1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_journal_wq; 53 54 55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 56 /* limitation of partitions number on single bcache device */ 57 #define BCACHE_MINORS 128 58 /* limitation of bcache devices number on single system */ 59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 60 61 /* Superblock */ 62 63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 64 { 65 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 66 67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES && 68 bch_has_feature_large_bucket(sb)) 69 bucket_size |= le16_to_cpu(s->bucket_size_hi) << 16; 70 71 return bucket_size; 72 } 73 74 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 75 struct cache_sb_disk *s) 76 { 77 const char *err; 78 unsigned int i; 79 80 sb->first_bucket= le16_to_cpu(s->first_bucket); 81 sb->nbuckets = le64_to_cpu(s->nbuckets); 82 sb->bucket_size = get_bucket_size(sb, s); 83 84 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 85 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 86 87 err = "Too many journal buckets"; 88 if (sb->keys > SB_JOURNAL_BUCKETS) 89 goto err; 90 91 err = "Too many buckets"; 92 if (sb->nbuckets > LONG_MAX) 93 goto err; 94 95 err = "Not enough buckets"; 96 if (sb->nbuckets < 1 << 7) 97 goto err; 98 99 err = "Bad block size (not power of 2)"; 100 if (!is_power_of_2(sb->block_size)) 101 goto err; 102 103 err = "Bad block size (larger than page size)"; 104 if (sb->block_size > PAGE_SECTORS) 105 goto err; 106 107 err = "Bad bucket size (not power of 2)"; 108 if (!is_power_of_2(sb->bucket_size)) 109 goto err; 110 111 err = "Bad bucket size (smaller than page size)"; 112 if (sb->bucket_size < PAGE_SECTORS) 113 goto err; 114 115 err = "Invalid superblock: device too small"; 116 if (get_capacity(bdev->bd_disk) < 117 sb->bucket_size * sb->nbuckets) 118 goto err; 119 120 err = "Bad UUID"; 121 if (bch_is_zero(sb->set_uuid, 16)) 122 goto err; 123 124 err = "Bad cache device number in set"; 125 if (!sb->nr_in_set || 126 sb->nr_in_set <= sb->nr_this_dev || 127 sb->nr_in_set > MAX_CACHES_PER_SET) 128 goto err; 129 130 err = "Journal buckets not sequential"; 131 for (i = 0; i < sb->keys; i++) 132 if (sb->d[i] != sb->first_bucket + i) 133 goto err; 134 135 err = "Too many journal buckets"; 136 if (sb->first_bucket + sb->keys > sb->nbuckets) 137 goto err; 138 139 err = "Invalid superblock: first bucket comes before end of super"; 140 if (sb->first_bucket * sb->bucket_size < 16) 141 goto err; 142 143 err = NULL; 144 err: 145 return err; 146 } 147 148 149 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 150 struct cache_sb_disk **res) 151 { 152 const char *err; 153 struct cache_sb_disk *s; 154 struct page *page; 155 unsigned int i; 156 157 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 158 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 159 if (IS_ERR(page)) 160 return "IO error"; 161 s = page_address(page) + offset_in_page(SB_OFFSET); 162 163 sb->offset = le64_to_cpu(s->offset); 164 sb->version = le64_to_cpu(s->version); 165 166 memcpy(sb->magic, s->magic, 16); 167 memcpy(sb->uuid, s->uuid, 16); 168 memcpy(sb->set_uuid, s->set_uuid, 16); 169 memcpy(sb->label, s->label, SB_LABEL_SIZE); 170 171 sb->flags = le64_to_cpu(s->flags); 172 sb->seq = le64_to_cpu(s->seq); 173 sb->last_mount = le32_to_cpu(s->last_mount); 174 sb->keys = le16_to_cpu(s->keys); 175 176 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 177 sb->d[i] = le64_to_cpu(s->d[i]); 178 179 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 180 sb->version, sb->flags, sb->seq, sb->keys); 181 182 err = "Not a bcache superblock (bad offset)"; 183 if (sb->offset != SB_SECTOR) 184 goto err; 185 186 err = "Not a bcache superblock (bad magic)"; 187 if (memcmp(sb->magic, bcache_magic, 16)) 188 goto err; 189 190 err = "Bad checksum"; 191 if (s->csum != csum_set(s)) 192 goto err; 193 194 err = "Bad UUID"; 195 if (bch_is_zero(sb->uuid, 16)) 196 goto err; 197 198 sb->block_size = le16_to_cpu(s->block_size); 199 200 err = "Superblock block size smaller than device block size"; 201 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 202 goto err; 203 204 switch (sb->version) { 205 case BCACHE_SB_VERSION_BDEV: 206 sb->data_offset = BDEV_DATA_START_DEFAULT; 207 break; 208 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 209 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 210 sb->data_offset = le64_to_cpu(s->data_offset); 211 212 err = "Bad data offset"; 213 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 214 goto err; 215 216 break; 217 case BCACHE_SB_VERSION_CDEV: 218 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 219 err = read_super_common(sb, bdev, s); 220 if (err) 221 goto err; 222 break; 223 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 224 /* 225 * Feature bits are needed in read_super_common(), 226 * convert them firstly. 227 */ 228 sb->feature_compat = le64_to_cpu(s->feature_compat); 229 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 230 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 231 err = read_super_common(sb, bdev, s); 232 if (err) 233 goto err; 234 break; 235 default: 236 err = "Unsupported superblock version"; 237 goto err; 238 } 239 240 sb->last_mount = (u32)ktime_get_real_seconds(); 241 *res = s; 242 return NULL; 243 err: 244 put_page(page); 245 return err; 246 } 247 248 static void write_bdev_super_endio(struct bio *bio) 249 { 250 struct cached_dev *dc = bio->bi_private; 251 252 if (bio->bi_status) 253 bch_count_backing_io_errors(dc, bio); 254 255 closure_put(&dc->sb_write); 256 } 257 258 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 259 struct bio *bio) 260 { 261 unsigned int i; 262 263 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 264 bio->bi_iter.bi_sector = SB_SECTOR; 265 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 266 offset_in_page(out)); 267 268 out->offset = cpu_to_le64(sb->offset); 269 270 memcpy(out->uuid, sb->uuid, 16); 271 memcpy(out->set_uuid, sb->set_uuid, 16); 272 memcpy(out->label, sb->label, SB_LABEL_SIZE); 273 274 out->flags = cpu_to_le64(sb->flags); 275 out->seq = cpu_to_le64(sb->seq); 276 277 out->last_mount = cpu_to_le32(sb->last_mount); 278 out->first_bucket = cpu_to_le16(sb->first_bucket); 279 out->keys = cpu_to_le16(sb->keys); 280 281 for (i = 0; i < sb->keys; i++) 282 out->d[i] = cpu_to_le64(sb->d[i]); 283 284 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 285 out->feature_compat = cpu_to_le64(sb->feature_compat); 286 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 287 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 288 } 289 290 out->version = cpu_to_le64(sb->version); 291 out->csum = csum_set(out); 292 293 pr_debug("ver %llu, flags %llu, seq %llu\n", 294 sb->version, sb->flags, sb->seq); 295 296 submit_bio(bio); 297 } 298 299 static void bch_write_bdev_super_unlock(struct closure *cl) 300 { 301 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 302 303 up(&dc->sb_write_mutex); 304 } 305 306 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 307 { 308 struct closure *cl = &dc->sb_write; 309 struct bio *bio = &dc->sb_bio; 310 311 down(&dc->sb_write_mutex); 312 closure_init(cl, parent); 313 314 bio_init(bio, dc->sb_bv, 1); 315 bio_set_dev(bio, dc->bdev); 316 bio->bi_end_io = write_bdev_super_endio; 317 bio->bi_private = dc; 318 319 closure_get(cl); 320 /* I/O request sent to backing device */ 321 __write_super(&dc->sb, dc->sb_disk, bio); 322 323 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 324 } 325 326 static void write_super_endio(struct bio *bio) 327 { 328 struct cache *ca = bio->bi_private; 329 330 /* is_read = 0 */ 331 bch_count_io_errors(ca, bio->bi_status, 0, 332 "writing superblock"); 333 closure_put(&ca->set->sb_write); 334 } 335 336 static void bcache_write_super_unlock(struct closure *cl) 337 { 338 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 339 340 up(&c->sb_write_mutex); 341 } 342 343 void bcache_write_super(struct cache_set *c) 344 { 345 struct closure *cl = &c->sb_write; 346 struct cache *ca; 347 unsigned int i, version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 348 349 down(&c->sb_write_mutex); 350 closure_init(cl, &c->cl); 351 352 c->sb.seq++; 353 354 if (c->sb.version > version) 355 version = c->sb.version; 356 357 for_each_cache(ca, c, i) { 358 struct bio *bio = &ca->sb_bio; 359 360 ca->sb.version = version; 361 ca->sb.seq = c->sb.seq; 362 ca->sb.last_mount = c->sb.last_mount; 363 364 SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb)); 365 366 bio_init(bio, ca->sb_bv, 1); 367 bio_set_dev(bio, ca->bdev); 368 bio->bi_end_io = write_super_endio; 369 bio->bi_private = ca; 370 371 closure_get(cl); 372 __write_super(&ca->sb, ca->sb_disk, bio); 373 } 374 375 closure_return_with_destructor(cl, bcache_write_super_unlock); 376 } 377 378 /* UUID io */ 379 380 static void uuid_endio(struct bio *bio) 381 { 382 struct closure *cl = bio->bi_private; 383 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 384 385 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 386 bch_bbio_free(bio, c); 387 closure_put(cl); 388 } 389 390 static void uuid_io_unlock(struct closure *cl) 391 { 392 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 393 394 up(&c->uuid_write_mutex); 395 } 396 397 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 398 struct bkey *k, struct closure *parent) 399 { 400 struct closure *cl = &c->uuid_write; 401 struct uuid_entry *u; 402 unsigned int i; 403 char buf[80]; 404 405 BUG_ON(!parent); 406 down(&c->uuid_write_mutex); 407 closure_init(cl, parent); 408 409 for (i = 0; i < KEY_PTRS(k); i++) { 410 struct bio *bio = bch_bbio_alloc(c); 411 412 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 413 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 414 415 bio->bi_end_io = uuid_endio; 416 bio->bi_private = cl; 417 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 418 bch_bio_map(bio, c->uuids); 419 420 bch_submit_bbio(bio, c, k, i); 421 422 if (op != REQ_OP_WRITE) 423 break; 424 } 425 426 bch_extent_to_text(buf, sizeof(buf), k); 427 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 428 429 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 430 if (!bch_is_zero(u->uuid, 16)) 431 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 432 u - c->uuids, u->uuid, u->label, 433 u->first_reg, u->last_reg, u->invalidated); 434 435 closure_return_with_destructor(cl, uuid_io_unlock); 436 } 437 438 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 439 { 440 struct bkey *k = &j->uuid_bucket; 441 442 if (__bch_btree_ptr_invalid(c, k)) 443 return "bad uuid pointer"; 444 445 bkey_copy(&c->uuid_bucket, k); 446 uuid_io(c, REQ_OP_READ, 0, k, cl); 447 448 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 449 struct uuid_entry_v0 *u0 = (void *) c->uuids; 450 struct uuid_entry *u1 = (void *) c->uuids; 451 int i; 452 453 closure_sync(cl); 454 455 /* 456 * Since the new uuid entry is bigger than the old, we have to 457 * convert starting at the highest memory address and work down 458 * in order to do it in place 459 */ 460 461 for (i = c->nr_uuids - 1; 462 i >= 0; 463 --i) { 464 memcpy(u1[i].uuid, u0[i].uuid, 16); 465 memcpy(u1[i].label, u0[i].label, 32); 466 467 u1[i].first_reg = u0[i].first_reg; 468 u1[i].last_reg = u0[i].last_reg; 469 u1[i].invalidated = u0[i].invalidated; 470 471 u1[i].flags = 0; 472 u1[i].sectors = 0; 473 } 474 } 475 476 return NULL; 477 } 478 479 static int __uuid_write(struct cache_set *c) 480 { 481 BKEY_PADDED(key) k; 482 struct closure cl; 483 struct cache *ca; 484 unsigned int size; 485 486 closure_init_stack(&cl); 487 lockdep_assert_held(&bch_register_lock); 488 489 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true)) 490 return 1; 491 492 size = meta_bucket_pages(&c->sb) * PAGE_SECTORS; 493 SET_KEY_SIZE(&k.key, size); 494 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 495 closure_sync(&cl); 496 497 /* Only one bucket used for uuid write */ 498 ca = PTR_CACHE(c, &k.key, 0); 499 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 500 501 bkey_copy(&c->uuid_bucket, &k.key); 502 bkey_put(c, &k.key); 503 return 0; 504 } 505 506 int bch_uuid_write(struct cache_set *c) 507 { 508 int ret = __uuid_write(c); 509 510 if (!ret) 511 bch_journal_meta(c, NULL); 512 513 return ret; 514 } 515 516 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 517 { 518 struct uuid_entry *u; 519 520 for (u = c->uuids; 521 u < c->uuids + c->nr_uuids; u++) 522 if (!memcmp(u->uuid, uuid, 16)) 523 return u; 524 525 return NULL; 526 } 527 528 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 529 { 530 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 531 532 return uuid_find(c, zero_uuid); 533 } 534 535 /* 536 * Bucket priorities/gens: 537 * 538 * For each bucket, we store on disk its 539 * 8 bit gen 540 * 16 bit priority 541 * 542 * See alloc.c for an explanation of the gen. The priority is used to implement 543 * lru (and in the future other) cache replacement policies; for most purposes 544 * it's just an opaque integer. 545 * 546 * The gens and the priorities don't have a whole lot to do with each other, and 547 * it's actually the gens that must be written out at specific times - it's no 548 * big deal if the priorities don't get written, if we lose them we just reuse 549 * buckets in suboptimal order. 550 * 551 * On disk they're stored in a packed array, and in as many buckets are required 552 * to fit them all. The buckets we use to store them form a list; the journal 553 * header points to the first bucket, the first bucket points to the second 554 * bucket, et cetera. 555 * 556 * This code is used by the allocation code; periodically (whenever it runs out 557 * of buckets to allocate from) the allocation code will invalidate some 558 * buckets, but it can't use those buckets until their new gens are safely on 559 * disk. 560 */ 561 562 static void prio_endio(struct bio *bio) 563 { 564 struct cache *ca = bio->bi_private; 565 566 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 567 bch_bbio_free(bio, ca->set); 568 closure_put(&ca->prio); 569 } 570 571 static void prio_io(struct cache *ca, uint64_t bucket, int op, 572 unsigned long op_flags) 573 { 574 struct closure *cl = &ca->prio; 575 struct bio *bio = bch_bbio_alloc(ca->set); 576 577 closure_init_stack(cl); 578 579 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 580 bio_set_dev(bio, ca->bdev); 581 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 582 583 bio->bi_end_io = prio_endio; 584 bio->bi_private = ca; 585 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 586 bch_bio_map(bio, ca->disk_buckets); 587 588 closure_bio_submit(ca->set, bio, &ca->prio); 589 closure_sync(cl); 590 } 591 592 int bch_prio_write(struct cache *ca, bool wait) 593 { 594 int i; 595 struct bucket *b; 596 struct closure cl; 597 598 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 599 fifo_used(&ca->free[RESERVE_PRIO]), 600 fifo_used(&ca->free[RESERVE_NONE]), 601 fifo_used(&ca->free_inc)); 602 603 /* 604 * Pre-check if there are enough free buckets. In the non-blocking 605 * scenario it's better to fail early rather than starting to allocate 606 * buckets and do a cleanup later in case of failure. 607 */ 608 if (!wait) { 609 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 610 fifo_used(&ca->free[RESERVE_NONE]); 611 if (prio_buckets(ca) > avail) 612 return -ENOMEM; 613 } 614 615 closure_init_stack(&cl); 616 617 lockdep_assert_held(&ca->set->bucket_lock); 618 619 ca->disk_buckets->seq++; 620 621 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 622 &ca->meta_sectors_written); 623 624 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 625 long bucket; 626 struct prio_set *p = ca->disk_buckets; 627 struct bucket_disk *d = p->data; 628 struct bucket_disk *end = d + prios_per_bucket(ca); 629 630 for (b = ca->buckets + i * prios_per_bucket(ca); 631 b < ca->buckets + ca->sb.nbuckets && d < end; 632 b++, d++) { 633 d->prio = cpu_to_le16(b->prio); 634 d->gen = b->gen; 635 } 636 637 p->next_bucket = ca->prio_buckets[i + 1]; 638 p->magic = pset_magic(&ca->sb); 639 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 640 641 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 642 BUG_ON(bucket == -1); 643 644 mutex_unlock(&ca->set->bucket_lock); 645 prio_io(ca, bucket, REQ_OP_WRITE, 0); 646 mutex_lock(&ca->set->bucket_lock); 647 648 ca->prio_buckets[i] = bucket; 649 atomic_dec_bug(&ca->buckets[bucket].pin); 650 } 651 652 mutex_unlock(&ca->set->bucket_lock); 653 654 bch_journal_meta(ca->set, &cl); 655 closure_sync(&cl); 656 657 mutex_lock(&ca->set->bucket_lock); 658 659 /* 660 * Don't want the old priorities to get garbage collected until after we 661 * finish writing the new ones, and they're journalled 662 */ 663 for (i = 0; i < prio_buckets(ca); i++) { 664 if (ca->prio_last_buckets[i]) 665 __bch_bucket_free(ca, 666 &ca->buckets[ca->prio_last_buckets[i]]); 667 668 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 669 } 670 return 0; 671 } 672 673 static int prio_read(struct cache *ca, uint64_t bucket) 674 { 675 struct prio_set *p = ca->disk_buckets; 676 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 677 struct bucket *b; 678 unsigned int bucket_nr = 0; 679 int ret = -EIO; 680 681 for (b = ca->buckets; 682 b < ca->buckets + ca->sb.nbuckets; 683 b++, d++) { 684 if (d == end) { 685 ca->prio_buckets[bucket_nr] = bucket; 686 ca->prio_last_buckets[bucket_nr] = bucket; 687 bucket_nr++; 688 689 prio_io(ca, bucket, REQ_OP_READ, 0); 690 691 if (p->csum != 692 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 693 pr_warn("bad csum reading priorities\n"); 694 goto out; 695 } 696 697 if (p->magic != pset_magic(&ca->sb)) { 698 pr_warn("bad magic reading priorities\n"); 699 goto out; 700 } 701 702 bucket = p->next_bucket; 703 d = p->data; 704 } 705 706 b->prio = le16_to_cpu(d->prio); 707 b->gen = b->last_gc = d->gen; 708 } 709 710 ret = 0; 711 out: 712 return ret; 713 } 714 715 /* Bcache device */ 716 717 static int open_dev(struct block_device *b, fmode_t mode) 718 { 719 struct bcache_device *d = b->bd_disk->private_data; 720 721 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 722 return -ENXIO; 723 724 closure_get(&d->cl); 725 return 0; 726 } 727 728 static void release_dev(struct gendisk *b, fmode_t mode) 729 { 730 struct bcache_device *d = b->private_data; 731 732 closure_put(&d->cl); 733 } 734 735 static int ioctl_dev(struct block_device *b, fmode_t mode, 736 unsigned int cmd, unsigned long arg) 737 { 738 struct bcache_device *d = b->bd_disk->private_data; 739 740 return d->ioctl(d, mode, cmd, arg); 741 } 742 743 static const struct block_device_operations bcache_cached_ops = { 744 .submit_bio = cached_dev_submit_bio, 745 .open = open_dev, 746 .release = release_dev, 747 .ioctl = ioctl_dev, 748 .owner = THIS_MODULE, 749 }; 750 751 static const struct block_device_operations bcache_flash_ops = { 752 .submit_bio = flash_dev_submit_bio, 753 .open = open_dev, 754 .release = release_dev, 755 .ioctl = ioctl_dev, 756 .owner = THIS_MODULE, 757 }; 758 759 void bcache_device_stop(struct bcache_device *d) 760 { 761 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 762 /* 763 * closure_fn set to 764 * - cached device: cached_dev_flush() 765 * - flash dev: flash_dev_flush() 766 */ 767 closure_queue(&d->cl); 768 } 769 770 static void bcache_device_unlink(struct bcache_device *d) 771 { 772 lockdep_assert_held(&bch_register_lock); 773 774 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 775 unsigned int i; 776 struct cache *ca; 777 778 sysfs_remove_link(&d->c->kobj, d->name); 779 sysfs_remove_link(&d->kobj, "cache"); 780 781 for_each_cache(ca, d->c, i) 782 bd_unlink_disk_holder(ca->bdev, d->disk); 783 } 784 } 785 786 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 787 const char *name) 788 { 789 unsigned int i; 790 struct cache *ca; 791 int ret; 792 793 for_each_cache(ca, d->c, i) 794 bd_link_disk_holder(ca->bdev, d->disk); 795 796 snprintf(d->name, BCACHEDEVNAME_SIZE, 797 "%s%u", name, d->id); 798 799 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 800 if (ret < 0) 801 pr_err("Couldn't create device -> cache set symlink\n"); 802 803 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 804 if (ret < 0) 805 pr_err("Couldn't create cache set -> device symlink\n"); 806 807 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 808 } 809 810 static void bcache_device_detach(struct bcache_device *d) 811 { 812 lockdep_assert_held(&bch_register_lock); 813 814 atomic_dec(&d->c->attached_dev_nr); 815 816 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 817 struct uuid_entry *u = d->c->uuids + d->id; 818 819 SET_UUID_FLASH_ONLY(u, 0); 820 memcpy(u->uuid, invalid_uuid, 16); 821 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 822 bch_uuid_write(d->c); 823 } 824 825 bcache_device_unlink(d); 826 827 d->c->devices[d->id] = NULL; 828 closure_put(&d->c->caching); 829 d->c = NULL; 830 } 831 832 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 833 unsigned int id) 834 { 835 d->id = id; 836 d->c = c; 837 c->devices[id] = d; 838 839 if (id >= c->devices_max_used) 840 c->devices_max_used = id + 1; 841 842 closure_get(&c->caching); 843 } 844 845 static inline int first_minor_to_idx(int first_minor) 846 { 847 return (first_minor/BCACHE_MINORS); 848 } 849 850 static inline int idx_to_first_minor(int idx) 851 { 852 return (idx * BCACHE_MINORS); 853 } 854 855 static void bcache_device_free(struct bcache_device *d) 856 { 857 struct gendisk *disk = d->disk; 858 859 lockdep_assert_held(&bch_register_lock); 860 861 if (disk) 862 pr_info("%s stopped\n", disk->disk_name); 863 else 864 pr_err("bcache device (NULL gendisk) stopped\n"); 865 866 if (d->c) 867 bcache_device_detach(d); 868 869 if (disk) { 870 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 871 872 if (disk_added) 873 del_gendisk(disk); 874 875 if (disk->queue) 876 blk_cleanup_queue(disk->queue); 877 878 ida_simple_remove(&bcache_device_idx, 879 first_minor_to_idx(disk->first_minor)); 880 if (disk_added) 881 put_disk(disk); 882 } 883 884 bioset_exit(&d->bio_split); 885 kvfree(d->full_dirty_stripes); 886 kvfree(d->stripe_sectors_dirty); 887 888 closure_debug_destroy(&d->cl); 889 } 890 891 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 892 sector_t sectors, struct block_device *cached_bdev, 893 const struct block_device_operations *ops) 894 { 895 struct request_queue *q; 896 const size_t max_stripes = min_t(size_t, INT_MAX, 897 SIZE_MAX / sizeof(atomic_t)); 898 uint64_t n; 899 int idx; 900 901 if (!d->stripe_size) 902 d->stripe_size = 1 << 31; 903 904 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 905 if (!n || n > max_stripes) { 906 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 907 n); 908 return -ENOMEM; 909 } 910 d->nr_stripes = n; 911 912 n = d->nr_stripes * sizeof(atomic_t); 913 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 914 if (!d->stripe_sectors_dirty) 915 return -ENOMEM; 916 917 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 918 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 919 if (!d->full_dirty_stripes) 920 return -ENOMEM; 921 922 idx = ida_simple_get(&bcache_device_idx, 0, 923 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 924 if (idx < 0) 925 return idx; 926 927 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 928 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 929 goto err; 930 931 d->disk = alloc_disk(BCACHE_MINORS); 932 if (!d->disk) 933 goto err; 934 935 set_capacity(d->disk, sectors); 936 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 937 938 d->disk->major = bcache_major; 939 d->disk->first_minor = idx_to_first_minor(idx); 940 d->disk->fops = ops; 941 d->disk->private_data = d; 942 943 q = blk_alloc_queue(NUMA_NO_NODE); 944 if (!q) 945 return -ENOMEM; 946 947 d->disk->queue = q; 948 q->limits.max_hw_sectors = UINT_MAX; 949 q->limits.max_sectors = UINT_MAX; 950 q->limits.max_segment_size = UINT_MAX; 951 q->limits.max_segments = BIO_MAX_PAGES; 952 blk_queue_max_discard_sectors(q, UINT_MAX); 953 q->limits.discard_granularity = 512; 954 q->limits.io_min = block_size; 955 q->limits.logical_block_size = block_size; 956 q->limits.physical_block_size = block_size; 957 958 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 959 /* 960 * This should only happen with BCACHE_SB_VERSION_BDEV. 961 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 962 */ 963 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 964 d->disk->disk_name, q->limits.logical_block_size, 965 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 966 967 /* This also adjusts physical block size/min io size if needed */ 968 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 969 } 970 971 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 972 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 973 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 974 975 blk_queue_write_cache(q, true, true); 976 977 return 0; 978 979 err: 980 ida_simple_remove(&bcache_device_idx, idx); 981 return -ENOMEM; 982 983 } 984 985 /* Cached device */ 986 987 static void calc_cached_dev_sectors(struct cache_set *c) 988 { 989 uint64_t sectors = 0; 990 struct cached_dev *dc; 991 992 list_for_each_entry(dc, &c->cached_devs, list) 993 sectors += bdev_sectors(dc->bdev); 994 995 c->cached_dev_sectors = sectors; 996 } 997 998 #define BACKING_DEV_OFFLINE_TIMEOUT 5 999 static int cached_dev_status_update(void *arg) 1000 { 1001 struct cached_dev *dc = arg; 1002 struct request_queue *q; 1003 1004 /* 1005 * If this delayed worker is stopping outside, directly quit here. 1006 * dc->io_disable might be set via sysfs interface, so check it 1007 * here too. 1008 */ 1009 while (!kthread_should_stop() && !dc->io_disable) { 1010 q = bdev_get_queue(dc->bdev); 1011 if (blk_queue_dying(q)) 1012 dc->offline_seconds++; 1013 else 1014 dc->offline_seconds = 0; 1015 1016 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1017 pr_err("%s: device offline for %d seconds\n", 1018 dc->backing_dev_name, 1019 BACKING_DEV_OFFLINE_TIMEOUT); 1020 pr_err("%s: disable I/O request due to backing device offline\n", 1021 dc->disk.name); 1022 dc->io_disable = true; 1023 /* let others know earlier that io_disable is true */ 1024 smp_mb(); 1025 bcache_device_stop(&dc->disk); 1026 break; 1027 } 1028 schedule_timeout_interruptible(HZ); 1029 } 1030 1031 wait_for_kthread_stop(); 1032 return 0; 1033 } 1034 1035 1036 int bch_cached_dev_run(struct cached_dev *dc) 1037 { 1038 struct bcache_device *d = &dc->disk; 1039 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1040 char *env[] = { 1041 "DRIVER=bcache", 1042 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1043 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1044 NULL, 1045 }; 1046 1047 if (dc->io_disable) { 1048 pr_err("I/O disabled on cached dev %s\n", 1049 dc->backing_dev_name); 1050 kfree(env[1]); 1051 kfree(env[2]); 1052 kfree(buf); 1053 return -EIO; 1054 } 1055 1056 if (atomic_xchg(&dc->running, 1)) { 1057 kfree(env[1]); 1058 kfree(env[2]); 1059 kfree(buf); 1060 pr_info("cached dev %s is running already\n", 1061 dc->backing_dev_name); 1062 return -EBUSY; 1063 } 1064 1065 if (!d->c && 1066 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1067 struct closure cl; 1068 1069 closure_init_stack(&cl); 1070 1071 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1072 bch_write_bdev_super(dc, &cl); 1073 closure_sync(&cl); 1074 } 1075 1076 add_disk(d->disk); 1077 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1078 /* 1079 * won't show up in the uevent file, use udevadm monitor -e instead 1080 * only class / kset properties are persistent 1081 */ 1082 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1083 kfree(env[1]); 1084 kfree(env[2]); 1085 kfree(buf); 1086 1087 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1088 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1089 &d->kobj, "bcache")) { 1090 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1091 return -ENOMEM; 1092 } 1093 1094 dc->status_update_thread = kthread_run(cached_dev_status_update, 1095 dc, "bcache_status_update"); 1096 if (IS_ERR(dc->status_update_thread)) { 1097 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1098 } 1099 1100 return 0; 1101 } 1102 1103 /* 1104 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1105 * work dc->writeback_rate_update is running. Wait until the routine 1106 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1107 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1108 * seconds, give up waiting here and continue to cancel it too. 1109 */ 1110 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1111 { 1112 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1113 1114 do { 1115 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1116 &dc->disk.flags)) 1117 break; 1118 time_out--; 1119 schedule_timeout_interruptible(1); 1120 } while (time_out > 0); 1121 1122 if (time_out == 0) 1123 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1124 1125 cancel_delayed_work_sync(&dc->writeback_rate_update); 1126 } 1127 1128 static void cached_dev_detach_finish(struct work_struct *w) 1129 { 1130 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1131 struct closure cl; 1132 1133 closure_init_stack(&cl); 1134 1135 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1136 BUG_ON(refcount_read(&dc->count)); 1137 1138 1139 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1140 cancel_writeback_rate_update_dwork(dc); 1141 1142 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1143 kthread_stop(dc->writeback_thread); 1144 dc->writeback_thread = NULL; 1145 } 1146 1147 memset(&dc->sb.set_uuid, 0, 16); 1148 SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE); 1149 1150 bch_write_bdev_super(dc, &cl); 1151 closure_sync(&cl); 1152 1153 mutex_lock(&bch_register_lock); 1154 1155 calc_cached_dev_sectors(dc->disk.c); 1156 bcache_device_detach(&dc->disk); 1157 list_move(&dc->list, &uncached_devices); 1158 1159 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1160 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1161 1162 mutex_unlock(&bch_register_lock); 1163 1164 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1165 1166 /* Drop ref we took in cached_dev_detach() */ 1167 closure_put(&dc->disk.cl); 1168 } 1169 1170 void bch_cached_dev_detach(struct cached_dev *dc) 1171 { 1172 lockdep_assert_held(&bch_register_lock); 1173 1174 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1175 return; 1176 1177 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1178 return; 1179 1180 /* 1181 * Block the device from being closed and freed until we're finished 1182 * detaching 1183 */ 1184 closure_get(&dc->disk.cl); 1185 1186 bch_writeback_queue(dc); 1187 1188 cached_dev_put(dc); 1189 } 1190 1191 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1192 uint8_t *set_uuid) 1193 { 1194 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1195 struct uuid_entry *u; 1196 struct cached_dev *exist_dc, *t; 1197 int ret = 0; 1198 1199 if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) || 1200 (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))) 1201 return -ENOENT; 1202 1203 if (dc->disk.c) { 1204 pr_err("Can't attach %s: already attached\n", 1205 dc->backing_dev_name); 1206 return -EINVAL; 1207 } 1208 1209 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1210 pr_err("Can't attach %s: shutting down\n", 1211 dc->backing_dev_name); 1212 return -EINVAL; 1213 } 1214 1215 if (dc->sb.block_size < c->sb.block_size) { 1216 /* Will die */ 1217 pr_err("Couldn't attach %s: block size less than set's block size\n", 1218 dc->backing_dev_name); 1219 return -EINVAL; 1220 } 1221 1222 /* Check whether already attached */ 1223 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1224 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1225 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1226 dc->backing_dev_name); 1227 1228 return -EINVAL; 1229 } 1230 } 1231 1232 u = uuid_find(c, dc->sb.uuid); 1233 1234 if (u && 1235 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1236 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1237 memcpy(u->uuid, invalid_uuid, 16); 1238 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1239 u = NULL; 1240 } 1241 1242 if (!u) { 1243 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1244 pr_err("Couldn't find uuid for %s in set\n", 1245 dc->backing_dev_name); 1246 return -ENOENT; 1247 } 1248 1249 u = uuid_find_empty(c); 1250 if (!u) { 1251 pr_err("Not caching %s, no room for UUID\n", 1252 dc->backing_dev_name); 1253 return -EINVAL; 1254 } 1255 } 1256 1257 /* 1258 * Deadlocks since we're called via sysfs... 1259 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1260 */ 1261 1262 if (bch_is_zero(u->uuid, 16)) { 1263 struct closure cl; 1264 1265 closure_init_stack(&cl); 1266 1267 memcpy(u->uuid, dc->sb.uuid, 16); 1268 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1269 u->first_reg = u->last_reg = rtime; 1270 bch_uuid_write(c); 1271 1272 memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16); 1273 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1274 1275 bch_write_bdev_super(dc, &cl); 1276 closure_sync(&cl); 1277 } else { 1278 u->last_reg = rtime; 1279 bch_uuid_write(c); 1280 } 1281 1282 bcache_device_attach(&dc->disk, c, u - c->uuids); 1283 list_move(&dc->list, &c->cached_devs); 1284 calc_cached_dev_sectors(c); 1285 1286 /* 1287 * dc->c must be set before dc->count != 0 - paired with the mb in 1288 * cached_dev_get() 1289 */ 1290 smp_wmb(); 1291 refcount_set(&dc->count, 1); 1292 1293 /* Block writeback thread, but spawn it */ 1294 down_write(&dc->writeback_lock); 1295 if (bch_cached_dev_writeback_start(dc)) { 1296 up_write(&dc->writeback_lock); 1297 pr_err("Couldn't start writeback facilities for %s\n", 1298 dc->disk.disk->disk_name); 1299 return -ENOMEM; 1300 } 1301 1302 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1303 atomic_set(&dc->has_dirty, 1); 1304 bch_writeback_queue(dc); 1305 } 1306 1307 bch_sectors_dirty_init(&dc->disk); 1308 1309 ret = bch_cached_dev_run(dc); 1310 if (ret && (ret != -EBUSY)) { 1311 up_write(&dc->writeback_lock); 1312 /* 1313 * bch_register_lock is held, bcache_device_stop() is not 1314 * able to be directly called. The kthread and kworker 1315 * created previously in bch_cached_dev_writeback_start() 1316 * have to be stopped manually here. 1317 */ 1318 kthread_stop(dc->writeback_thread); 1319 cancel_writeback_rate_update_dwork(dc); 1320 pr_err("Couldn't run cached device %s\n", 1321 dc->backing_dev_name); 1322 return ret; 1323 } 1324 1325 bcache_device_link(&dc->disk, c, "bdev"); 1326 atomic_inc(&c->attached_dev_nr); 1327 1328 /* Allow the writeback thread to proceed */ 1329 up_write(&dc->writeback_lock); 1330 1331 pr_info("Caching %s as %s on set %pU\n", 1332 dc->backing_dev_name, 1333 dc->disk.disk->disk_name, 1334 dc->disk.c->sb.set_uuid); 1335 return 0; 1336 } 1337 1338 /* when dc->disk.kobj released */ 1339 void bch_cached_dev_release(struct kobject *kobj) 1340 { 1341 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1342 disk.kobj); 1343 kfree(dc); 1344 module_put(THIS_MODULE); 1345 } 1346 1347 static void cached_dev_free(struct closure *cl) 1348 { 1349 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1350 1351 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1352 cancel_writeback_rate_update_dwork(dc); 1353 1354 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1355 kthread_stop(dc->writeback_thread); 1356 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1357 kthread_stop(dc->status_update_thread); 1358 1359 mutex_lock(&bch_register_lock); 1360 1361 if (atomic_read(&dc->running)) 1362 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1363 bcache_device_free(&dc->disk); 1364 list_del(&dc->list); 1365 1366 mutex_unlock(&bch_register_lock); 1367 1368 if (dc->sb_disk) 1369 put_page(virt_to_page(dc->sb_disk)); 1370 1371 if (!IS_ERR_OR_NULL(dc->bdev)) 1372 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1373 1374 wake_up(&unregister_wait); 1375 1376 kobject_put(&dc->disk.kobj); 1377 } 1378 1379 static void cached_dev_flush(struct closure *cl) 1380 { 1381 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1382 struct bcache_device *d = &dc->disk; 1383 1384 mutex_lock(&bch_register_lock); 1385 bcache_device_unlink(d); 1386 mutex_unlock(&bch_register_lock); 1387 1388 bch_cache_accounting_destroy(&dc->accounting); 1389 kobject_del(&d->kobj); 1390 1391 continue_at(cl, cached_dev_free, system_wq); 1392 } 1393 1394 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1395 { 1396 int ret; 1397 struct io *io; 1398 struct request_queue *q = bdev_get_queue(dc->bdev); 1399 1400 __module_get(THIS_MODULE); 1401 INIT_LIST_HEAD(&dc->list); 1402 closure_init(&dc->disk.cl, NULL); 1403 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1404 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1405 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1406 sema_init(&dc->sb_write_mutex, 1); 1407 INIT_LIST_HEAD(&dc->io_lru); 1408 spin_lock_init(&dc->io_lock); 1409 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1410 1411 dc->sequential_cutoff = 4 << 20; 1412 1413 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1414 list_add(&io->lru, &dc->io_lru); 1415 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1416 } 1417 1418 dc->disk.stripe_size = q->limits.io_opt >> 9; 1419 1420 if (dc->disk.stripe_size) 1421 dc->partial_stripes_expensive = 1422 q->limits.raid_partial_stripes_expensive; 1423 1424 ret = bcache_device_init(&dc->disk, block_size, 1425 dc->bdev->bd_part->nr_sects - dc->sb.data_offset, 1426 dc->bdev, &bcache_cached_ops); 1427 if (ret) 1428 return ret; 1429 1430 dc->disk.disk->queue->backing_dev_info->ra_pages = 1431 max(dc->disk.disk->queue->backing_dev_info->ra_pages, 1432 q->backing_dev_info->ra_pages); 1433 1434 atomic_set(&dc->io_errors, 0); 1435 dc->io_disable = false; 1436 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1437 /* default to auto */ 1438 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1439 1440 bch_cached_dev_request_init(dc); 1441 bch_cached_dev_writeback_init(dc); 1442 return 0; 1443 } 1444 1445 /* Cached device - bcache superblock */ 1446 1447 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1448 struct block_device *bdev, 1449 struct cached_dev *dc) 1450 { 1451 const char *err = "cannot allocate memory"; 1452 struct cache_set *c; 1453 int ret = -ENOMEM; 1454 1455 bdevname(bdev, dc->backing_dev_name); 1456 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1457 dc->bdev = bdev; 1458 dc->bdev->bd_holder = dc; 1459 dc->sb_disk = sb_disk; 1460 1461 if (cached_dev_init(dc, sb->block_size << 9)) 1462 goto err; 1463 1464 err = "error creating kobject"; 1465 if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj, 1466 "bcache")) 1467 goto err; 1468 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1469 goto err; 1470 1471 pr_info("registered backing device %s\n", dc->backing_dev_name); 1472 1473 list_add(&dc->list, &uncached_devices); 1474 /* attach to a matched cache set if it exists */ 1475 list_for_each_entry(c, &bch_cache_sets, list) 1476 bch_cached_dev_attach(dc, c, NULL); 1477 1478 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1479 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1480 err = "failed to run cached device"; 1481 ret = bch_cached_dev_run(dc); 1482 if (ret) 1483 goto err; 1484 } 1485 1486 return 0; 1487 err: 1488 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1489 bcache_device_stop(&dc->disk); 1490 return ret; 1491 } 1492 1493 /* Flash only volumes */ 1494 1495 /* When d->kobj released */ 1496 void bch_flash_dev_release(struct kobject *kobj) 1497 { 1498 struct bcache_device *d = container_of(kobj, struct bcache_device, 1499 kobj); 1500 kfree(d); 1501 } 1502 1503 static void flash_dev_free(struct closure *cl) 1504 { 1505 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1506 1507 mutex_lock(&bch_register_lock); 1508 atomic_long_sub(bcache_dev_sectors_dirty(d), 1509 &d->c->flash_dev_dirty_sectors); 1510 bcache_device_free(d); 1511 mutex_unlock(&bch_register_lock); 1512 kobject_put(&d->kobj); 1513 } 1514 1515 static void flash_dev_flush(struct closure *cl) 1516 { 1517 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1518 1519 mutex_lock(&bch_register_lock); 1520 bcache_device_unlink(d); 1521 mutex_unlock(&bch_register_lock); 1522 kobject_del(&d->kobj); 1523 continue_at(cl, flash_dev_free, system_wq); 1524 } 1525 1526 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1527 { 1528 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1529 GFP_KERNEL); 1530 if (!d) 1531 return -ENOMEM; 1532 1533 closure_init(&d->cl, NULL); 1534 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1535 1536 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1537 1538 if (bcache_device_init(d, block_bytes(c), u->sectors, 1539 NULL, &bcache_flash_ops)) 1540 goto err; 1541 1542 bcache_device_attach(d, c, u - c->uuids); 1543 bch_sectors_dirty_init(d); 1544 bch_flash_dev_request_init(d); 1545 add_disk(d->disk); 1546 1547 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1548 goto err; 1549 1550 bcache_device_link(d, c, "volume"); 1551 1552 return 0; 1553 err: 1554 kobject_put(&d->kobj); 1555 return -ENOMEM; 1556 } 1557 1558 static int flash_devs_run(struct cache_set *c) 1559 { 1560 int ret = 0; 1561 struct uuid_entry *u; 1562 1563 for (u = c->uuids; 1564 u < c->uuids + c->nr_uuids && !ret; 1565 u++) 1566 if (UUID_FLASH_ONLY(u)) 1567 ret = flash_dev_run(c, u); 1568 1569 return ret; 1570 } 1571 1572 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1573 { 1574 struct uuid_entry *u; 1575 1576 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1577 return -EINTR; 1578 1579 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1580 return -EPERM; 1581 1582 u = uuid_find_empty(c); 1583 if (!u) { 1584 pr_err("Can't create volume, no room for UUID\n"); 1585 return -EINVAL; 1586 } 1587 1588 get_random_bytes(u->uuid, 16); 1589 memset(u->label, 0, 32); 1590 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1591 1592 SET_UUID_FLASH_ONLY(u, 1); 1593 u->sectors = size >> 9; 1594 1595 bch_uuid_write(c); 1596 1597 return flash_dev_run(c, u); 1598 } 1599 1600 bool bch_cached_dev_error(struct cached_dev *dc) 1601 { 1602 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1603 return false; 1604 1605 dc->io_disable = true; 1606 /* make others know io_disable is true earlier */ 1607 smp_mb(); 1608 1609 pr_err("stop %s: too many IO errors on backing device %s\n", 1610 dc->disk.disk->disk_name, dc->backing_dev_name); 1611 1612 bcache_device_stop(&dc->disk); 1613 return true; 1614 } 1615 1616 /* Cache set */ 1617 1618 __printf(2, 3) 1619 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1620 { 1621 struct va_format vaf; 1622 va_list args; 1623 1624 if (c->on_error != ON_ERROR_PANIC && 1625 test_bit(CACHE_SET_STOPPING, &c->flags)) 1626 return false; 1627 1628 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1629 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1630 1631 /* 1632 * XXX: we can be called from atomic context 1633 * acquire_console_sem(); 1634 */ 1635 1636 va_start(args, fmt); 1637 1638 vaf.fmt = fmt; 1639 vaf.va = &args; 1640 1641 pr_err("error on %pU: %pV, disabling caching\n", 1642 c->sb.set_uuid, &vaf); 1643 1644 va_end(args); 1645 1646 if (c->on_error == ON_ERROR_PANIC) 1647 panic("panic forced after error\n"); 1648 1649 bch_cache_set_unregister(c); 1650 return true; 1651 } 1652 1653 /* When c->kobj released */ 1654 void bch_cache_set_release(struct kobject *kobj) 1655 { 1656 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1657 1658 kfree(c); 1659 module_put(THIS_MODULE); 1660 } 1661 1662 static void cache_set_free(struct closure *cl) 1663 { 1664 struct cache_set *c = container_of(cl, struct cache_set, cl); 1665 struct cache *ca; 1666 unsigned int i; 1667 1668 debugfs_remove(c->debug); 1669 1670 bch_open_buckets_free(c); 1671 bch_btree_cache_free(c); 1672 bch_journal_free(c); 1673 1674 mutex_lock(&bch_register_lock); 1675 for_each_cache(ca, c, i) 1676 if (ca) { 1677 ca->set = NULL; 1678 c->cache[ca->sb.nr_this_dev] = NULL; 1679 kobject_put(&ca->kobj); 1680 } 1681 1682 bch_bset_sort_state_free(&c->sort); 1683 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->sb))); 1684 1685 if (c->moving_gc_wq) 1686 destroy_workqueue(c->moving_gc_wq); 1687 bioset_exit(&c->bio_split); 1688 mempool_exit(&c->fill_iter); 1689 mempool_exit(&c->bio_meta); 1690 mempool_exit(&c->search); 1691 kfree(c->devices); 1692 1693 list_del(&c->list); 1694 mutex_unlock(&bch_register_lock); 1695 1696 pr_info("Cache set %pU unregistered\n", c->sb.set_uuid); 1697 wake_up(&unregister_wait); 1698 1699 closure_debug_destroy(&c->cl); 1700 kobject_put(&c->kobj); 1701 } 1702 1703 static void cache_set_flush(struct closure *cl) 1704 { 1705 struct cache_set *c = container_of(cl, struct cache_set, caching); 1706 struct cache *ca; 1707 struct btree *b; 1708 unsigned int i; 1709 1710 bch_cache_accounting_destroy(&c->accounting); 1711 1712 kobject_put(&c->internal); 1713 kobject_del(&c->kobj); 1714 1715 if (!IS_ERR_OR_NULL(c->gc_thread)) 1716 kthread_stop(c->gc_thread); 1717 1718 if (!IS_ERR_OR_NULL(c->root)) 1719 list_add(&c->root->list, &c->btree_cache); 1720 1721 /* 1722 * Avoid flushing cached nodes if cache set is retiring 1723 * due to too many I/O errors detected. 1724 */ 1725 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1726 list_for_each_entry(b, &c->btree_cache, list) { 1727 mutex_lock(&b->write_lock); 1728 if (btree_node_dirty(b)) 1729 __bch_btree_node_write(b, NULL); 1730 mutex_unlock(&b->write_lock); 1731 } 1732 1733 for_each_cache(ca, c, i) 1734 if (ca->alloc_thread) 1735 kthread_stop(ca->alloc_thread); 1736 1737 if (c->journal.cur) { 1738 cancel_delayed_work_sync(&c->journal.work); 1739 /* flush last journal entry if needed */ 1740 c->journal.work.work.func(&c->journal.work.work); 1741 } 1742 1743 closure_return(cl); 1744 } 1745 1746 /* 1747 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1748 * cache set is unregistering due to too many I/O errors. In this condition, 1749 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1750 * value and whether the broken cache has dirty data: 1751 * 1752 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1753 * BCH_CACHED_STOP_AUTO 0 NO 1754 * BCH_CACHED_STOP_AUTO 1 YES 1755 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1756 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1757 * 1758 * The expected behavior is, if stop_when_cache_set_failed is configured to 1759 * "auto" via sysfs interface, the bcache device will not be stopped if the 1760 * backing device is clean on the broken cache device. 1761 */ 1762 static void conditional_stop_bcache_device(struct cache_set *c, 1763 struct bcache_device *d, 1764 struct cached_dev *dc) 1765 { 1766 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1767 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1768 d->disk->disk_name, c->sb.set_uuid); 1769 bcache_device_stop(d); 1770 } else if (atomic_read(&dc->has_dirty)) { 1771 /* 1772 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1773 * and dc->has_dirty == 1 1774 */ 1775 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1776 d->disk->disk_name); 1777 /* 1778 * There might be a small time gap that cache set is 1779 * released but bcache device is not. Inside this time 1780 * gap, regular I/O requests will directly go into 1781 * backing device as no cache set attached to. This 1782 * behavior may also introduce potential inconsistence 1783 * data in writeback mode while cache is dirty. 1784 * Therefore before calling bcache_device_stop() due 1785 * to a broken cache device, dc->io_disable should be 1786 * explicitly set to true. 1787 */ 1788 dc->io_disable = true; 1789 /* make others know io_disable is true earlier */ 1790 smp_mb(); 1791 bcache_device_stop(d); 1792 } else { 1793 /* 1794 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1795 * and dc->has_dirty == 0 1796 */ 1797 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1798 d->disk->disk_name); 1799 } 1800 } 1801 1802 static void __cache_set_unregister(struct closure *cl) 1803 { 1804 struct cache_set *c = container_of(cl, struct cache_set, caching); 1805 struct cached_dev *dc; 1806 struct bcache_device *d; 1807 size_t i; 1808 1809 mutex_lock(&bch_register_lock); 1810 1811 for (i = 0; i < c->devices_max_used; i++) { 1812 d = c->devices[i]; 1813 if (!d) 1814 continue; 1815 1816 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1817 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1818 dc = container_of(d, struct cached_dev, disk); 1819 bch_cached_dev_detach(dc); 1820 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1821 conditional_stop_bcache_device(c, d, dc); 1822 } else { 1823 bcache_device_stop(d); 1824 } 1825 } 1826 1827 mutex_unlock(&bch_register_lock); 1828 1829 continue_at(cl, cache_set_flush, system_wq); 1830 } 1831 1832 void bch_cache_set_stop(struct cache_set *c) 1833 { 1834 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1835 /* closure_fn set to __cache_set_unregister() */ 1836 closure_queue(&c->caching); 1837 } 1838 1839 void bch_cache_set_unregister(struct cache_set *c) 1840 { 1841 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1842 bch_cache_set_stop(c); 1843 } 1844 1845 #define alloc_bucket_pages(gfp, c) \ 1846 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(bucket_pages(c)))) 1847 1848 #define alloc_meta_bucket_pages(gfp, sb) \ 1849 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1850 1851 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1852 { 1853 int iter_size; 1854 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1855 1856 if (!c) 1857 return NULL; 1858 1859 __module_get(THIS_MODULE); 1860 closure_init(&c->cl, NULL); 1861 set_closure_fn(&c->cl, cache_set_free, system_wq); 1862 1863 closure_init(&c->caching, &c->cl); 1864 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1865 1866 /* Maybe create continue_at_noreturn() and use it here? */ 1867 closure_set_stopped(&c->cl); 1868 closure_put(&c->cl); 1869 1870 kobject_init(&c->kobj, &bch_cache_set_ktype); 1871 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1872 1873 bch_cache_accounting_init(&c->accounting, &c->cl); 1874 1875 memcpy(c->sb.set_uuid, sb->set_uuid, 16); 1876 c->sb.block_size = sb->block_size; 1877 c->sb.bucket_size = sb->bucket_size; 1878 c->sb.nr_in_set = sb->nr_in_set; 1879 c->sb.last_mount = sb->last_mount; 1880 c->sb.version = sb->version; 1881 if (c->sb.version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 1882 c->sb.feature_compat = sb->feature_compat; 1883 c->sb.feature_ro_compat = sb->feature_ro_compat; 1884 c->sb.feature_incompat = sb->feature_incompat; 1885 } 1886 1887 c->bucket_bits = ilog2(sb->bucket_size); 1888 c->block_bits = ilog2(sb->block_size); 1889 c->nr_uuids = meta_bucket_bytes(&c->sb) / sizeof(struct uuid_entry); 1890 c->devices_max_used = 0; 1891 atomic_set(&c->attached_dev_nr, 0); 1892 c->btree_pages = meta_bucket_pages(&c->sb); 1893 if (c->btree_pages > BTREE_MAX_PAGES) 1894 c->btree_pages = max_t(int, c->btree_pages / 4, 1895 BTREE_MAX_PAGES); 1896 1897 sema_init(&c->sb_write_mutex, 1); 1898 mutex_init(&c->bucket_lock); 1899 init_waitqueue_head(&c->btree_cache_wait); 1900 spin_lock_init(&c->btree_cannibalize_lock); 1901 init_waitqueue_head(&c->bucket_wait); 1902 init_waitqueue_head(&c->gc_wait); 1903 sema_init(&c->uuid_write_mutex, 1); 1904 1905 spin_lock_init(&c->btree_gc_time.lock); 1906 spin_lock_init(&c->btree_split_time.lock); 1907 spin_lock_init(&c->btree_read_time.lock); 1908 1909 bch_moving_init_cache_set(c); 1910 1911 INIT_LIST_HEAD(&c->list); 1912 INIT_LIST_HEAD(&c->cached_devs); 1913 INIT_LIST_HEAD(&c->btree_cache); 1914 INIT_LIST_HEAD(&c->btree_cache_freeable); 1915 INIT_LIST_HEAD(&c->btree_cache_freed); 1916 INIT_LIST_HEAD(&c->data_buckets); 1917 1918 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1919 sizeof(struct btree_iter_set); 1920 1921 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1922 if (!c->devices) 1923 goto err; 1924 1925 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1926 goto err; 1927 1928 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1929 sizeof(struct bbio) + 1930 sizeof(struct bio_vec) * meta_bucket_pages(&c->sb))) 1931 goto err; 1932 1933 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1934 goto err; 1935 1936 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1937 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 1938 goto err; 1939 1940 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, &c->sb); 1941 if (!c->uuids) 1942 goto err; 1943 1944 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1945 if (!c->moving_gc_wq) 1946 goto err; 1947 1948 if (bch_journal_alloc(c)) 1949 goto err; 1950 1951 if (bch_btree_cache_alloc(c)) 1952 goto err; 1953 1954 if (bch_open_buckets_alloc(c)) 1955 goto err; 1956 1957 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1958 goto err; 1959 1960 c->congested_read_threshold_us = 2000; 1961 c->congested_write_threshold_us = 20000; 1962 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1963 c->idle_max_writeback_rate_enabled = 1; 1964 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1965 1966 return c; 1967 err: 1968 bch_cache_set_unregister(c); 1969 return NULL; 1970 } 1971 1972 static int run_cache_set(struct cache_set *c) 1973 { 1974 const char *err = "cannot allocate memory"; 1975 struct cached_dev *dc, *t; 1976 struct cache *ca; 1977 struct closure cl; 1978 unsigned int i; 1979 LIST_HEAD(journal); 1980 struct journal_replay *l; 1981 1982 closure_init_stack(&cl); 1983 1984 for_each_cache(ca, c, i) 1985 c->nbuckets += ca->sb.nbuckets; 1986 set_gc_sectors(c); 1987 1988 if (CACHE_SYNC(&c->sb)) { 1989 struct bkey *k; 1990 struct jset *j; 1991 1992 err = "cannot allocate memory for journal"; 1993 if (bch_journal_read(c, &journal)) 1994 goto err; 1995 1996 pr_debug("btree_journal_read() done\n"); 1997 1998 err = "no journal entries found"; 1999 if (list_empty(&journal)) 2000 goto err; 2001 2002 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2003 2004 err = "IO error reading priorities"; 2005 for_each_cache(ca, c, i) { 2006 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2007 goto err; 2008 } 2009 2010 /* 2011 * If prio_read() fails it'll call cache_set_error and we'll 2012 * tear everything down right away, but if we perhaps checked 2013 * sooner we could avoid journal replay. 2014 */ 2015 2016 k = &j->btree_root; 2017 2018 err = "bad btree root"; 2019 if (__bch_btree_ptr_invalid(c, k)) 2020 goto err; 2021 2022 err = "error reading btree root"; 2023 c->root = bch_btree_node_get(c, NULL, k, 2024 j->btree_level, 2025 true, NULL); 2026 if (IS_ERR_OR_NULL(c->root)) 2027 goto err; 2028 2029 list_del_init(&c->root->list); 2030 rw_unlock(true, c->root); 2031 2032 err = uuid_read(c, j, &cl); 2033 if (err) 2034 goto err; 2035 2036 err = "error in recovery"; 2037 if (bch_btree_check(c)) 2038 goto err; 2039 2040 bch_journal_mark(c, &journal); 2041 bch_initial_gc_finish(c); 2042 pr_debug("btree_check() done\n"); 2043 2044 /* 2045 * bcache_journal_next() can't happen sooner, or 2046 * btree_gc_finish() will give spurious errors about last_gc > 2047 * gc_gen - this is a hack but oh well. 2048 */ 2049 bch_journal_next(&c->journal); 2050 2051 err = "error starting allocator thread"; 2052 for_each_cache(ca, c, i) 2053 if (bch_cache_allocator_start(ca)) 2054 goto err; 2055 2056 /* 2057 * First place it's safe to allocate: btree_check() and 2058 * btree_gc_finish() have to run before we have buckets to 2059 * allocate, and bch_bucket_alloc_set() might cause a journal 2060 * entry to be written so bcache_journal_next() has to be called 2061 * first. 2062 * 2063 * If the uuids were in the old format we have to rewrite them 2064 * before the next journal entry is written: 2065 */ 2066 if (j->version < BCACHE_JSET_VERSION_UUID) 2067 __uuid_write(c); 2068 2069 err = "bcache: replay journal failed"; 2070 if (bch_journal_replay(c, &journal)) 2071 goto err; 2072 } else { 2073 pr_notice("invalidating existing data\n"); 2074 2075 for_each_cache(ca, c, i) { 2076 unsigned int j; 2077 2078 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2079 2, SB_JOURNAL_BUCKETS); 2080 2081 for (j = 0; j < ca->sb.keys; j++) 2082 ca->sb.d[j] = ca->sb.first_bucket + j; 2083 } 2084 2085 bch_initial_gc_finish(c); 2086 2087 err = "error starting allocator thread"; 2088 for_each_cache(ca, c, i) 2089 if (bch_cache_allocator_start(ca)) 2090 goto err; 2091 2092 mutex_lock(&c->bucket_lock); 2093 for_each_cache(ca, c, i) 2094 bch_prio_write(ca, true); 2095 mutex_unlock(&c->bucket_lock); 2096 2097 err = "cannot allocate new UUID bucket"; 2098 if (__uuid_write(c)) 2099 goto err; 2100 2101 err = "cannot allocate new btree root"; 2102 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2103 if (IS_ERR_OR_NULL(c->root)) 2104 goto err; 2105 2106 mutex_lock(&c->root->write_lock); 2107 bkey_copy_key(&c->root->key, &MAX_KEY); 2108 bch_btree_node_write(c->root, &cl); 2109 mutex_unlock(&c->root->write_lock); 2110 2111 bch_btree_set_root(c->root); 2112 rw_unlock(true, c->root); 2113 2114 /* 2115 * We don't want to write the first journal entry until 2116 * everything is set up - fortunately journal entries won't be 2117 * written until the SET_CACHE_SYNC() here: 2118 */ 2119 SET_CACHE_SYNC(&c->sb, true); 2120 2121 bch_journal_next(&c->journal); 2122 bch_journal_meta(c, &cl); 2123 } 2124 2125 err = "error starting gc thread"; 2126 if (bch_gc_thread_start(c)) 2127 goto err; 2128 2129 closure_sync(&cl); 2130 c->sb.last_mount = (u32)ktime_get_real_seconds(); 2131 bcache_write_super(c); 2132 2133 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2134 bch_cached_dev_attach(dc, c, NULL); 2135 2136 flash_devs_run(c); 2137 2138 set_bit(CACHE_SET_RUNNING, &c->flags); 2139 return 0; 2140 err: 2141 while (!list_empty(&journal)) { 2142 l = list_first_entry(&journal, struct journal_replay, list); 2143 list_del(&l->list); 2144 kfree(l); 2145 } 2146 2147 closure_sync(&cl); 2148 2149 bch_cache_set_error(c, "%s", err); 2150 2151 return -EIO; 2152 } 2153 2154 static bool can_attach_cache(struct cache *ca, struct cache_set *c) 2155 { 2156 return ca->sb.block_size == c->sb.block_size && 2157 ca->sb.bucket_size == c->sb.bucket_size && 2158 ca->sb.nr_in_set == c->sb.nr_in_set; 2159 } 2160 2161 static const char *register_cache_set(struct cache *ca) 2162 { 2163 char buf[12]; 2164 const char *err = "cannot allocate memory"; 2165 struct cache_set *c; 2166 2167 list_for_each_entry(c, &bch_cache_sets, list) 2168 if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) { 2169 if (c->cache[ca->sb.nr_this_dev]) 2170 return "duplicate cache set member"; 2171 2172 if (!can_attach_cache(ca, c)) 2173 return "cache sb does not match set"; 2174 2175 if (!CACHE_SYNC(&ca->sb)) 2176 SET_CACHE_SYNC(&c->sb, false); 2177 2178 goto found; 2179 } 2180 2181 c = bch_cache_set_alloc(&ca->sb); 2182 if (!c) 2183 return err; 2184 2185 err = "error creating kobject"; 2186 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) || 2187 kobject_add(&c->internal, &c->kobj, "internal")) 2188 goto err; 2189 2190 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2191 goto err; 2192 2193 bch_debug_init_cache_set(c); 2194 2195 list_add(&c->list, &bch_cache_sets); 2196 found: 2197 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2198 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2199 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2200 goto err; 2201 2202 /* 2203 * A special case is both ca->sb.seq and c->sb.seq are 0, 2204 * such condition happens on a new created cache device whose 2205 * super block is never flushed yet. In this case c->sb.version 2206 * and other members should be updated too, otherwise we will 2207 * have a mistaken super block version in cache set. 2208 */ 2209 if (ca->sb.seq > c->sb.seq || c->sb.seq == 0) { 2210 c->sb.version = ca->sb.version; 2211 memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16); 2212 c->sb.flags = ca->sb.flags; 2213 c->sb.seq = ca->sb.seq; 2214 pr_debug("set version = %llu\n", c->sb.version); 2215 } 2216 2217 kobject_get(&ca->kobj); 2218 ca->set = c; 2219 ca->set->cache[ca->sb.nr_this_dev] = ca; 2220 c->cache_by_alloc[c->caches_loaded++] = ca; 2221 2222 if (c->caches_loaded == c->sb.nr_in_set) { 2223 err = "failed to run cache set"; 2224 if (run_cache_set(c) < 0) 2225 goto err; 2226 } 2227 2228 return NULL; 2229 err: 2230 bch_cache_set_unregister(c); 2231 return err; 2232 } 2233 2234 /* Cache device */ 2235 2236 /* When ca->kobj released */ 2237 void bch_cache_release(struct kobject *kobj) 2238 { 2239 struct cache *ca = container_of(kobj, struct cache, kobj); 2240 unsigned int i; 2241 2242 if (ca->set) { 2243 BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca); 2244 ca->set->cache[ca->sb.nr_this_dev] = NULL; 2245 } 2246 2247 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2248 kfree(ca->prio_buckets); 2249 vfree(ca->buckets); 2250 2251 free_heap(&ca->heap); 2252 free_fifo(&ca->free_inc); 2253 2254 for (i = 0; i < RESERVE_NR; i++) 2255 free_fifo(&ca->free[i]); 2256 2257 if (ca->sb_disk) 2258 put_page(virt_to_page(ca->sb_disk)); 2259 2260 if (!IS_ERR_OR_NULL(ca->bdev)) 2261 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2262 2263 kfree(ca); 2264 module_put(THIS_MODULE); 2265 } 2266 2267 static int cache_alloc(struct cache *ca) 2268 { 2269 size_t free; 2270 size_t btree_buckets; 2271 struct bucket *b; 2272 int ret = -ENOMEM; 2273 const char *err = NULL; 2274 2275 __module_get(THIS_MODULE); 2276 kobject_init(&ca->kobj, &bch_cache_ktype); 2277 2278 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2279 2280 /* 2281 * when ca->sb.njournal_buckets is not zero, journal exists, 2282 * and in bch_journal_replay(), tree node may split, 2283 * so bucket of RESERVE_BTREE type is needed, 2284 * the worst situation is all journal buckets are valid journal, 2285 * and all the keys need to replay, 2286 * so the number of RESERVE_BTREE type buckets should be as much 2287 * as journal buckets 2288 */ 2289 btree_buckets = ca->sb.njournal_buckets ?: 8; 2290 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2291 if (!free) { 2292 ret = -EPERM; 2293 err = "ca->sb.nbuckets is too small"; 2294 goto err_free; 2295 } 2296 2297 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2298 GFP_KERNEL)) { 2299 err = "ca->free[RESERVE_BTREE] alloc failed"; 2300 goto err_btree_alloc; 2301 } 2302 2303 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2304 GFP_KERNEL)) { 2305 err = "ca->free[RESERVE_PRIO] alloc failed"; 2306 goto err_prio_alloc; 2307 } 2308 2309 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2310 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2311 goto err_movinggc_alloc; 2312 } 2313 2314 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2315 err = "ca->free[RESERVE_NONE] alloc failed"; 2316 goto err_none_alloc; 2317 } 2318 2319 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2320 err = "ca->free_inc alloc failed"; 2321 goto err_free_inc_alloc; 2322 } 2323 2324 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2325 err = "ca->heap alloc failed"; 2326 goto err_heap_alloc; 2327 } 2328 2329 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2330 ca->sb.nbuckets)); 2331 if (!ca->buckets) { 2332 err = "ca->buckets alloc failed"; 2333 goto err_buckets_alloc; 2334 } 2335 2336 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2337 prio_buckets(ca), 2), 2338 GFP_KERNEL); 2339 if (!ca->prio_buckets) { 2340 err = "ca->prio_buckets alloc failed"; 2341 goto err_prio_buckets_alloc; 2342 } 2343 2344 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2345 if (!ca->disk_buckets) { 2346 err = "ca->disk_buckets alloc failed"; 2347 goto err_disk_buckets_alloc; 2348 } 2349 2350 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2351 2352 for_each_bucket(b, ca) 2353 atomic_set(&b->pin, 0); 2354 return 0; 2355 2356 err_disk_buckets_alloc: 2357 kfree(ca->prio_buckets); 2358 err_prio_buckets_alloc: 2359 vfree(ca->buckets); 2360 err_buckets_alloc: 2361 free_heap(&ca->heap); 2362 err_heap_alloc: 2363 free_fifo(&ca->free_inc); 2364 err_free_inc_alloc: 2365 free_fifo(&ca->free[RESERVE_NONE]); 2366 err_none_alloc: 2367 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2368 err_movinggc_alloc: 2369 free_fifo(&ca->free[RESERVE_PRIO]); 2370 err_prio_alloc: 2371 free_fifo(&ca->free[RESERVE_BTREE]); 2372 err_btree_alloc: 2373 err_free: 2374 module_put(THIS_MODULE); 2375 if (err) 2376 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2377 return ret; 2378 } 2379 2380 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2381 struct block_device *bdev, struct cache *ca) 2382 { 2383 const char *err = NULL; /* must be set for any error case */ 2384 int ret = 0; 2385 2386 bdevname(bdev, ca->cache_dev_name); 2387 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2388 ca->bdev = bdev; 2389 ca->bdev->bd_holder = ca; 2390 ca->sb_disk = sb_disk; 2391 2392 if (blk_queue_discard(bdev_get_queue(bdev))) 2393 ca->discard = CACHE_DISCARD(&ca->sb); 2394 2395 ret = cache_alloc(ca); 2396 if (ret != 0) { 2397 /* 2398 * If we failed here, it means ca->kobj is not initialized yet, 2399 * kobject_put() won't be called and there is no chance to 2400 * call blkdev_put() to bdev in bch_cache_release(). So we 2401 * explicitly call blkdev_put() here. 2402 */ 2403 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2404 if (ret == -ENOMEM) 2405 err = "cache_alloc(): -ENOMEM"; 2406 else if (ret == -EPERM) 2407 err = "cache_alloc(): cache device is too small"; 2408 else 2409 err = "cache_alloc(): unknown error"; 2410 goto err; 2411 } 2412 2413 if (kobject_add(&ca->kobj, 2414 &part_to_dev(bdev->bd_part)->kobj, 2415 "bcache")) { 2416 err = "error calling kobject_add"; 2417 ret = -ENOMEM; 2418 goto out; 2419 } 2420 2421 mutex_lock(&bch_register_lock); 2422 err = register_cache_set(ca); 2423 mutex_unlock(&bch_register_lock); 2424 2425 if (err) { 2426 ret = -ENODEV; 2427 goto out; 2428 } 2429 2430 pr_info("registered cache device %s\n", ca->cache_dev_name); 2431 2432 out: 2433 kobject_put(&ca->kobj); 2434 2435 err: 2436 if (err) 2437 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2438 2439 return ret; 2440 } 2441 2442 /* Global interfaces/init */ 2443 2444 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2445 const char *buffer, size_t size); 2446 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2447 struct kobj_attribute *attr, 2448 const char *buffer, size_t size); 2449 2450 kobj_attribute_write(register, register_bcache); 2451 kobj_attribute_write(register_quiet, register_bcache); 2452 kobj_attribute_write(register_async, register_bcache); 2453 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2454 2455 static bool bch_is_open_backing(struct block_device *bdev) 2456 { 2457 struct cache_set *c, *tc; 2458 struct cached_dev *dc, *t; 2459 2460 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2461 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2462 if (dc->bdev == bdev) 2463 return true; 2464 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2465 if (dc->bdev == bdev) 2466 return true; 2467 return false; 2468 } 2469 2470 static bool bch_is_open_cache(struct block_device *bdev) 2471 { 2472 struct cache_set *c, *tc; 2473 struct cache *ca; 2474 unsigned int i; 2475 2476 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2477 for_each_cache(ca, c, i) 2478 if (ca->bdev == bdev) 2479 return true; 2480 return false; 2481 } 2482 2483 static bool bch_is_open(struct block_device *bdev) 2484 { 2485 return bch_is_open_cache(bdev) || bch_is_open_backing(bdev); 2486 } 2487 2488 struct async_reg_args { 2489 struct delayed_work reg_work; 2490 char *path; 2491 struct cache_sb *sb; 2492 struct cache_sb_disk *sb_disk; 2493 struct block_device *bdev; 2494 }; 2495 2496 static void register_bdev_worker(struct work_struct *work) 2497 { 2498 int fail = false; 2499 struct async_reg_args *args = 2500 container_of(work, struct async_reg_args, reg_work.work); 2501 struct cached_dev *dc; 2502 2503 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2504 if (!dc) { 2505 fail = true; 2506 put_page(virt_to_page(args->sb_disk)); 2507 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2508 goto out; 2509 } 2510 2511 mutex_lock(&bch_register_lock); 2512 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2513 fail = true; 2514 mutex_unlock(&bch_register_lock); 2515 2516 out: 2517 if (fail) 2518 pr_info("error %s: fail to register backing device\n", 2519 args->path); 2520 kfree(args->sb); 2521 kfree(args->path); 2522 kfree(args); 2523 module_put(THIS_MODULE); 2524 } 2525 2526 static void register_cache_worker(struct work_struct *work) 2527 { 2528 int fail = false; 2529 struct async_reg_args *args = 2530 container_of(work, struct async_reg_args, reg_work.work); 2531 struct cache *ca; 2532 2533 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2534 if (!ca) { 2535 fail = true; 2536 put_page(virt_to_page(args->sb_disk)); 2537 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2538 goto out; 2539 } 2540 2541 /* blkdev_put() will be called in bch_cache_release() */ 2542 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2543 fail = true; 2544 2545 out: 2546 if (fail) 2547 pr_info("error %s: fail to register cache device\n", 2548 args->path); 2549 kfree(args->sb); 2550 kfree(args->path); 2551 kfree(args); 2552 module_put(THIS_MODULE); 2553 } 2554 2555 static void register_device_aync(struct async_reg_args *args) 2556 { 2557 if (SB_IS_BDEV(args->sb)) 2558 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2559 else 2560 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2561 2562 /* 10 jiffies is enough for a delay */ 2563 queue_delayed_work(system_wq, &args->reg_work, 10); 2564 } 2565 2566 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2567 const char *buffer, size_t size) 2568 { 2569 const char *err; 2570 char *path = NULL; 2571 struct cache_sb *sb; 2572 struct cache_sb_disk *sb_disk; 2573 struct block_device *bdev; 2574 ssize_t ret; 2575 2576 ret = -EBUSY; 2577 err = "failed to reference bcache module"; 2578 if (!try_module_get(THIS_MODULE)) 2579 goto out; 2580 2581 /* For latest state of bcache_is_reboot */ 2582 smp_mb(); 2583 err = "bcache is in reboot"; 2584 if (bcache_is_reboot) 2585 goto out_module_put; 2586 2587 ret = -ENOMEM; 2588 err = "cannot allocate memory"; 2589 path = kstrndup(buffer, size, GFP_KERNEL); 2590 if (!path) 2591 goto out_module_put; 2592 2593 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2594 if (!sb) 2595 goto out_free_path; 2596 2597 ret = -EINVAL; 2598 err = "failed to open device"; 2599 bdev = blkdev_get_by_path(strim(path), 2600 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2601 sb); 2602 if (IS_ERR(bdev)) { 2603 if (bdev == ERR_PTR(-EBUSY)) { 2604 bdev = lookup_bdev(strim(path)); 2605 mutex_lock(&bch_register_lock); 2606 if (!IS_ERR(bdev) && bch_is_open(bdev)) 2607 err = "device already registered"; 2608 else 2609 err = "device busy"; 2610 mutex_unlock(&bch_register_lock); 2611 if (!IS_ERR(bdev)) 2612 bdput(bdev); 2613 if (attr == &ksysfs_register_quiet) 2614 goto done; 2615 } 2616 goto out_free_sb; 2617 } 2618 2619 err = "failed to set blocksize"; 2620 if (set_blocksize(bdev, 4096)) 2621 goto out_blkdev_put; 2622 2623 err = read_super(sb, bdev, &sb_disk); 2624 if (err) 2625 goto out_blkdev_put; 2626 2627 err = "failed to register device"; 2628 if (attr == &ksysfs_register_async) { 2629 /* register in asynchronous way */ 2630 struct async_reg_args *args = 2631 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2632 2633 if (!args) { 2634 ret = -ENOMEM; 2635 err = "cannot allocate memory"; 2636 goto out_put_sb_page; 2637 } 2638 2639 args->path = path; 2640 args->sb = sb; 2641 args->sb_disk = sb_disk; 2642 args->bdev = bdev; 2643 register_device_aync(args); 2644 /* No wait and returns to user space */ 2645 goto async_done; 2646 } 2647 2648 if (SB_IS_BDEV(sb)) { 2649 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2650 2651 if (!dc) 2652 goto out_put_sb_page; 2653 2654 mutex_lock(&bch_register_lock); 2655 ret = register_bdev(sb, sb_disk, bdev, dc); 2656 mutex_unlock(&bch_register_lock); 2657 /* blkdev_put() will be called in cached_dev_free() */ 2658 if (ret < 0) 2659 goto out_free_sb; 2660 } else { 2661 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2662 2663 if (!ca) 2664 goto out_put_sb_page; 2665 2666 /* blkdev_put() will be called in bch_cache_release() */ 2667 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2668 goto out_free_sb; 2669 } 2670 2671 done: 2672 kfree(sb); 2673 kfree(path); 2674 module_put(THIS_MODULE); 2675 async_done: 2676 return size; 2677 2678 out_put_sb_page: 2679 put_page(virt_to_page(sb_disk)); 2680 out_blkdev_put: 2681 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2682 out_free_sb: 2683 kfree(sb); 2684 out_free_path: 2685 kfree(path); 2686 path = NULL; 2687 out_module_put: 2688 module_put(THIS_MODULE); 2689 out: 2690 pr_info("error %s: %s\n", path?path:"", err); 2691 return ret; 2692 } 2693 2694 2695 struct pdev { 2696 struct list_head list; 2697 struct cached_dev *dc; 2698 }; 2699 2700 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2701 struct kobj_attribute *attr, 2702 const char *buffer, 2703 size_t size) 2704 { 2705 LIST_HEAD(pending_devs); 2706 ssize_t ret = size; 2707 struct cached_dev *dc, *tdc; 2708 struct pdev *pdev, *tpdev; 2709 struct cache_set *c, *tc; 2710 2711 mutex_lock(&bch_register_lock); 2712 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2713 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2714 if (!pdev) 2715 break; 2716 pdev->dc = dc; 2717 list_add(&pdev->list, &pending_devs); 2718 } 2719 2720 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2721 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2722 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2723 char *set_uuid = c->sb.uuid; 2724 2725 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2726 list_del(&pdev->list); 2727 kfree(pdev); 2728 break; 2729 } 2730 } 2731 } 2732 mutex_unlock(&bch_register_lock); 2733 2734 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2735 pr_info("delete pdev %p\n", pdev); 2736 list_del(&pdev->list); 2737 bcache_device_stop(&pdev->dc->disk); 2738 kfree(pdev); 2739 } 2740 2741 return ret; 2742 } 2743 2744 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2745 { 2746 if (bcache_is_reboot) 2747 return NOTIFY_DONE; 2748 2749 if (code == SYS_DOWN || 2750 code == SYS_HALT || 2751 code == SYS_POWER_OFF) { 2752 DEFINE_WAIT(wait); 2753 unsigned long start = jiffies; 2754 bool stopped = false; 2755 2756 struct cache_set *c, *tc; 2757 struct cached_dev *dc, *tdc; 2758 2759 mutex_lock(&bch_register_lock); 2760 2761 if (bcache_is_reboot) 2762 goto out; 2763 2764 /* New registration is rejected since now */ 2765 bcache_is_reboot = true; 2766 /* 2767 * Make registering caller (if there is) on other CPU 2768 * core know bcache_is_reboot set to true earlier 2769 */ 2770 smp_mb(); 2771 2772 if (list_empty(&bch_cache_sets) && 2773 list_empty(&uncached_devices)) 2774 goto out; 2775 2776 mutex_unlock(&bch_register_lock); 2777 2778 pr_info("Stopping all devices:\n"); 2779 2780 /* 2781 * The reason bch_register_lock is not held to call 2782 * bch_cache_set_stop() and bcache_device_stop() is to 2783 * avoid potential deadlock during reboot, because cache 2784 * set or bcache device stopping process will acqurie 2785 * bch_register_lock too. 2786 * 2787 * We are safe here because bcache_is_reboot sets to 2788 * true already, register_bcache() will reject new 2789 * registration now. bcache_is_reboot also makes sure 2790 * bcache_reboot() won't be re-entered on by other thread, 2791 * so there is no race in following list iteration by 2792 * list_for_each_entry_safe(). 2793 */ 2794 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2795 bch_cache_set_stop(c); 2796 2797 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2798 bcache_device_stop(&dc->disk); 2799 2800 2801 /* 2802 * Give an early chance for other kthreads and 2803 * kworkers to stop themselves 2804 */ 2805 schedule(); 2806 2807 /* What's a condition variable? */ 2808 while (1) { 2809 long timeout = start + 10 * HZ - jiffies; 2810 2811 mutex_lock(&bch_register_lock); 2812 stopped = list_empty(&bch_cache_sets) && 2813 list_empty(&uncached_devices); 2814 2815 if (timeout < 0 || stopped) 2816 break; 2817 2818 prepare_to_wait(&unregister_wait, &wait, 2819 TASK_UNINTERRUPTIBLE); 2820 2821 mutex_unlock(&bch_register_lock); 2822 schedule_timeout(timeout); 2823 } 2824 2825 finish_wait(&unregister_wait, &wait); 2826 2827 if (stopped) 2828 pr_info("All devices stopped\n"); 2829 else 2830 pr_notice("Timeout waiting for devices to be closed\n"); 2831 out: 2832 mutex_unlock(&bch_register_lock); 2833 } 2834 2835 return NOTIFY_DONE; 2836 } 2837 2838 static struct notifier_block reboot = { 2839 .notifier_call = bcache_reboot, 2840 .priority = INT_MAX, /* before any real devices */ 2841 }; 2842 2843 static void bcache_exit(void) 2844 { 2845 bch_debug_exit(); 2846 bch_request_exit(); 2847 if (bcache_kobj) 2848 kobject_put(bcache_kobj); 2849 if (bcache_wq) 2850 destroy_workqueue(bcache_wq); 2851 if (bch_journal_wq) 2852 destroy_workqueue(bch_journal_wq); 2853 2854 if (bcache_major) 2855 unregister_blkdev(bcache_major, "bcache"); 2856 unregister_reboot_notifier(&reboot); 2857 mutex_destroy(&bch_register_lock); 2858 } 2859 2860 /* Check and fixup module parameters */ 2861 static void check_module_parameters(void) 2862 { 2863 if (bch_cutoff_writeback_sync == 0) 2864 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2865 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2866 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2867 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2868 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2869 } 2870 2871 if (bch_cutoff_writeback == 0) 2872 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2873 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2874 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2875 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2876 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2877 } 2878 2879 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2880 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2881 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2882 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2883 } 2884 } 2885 2886 static int __init bcache_init(void) 2887 { 2888 static const struct attribute *files[] = { 2889 &ksysfs_register.attr, 2890 &ksysfs_register_quiet.attr, 2891 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2892 &ksysfs_register_async.attr, 2893 #endif 2894 &ksysfs_pendings_cleanup.attr, 2895 NULL 2896 }; 2897 2898 check_module_parameters(); 2899 2900 mutex_init(&bch_register_lock); 2901 init_waitqueue_head(&unregister_wait); 2902 register_reboot_notifier(&reboot); 2903 2904 bcache_major = register_blkdev(0, "bcache"); 2905 if (bcache_major < 0) { 2906 unregister_reboot_notifier(&reboot); 2907 mutex_destroy(&bch_register_lock); 2908 return bcache_major; 2909 } 2910 2911 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2912 if (!bcache_wq) 2913 goto err; 2914 2915 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2916 if (!bch_journal_wq) 2917 goto err; 2918 2919 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2920 if (!bcache_kobj) 2921 goto err; 2922 2923 if (bch_request_init() || 2924 sysfs_create_files(bcache_kobj, files)) 2925 goto err; 2926 2927 bch_debug_init(); 2928 closure_debug_init(); 2929 2930 bcache_is_reboot = false; 2931 2932 return 0; 2933 err: 2934 bcache_exit(); 2935 return -ENOMEM; 2936 } 2937 2938 /* 2939 * Module hooks 2940 */ 2941 module_exit(bcache_exit); 2942 module_init(bcache_init); 2943 2944 module_param(bch_cutoff_writeback, uint, 0); 2945 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2946 2947 module_param(bch_cutoff_writeback_sync, uint, 0); 2948 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2949 2950 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2951 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2952 MODULE_LICENSE("GPL"); 2953