xref: /openbmc/linux/drivers/md/bcache/super.c (revision 2d972b6a)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 	"default",
43 	"writethrough",
44 	"writeback",
45 	"writearound",
46 	"none",
47 	NULL
48 };
49 
50 /* Default is -1; we skip past it for stop_when_cache_set_failed */
51 const char * const bch_stop_on_failure_modes[] = {
52 	"default",
53 	"auto",
54 	"always",
55 	NULL
56 };
57 
58 static struct kobject *bcache_kobj;
59 struct mutex bch_register_lock;
60 LIST_HEAD(bch_cache_sets);
61 static LIST_HEAD(uncached_devices);
62 
63 static int bcache_major;
64 static DEFINE_IDA(bcache_device_idx);
65 static wait_queue_head_t unregister_wait;
66 struct workqueue_struct *bcache_wq;
67 
68 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
69 /* limitation of partitions number on single bcache device */
70 #define BCACHE_MINORS		128
71 /* limitation of bcache devices number on single system */
72 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
73 
74 /* Superblock */
75 
76 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
77 			      struct page **res)
78 {
79 	const char *err;
80 	struct cache_sb *s;
81 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
82 	unsigned i;
83 
84 	if (!bh)
85 		return "IO error";
86 
87 	s = (struct cache_sb *) bh->b_data;
88 
89 	sb->offset		= le64_to_cpu(s->offset);
90 	sb->version		= le64_to_cpu(s->version);
91 
92 	memcpy(sb->magic,	s->magic, 16);
93 	memcpy(sb->uuid,	s->uuid, 16);
94 	memcpy(sb->set_uuid,	s->set_uuid, 16);
95 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
96 
97 	sb->flags		= le64_to_cpu(s->flags);
98 	sb->seq			= le64_to_cpu(s->seq);
99 	sb->last_mount		= le32_to_cpu(s->last_mount);
100 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
101 	sb->keys		= le16_to_cpu(s->keys);
102 
103 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
104 		sb->d[i] = le64_to_cpu(s->d[i]);
105 
106 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
107 		 sb->version, sb->flags, sb->seq, sb->keys);
108 
109 	err = "Not a bcache superblock";
110 	if (sb->offset != SB_SECTOR)
111 		goto err;
112 
113 	if (memcmp(sb->magic, bcache_magic, 16))
114 		goto err;
115 
116 	err = "Too many journal buckets";
117 	if (sb->keys > SB_JOURNAL_BUCKETS)
118 		goto err;
119 
120 	err = "Bad checksum";
121 	if (s->csum != csum_set(s))
122 		goto err;
123 
124 	err = "Bad UUID";
125 	if (bch_is_zero(sb->uuid, 16))
126 		goto err;
127 
128 	sb->block_size	= le16_to_cpu(s->block_size);
129 
130 	err = "Superblock block size smaller than device block size";
131 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
132 		goto err;
133 
134 	switch (sb->version) {
135 	case BCACHE_SB_VERSION_BDEV:
136 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
137 		break;
138 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
139 		sb->data_offset	= le64_to_cpu(s->data_offset);
140 
141 		err = "Bad data offset";
142 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
143 			goto err;
144 
145 		break;
146 	case BCACHE_SB_VERSION_CDEV:
147 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
148 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
149 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
150 
151 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
152 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
153 
154 		err = "Too many buckets";
155 		if (sb->nbuckets > LONG_MAX)
156 			goto err;
157 
158 		err = "Not enough buckets";
159 		if (sb->nbuckets < 1 << 7)
160 			goto err;
161 
162 		err = "Bad block/bucket size";
163 		if (!is_power_of_2(sb->block_size) ||
164 		    sb->block_size > PAGE_SECTORS ||
165 		    !is_power_of_2(sb->bucket_size) ||
166 		    sb->bucket_size < PAGE_SECTORS)
167 			goto err;
168 
169 		err = "Invalid superblock: device too small";
170 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
171 			goto err;
172 
173 		err = "Bad UUID";
174 		if (bch_is_zero(sb->set_uuid, 16))
175 			goto err;
176 
177 		err = "Bad cache device number in set";
178 		if (!sb->nr_in_set ||
179 		    sb->nr_in_set <= sb->nr_this_dev ||
180 		    sb->nr_in_set > MAX_CACHES_PER_SET)
181 			goto err;
182 
183 		err = "Journal buckets not sequential";
184 		for (i = 0; i < sb->keys; i++)
185 			if (sb->d[i] != sb->first_bucket + i)
186 				goto err;
187 
188 		err = "Too many journal buckets";
189 		if (sb->first_bucket + sb->keys > sb->nbuckets)
190 			goto err;
191 
192 		err = "Invalid superblock: first bucket comes before end of super";
193 		if (sb->first_bucket * sb->bucket_size < 16)
194 			goto err;
195 
196 		break;
197 	default:
198 		err = "Unsupported superblock version";
199 		goto err;
200 	}
201 
202 	sb->last_mount = get_seconds();
203 	err = NULL;
204 
205 	get_page(bh->b_page);
206 	*res = bh->b_page;
207 err:
208 	put_bh(bh);
209 	return err;
210 }
211 
212 static void write_bdev_super_endio(struct bio *bio)
213 {
214 	struct cached_dev *dc = bio->bi_private;
215 	/* XXX: error checking */
216 
217 	closure_put(&dc->sb_write);
218 }
219 
220 static void __write_super(struct cache_sb *sb, struct bio *bio)
221 {
222 	struct cache_sb *out = page_address(bio_first_page_all(bio));
223 	unsigned i;
224 
225 	bio->bi_iter.bi_sector	= SB_SECTOR;
226 	bio->bi_iter.bi_size	= SB_SIZE;
227 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
228 	bch_bio_map(bio, NULL);
229 
230 	out->offset		= cpu_to_le64(sb->offset);
231 	out->version		= cpu_to_le64(sb->version);
232 
233 	memcpy(out->uuid,	sb->uuid, 16);
234 	memcpy(out->set_uuid,	sb->set_uuid, 16);
235 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
236 
237 	out->flags		= cpu_to_le64(sb->flags);
238 	out->seq		= cpu_to_le64(sb->seq);
239 
240 	out->last_mount		= cpu_to_le32(sb->last_mount);
241 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
242 	out->keys		= cpu_to_le16(sb->keys);
243 
244 	for (i = 0; i < sb->keys; i++)
245 		out->d[i] = cpu_to_le64(sb->d[i]);
246 
247 	out->csum = csum_set(out);
248 
249 	pr_debug("ver %llu, flags %llu, seq %llu",
250 		 sb->version, sb->flags, sb->seq);
251 
252 	submit_bio(bio);
253 }
254 
255 static void bch_write_bdev_super_unlock(struct closure *cl)
256 {
257 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
258 
259 	up(&dc->sb_write_mutex);
260 }
261 
262 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
263 {
264 	struct closure *cl = &dc->sb_write;
265 	struct bio *bio = &dc->sb_bio;
266 
267 	down(&dc->sb_write_mutex);
268 	closure_init(cl, parent);
269 
270 	bio_reset(bio);
271 	bio_set_dev(bio, dc->bdev);
272 	bio->bi_end_io	= write_bdev_super_endio;
273 	bio->bi_private = dc;
274 
275 	closure_get(cl);
276 	/* I/O request sent to backing device */
277 	__write_super(&dc->sb, bio);
278 
279 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
280 }
281 
282 static void write_super_endio(struct bio *bio)
283 {
284 	struct cache *ca = bio->bi_private;
285 
286 	/* is_read = 0 */
287 	bch_count_io_errors(ca, bio->bi_status, 0,
288 			    "writing superblock");
289 	closure_put(&ca->set->sb_write);
290 }
291 
292 static void bcache_write_super_unlock(struct closure *cl)
293 {
294 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
295 
296 	up(&c->sb_write_mutex);
297 }
298 
299 void bcache_write_super(struct cache_set *c)
300 {
301 	struct closure *cl = &c->sb_write;
302 	struct cache *ca;
303 	unsigned i;
304 
305 	down(&c->sb_write_mutex);
306 	closure_init(cl, &c->cl);
307 
308 	c->sb.seq++;
309 
310 	for_each_cache(ca, c, i) {
311 		struct bio *bio = &ca->sb_bio;
312 
313 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
314 		ca->sb.seq		= c->sb.seq;
315 		ca->sb.last_mount	= c->sb.last_mount;
316 
317 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
318 
319 		bio_reset(bio);
320 		bio_set_dev(bio, ca->bdev);
321 		bio->bi_end_io	= write_super_endio;
322 		bio->bi_private = ca;
323 
324 		closure_get(cl);
325 		__write_super(&ca->sb, bio);
326 	}
327 
328 	closure_return_with_destructor(cl, bcache_write_super_unlock);
329 }
330 
331 /* UUID io */
332 
333 static void uuid_endio(struct bio *bio)
334 {
335 	struct closure *cl = bio->bi_private;
336 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
337 
338 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
339 	bch_bbio_free(bio, c);
340 	closure_put(cl);
341 }
342 
343 static void uuid_io_unlock(struct closure *cl)
344 {
345 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346 
347 	up(&c->uuid_write_mutex);
348 }
349 
350 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
351 		    struct bkey *k, struct closure *parent)
352 {
353 	struct closure *cl = &c->uuid_write;
354 	struct uuid_entry *u;
355 	unsigned i;
356 	char buf[80];
357 
358 	BUG_ON(!parent);
359 	down(&c->uuid_write_mutex);
360 	closure_init(cl, parent);
361 
362 	for (i = 0; i < KEY_PTRS(k); i++) {
363 		struct bio *bio = bch_bbio_alloc(c);
364 
365 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
366 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
367 
368 		bio->bi_end_io	= uuid_endio;
369 		bio->bi_private = cl;
370 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
371 		bch_bio_map(bio, c->uuids);
372 
373 		bch_submit_bbio(bio, c, k, i);
374 
375 		if (op != REQ_OP_WRITE)
376 			break;
377 	}
378 
379 	bch_extent_to_text(buf, sizeof(buf), k);
380 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
381 
382 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
383 		if (!bch_is_zero(u->uuid, 16))
384 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
385 				 u - c->uuids, u->uuid, u->label,
386 				 u->first_reg, u->last_reg, u->invalidated);
387 
388 	closure_return_with_destructor(cl, uuid_io_unlock);
389 }
390 
391 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
392 {
393 	struct bkey *k = &j->uuid_bucket;
394 
395 	if (__bch_btree_ptr_invalid(c, k))
396 		return "bad uuid pointer";
397 
398 	bkey_copy(&c->uuid_bucket, k);
399 	uuid_io(c, REQ_OP_READ, 0, k, cl);
400 
401 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
402 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
403 		struct uuid_entry	*u1 = (void *) c->uuids;
404 		int i;
405 
406 		closure_sync(cl);
407 
408 		/*
409 		 * Since the new uuid entry is bigger than the old, we have to
410 		 * convert starting at the highest memory address and work down
411 		 * in order to do it in place
412 		 */
413 
414 		for (i = c->nr_uuids - 1;
415 		     i >= 0;
416 		     --i) {
417 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
418 			memcpy(u1[i].label,	u0[i].label, 32);
419 
420 			u1[i].first_reg		= u0[i].first_reg;
421 			u1[i].last_reg		= u0[i].last_reg;
422 			u1[i].invalidated	= u0[i].invalidated;
423 
424 			u1[i].flags	= 0;
425 			u1[i].sectors	= 0;
426 		}
427 	}
428 
429 	return NULL;
430 }
431 
432 static int __uuid_write(struct cache_set *c)
433 {
434 	BKEY_PADDED(key) k;
435 	struct closure cl;
436 	closure_init_stack(&cl);
437 
438 	lockdep_assert_held(&bch_register_lock);
439 
440 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
441 		return 1;
442 
443 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
444 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
445 	closure_sync(&cl);
446 
447 	bkey_copy(&c->uuid_bucket, &k.key);
448 	bkey_put(c, &k.key);
449 	return 0;
450 }
451 
452 int bch_uuid_write(struct cache_set *c)
453 {
454 	int ret = __uuid_write(c);
455 
456 	if (!ret)
457 		bch_journal_meta(c, NULL);
458 
459 	return ret;
460 }
461 
462 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
463 {
464 	struct uuid_entry *u;
465 
466 	for (u = c->uuids;
467 	     u < c->uuids + c->nr_uuids; u++)
468 		if (!memcmp(u->uuid, uuid, 16))
469 			return u;
470 
471 	return NULL;
472 }
473 
474 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
475 {
476 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
477 	return uuid_find(c, zero_uuid);
478 }
479 
480 /*
481  * Bucket priorities/gens:
482  *
483  * For each bucket, we store on disk its
484    * 8 bit gen
485    * 16 bit priority
486  *
487  * See alloc.c for an explanation of the gen. The priority is used to implement
488  * lru (and in the future other) cache replacement policies; for most purposes
489  * it's just an opaque integer.
490  *
491  * The gens and the priorities don't have a whole lot to do with each other, and
492  * it's actually the gens that must be written out at specific times - it's no
493  * big deal if the priorities don't get written, if we lose them we just reuse
494  * buckets in suboptimal order.
495  *
496  * On disk they're stored in a packed array, and in as many buckets are required
497  * to fit them all. The buckets we use to store them form a list; the journal
498  * header points to the first bucket, the first bucket points to the second
499  * bucket, et cetera.
500  *
501  * This code is used by the allocation code; periodically (whenever it runs out
502  * of buckets to allocate from) the allocation code will invalidate some
503  * buckets, but it can't use those buckets until their new gens are safely on
504  * disk.
505  */
506 
507 static void prio_endio(struct bio *bio)
508 {
509 	struct cache *ca = bio->bi_private;
510 
511 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
512 	bch_bbio_free(bio, ca->set);
513 	closure_put(&ca->prio);
514 }
515 
516 static void prio_io(struct cache *ca, uint64_t bucket, int op,
517 		    unsigned long op_flags)
518 {
519 	struct closure *cl = &ca->prio;
520 	struct bio *bio = bch_bbio_alloc(ca->set);
521 
522 	closure_init_stack(cl);
523 
524 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
525 	bio_set_dev(bio, ca->bdev);
526 	bio->bi_iter.bi_size	= bucket_bytes(ca);
527 
528 	bio->bi_end_io	= prio_endio;
529 	bio->bi_private = ca;
530 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
531 	bch_bio_map(bio, ca->disk_buckets);
532 
533 	closure_bio_submit(ca->set, bio, &ca->prio);
534 	closure_sync(cl);
535 }
536 
537 void bch_prio_write(struct cache *ca)
538 {
539 	int i;
540 	struct bucket *b;
541 	struct closure cl;
542 
543 	closure_init_stack(&cl);
544 
545 	lockdep_assert_held(&ca->set->bucket_lock);
546 
547 	ca->disk_buckets->seq++;
548 
549 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
550 			&ca->meta_sectors_written);
551 
552 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
553 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
554 
555 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
556 		long bucket;
557 		struct prio_set *p = ca->disk_buckets;
558 		struct bucket_disk *d = p->data;
559 		struct bucket_disk *end = d + prios_per_bucket(ca);
560 
561 		for (b = ca->buckets + i * prios_per_bucket(ca);
562 		     b < ca->buckets + ca->sb.nbuckets && d < end;
563 		     b++, d++) {
564 			d->prio = cpu_to_le16(b->prio);
565 			d->gen = b->gen;
566 		}
567 
568 		p->next_bucket	= ca->prio_buckets[i + 1];
569 		p->magic	= pset_magic(&ca->sb);
570 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
571 
572 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
573 		BUG_ON(bucket == -1);
574 
575 		mutex_unlock(&ca->set->bucket_lock);
576 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
577 		mutex_lock(&ca->set->bucket_lock);
578 
579 		ca->prio_buckets[i] = bucket;
580 		atomic_dec_bug(&ca->buckets[bucket].pin);
581 	}
582 
583 	mutex_unlock(&ca->set->bucket_lock);
584 
585 	bch_journal_meta(ca->set, &cl);
586 	closure_sync(&cl);
587 
588 	mutex_lock(&ca->set->bucket_lock);
589 
590 	/*
591 	 * Don't want the old priorities to get garbage collected until after we
592 	 * finish writing the new ones, and they're journalled
593 	 */
594 	for (i = 0; i < prio_buckets(ca); i++) {
595 		if (ca->prio_last_buckets[i])
596 			__bch_bucket_free(ca,
597 				&ca->buckets[ca->prio_last_buckets[i]]);
598 
599 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
600 	}
601 }
602 
603 static void prio_read(struct cache *ca, uint64_t bucket)
604 {
605 	struct prio_set *p = ca->disk_buckets;
606 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
607 	struct bucket *b;
608 	unsigned bucket_nr = 0;
609 
610 	for (b = ca->buckets;
611 	     b < ca->buckets + ca->sb.nbuckets;
612 	     b++, d++) {
613 		if (d == end) {
614 			ca->prio_buckets[bucket_nr] = bucket;
615 			ca->prio_last_buckets[bucket_nr] = bucket;
616 			bucket_nr++;
617 
618 			prio_io(ca, bucket, REQ_OP_READ, 0);
619 
620 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
621 				pr_warn("bad csum reading priorities");
622 
623 			if (p->magic != pset_magic(&ca->sb))
624 				pr_warn("bad magic reading priorities");
625 
626 			bucket = p->next_bucket;
627 			d = p->data;
628 		}
629 
630 		b->prio = le16_to_cpu(d->prio);
631 		b->gen = b->last_gc = d->gen;
632 	}
633 }
634 
635 /* Bcache device */
636 
637 static int open_dev(struct block_device *b, fmode_t mode)
638 {
639 	struct bcache_device *d = b->bd_disk->private_data;
640 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
641 		return -ENXIO;
642 
643 	closure_get(&d->cl);
644 	return 0;
645 }
646 
647 static void release_dev(struct gendisk *b, fmode_t mode)
648 {
649 	struct bcache_device *d = b->private_data;
650 	closure_put(&d->cl);
651 }
652 
653 static int ioctl_dev(struct block_device *b, fmode_t mode,
654 		     unsigned int cmd, unsigned long arg)
655 {
656 	struct bcache_device *d = b->bd_disk->private_data;
657 	return d->ioctl(d, mode, cmd, arg);
658 }
659 
660 static const struct block_device_operations bcache_ops = {
661 	.open		= open_dev,
662 	.release	= release_dev,
663 	.ioctl		= ioctl_dev,
664 	.owner		= THIS_MODULE,
665 };
666 
667 void bcache_device_stop(struct bcache_device *d)
668 {
669 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
670 		closure_queue(&d->cl);
671 }
672 
673 static void bcache_device_unlink(struct bcache_device *d)
674 {
675 	lockdep_assert_held(&bch_register_lock);
676 
677 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
678 		unsigned i;
679 		struct cache *ca;
680 
681 		sysfs_remove_link(&d->c->kobj, d->name);
682 		sysfs_remove_link(&d->kobj, "cache");
683 
684 		for_each_cache(ca, d->c, i)
685 			bd_unlink_disk_holder(ca->bdev, d->disk);
686 	}
687 }
688 
689 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
690 			       const char *name)
691 {
692 	unsigned i;
693 	struct cache *ca;
694 
695 	for_each_cache(ca, d->c, i)
696 		bd_link_disk_holder(ca->bdev, d->disk);
697 
698 	snprintf(d->name, BCACHEDEVNAME_SIZE,
699 		 "%s%u", name, d->id);
700 
701 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
702 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
703 	     "Couldn't create device <-> cache set symlinks");
704 
705 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
706 }
707 
708 static void bcache_device_detach(struct bcache_device *d)
709 {
710 	lockdep_assert_held(&bch_register_lock);
711 
712 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
713 		struct uuid_entry *u = d->c->uuids + d->id;
714 
715 		SET_UUID_FLASH_ONLY(u, 0);
716 		memcpy(u->uuid, invalid_uuid, 16);
717 		u->invalidated = cpu_to_le32(get_seconds());
718 		bch_uuid_write(d->c);
719 	}
720 
721 	bcache_device_unlink(d);
722 
723 	d->c->devices[d->id] = NULL;
724 	closure_put(&d->c->caching);
725 	d->c = NULL;
726 }
727 
728 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
729 				 unsigned id)
730 {
731 	d->id = id;
732 	d->c = c;
733 	c->devices[id] = d;
734 
735 	if (id >= c->devices_max_used)
736 		c->devices_max_used = id + 1;
737 
738 	closure_get(&c->caching);
739 }
740 
741 static inline int first_minor_to_idx(int first_minor)
742 {
743 	return (first_minor/BCACHE_MINORS);
744 }
745 
746 static inline int idx_to_first_minor(int idx)
747 {
748 	return (idx * BCACHE_MINORS);
749 }
750 
751 static void bcache_device_free(struct bcache_device *d)
752 {
753 	lockdep_assert_held(&bch_register_lock);
754 
755 	pr_info("%s stopped", d->disk->disk_name);
756 
757 	if (d->c)
758 		bcache_device_detach(d);
759 	if (d->disk && d->disk->flags & GENHD_FL_UP)
760 		del_gendisk(d->disk);
761 	if (d->disk && d->disk->queue)
762 		blk_cleanup_queue(d->disk->queue);
763 	if (d->disk) {
764 		ida_simple_remove(&bcache_device_idx,
765 				  first_minor_to_idx(d->disk->first_minor));
766 		put_disk(d->disk);
767 	}
768 
769 	if (d->bio_split)
770 		bioset_free(d->bio_split);
771 	kvfree(d->full_dirty_stripes);
772 	kvfree(d->stripe_sectors_dirty);
773 
774 	closure_debug_destroy(&d->cl);
775 }
776 
777 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
778 			      sector_t sectors)
779 {
780 	struct request_queue *q;
781 	const size_t max_stripes = min_t(size_t, INT_MAX,
782 					 SIZE_MAX / sizeof(atomic_t));
783 	size_t n;
784 	int idx;
785 
786 	if (!d->stripe_size)
787 		d->stripe_size = 1 << 31;
788 
789 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
790 
791 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
792 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
793 			(unsigned)d->nr_stripes);
794 		return -ENOMEM;
795 	}
796 
797 	n = d->nr_stripes * sizeof(atomic_t);
798 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
799 	if (!d->stripe_sectors_dirty)
800 		return -ENOMEM;
801 
802 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
803 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
804 	if (!d->full_dirty_stripes)
805 		return -ENOMEM;
806 
807 	idx = ida_simple_get(&bcache_device_idx, 0,
808 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
809 	if (idx < 0)
810 		return idx;
811 
812 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
813 					   BIOSET_NEED_BVECS |
814 					   BIOSET_NEED_RESCUER)) ||
815 	    !(d->disk = alloc_disk(BCACHE_MINORS))) {
816 		ida_simple_remove(&bcache_device_idx, idx);
817 		return -ENOMEM;
818 	}
819 
820 	set_capacity(d->disk, sectors);
821 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
822 
823 	d->disk->major		= bcache_major;
824 	d->disk->first_minor	= idx_to_first_minor(idx);
825 	d->disk->fops		= &bcache_ops;
826 	d->disk->private_data	= d;
827 
828 	q = blk_alloc_queue(GFP_KERNEL);
829 	if (!q)
830 		return -ENOMEM;
831 
832 	blk_queue_make_request(q, NULL);
833 	d->disk->queue			= q;
834 	q->queuedata			= d;
835 	q->backing_dev_info->congested_data = d;
836 	q->limits.max_hw_sectors	= UINT_MAX;
837 	q->limits.max_sectors		= UINT_MAX;
838 	q->limits.max_segment_size	= UINT_MAX;
839 	q->limits.max_segments		= BIO_MAX_PAGES;
840 	blk_queue_max_discard_sectors(q, UINT_MAX);
841 	q->limits.discard_granularity	= 512;
842 	q->limits.io_min		= block_size;
843 	q->limits.logical_block_size	= block_size;
844 	q->limits.physical_block_size	= block_size;
845 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
846 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
847 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
848 
849 	blk_queue_write_cache(q, true, true);
850 
851 	return 0;
852 }
853 
854 /* Cached device */
855 
856 static void calc_cached_dev_sectors(struct cache_set *c)
857 {
858 	uint64_t sectors = 0;
859 	struct cached_dev *dc;
860 
861 	list_for_each_entry(dc, &c->cached_devs, list)
862 		sectors += bdev_sectors(dc->bdev);
863 
864 	c->cached_dev_sectors = sectors;
865 }
866 
867 void bch_cached_dev_run(struct cached_dev *dc)
868 {
869 	struct bcache_device *d = &dc->disk;
870 	char buf[SB_LABEL_SIZE + 1];
871 	char *env[] = {
872 		"DRIVER=bcache",
873 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
874 		NULL,
875 		NULL,
876 	};
877 
878 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
879 	buf[SB_LABEL_SIZE] = '\0';
880 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
881 
882 	if (atomic_xchg(&dc->running, 1)) {
883 		kfree(env[1]);
884 		kfree(env[2]);
885 		return;
886 	}
887 
888 	if (!d->c &&
889 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
890 		struct closure cl;
891 		closure_init_stack(&cl);
892 
893 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
894 		bch_write_bdev_super(dc, &cl);
895 		closure_sync(&cl);
896 	}
897 
898 	add_disk(d->disk);
899 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
900 	/* won't show up in the uevent file, use udevadm monitor -e instead
901 	 * only class / kset properties are persistent */
902 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
903 	kfree(env[1]);
904 	kfree(env[2]);
905 
906 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
907 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
908 		pr_debug("error creating sysfs link");
909 }
910 
911 /*
912  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
913  * work dc->writeback_rate_update is running. Wait until the routine
914  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
915  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
916  * seconds, give up waiting here and continue to cancel it too.
917  */
918 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
919 {
920 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
921 
922 	do {
923 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
924 			      &dc->disk.flags))
925 			break;
926 		time_out--;
927 		schedule_timeout_interruptible(1);
928 	} while (time_out > 0);
929 
930 	if (time_out == 0)
931 		pr_warn("give up waiting for dc->writeback_write_update to quit");
932 
933 	cancel_delayed_work_sync(&dc->writeback_rate_update);
934 }
935 
936 static void cached_dev_detach_finish(struct work_struct *w)
937 {
938 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
939 	char buf[BDEVNAME_SIZE];
940 	struct closure cl;
941 	closure_init_stack(&cl);
942 
943 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
944 	BUG_ON(refcount_read(&dc->count));
945 
946 	mutex_lock(&bch_register_lock);
947 
948 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
949 		cancel_writeback_rate_update_dwork(dc);
950 
951 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
952 		kthread_stop(dc->writeback_thread);
953 		dc->writeback_thread = NULL;
954 	}
955 
956 	memset(&dc->sb.set_uuid, 0, 16);
957 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
958 
959 	bch_write_bdev_super(dc, &cl);
960 	closure_sync(&cl);
961 
962 	bcache_device_detach(&dc->disk);
963 	list_move(&dc->list, &uncached_devices);
964 
965 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
966 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
967 
968 	mutex_unlock(&bch_register_lock);
969 
970 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
971 
972 	/* Drop ref we took in cached_dev_detach() */
973 	closure_put(&dc->disk.cl);
974 }
975 
976 void bch_cached_dev_detach(struct cached_dev *dc)
977 {
978 	lockdep_assert_held(&bch_register_lock);
979 
980 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
981 		return;
982 
983 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
984 		return;
985 
986 	/*
987 	 * Block the device from being closed and freed until we're finished
988 	 * detaching
989 	 */
990 	closure_get(&dc->disk.cl);
991 
992 	bch_writeback_queue(dc);
993 
994 	cached_dev_put(dc);
995 }
996 
997 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
998 			  uint8_t *set_uuid)
999 {
1000 	uint32_t rtime = cpu_to_le32(get_seconds());
1001 	struct uuid_entry *u;
1002 	char buf[BDEVNAME_SIZE];
1003 	struct cached_dev *exist_dc, *t;
1004 
1005 	bdevname(dc->bdev, buf);
1006 
1007 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1008 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1009 		return -ENOENT;
1010 
1011 	if (dc->disk.c) {
1012 		pr_err("Can't attach %s: already attached", buf);
1013 		return -EINVAL;
1014 	}
1015 
1016 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1017 		pr_err("Can't attach %s: shutting down", buf);
1018 		return -EINVAL;
1019 	}
1020 
1021 	if (dc->sb.block_size < c->sb.block_size) {
1022 		/* Will die */
1023 		pr_err("Couldn't attach %s: block size less than set's block size",
1024 		       buf);
1025 		return -EINVAL;
1026 	}
1027 
1028 	/* Check whether already attached */
1029 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1030 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1031 			pr_err("Tried to attach %s but duplicate UUID already attached",
1032 				buf);
1033 
1034 			return -EINVAL;
1035 		}
1036 	}
1037 
1038 	u = uuid_find(c, dc->sb.uuid);
1039 
1040 	if (u &&
1041 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1042 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1043 		memcpy(u->uuid, invalid_uuid, 16);
1044 		u->invalidated = cpu_to_le32(get_seconds());
1045 		u = NULL;
1046 	}
1047 
1048 	if (!u) {
1049 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1050 			pr_err("Couldn't find uuid for %s in set", buf);
1051 			return -ENOENT;
1052 		}
1053 
1054 		u = uuid_find_empty(c);
1055 		if (!u) {
1056 			pr_err("Not caching %s, no room for UUID", buf);
1057 			return -EINVAL;
1058 		}
1059 	}
1060 
1061 	/* Deadlocks since we're called via sysfs...
1062 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1063 	 */
1064 
1065 	if (bch_is_zero(u->uuid, 16)) {
1066 		struct closure cl;
1067 		closure_init_stack(&cl);
1068 
1069 		memcpy(u->uuid, dc->sb.uuid, 16);
1070 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1071 		u->first_reg = u->last_reg = rtime;
1072 		bch_uuid_write(c);
1073 
1074 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1075 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1076 
1077 		bch_write_bdev_super(dc, &cl);
1078 		closure_sync(&cl);
1079 	} else {
1080 		u->last_reg = rtime;
1081 		bch_uuid_write(c);
1082 	}
1083 
1084 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1085 	list_move(&dc->list, &c->cached_devs);
1086 	calc_cached_dev_sectors(c);
1087 
1088 	smp_wmb();
1089 	/*
1090 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1091 	 * cached_dev_get()
1092 	 */
1093 	refcount_set(&dc->count, 1);
1094 
1095 	/* Block writeback thread, but spawn it */
1096 	down_write(&dc->writeback_lock);
1097 	if (bch_cached_dev_writeback_start(dc)) {
1098 		up_write(&dc->writeback_lock);
1099 		return -ENOMEM;
1100 	}
1101 
1102 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1103 		bch_sectors_dirty_init(&dc->disk);
1104 		atomic_set(&dc->has_dirty, 1);
1105 		bch_writeback_queue(dc);
1106 	}
1107 
1108 	bch_cached_dev_run(dc);
1109 	bcache_device_link(&dc->disk, c, "bdev");
1110 
1111 	/* Allow the writeback thread to proceed */
1112 	up_write(&dc->writeback_lock);
1113 
1114 	pr_info("Caching %s as %s on set %pU",
1115 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1116 		dc->disk.c->sb.set_uuid);
1117 	return 0;
1118 }
1119 
1120 void bch_cached_dev_release(struct kobject *kobj)
1121 {
1122 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1123 					     disk.kobj);
1124 	kfree(dc);
1125 	module_put(THIS_MODULE);
1126 }
1127 
1128 static void cached_dev_free(struct closure *cl)
1129 {
1130 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1131 
1132 	mutex_lock(&bch_register_lock);
1133 
1134 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1135 		cancel_writeback_rate_update_dwork(dc);
1136 
1137 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1138 		kthread_stop(dc->writeback_thread);
1139 	if (dc->writeback_write_wq)
1140 		destroy_workqueue(dc->writeback_write_wq);
1141 
1142 	if (atomic_read(&dc->running))
1143 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1144 	bcache_device_free(&dc->disk);
1145 	list_del(&dc->list);
1146 
1147 	mutex_unlock(&bch_register_lock);
1148 
1149 	if (!IS_ERR_OR_NULL(dc->bdev))
1150 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1151 
1152 	wake_up(&unregister_wait);
1153 
1154 	kobject_put(&dc->disk.kobj);
1155 }
1156 
1157 static void cached_dev_flush(struct closure *cl)
1158 {
1159 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1160 	struct bcache_device *d = &dc->disk;
1161 
1162 	mutex_lock(&bch_register_lock);
1163 	bcache_device_unlink(d);
1164 	mutex_unlock(&bch_register_lock);
1165 
1166 	bch_cache_accounting_destroy(&dc->accounting);
1167 	kobject_del(&d->kobj);
1168 
1169 	continue_at(cl, cached_dev_free, system_wq);
1170 }
1171 
1172 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1173 {
1174 	int ret;
1175 	struct io *io;
1176 	struct request_queue *q = bdev_get_queue(dc->bdev);
1177 
1178 	__module_get(THIS_MODULE);
1179 	INIT_LIST_HEAD(&dc->list);
1180 	closure_init(&dc->disk.cl, NULL);
1181 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1182 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1183 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1184 	sema_init(&dc->sb_write_mutex, 1);
1185 	INIT_LIST_HEAD(&dc->io_lru);
1186 	spin_lock_init(&dc->io_lock);
1187 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1188 
1189 	dc->sequential_cutoff		= 4 << 20;
1190 
1191 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1192 		list_add(&io->lru, &dc->io_lru);
1193 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1194 	}
1195 
1196 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1197 
1198 	if (dc->disk.stripe_size)
1199 		dc->partial_stripes_expensive =
1200 			q->limits.raid_partial_stripes_expensive;
1201 
1202 	ret = bcache_device_init(&dc->disk, block_size,
1203 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1204 	if (ret)
1205 		return ret;
1206 
1207 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1208 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1209 		    q->backing_dev_info->ra_pages);
1210 
1211 	atomic_set(&dc->io_errors, 0);
1212 	dc->io_disable = false;
1213 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1214 	/* default to auto */
1215 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1216 
1217 	bch_cached_dev_request_init(dc);
1218 	bch_cached_dev_writeback_init(dc);
1219 	return 0;
1220 }
1221 
1222 /* Cached device - bcache superblock */
1223 
1224 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1225 				 struct block_device *bdev,
1226 				 struct cached_dev *dc)
1227 {
1228 	char name[BDEVNAME_SIZE];
1229 	const char *err = "cannot allocate memory";
1230 	struct cache_set *c;
1231 
1232 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1233 	dc->bdev = bdev;
1234 	dc->bdev->bd_holder = dc;
1235 
1236 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1237 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1238 	get_page(sb_page);
1239 
1240 	if (cached_dev_init(dc, sb->block_size << 9))
1241 		goto err;
1242 
1243 	err = "error creating kobject";
1244 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1245 			"bcache"))
1246 		goto err;
1247 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1248 		goto err;
1249 
1250 	pr_info("registered backing device %s", bdevname(bdev, name));
1251 
1252 	list_add(&dc->list, &uncached_devices);
1253 	list_for_each_entry(c, &bch_cache_sets, list)
1254 		bch_cached_dev_attach(dc, c, NULL);
1255 
1256 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1257 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1258 		bch_cached_dev_run(dc);
1259 
1260 	return;
1261 err:
1262 	pr_notice("error %s: %s", bdevname(bdev, name), err);
1263 	bcache_device_stop(&dc->disk);
1264 }
1265 
1266 /* Flash only volumes */
1267 
1268 void bch_flash_dev_release(struct kobject *kobj)
1269 {
1270 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1271 					       kobj);
1272 	kfree(d);
1273 }
1274 
1275 static void flash_dev_free(struct closure *cl)
1276 {
1277 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1278 	mutex_lock(&bch_register_lock);
1279 	bcache_device_free(d);
1280 	mutex_unlock(&bch_register_lock);
1281 	kobject_put(&d->kobj);
1282 }
1283 
1284 static void flash_dev_flush(struct closure *cl)
1285 {
1286 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1287 
1288 	mutex_lock(&bch_register_lock);
1289 	bcache_device_unlink(d);
1290 	mutex_unlock(&bch_register_lock);
1291 	kobject_del(&d->kobj);
1292 	continue_at(cl, flash_dev_free, system_wq);
1293 }
1294 
1295 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1296 {
1297 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1298 					  GFP_KERNEL);
1299 	if (!d)
1300 		return -ENOMEM;
1301 
1302 	closure_init(&d->cl, NULL);
1303 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1304 
1305 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1306 
1307 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1308 		goto err;
1309 
1310 	bcache_device_attach(d, c, u - c->uuids);
1311 	bch_sectors_dirty_init(d);
1312 	bch_flash_dev_request_init(d);
1313 	add_disk(d->disk);
1314 
1315 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1316 		goto err;
1317 
1318 	bcache_device_link(d, c, "volume");
1319 
1320 	return 0;
1321 err:
1322 	kobject_put(&d->kobj);
1323 	return -ENOMEM;
1324 }
1325 
1326 static int flash_devs_run(struct cache_set *c)
1327 {
1328 	int ret = 0;
1329 	struct uuid_entry *u;
1330 
1331 	for (u = c->uuids;
1332 	     u < c->uuids + c->nr_uuids && !ret;
1333 	     u++)
1334 		if (UUID_FLASH_ONLY(u))
1335 			ret = flash_dev_run(c, u);
1336 
1337 	return ret;
1338 }
1339 
1340 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1341 {
1342 	struct uuid_entry *u;
1343 
1344 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1345 		return -EINTR;
1346 
1347 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1348 		return -EPERM;
1349 
1350 	u = uuid_find_empty(c);
1351 	if (!u) {
1352 		pr_err("Can't create volume, no room for UUID");
1353 		return -EINVAL;
1354 	}
1355 
1356 	get_random_bytes(u->uuid, 16);
1357 	memset(u->label, 0, 32);
1358 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1359 
1360 	SET_UUID_FLASH_ONLY(u, 1);
1361 	u->sectors = size >> 9;
1362 
1363 	bch_uuid_write(c);
1364 
1365 	return flash_dev_run(c, u);
1366 }
1367 
1368 bool bch_cached_dev_error(struct cached_dev *dc)
1369 {
1370 	char name[BDEVNAME_SIZE];
1371 
1372 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1373 		return false;
1374 
1375 	dc->io_disable = true;
1376 	/* make others know io_disable is true earlier */
1377 	smp_mb();
1378 
1379 	pr_err("stop %s: too many IO errors on backing device %s\n",
1380 		dc->disk.disk->disk_name, bdevname(dc->bdev, name));
1381 
1382 	bcache_device_stop(&dc->disk);
1383 	return true;
1384 }
1385 
1386 /* Cache set */
1387 
1388 __printf(2, 3)
1389 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1390 {
1391 	va_list args;
1392 
1393 	if (c->on_error != ON_ERROR_PANIC &&
1394 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1395 		return false;
1396 
1397 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1398 		pr_warn("CACHE_SET_IO_DISABLE already set");
1399 
1400 	/* XXX: we can be called from atomic context
1401 	acquire_console_sem();
1402 	*/
1403 
1404 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1405 
1406 	va_start(args, fmt);
1407 	vprintk(fmt, args);
1408 	va_end(args);
1409 
1410 	printk(", disabling caching\n");
1411 
1412 	if (c->on_error == ON_ERROR_PANIC)
1413 		panic("panic forced after error\n");
1414 
1415 	bch_cache_set_unregister(c);
1416 	return true;
1417 }
1418 
1419 void bch_cache_set_release(struct kobject *kobj)
1420 {
1421 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1422 	kfree(c);
1423 	module_put(THIS_MODULE);
1424 }
1425 
1426 static void cache_set_free(struct closure *cl)
1427 {
1428 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1429 	struct cache *ca;
1430 	unsigned i;
1431 
1432 	if (!IS_ERR_OR_NULL(c->debug))
1433 		debugfs_remove(c->debug);
1434 
1435 	bch_open_buckets_free(c);
1436 	bch_btree_cache_free(c);
1437 	bch_journal_free(c);
1438 
1439 	for_each_cache(ca, c, i)
1440 		if (ca) {
1441 			ca->set = NULL;
1442 			c->cache[ca->sb.nr_this_dev] = NULL;
1443 			kobject_put(&ca->kobj);
1444 		}
1445 
1446 	bch_bset_sort_state_free(&c->sort);
1447 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1448 
1449 	if (c->moving_gc_wq)
1450 		destroy_workqueue(c->moving_gc_wq);
1451 	if (c->bio_split)
1452 		bioset_free(c->bio_split);
1453 	if (c->fill_iter)
1454 		mempool_destroy(c->fill_iter);
1455 	if (c->bio_meta)
1456 		mempool_destroy(c->bio_meta);
1457 	if (c->search)
1458 		mempool_destroy(c->search);
1459 	kfree(c->devices);
1460 
1461 	mutex_lock(&bch_register_lock);
1462 	list_del(&c->list);
1463 	mutex_unlock(&bch_register_lock);
1464 
1465 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1466 	wake_up(&unregister_wait);
1467 
1468 	closure_debug_destroy(&c->cl);
1469 	kobject_put(&c->kobj);
1470 }
1471 
1472 static void cache_set_flush(struct closure *cl)
1473 {
1474 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1475 	struct cache *ca;
1476 	struct btree *b;
1477 	unsigned i;
1478 
1479 	bch_cache_accounting_destroy(&c->accounting);
1480 
1481 	kobject_put(&c->internal);
1482 	kobject_del(&c->kobj);
1483 
1484 	if (c->gc_thread)
1485 		kthread_stop(c->gc_thread);
1486 
1487 	if (!IS_ERR_OR_NULL(c->root))
1488 		list_add(&c->root->list, &c->btree_cache);
1489 
1490 	/* Should skip this if we're unregistering because of an error */
1491 	list_for_each_entry(b, &c->btree_cache, list) {
1492 		mutex_lock(&b->write_lock);
1493 		if (btree_node_dirty(b))
1494 			__bch_btree_node_write(b, NULL);
1495 		mutex_unlock(&b->write_lock);
1496 	}
1497 
1498 	for_each_cache(ca, c, i)
1499 		if (ca->alloc_thread)
1500 			kthread_stop(ca->alloc_thread);
1501 
1502 	if (c->journal.cur) {
1503 		cancel_delayed_work_sync(&c->journal.work);
1504 		/* flush last journal entry if needed */
1505 		c->journal.work.work.func(&c->journal.work.work);
1506 	}
1507 
1508 	closure_return(cl);
1509 }
1510 
1511 /*
1512  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1513  * cache set is unregistering due to too many I/O errors. In this condition,
1514  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1515  * value and whether the broken cache has dirty data:
1516  *
1517  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1518  *  BCH_CACHED_STOP_AUTO               0               NO
1519  *  BCH_CACHED_STOP_AUTO               1               YES
1520  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1521  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1522  *
1523  * The expected behavior is, if stop_when_cache_set_failed is configured to
1524  * "auto" via sysfs interface, the bcache device will not be stopped if the
1525  * backing device is clean on the broken cache device.
1526  */
1527 static void conditional_stop_bcache_device(struct cache_set *c,
1528 					   struct bcache_device *d,
1529 					   struct cached_dev *dc)
1530 {
1531 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1532 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1533 			d->disk->disk_name, c->sb.set_uuid);
1534 		bcache_device_stop(d);
1535 	} else if (atomic_read(&dc->has_dirty)) {
1536 		/*
1537 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1538 		 * and dc->has_dirty == 1
1539 		 */
1540 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1541 			d->disk->disk_name);
1542 			bcache_device_stop(d);
1543 	} else {
1544 		/*
1545 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1546 		 * and dc->has_dirty == 0
1547 		 */
1548 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1549 			d->disk->disk_name);
1550 	}
1551 }
1552 
1553 static void __cache_set_unregister(struct closure *cl)
1554 {
1555 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1556 	struct cached_dev *dc;
1557 	struct bcache_device *d;
1558 	size_t i;
1559 
1560 	mutex_lock(&bch_register_lock);
1561 
1562 	for (i = 0; i < c->devices_max_used; i++) {
1563 		d = c->devices[i];
1564 		if (!d)
1565 			continue;
1566 
1567 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1568 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1569 			dc = container_of(d, struct cached_dev, disk);
1570 			bch_cached_dev_detach(dc);
1571 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1572 				conditional_stop_bcache_device(c, d, dc);
1573 		} else {
1574 			bcache_device_stop(d);
1575 		}
1576 	}
1577 
1578 	mutex_unlock(&bch_register_lock);
1579 
1580 	continue_at(cl, cache_set_flush, system_wq);
1581 }
1582 
1583 void bch_cache_set_stop(struct cache_set *c)
1584 {
1585 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1586 		closure_queue(&c->caching);
1587 }
1588 
1589 void bch_cache_set_unregister(struct cache_set *c)
1590 {
1591 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1592 	bch_cache_set_stop(c);
1593 }
1594 
1595 #define alloc_bucket_pages(gfp, c)			\
1596 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1597 
1598 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1599 {
1600 	int iter_size;
1601 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1602 	if (!c)
1603 		return NULL;
1604 
1605 	__module_get(THIS_MODULE);
1606 	closure_init(&c->cl, NULL);
1607 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1608 
1609 	closure_init(&c->caching, &c->cl);
1610 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1611 
1612 	/* Maybe create continue_at_noreturn() and use it here? */
1613 	closure_set_stopped(&c->cl);
1614 	closure_put(&c->cl);
1615 
1616 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1617 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1618 
1619 	bch_cache_accounting_init(&c->accounting, &c->cl);
1620 
1621 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1622 	c->sb.block_size	= sb->block_size;
1623 	c->sb.bucket_size	= sb->bucket_size;
1624 	c->sb.nr_in_set		= sb->nr_in_set;
1625 	c->sb.last_mount	= sb->last_mount;
1626 	c->bucket_bits		= ilog2(sb->bucket_size);
1627 	c->block_bits		= ilog2(sb->block_size);
1628 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1629 	c->devices_max_used	= 0;
1630 	c->btree_pages		= bucket_pages(c);
1631 	if (c->btree_pages > BTREE_MAX_PAGES)
1632 		c->btree_pages = max_t(int, c->btree_pages / 4,
1633 				       BTREE_MAX_PAGES);
1634 
1635 	sema_init(&c->sb_write_mutex, 1);
1636 	mutex_init(&c->bucket_lock);
1637 	init_waitqueue_head(&c->btree_cache_wait);
1638 	init_waitqueue_head(&c->bucket_wait);
1639 	init_waitqueue_head(&c->gc_wait);
1640 	sema_init(&c->uuid_write_mutex, 1);
1641 
1642 	spin_lock_init(&c->btree_gc_time.lock);
1643 	spin_lock_init(&c->btree_split_time.lock);
1644 	spin_lock_init(&c->btree_read_time.lock);
1645 
1646 	bch_moving_init_cache_set(c);
1647 
1648 	INIT_LIST_HEAD(&c->list);
1649 	INIT_LIST_HEAD(&c->cached_devs);
1650 	INIT_LIST_HEAD(&c->btree_cache);
1651 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1652 	INIT_LIST_HEAD(&c->btree_cache_freed);
1653 	INIT_LIST_HEAD(&c->data_buckets);
1654 
1655 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1656 	if (!c->search)
1657 		goto err;
1658 
1659 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1660 		sizeof(struct btree_iter_set);
1661 
1662 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1663 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1664 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1665 				bucket_pages(c))) ||
1666 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1667 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1668 					   BIOSET_NEED_BVECS |
1669 					   BIOSET_NEED_RESCUER)) ||
1670 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1671 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1672 						WQ_MEM_RECLAIM, 0)) ||
1673 	    bch_journal_alloc(c) ||
1674 	    bch_btree_cache_alloc(c) ||
1675 	    bch_open_buckets_alloc(c) ||
1676 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1677 		goto err;
1678 
1679 	c->congested_read_threshold_us	= 2000;
1680 	c->congested_write_threshold_us	= 20000;
1681 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1682 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1683 
1684 	return c;
1685 err:
1686 	bch_cache_set_unregister(c);
1687 	return NULL;
1688 }
1689 
1690 static void run_cache_set(struct cache_set *c)
1691 {
1692 	const char *err = "cannot allocate memory";
1693 	struct cached_dev *dc, *t;
1694 	struct cache *ca;
1695 	struct closure cl;
1696 	unsigned i;
1697 
1698 	closure_init_stack(&cl);
1699 
1700 	for_each_cache(ca, c, i)
1701 		c->nbuckets += ca->sb.nbuckets;
1702 	set_gc_sectors(c);
1703 
1704 	if (CACHE_SYNC(&c->sb)) {
1705 		LIST_HEAD(journal);
1706 		struct bkey *k;
1707 		struct jset *j;
1708 
1709 		err = "cannot allocate memory for journal";
1710 		if (bch_journal_read(c, &journal))
1711 			goto err;
1712 
1713 		pr_debug("btree_journal_read() done");
1714 
1715 		err = "no journal entries found";
1716 		if (list_empty(&journal))
1717 			goto err;
1718 
1719 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1720 
1721 		err = "IO error reading priorities";
1722 		for_each_cache(ca, c, i)
1723 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1724 
1725 		/*
1726 		 * If prio_read() fails it'll call cache_set_error and we'll
1727 		 * tear everything down right away, but if we perhaps checked
1728 		 * sooner we could avoid journal replay.
1729 		 */
1730 
1731 		k = &j->btree_root;
1732 
1733 		err = "bad btree root";
1734 		if (__bch_btree_ptr_invalid(c, k))
1735 			goto err;
1736 
1737 		err = "error reading btree root";
1738 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1739 		if (IS_ERR_OR_NULL(c->root))
1740 			goto err;
1741 
1742 		list_del_init(&c->root->list);
1743 		rw_unlock(true, c->root);
1744 
1745 		err = uuid_read(c, j, &cl);
1746 		if (err)
1747 			goto err;
1748 
1749 		err = "error in recovery";
1750 		if (bch_btree_check(c))
1751 			goto err;
1752 
1753 		bch_journal_mark(c, &journal);
1754 		bch_initial_gc_finish(c);
1755 		pr_debug("btree_check() done");
1756 
1757 		/*
1758 		 * bcache_journal_next() can't happen sooner, or
1759 		 * btree_gc_finish() will give spurious errors about last_gc >
1760 		 * gc_gen - this is a hack but oh well.
1761 		 */
1762 		bch_journal_next(&c->journal);
1763 
1764 		err = "error starting allocator thread";
1765 		for_each_cache(ca, c, i)
1766 			if (bch_cache_allocator_start(ca))
1767 				goto err;
1768 
1769 		/*
1770 		 * First place it's safe to allocate: btree_check() and
1771 		 * btree_gc_finish() have to run before we have buckets to
1772 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1773 		 * entry to be written so bcache_journal_next() has to be called
1774 		 * first.
1775 		 *
1776 		 * If the uuids were in the old format we have to rewrite them
1777 		 * before the next journal entry is written:
1778 		 */
1779 		if (j->version < BCACHE_JSET_VERSION_UUID)
1780 			__uuid_write(c);
1781 
1782 		bch_journal_replay(c, &journal);
1783 	} else {
1784 		pr_notice("invalidating existing data");
1785 
1786 		for_each_cache(ca, c, i) {
1787 			unsigned j;
1788 
1789 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1790 					      2, SB_JOURNAL_BUCKETS);
1791 
1792 			for (j = 0; j < ca->sb.keys; j++)
1793 				ca->sb.d[j] = ca->sb.first_bucket + j;
1794 		}
1795 
1796 		bch_initial_gc_finish(c);
1797 
1798 		err = "error starting allocator thread";
1799 		for_each_cache(ca, c, i)
1800 			if (bch_cache_allocator_start(ca))
1801 				goto err;
1802 
1803 		mutex_lock(&c->bucket_lock);
1804 		for_each_cache(ca, c, i)
1805 			bch_prio_write(ca);
1806 		mutex_unlock(&c->bucket_lock);
1807 
1808 		err = "cannot allocate new UUID bucket";
1809 		if (__uuid_write(c))
1810 			goto err;
1811 
1812 		err = "cannot allocate new btree root";
1813 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1814 		if (IS_ERR_OR_NULL(c->root))
1815 			goto err;
1816 
1817 		mutex_lock(&c->root->write_lock);
1818 		bkey_copy_key(&c->root->key, &MAX_KEY);
1819 		bch_btree_node_write(c->root, &cl);
1820 		mutex_unlock(&c->root->write_lock);
1821 
1822 		bch_btree_set_root(c->root);
1823 		rw_unlock(true, c->root);
1824 
1825 		/*
1826 		 * We don't want to write the first journal entry until
1827 		 * everything is set up - fortunately journal entries won't be
1828 		 * written until the SET_CACHE_SYNC() here:
1829 		 */
1830 		SET_CACHE_SYNC(&c->sb, true);
1831 
1832 		bch_journal_next(&c->journal);
1833 		bch_journal_meta(c, &cl);
1834 	}
1835 
1836 	err = "error starting gc thread";
1837 	if (bch_gc_thread_start(c))
1838 		goto err;
1839 
1840 	closure_sync(&cl);
1841 	c->sb.last_mount = get_seconds();
1842 	bcache_write_super(c);
1843 
1844 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1845 		bch_cached_dev_attach(dc, c, NULL);
1846 
1847 	flash_devs_run(c);
1848 
1849 	set_bit(CACHE_SET_RUNNING, &c->flags);
1850 	return;
1851 err:
1852 	closure_sync(&cl);
1853 	/* XXX: test this, it's broken */
1854 	bch_cache_set_error(c, "%s", err);
1855 }
1856 
1857 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1858 {
1859 	return ca->sb.block_size	== c->sb.block_size &&
1860 		ca->sb.bucket_size	== c->sb.bucket_size &&
1861 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1862 }
1863 
1864 static const char *register_cache_set(struct cache *ca)
1865 {
1866 	char buf[12];
1867 	const char *err = "cannot allocate memory";
1868 	struct cache_set *c;
1869 
1870 	list_for_each_entry(c, &bch_cache_sets, list)
1871 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1872 			if (c->cache[ca->sb.nr_this_dev])
1873 				return "duplicate cache set member";
1874 
1875 			if (!can_attach_cache(ca, c))
1876 				return "cache sb does not match set";
1877 
1878 			if (!CACHE_SYNC(&ca->sb))
1879 				SET_CACHE_SYNC(&c->sb, false);
1880 
1881 			goto found;
1882 		}
1883 
1884 	c = bch_cache_set_alloc(&ca->sb);
1885 	if (!c)
1886 		return err;
1887 
1888 	err = "error creating kobject";
1889 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1890 	    kobject_add(&c->internal, &c->kobj, "internal"))
1891 		goto err;
1892 
1893 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1894 		goto err;
1895 
1896 	bch_debug_init_cache_set(c);
1897 
1898 	list_add(&c->list, &bch_cache_sets);
1899 found:
1900 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1901 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1902 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1903 		goto err;
1904 
1905 	if (ca->sb.seq > c->sb.seq) {
1906 		c->sb.version		= ca->sb.version;
1907 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1908 		c->sb.flags             = ca->sb.flags;
1909 		c->sb.seq		= ca->sb.seq;
1910 		pr_debug("set version = %llu", c->sb.version);
1911 	}
1912 
1913 	kobject_get(&ca->kobj);
1914 	ca->set = c;
1915 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1916 	c->cache_by_alloc[c->caches_loaded++] = ca;
1917 
1918 	if (c->caches_loaded == c->sb.nr_in_set)
1919 		run_cache_set(c);
1920 
1921 	return NULL;
1922 err:
1923 	bch_cache_set_unregister(c);
1924 	return err;
1925 }
1926 
1927 /* Cache device */
1928 
1929 void bch_cache_release(struct kobject *kobj)
1930 {
1931 	struct cache *ca = container_of(kobj, struct cache, kobj);
1932 	unsigned i;
1933 
1934 	if (ca->set) {
1935 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1936 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1937 	}
1938 
1939 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1940 	kfree(ca->prio_buckets);
1941 	vfree(ca->buckets);
1942 
1943 	free_heap(&ca->heap);
1944 	free_fifo(&ca->free_inc);
1945 
1946 	for (i = 0; i < RESERVE_NR; i++)
1947 		free_fifo(&ca->free[i]);
1948 
1949 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1950 		put_page(bio_first_page_all(&ca->sb_bio));
1951 
1952 	if (!IS_ERR_OR_NULL(ca->bdev))
1953 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1954 
1955 	kfree(ca);
1956 	module_put(THIS_MODULE);
1957 }
1958 
1959 static int cache_alloc(struct cache *ca)
1960 {
1961 	size_t free;
1962 	size_t btree_buckets;
1963 	struct bucket *b;
1964 
1965 	__module_get(THIS_MODULE);
1966 	kobject_init(&ca->kobj, &bch_cache_ktype);
1967 
1968 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1969 
1970 	/*
1971 	 * when ca->sb.njournal_buckets is not zero, journal exists,
1972 	 * and in bch_journal_replay(), tree node may split,
1973 	 * so bucket of RESERVE_BTREE type is needed,
1974 	 * the worst situation is all journal buckets are valid journal,
1975 	 * and all the keys need to replay,
1976 	 * so the number of  RESERVE_BTREE type buckets should be as much
1977 	 * as journal buckets
1978 	 */
1979 	btree_buckets = ca->sb.njournal_buckets ?: 8;
1980 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1981 
1982 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1983 	    !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1984 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1985 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1986 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1987 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1988 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1989 					  ca->sb.nbuckets)) ||
1990 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1991 					  2, GFP_KERNEL)) ||
1992 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
1993 		return -ENOMEM;
1994 
1995 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1996 
1997 	for_each_bucket(b, ca)
1998 		atomic_set(&b->pin, 0);
1999 
2000 	return 0;
2001 }
2002 
2003 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2004 				struct block_device *bdev, struct cache *ca)
2005 {
2006 	char name[BDEVNAME_SIZE];
2007 	const char *err = NULL; /* must be set for any error case */
2008 	int ret = 0;
2009 
2010 	bdevname(bdev, name);
2011 
2012 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2013 	ca->bdev = bdev;
2014 	ca->bdev->bd_holder = ca;
2015 
2016 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2017 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2018 	get_page(sb_page);
2019 
2020 	if (blk_queue_discard(bdev_get_queue(bdev)))
2021 		ca->discard = CACHE_DISCARD(&ca->sb);
2022 
2023 	ret = cache_alloc(ca);
2024 	if (ret != 0) {
2025 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2026 		if (ret == -ENOMEM)
2027 			err = "cache_alloc(): -ENOMEM";
2028 		else
2029 			err = "cache_alloc(): unknown error";
2030 		goto err;
2031 	}
2032 
2033 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
2034 		err = "error calling kobject_add";
2035 		ret = -ENOMEM;
2036 		goto out;
2037 	}
2038 
2039 	mutex_lock(&bch_register_lock);
2040 	err = register_cache_set(ca);
2041 	mutex_unlock(&bch_register_lock);
2042 
2043 	if (err) {
2044 		ret = -ENODEV;
2045 		goto out;
2046 	}
2047 
2048 	pr_info("registered cache device %s", name);
2049 
2050 out:
2051 	kobject_put(&ca->kobj);
2052 
2053 err:
2054 	if (err)
2055 		pr_notice("error %s: %s", name, err);
2056 
2057 	return ret;
2058 }
2059 
2060 /* Global interfaces/init */
2061 
2062 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
2063 			       const char *, size_t);
2064 
2065 kobj_attribute_write(register,		register_bcache);
2066 kobj_attribute_write(register_quiet,	register_bcache);
2067 
2068 static bool bch_is_open_backing(struct block_device *bdev) {
2069 	struct cache_set *c, *tc;
2070 	struct cached_dev *dc, *t;
2071 
2072 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2073 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2074 			if (dc->bdev == bdev)
2075 				return true;
2076 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2077 		if (dc->bdev == bdev)
2078 			return true;
2079 	return false;
2080 }
2081 
2082 static bool bch_is_open_cache(struct block_device *bdev) {
2083 	struct cache_set *c, *tc;
2084 	struct cache *ca;
2085 	unsigned i;
2086 
2087 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2088 		for_each_cache(ca, c, i)
2089 			if (ca->bdev == bdev)
2090 				return true;
2091 	return false;
2092 }
2093 
2094 static bool bch_is_open(struct block_device *bdev) {
2095 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2096 }
2097 
2098 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2099 			       const char *buffer, size_t size)
2100 {
2101 	ssize_t ret = size;
2102 	const char *err = "cannot allocate memory";
2103 	char *path = NULL;
2104 	struct cache_sb *sb = NULL;
2105 	struct block_device *bdev = NULL;
2106 	struct page *sb_page = NULL;
2107 
2108 	if (!try_module_get(THIS_MODULE))
2109 		return -EBUSY;
2110 
2111 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
2112 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2113 		goto err;
2114 
2115 	err = "failed to open device";
2116 	bdev = blkdev_get_by_path(strim(path),
2117 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2118 				  sb);
2119 	if (IS_ERR(bdev)) {
2120 		if (bdev == ERR_PTR(-EBUSY)) {
2121 			bdev = lookup_bdev(strim(path));
2122 			mutex_lock(&bch_register_lock);
2123 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2124 				err = "device already registered";
2125 			else
2126 				err = "device busy";
2127 			mutex_unlock(&bch_register_lock);
2128 			if (!IS_ERR(bdev))
2129 				bdput(bdev);
2130 			if (attr == &ksysfs_register_quiet)
2131 				goto out;
2132 		}
2133 		goto err;
2134 	}
2135 
2136 	err = "failed to set blocksize";
2137 	if (set_blocksize(bdev, 4096))
2138 		goto err_close;
2139 
2140 	err = read_super(sb, bdev, &sb_page);
2141 	if (err)
2142 		goto err_close;
2143 
2144 	err = "failed to register device";
2145 	if (SB_IS_BDEV(sb)) {
2146 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2147 		if (!dc)
2148 			goto err_close;
2149 
2150 		mutex_lock(&bch_register_lock);
2151 		register_bdev(sb, sb_page, bdev, dc);
2152 		mutex_unlock(&bch_register_lock);
2153 	} else {
2154 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2155 		if (!ca)
2156 			goto err_close;
2157 
2158 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2159 			goto err;
2160 	}
2161 out:
2162 	if (sb_page)
2163 		put_page(sb_page);
2164 	kfree(sb);
2165 	kfree(path);
2166 	module_put(THIS_MODULE);
2167 	return ret;
2168 
2169 err_close:
2170 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2171 err:
2172 	pr_info("error %s: %s", path, err);
2173 	ret = -EINVAL;
2174 	goto out;
2175 }
2176 
2177 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2178 {
2179 	if (code == SYS_DOWN ||
2180 	    code == SYS_HALT ||
2181 	    code == SYS_POWER_OFF) {
2182 		DEFINE_WAIT(wait);
2183 		unsigned long start = jiffies;
2184 		bool stopped = false;
2185 
2186 		struct cache_set *c, *tc;
2187 		struct cached_dev *dc, *tdc;
2188 
2189 		mutex_lock(&bch_register_lock);
2190 
2191 		if (list_empty(&bch_cache_sets) &&
2192 		    list_empty(&uncached_devices))
2193 			goto out;
2194 
2195 		pr_info("Stopping all devices:");
2196 
2197 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2198 			bch_cache_set_stop(c);
2199 
2200 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2201 			bcache_device_stop(&dc->disk);
2202 
2203 		/* What's a condition variable? */
2204 		while (1) {
2205 			long timeout = start + 2 * HZ - jiffies;
2206 
2207 			stopped = list_empty(&bch_cache_sets) &&
2208 				list_empty(&uncached_devices);
2209 
2210 			if (timeout < 0 || stopped)
2211 				break;
2212 
2213 			prepare_to_wait(&unregister_wait, &wait,
2214 					TASK_UNINTERRUPTIBLE);
2215 
2216 			mutex_unlock(&bch_register_lock);
2217 			schedule_timeout(timeout);
2218 			mutex_lock(&bch_register_lock);
2219 		}
2220 
2221 		finish_wait(&unregister_wait, &wait);
2222 
2223 		if (stopped)
2224 			pr_info("All devices stopped");
2225 		else
2226 			pr_notice("Timeout waiting for devices to be closed");
2227 out:
2228 		mutex_unlock(&bch_register_lock);
2229 	}
2230 
2231 	return NOTIFY_DONE;
2232 }
2233 
2234 static struct notifier_block reboot = {
2235 	.notifier_call	= bcache_reboot,
2236 	.priority	= INT_MAX, /* before any real devices */
2237 };
2238 
2239 static void bcache_exit(void)
2240 {
2241 	bch_debug_exit();
2242 	bch_request_exit();
2243 	if (bcache_kobj)
2244 		kobject_put(bcache_kobj);
2245 	if (bcache_wq)
2246 		destroy_workqueue(bcache_wq);
2247 	if (bcache_major)
2248 		unregister_blkdev(bcache_major, "bcache");
2249 	unregister_reboot_notifier(&reboot);
2250 	mutex_destroy(&bch_register_lock);
2251 }
2252 
2253 static int __init bcache_init(void)
2254 {
2255 	static const struct attribute *files[] = {
2256 		&ksysfs_register.attr,
2257 		&ksysfs_register_quiet.attr,
2258 		NULL
2259 	};
2260 
2261 	mutex_init(&bch_register_lock);
2262 	init_waitqueue_head(&unregister_wait);
2263 	register_reboot_notifier(&reboot);
2264 
2265 	bcache_major = register_blkdev(0, "bcache");
2266 	if (bcache_major < 0) {
2267 		unregister_reboot_notifier(&reboot);
2268 		mutex_destroy(&bch_register_lock);
2269 		return bcache_major;
2270 	}
2271 
2272 	if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2273 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2274 	    bch_request_init() ||
2275 	    bch_debug_init(bcache_kobj) || closure_debug_init() ||
2276 	    sysfs_create_files(bcache_kobj, files))
2277 		goto err;
2278 
2279 	return 0;
2280 err:
2281 	bcache_exit();
2282 	return -ENOMEM;
2283 }
2284 
2285 module_exit(bcache_exit);
2286 module_init(bcache_init);
2287