial_gc_finish(c);
1924 		pr_debug("btree_check() done\n");
1925 
1926 		/*
1927 		 * bcache_journal_next() can't happen sooner, or
1928 		 * btree_gc_finish() will give spurious errors about last_gc >
1929 		 * gc_gen - this is a hack but oh well.
1930 		 */
1931 		bch_journal_next(&c->journal);
1932 
1933 		err = "error starting allocator thread";
1934 		for_each_cache(ca, c, i)
1935 			if (bch_cache_allocator_start(ca))
1936 				goto err;
1937 
1938 		/*
1939 		 * First place it's safe to allocate: btree_check() and
1940 		 * btree_gc_finish() have to run before we have buckets to
1941 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1942 		 * entry to be written so bcache_journal_next() has to be called
1943 		 * first.
1944 		 *
1945 		 * If the uuids were in the old format we have to rewrite them
1946 		 * before the next journal entry is written:
1947 		 */
1948 		if (j->version < BCACHE_JSET_VERSION_UUID)
1949 			__uuid_write(c);
1950 
1951 		err = "bcache: replay journal failed";
1952 		if (bch_journal_replay(c, &journal))
1953 			goto err;
1954 	} else {
1955 		pr_notice("invalidating existing data\n");
1956 
1957 		for_each_cache(ca, c, i) {
1958 			unsigned int j;
1959 
1960 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1961 					      2, SB_JOURNAL_BUCKETS);
1962 
1963 			for (j = 0; j < ca->sb.keys; j++)
1964 				ca->sb.d[j] = ca->sb.first_bucket + j;
1965 		}
1966 
1967 		bch_initial_gc_finish(c);
1968 
1969 		err = "error starting allocator thread";
1970 		for_each_cache(ca, c, i)
1971 			if (bch_cache_allocator_start(ca))
1972 				goto err;
1973 
1974 		mutex_lock(&c->bucket_lock);
1975 		for_each_cache(ca, c, i)
1976 			bch_prio_write(ca, true);
1977 		mutex_unlock(&c->bucket_lock);
1978 
1979 		err = "cannot allocate new UUID bucket";
1980 		if (__uuid_write(c))
1981 			goto err;
1982 
1983 		err = "cannot allocate new btree root";
1984 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1985 		if (IS_ERR_OR_NULL(c->root))
1986 			goto err;
1987 
1988 		mutex_lock(&c->root->write_lock);
1989 		bkey_copy_key(&c->root->key, &MAX_KEY);
1990 		bch_btree_node_write(c->root, &cl);
1991 		mutex_unlock(&c->root->write_lock);
1992 
1993 		bch_btree_set_root(c->root);
1994 		rw_unlock(true, c->root);
1995 
1996 		/*
1997 		 * We don't want to write the first journal entry until
1998 		 * everything is set up - fortunately journal entries won't be
1999 		 * written until the SET_CACHE_SYNC() here:
2000 		 */
2001 		SET_CACHE_SYNC(&c->sb, true);
2002 
2003 		bch_journal_next(&c->journal);
2004 		bch_journal_meta(c, &cl);
2005 	}
2006 
2007 	err = "error starting gc thread";
2008 	if (bch_gc_thread_start(c))
2009 		goto err;
2010 
2011 	closure_sync(&cl);
2012 	c->sb.last_mount = (u32)ktime_get_real_seconds();
2013 	bcache_write_super(c);
2014 
2015 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2016 		bch_cached_dev_attach(dc, c, NULL);
2017 
2018 	flash_devs_run(c);
2019 
2020 	set_bit(CACHE_SET_RUNNING, &c->flags);
2021 	return 0;
2022 err:
2023 	while (!list_empty(&journal)) {
2024 		l = list_first_entry(&journal, struct journal_replay, list);
2025 		list_del(&l->list);
2026 		kfree(l);
2027 	}
2028 
2029 	closure_sync(&cl);
2030 
2031 	bch_cache_set_error(c, "%s", err);
2032 
2033 	return -EIO;
2034 }
2035 
2036 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
2037 {
2038 	return ca->sb.block_size	== c->sb.block_size &&
2039 		ca->sb.bucket_size	== c->sb.bucket_size &&
2040 		ca->sb.nr_in_set	== c->sb.nr_in_set;
2041 }
2042 
2043 static const char *register_cache_set(struct cache *ca)
2044 {
2045 	char buf[12];
2046 	const char *err = "cannot allocate memory";
2047 	struct cache_set *c;
2048 
2049 	list_for_each_entry(c, &bch_cache_sets, list)
2050 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
2051 			if (c->cache[ca->sb.nr_this_dev])
2052 				return "duplicate cache set member";
2053 
2054 			if (!can_attach_cache(ca, c))
2055 				return "cache sb does not match set";
2056 
2057 			if (!CACHE_SYNC(&ca->sb))
2058 				SET_CACHE_SYNC(&c->sb, false);
2059 
2060 			goto found;
2061 		}
2062 
2063 	c = bch_cache_set_alloc(&ca->sb);
2064 	if (!c)
2065 		return err;
2066 
2067 	err = "error creating kobject";
2068 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
2069 	    kobject_add(&c->internal, &c->kobj, "internal"))
2070 		goto err;
2071 
2072 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2073 		goto err;
2074 
2075 	bch_debug_init_cache_set(c);
2076 
2077 	list_add(&c->list, &bch_cache_sets);
2078 found:
2079 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2080 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2081 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2082 		goto err;
2083 
2084 	if (ca->sb.seq > c->sb.seq) {
2085 		c->sb.version		= ca->sb.version;
2086 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2087 		c->sb.flags             = ca->sb.flags;
2088 		c->sb.seq		= ca->sb.seq;
2089 		pr_debug("set version = %llu\n", c->sb.version);
2090 	}
2091 
2092 	kobject_get(&ca->kobj);
2093 	ca->set = c;
2094 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2095 	c->cache_by_alloc[c->caches_loaded++] = ca;
2096 
2097 	if (c->caches_loaded == c->sb.nr_in_set) {
2098 		err = "failed to run cache set";
2099 		if (run_cache_set(c) < 0)
2100 			goto err;
2101 	}
2102 
2103 	return NULL;
2104 err:
2105 	bch_cache_set_unregister(c);
2106 	return err;
2107 }
2108 
2109 /* Cache device */
2110 
2111 /* When ca->kobj released */
2112 void bch_cache_release(struct kobject *kobj)
2113 {
2114 	struct cache *ca = container_of(kobj, struct cache, kobj);
2115 	unsigned int i;
2116 
2117 	if (ca->set) {
2118 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2119 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2120 	}
2121 
2122 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2123 	kfree(ca->prio_buckets);
2124 	vfree(ca->buckets);
2125 
2126 	free_heap(&ca->heap);
2127 	free_fifo(&ca->free_inc);
2128 
2129 	for (i = 0; i < RESERVE_NR; i++)
2130 		free_fifo(&ca->free[i]);
2131 
2132 	if (ca->sb_disk)
2133 		put_page(virt_to_page(ca->sb_disk));
2134 
2135 	if (!IS_ERR_OR_NULL(ca->bdev))
2136 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2137 
2138 	kfree(ca);
2139 	module_put(THIS_MODULE);
2140 }
2141 
2142 static int cache_alloc(struct cache *ca)
2143 {
2144 	size_t free;
2145 	size_t btree_buckets;
2146 	struct bucket *b;
2147 	int ret = -ENOMEM;
2148 	const char *err = NULL;
2149 
2150 	__module_get(THIS_MODULE);
2151 	kobject_init(&ca->kobj, &bch_cache_ktype);
2152 
2153 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2154 
2155 	/*
2156 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2157 	 * and in bch_journal_replay(), tree node may split,
2158 	 * so bucket of RESERVE_BTREE type is needed,
2159 	 * the worst situation is all journal buckets are valid journal,
2160 	 * and all the keys need to replay,
2161 	 * so the number of  RESERVE_BTREE type buckets should be as much
2162 	 * as journal buckets
2163 	 */
2164 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2165 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2166 	if (!free) {
2167 		ret = -EPERM;
2168 		err = "ca->sb.nbuckets is too small";
2169 		goto err_free;
2170 	}
2171 
2172 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2173 						GFP_KERNEL)) {
2174 		err = "ca->free[RESERVE_BTREE] alloc failed";
2175 		goto err_btree_alloc;
2176 	}
2177 
2178 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2179 							GFP_KERNEL)) {
2180 		err = "ca->free[RESERVE_PRIO] alloc failed";
2181 		goto err_prio_alloc;
2182 	}
2183 
2184 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2185 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2186 		goto err_movinggc_alloc;
2187 	}
2188 
2189 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2190 		err = "ca->free[RESERVE_NONE] alloc failed";
2191 		goto err_none_alloc;
2192 	}
2193 
2194 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2195 		err = "ca->free_inc alloc failed";
2196 		goto err_free_inc_alloc;
2197 	}
2198 
2199 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2200 		err = "ca->heap alloc failed";
2201 		goto err_heap_alloc;
2202 	}
2203 
2204 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2205 			      ca->sb.nbuckets));
2206 	if (!ca->buckets) {
2207 		err = "ca->buckets alloc failed";
2208 		goto err_buckets_alloc;
2209 	}
2210 
2211 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2212 				   prio_buckets(ca), 2),
2213 				   GFP_KERNEL);
2214 	if (!ca->prio_buckets) {
2215 		err = "ca->prio_buckets alloc failed";
2216 		goto err_prio_buckets_alloc;
2217 	}
2218 
2219 	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2220 	if (!ca->disk_buckets) {
2221 		err = "ca->disk_buckets alloc failed";
2222 		goto err_disk_buckets_alloc;
2223 	}
2224 
2225 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2226 
2227 	for_each_bucket(b, ca)
2228 		atomic_set(&b->pin, 0);
2229 	return 0;
2230 
2231 err_disk_buckets_alloc:
2232 	kfree(ca->prio_buckets);
2233 err_prio_buckets_alloc:
2234 	vfree(ca->buckets);
2235 err_buckets_alloc:
2236 	free_heap(&ca->heap);
2237 err_heap_alloc:
2238 	free_fifo(&ca->free_inc);
2239 err_free_inc_alloc:
2240 	free_fifo(&ca->free[RESERVE_NONE]);
2241 err_none_alloc:
2242 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2243 err_movinggc_alloc:
2244 	free_fifo(&ca->free[RESERVE_PRIO]);
2245 err_prio_alloc:
2246 	free_fifo(&ca->free[RESERVE_BTREE]);
2247 err_btree_alloc:
2248 err_free:
2249 	module_put(THIS_MODULE);
2250 	if (err)
2251 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2252 	return ret;
2253 }
2254 
2255 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk,
2256 				struct block_device *bdev, struct cache *ca)
2257 {
2258 	const char *err = NULL; /* must be set for any error case */
2259 	int ret = 0;
2260 
2261 	bdevname(bdev, ca->cache_dev_name);
2262 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2263 	ca->bdev = bdev;
2264 	ca->bdev->bd_holder = ca;
2265 	ca->sb_disk = sb_disk;
2266 
2267 	if (blk_queue_discard(bdev_get_queue(bdev)))
2268 		ca->discard = CACHE_DISCARD(&ca->sb);
2269 
2270 	ret = cache_alloc(ca);
2271 	if (ret != 0) {
2272 		/*
2273 		 * If we failed here, it means ca->kobj is not initialized yet,
2274 		 * kobject_put() won't be called and there is no chance to
2275 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2276 		 * explicitly call blkdev_put() here.
2277 		 */
2278 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2279 		if (ret == -ENOMEM)
2280 			err = "cache_alloc(): -ENOMEM";
2281 		else if (ret == -EPERM)
2282 			err = "cache_alloc(): cache device is too small";
2283 		else
2284 			err = "cache_alloc(): unknown error";
2285 		goto err;
2286 	}
2287 
2288 	if (kobject_add(&ca->kobj,
2289 			&part_to_dev(bdev->bd_part)->kobj,
2290 			"bcache")) {
2291 		err = "error calling kobject_add";
2292 		ret = -ENOMEM;
2293 		goto out;
2294 	}
2295 
2296 	mutex_lock(&bch_register_lock);
2297 	err = register_cache_set(ca);
2298 	mutex_unlock(&bch_register_lock);
2299 
2300 	if (err) {
2301 		ret = -ENODEV;
2302 		goto out;
2303 	}
2304 
2305 	pr_info("registered cache device %s\n", ca->cache_dev_name);
2306 
2307 out:
2308 	kobject_put(&ca->kobj);
2309 
2310 err:
2311 	if (err)
2312 		pr_notice("error %s: %s\n", ca->cache_dev_name, err);
2313 
2314 	return ret;
2315 }
2316 
2317 /* Global interfaces/init */
2318 
2319 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2320 			       const char *buffer, size_t size);
2321 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2322 					 struct kobj_attribute *attr,
2323 					 const char *buffer, size_t size);
2324 
2325 kobj_attribute_write(register,		register_bcache);
2326 kobj_attribute_write(register_quiet,	register_bcache);
2327 kobj_attribute_write(pendings_cleanup,	bch_pending_bdevs_cleanup);
2328 
2329 static bool bch_is_open_backing(struct block_device *bdev)
2330 {
2331 	struct cache_set *c, *tc;
2332 	struct cached_dev *dc, *t;
2333 
2334 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2335 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2336 			if (dc->bdev == bdev)
2337 				return true;
2338 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2339 		if (dc->bdev == bdev)
2340 			return true;
2341 	return false;
2342 }
2343 
2344 static bool bch_is_open_cache(struct block_device *bdev)
2345 {
2346 	struct cache_set *c, *tc;
2347 	struct cache *ca;
2348 	unsigned int i;
2349 
2350 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2351 		for_each_cache(ca, c, i)
2352 			if (ca->bdev == bdev)
2353 				return true;
2354 	return false;
2355 }
2356 
2357 static bool bch_is_open(struct block_device *bdev)
2358 {
2359 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2360 }
2361 
2362 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2363 			       const char *buffer, size_t size)
2364 {
2365 	const char *err;
2366 	char *path = NULL;
2367 	struct cache_sb *sb;
2368 	struct cache_sb_disk *sb_disk;
2369 	struct block_device *bdev;
2370 	ssize_t ret;
2371 
2372 	ret = -EBUSY;
2373 	err = "failed to reference bcache module";
2374 	if (!try_module_get(THIS_MODULE))
2375 		goto out;
2376 
2377 	/* For latest state of bcache_is_reboot */
2378 	smp_mb();
2379 	err = "bcache is in reboot";
2380 	if (bcache_is_reboot)
2381 		goto out_module_put;
2382 
2383 	ret = -ENOMEM;
2384 	err = "cannot allocate memory";
2385 	path = kstrndup(buffer, size, GFP_KERNEL);
2386 	if (!path)
2387 		goto out_module_put;
2388 
2389 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2390 	if (!sb)
2391 		goto out_free_path;
2392 
2393 	ret = -EINVAL;
2394 	err = "failed to open device";
2395 	bdev = blkdev_get_by_path(strim(path),
2396 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2397 				  sb);
2398 	if (IS_ERR(bdev)) {
2399 		if (bdev == ERR_PTR(-EBUSY)) {
2400 			bdev = lookup_bdev(strim(path));
2401 			mutex_lock(&bch_register_lock);
2402 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2403 				err = "device already registered";
2404 			else
2405 				err = "device busy";
2406 			mutex_unlock(&bch_register_lock);
2407 			if (!IS_ERR(bdev))
2408 				bdput(bdev);
2409 			if (attr == &ksysfs_register_quiet)
2410 				goto done;
2411 		}
2412 		goto out_free_sb;
2413 	}
2414 
2415 	err = "failed to set blocksize";
2416 	if (set_blocksize(bdev, 4096))
2417 		goto out_blkdev_put;
2418 
2419 	err = read_super(sb, bdev, &sb_disk);
2420 	if (err)
2421 		goto out_blkdev_put;
2422 
2423 	err = "failed to register device";
2424 	if (SB_IS_BDEV(sb)) {
2425 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2426 
2427 		if (!dc)
2428 			goto out_put_sb_page;
2429 
2430 		mutex_lock(&bch_register_lock);
2431 		ret = register_bdev(sb, sb_disk, bdev, dc);
2432 		mutex_unlock(&bch_register_lock);
2433 		/* blkdev_put() will be called in cached_dev_free() */
2434 		if (ret < 0)
2435 			goto out_free_sb;
2436 	} else {
2437 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2438 
2439 		if (!ca)
2440 			goto out_put_sb_page;
2441 
2442 		/* blkdev_put() will be called in bch_cache_release() */
2443 		if (register_cache(sb, sb_disk, bdev, ca) != 0)
2444 			goto out_free_sb;
2445 	}
2446 
2447 done:
2448 	kfree(sb);
2449 	kfree(path);
2450 	module_put(THIS_MODULE);
2451 	return size;
2452 
2453 out_put_sb_page:
2454 	put_page(virt_to_page(sb_disk));
2455 out_blkdev_put:
2456 	blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2457 out_free_sb:
2458 	kfree(sb);
2459 out_free_path:
2460 	kfree(path);
2461 	path = NULL;
2462 out_module_put:
2463 	module_put(THIS_MODULE);
2464 out:
2465 	pr_info("error %s: %s\n", path?path:"", err);
2466 	return ret;
2467 }
2468 
2469 
2470 struct pdev {
2471 	struct list_head list;
2472 	struct cached_dev *dc;
2473 };
2474 
2475 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k,
2476 					 struct kobj_attribute *attr,
2477 					 const char *buffer,
2478 					 size_t size)
2479 {
2480 	LIST_HEAD(pending_devs);
2481 	ssize_t ret = size;
2482 	struct cached_dev *dc, *tdc;
2483 	struct pdev *pdev, *tpdev;
2484 	struct cache_set *c, *tc;
2485 
2486 	mutex_lock(&bch_register_lock);
2487 	list_for_each_entry_safe(dc, tdc, &uncached_devices, list) {
2488 		pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL);
2489 		if (!pdev)
2490 			break;
2491 		pdev->dc = dc;
2492 		list_add(&pdev->list, &pending_devs);
2493 	}
2494 
2495 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2496 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list) {
2497 			char *pdev_set_uuid = pdev->dc->sb.set_uuid;
2498 			char *set_uuid = c->sb.uuid;
2499 
2500 			if (!memcmp(pdev_set_uuid, set_uuid, 16)) {
2501 				list_del(&pdev->list);
2502 				kfree(pdev);
2503 				break;
2504 			}
2505 		}
2506 	}
2507 	mutex_unlock(&bch_register_lock);
2508 
2509 	list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) {
2510 		pr_info("delete pdev %p\n", pdev);
2511 		list_del(&pdev->list);
2512 		bcache_device_stop(&pdev->dc->disk);
2513 		kfree(pdev);
2514 	}
2515 
2516 	return ret;
2517 }
2518 
2519 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2520 {
2521 	if (bcache_is_reboot)
2522 		return NOTIFY_DONE;
2523 
2524 	if (code == SYS_DOWN ||
2525 	    code == SYS_HALT ||
2526 	    code == SYS_POWER_OFF) {
2527 		DEFINE_WAIT(wait);
2528 		unsigned long start = jiffies;
2529 		bool stopped = false;
2530 
2531 		struct cache_set *c, *tc;
2532 		struct cached_dev *dc, *tdc;
2533 
2534 		mutex_lock(&bch_register_lock);
2535 
2536 		if (bcache_is_reboot)
2537 			goto out;
2538 
2539 		/* New registration is rejected since now */
2540 		bcache_is_reboot = true;
2541 		/*
2542 		 * Make registering caller (if there is) on other CPU
2543 		 * core know bcache_is_reboot set to true earlier
2544 		 */
2545 		smp_mb();
2546 
2547 		if (list_empty(&bch_cache_sets) &&
2548 		    list_empty(&uncached_devices))
2549 			goto out;
2550 
2551 		mutex_unlock(&bch_register_lock);
2552 
2553 		pr_info("Stopping all devices:\n");
2554 
2555 		/*
2556 		 * The reason bch_register_lock is not held to call
2557 		 * bch_cache_set_stop() and bcache_device_stop() is to
2558 		 * avoid potential deadlock during reboot, because cache
2559 		 * set or bcache device stopping process will acqurie
2560 		 * bch_register_lock too.
2561 		 *
2562 		 * We are safe here because bcache_is_reboot sets to
2563 		 * true already, register_bcache() will reject new
2564 		 * registration now. bcache_is_reboot also makes sure
2565 		 * bcache_reboot() won't be re-entered on by other thread,
2566 		 * so there is no race in following list iteration by
2567 		 * list_for_each_entry_safe().
2568 		 */
2569 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2570 			bch_cache_set_stop(c);
2571 
2572 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2573 			bcache_device_stop(&dc->disk);
2574 
2575 
2576 		/*
2577 		 * Give an early chance for other kthreads and
2578 		 * kworkers to stop themselves
2579 		 */
2580 		schedule();
2581 
2582 		/* What's a condition variable? */
2583 		while (1) {
2584 			long timeout = start + 10 * HZ - jiffies;
2585 
2586 			mutex_lock(&bch_register_lock);
2587 			stopped = list_empty(&bch_cache_sets) &&
2588 				list_empty(&uncached_devices);
2589 
2590 			if (timeout < 0 || stopped)
2591 				break;
2592 
2593 			prepare_to_wait(&unregister_wait, &wait,
2594 					TASK_UNINTERRUPTIBLE);
2595 
2596 			mutex_unlock(&bch_register_lock);
2597 			schedule_timeout(timeout);
2598 		}
2599 
2600 		finish_wait(&unregister_wait, &wait);
2601 
2602 		if (stopped)
2603 			pr_info("All devices stopped\n");
2604 		else
2605 			pr_notice("Timeout waiting for devices to be closed\n");
2606 out:
2607 		mutex_unlock(&bch_register_lock);
2608 	}
2609 
2610 	return NOTIFY_DONE;
2611 }
2612 
2613 static struct notifier_block reboot = {
2614 	.notifier_call	= bcache_reboot,
2615 	.priority	= INT_MAX, /* before any real devices */
2616 };
2617 
2618 static void bcache_exit(void)
2619 {
2620 	bch_debug_exit();
2621 	bch_request_exit();
2622 	if (bcache_kobj)
2623 		kobject_put(bcache_kobj);
2624 	if (bcache_wq)
2625 		destroy_workqueue(bcache_wq);
2626 	if (bch_journal_wq)
2627 		destroy_workqueue(bch_journal_wq);
2628 
2629 	if (bcache_major)
2630 		unregister_blkdev(bcache_major, "bcache");
2631 	unregister_reboot_notifier(&reboot);
2632 	mutex_destroy(&bch_register_lock);
2633 }
2634 
2635 /* Check and fixup module parameters */
2636 static void check_module_parameters(void)
2637 {
2638 	if (bch_cutoff_writeback_sync == 0)
2639 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2640 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2641 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n",
2642 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2643 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2644 	}
2645 
2646 	if (bch_cutoff_writeback == 0)
2647 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2648 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2649 		pr_warn("set bch_cutoff_writeback (%u) to max value %u\n",
2650 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2651 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2652 	}
2653 
2654 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2655 		pr_warn("set bch_cutoff_writeback (%u) to %u\n",
2656 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2657 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2658 	}
2659 }
2660 
2661 static int __init bcache_init(void)
2662 {
2663 	static const struct attribute *files[] = {
2664 		&ksysfs_register.attr,
2665 		&ksysfs_register_quiet.attr,
2666 		&ksysfs_pendings_cleanup.attr,
2667 		NULL
2668 	};
2669 
2670 	check_module_parameters();
2671 
2672 	mutex_init(&bch_register_lock);
2673 	init_waitqueue_head(&unregister_wait);
2674 	register_reboot_notifier(&reboot);
2675 
2676 	bcache_major = register_blkdev(0, "bcache");
2677 	if (bcache_major < 0) {
2678 		unregister_reboot_notifier(&reboot);
2679 		mutex_destroy(&bch_register_lock);
2680 		return bcache_major;
2681 	}
2682 
2683 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2684 	if (!bcache_wq)
2685 		goto err;
2686 
2687 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2688 	if (!bch_journal_wq)
2689 		goto err;
2690 
2691 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2692 	if (!bcache_kobj)
2693 		goto err;
2694 
2695 	if (bch_request_init() ||
2696 	    sysfs_create_files(bcache_kobj, files))
2697 		goto err;
2698 
2699 	bch_debug_init();
2700 	closure_debug_init();
2701 
2702 	bcache_is_reboot = false;
2703 
2704 	return 0;
2705 err:
2706 	bcache_exit();
2707 	return -ENOMEM;
2708 }
2709 
2710 /*
2711  * Module hooks
2712  */
2713 module_exit(bcache_exit);
2714 module_init(bcache_init);
2715 
2716 module_param(bch_cutoff_writeback, uint, 0);
2717 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2718 
2719 module_param(bch_cutoff_writeback_sync, uint, 0);
2720 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2721 
2722 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2723 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2724 MODULE_LICENSE("GPL");
2725