1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * bcache setup/teardown code, and some metadata io - read a superblock and 4 * figure out what to do with it. 5 * 6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 7 * Copyright 2012 Google, Inc. 8 */ 9 10 #include "bcache.h" 11 #include "btree.h" 12 #include "debug.h" 13 #include "extents.h" 14 #include "request.h" 15 #include "writeback.h" 16 #include "features.h" 17 18 #include <linux/blkdev.h> 19 #include <linux/debugfs.h> 20 #include <linux/genhd.h> 21 #include <linux/idr.h> 22 #include <linux/kthread.h> 23 #include <linux/workqueue.h> 24 #include <linux/module.h> 25 #include <linux/random.h> 26 #include <linux/reboot.h> 27 #include <linux/sysfs.h> 28 29 unsigned int bch_cutoff_writeback; 30 unsigned int bch_cutoff_writeback_sync; 31 32 static const char bcache_magic[] = { 33 0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca, 34 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81 35 }; 36 37 static const char invalid_uuid[] = { 38 0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78, 39 0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99 40 }; 41 42 static struct kobject *bcache_kobj; 43 struct mutex bch_register_lock; 44 bool bcache_is_reboot; 45 LIST_HEAD(bch_cache_sets); 46 static LIST_HEAD(uncached_devices); 47 48 static int bcache_major; 49 static DEFINE_IDA(bcache_device_idx); 50 static wait_queue_head_t unregister_wait; 51 struct workqueue_struct *bcache_wq; 52 struct workqueue_struct *bch_journal_wq; 53 54 55 #define BTREE_MAX_PAGES (256 * 1024 / PAGE_SIZE) 56 /* limitation of partitions number on single bcache device */ 57 #define BCACHE_MINORS 128 58 /* limitation of bcache devices number on single system */ 59 #define BCACHE_DEVICE_IDX_MAX ((1U << MINORBITS)/BCACHE_MINORS) 60 61 /* Superblock */ 62 63 static unsigned int get_bucket_size(struct cache_sb *sb, struct cache_sb_disk *s) 64 { 65 unsigned int bucket_size = le16_to_cpu(s->bucket_size); 66 67 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 68 if (bch_has_feature_large_bucket(sb)) { 69 unsigned int max, order; 70 71 max = sizeof(unsigned int) * BITS_PER_BYTE - 1; 72 order = le16_to_cpu(s->bucket_size); 73 /* 74 * bcache tool will make sure the overflow won't 75 * happen, an error message here is enough. 76 */ 77 if (order > max) 78 pr_err("Bucket size (1 << %u) overflows\n", 79 order); 80 bucket_size = 1 << order; 81 } else if (bch_has_feature_obso_large_bucket(sb)) { 82 bucket_size += 83 le16_to_cpu(s->obso_bucket_size_hi) << 16; 84 } 85 } 86 87 return bucket_size; 88 } 89 90 static const char *read_super_common(struct cache_sb *sb, struct block_device *bdev, 91 struct cache_sb_disk *s) 92 { 93 const char *err; 94 unsigned int i; 95 96 sb->first_bucket= le16_to_cpu(s->first_bucket); 97 sb->nbuckets = le64_to_cpu(s->nbuckets); 98 sb->bucket_size = get_bucket_size(sb, s); 99 100 sb->nr_in_set = le16_to_cpu(s->nr_in_set); 101 sb->nr_this_dev = le16_to_cpu(s->nr_this_dev); 102 103 err = "Too many journal buckets"; 104 if (sb->keys > SB_JOURNAL_BUCKETS) 105 goto err; 106 107 err = "Too many buckets"; 108 if (sb->nbuckets > LONG_MAX) 109 goto err; 110 111 err = "Not enough buckets"; 112 if (sb->nbuckets < 1 << 7) 113 goto err; 114 115 err = "Bad block size (not power of 2)"; 116 if (!is_power_of_2(sb->block_size)) 117 goto err; 118 119 err = "Bad block size (larger than page size)"; 120 if (sb->block_size > PAGE_SECTORS) 121 goto err; 122 123 err = "Bad bucket size (not power of 2)"; 124 if (!is_power_of_2(sb->bucket_size)) 125 goto err; 126 127 err = "Bad bucket size (smaller than page size)"; 128 if (sb->bucket_size < PAGE_SECTORS) 129 goto err; 130 131 err = "Invalid superblock: device too small"; 132 if (get_capacity(bdev->bd_disk) < 133 sb->bucket_size * sb->nbuckets) 134 goto err; 135 136 err = "Bad UUID"; 137 if (bch_is_zero(sb->set_uuid, 16)) 138 goto err; 139 140 err = "Bad cache device number in set"; 141 if (!sb->nr_in_set || 142 sb->nr_in_set <= sb->nr_this_dev || 143 sb->nr_in_set > MAX_CACHES_PER_SET) 144 goto err; 145 146 err = "Journal buckets not sequential"; 147 for (i = 0; i < sb->keys; i++) 148 if (sb->d[i] != sb->first_bucket + i) 149 goto err; 150 151 err = "Too many journal buckets"; 152 if (sb->first_bucket + sb->keys > sb->nbuckets) 153 goto err; 154 155 err = "Invalid superblock: first bucket comes before end of super"; 156 if (sb->first_bucket * sb->bucket_size < 16) 157 goto err; 158 159 err = NULL; 160 err: 161 return err; 162 } 163 164 165 static const char *read_super(struct cache_sb *sb, struct block_device *bdev, 166 struct cache_sb_disk **res) 167 { 168 const char *err; 169 struct cache_sb_disk *s; 170 struct page *page; 171 unsigned int i; 172 173 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 174 SB_OFFSET >> PAGE_SHIFT, GFP_KERNEL); 175 if (IS_ERR(page)) 176 return "IO error"; 177 s = page_address(page) + offset_in_page(SB_OFFSET); 178 179 sb->offset = le64_to_cpu(s->offset); 180 sb->version = le64_to_cpu(s->version); 181 182 memcpy(sb->magic, s->magic, 16); 183 memcpy(sb->uuid, s->uuid, 16); 184 memcpy(sb->set_uuid, s->set_uuid, 16); 185 memcpy(sb->label, s->label, SB_LABEL_SIZE); 186 187 sb->flags = le64_to_cpu(s->flags); 188 sb->seq = le64_to_cpu(s->seq); 189 sb->last_mount = le32_to_cpu(s->last_mount); 190 sb->keys = le16_to_cpu(s->keys); 191 192 for (i = 0; i < SB_JOURNAL_BUCKETS; i++) 193 sb->d[i] = le64_to_cpu(s->d[i]); 194 195 pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u\n", 196 sb->version, sb->flags, sb->seq, sb->keys); 197 198 err = "Not a bcache superblock (bad offset)"; 199 if (sb->offset != SB_SECTOR) 200 goto err; 201 202 err = "Not a bcache superblock (bad magic)"; 203 if (memcmp(sb->magic, bcache_magic, 16)) 204 goto err; 205 206 err = "Bad checksum"; 207 if (s->csum != csum_set(s)) 208 goto err; 209 210 err = "Bad UUID"; 211 if (bch_is_zero(sb->uuid, 16)) 212 goto err; 213 214 sb->block_size = le16_to_cpu(s->block_size); 215 216 err = "Superblock block size smaller than device block size"; 217 if (sb->block_size << 9 < bdev_logical_block_size(bdev)) 218 goto err; 219 220 switch (sb->version) { 221 case BCACHE_SB_VERSION_BDEV: 222 sb->data_offset = BDEV_DATA_START_DEFAULT; 223 break; 224 case BCACHE_SB_VERSION_BDEV_WITH_OFFSET: 225 case BCACHE_SB_VERSION_BDEV_WITH_FEATURES: 226 sb->data_offset = le64_to_cpu(s->data_offset); 227 228 err = "Bad data offset"; 229 if (sb->data_offset < BDEV_DATA_START_DEFAULT) 230 goto err; 231 232 break; 233 case BCACHE_SB_VERSION_CDEV: 234 case BCACHE_SB_VERSION_CDEV_WITH_UUID: 235 err = read_super_common(sb, bdev, s); 236 if (err) 237 goto err; 238 break; 239 case BCACHE_SB_VERSION_CDEV_WITH_FEATURES: 240 /* 241 * Feature bits are needed in read_super_common(), 242 * convert them firstly. 243 */ 244 sb->feature_compat = le64_to_cpu(s->feature_compat); 245 sb->feature_incompat = le64_to_cpu(s->feature_incompat); 246 sb->feature_ro_compat = le64_to_cpu(s->feature_ro_compat); 247 248 /* Check incompatible features */ 249 err = "Unsupported compatible feature found"; 250 if (bch_has_unknown_compat_features(sb)) 251 goto err; 252 253 err = "Unsupported read-only compatible feature found"; 254 if (bch_has_unknown_ro_compat_features(sb)) 255 goto err; 256 257 err = "Unsupported incompatible feature found"; 258 if (bch_has_unknown_incompat_features(sb)) 259 goto err; 260 261 err = read_super_common(sb, bdev, s); 262 if (err) 263 goto err; 264 break; 265 default: 266 err = "Unsupported superblock version"; 267 goto err; 268 } 269 270 sb->last_mount = (u32)ktime_get_real_seconds(); 271 *res = s; 272 return NULL; 273 err: 274 put_page(page); 275 return err; 276 } 277 278 static void write_bdev_super_endio(struct bio *bio) 279 { 280 struct cached_dev *dc = bio->bi_private; 281 282 if (bio->bi_status) 283 bch_count_backing_io_errors(dc, bio); 284 285 closure_put(&dc->sb_write); 286 } 287 288 static void __write_super(struct cache_sb *sb, struct cache_sb_disk *out, 289 struct bio *bio) 290 { 291 unsigned int i; 292 293 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META; 294 bio->bi_iter.bi_sector = SB_SECTOR; 295 __bio_add_page(bio, virt_to_page(out), SB_SIZE, 296 offset_in_page(out)); 297 298 out->offset = cpu_to_le64(sb->offset); 299 300 memcpy(out->uuid, sb->uuid, 16); 301 memcpy(out->set_uuid, sb->set_uuid, 16); 302 memcpy(out->label, sb->label, SB_LABEL_SIZE); 303 304 out->flags = cpu_to_le64(sb->flags); 305 out->seq = cpu_to_le64(sb->seq); 306 307 out->last_mount = cpu_to_le32(sb->last_mount); 308 out->first_bucket = cpu_to_le16(sb->first_bucket); 309 out->keys = cpu_to_le16(sb->keys); 310 311 for (i = 0; i < sb->keys; i++) 312 out->d[i] = cpu_to_le64(sb->d[i]); 313 314 if (sb->version >= BCACHE_SB_VERSION_CDEV_WITH_FEATURES) { 315 out->feature_compat = cpu_to_le64(sb->feature_compat); 316 out->feature_incompat = cpu_to_le64(sb->feature_incompat); 317 out->feature_ro_compat = cpu_to_le64(sb->feature_ro_compat); 318 } 319 320 out->version = cpu_to_le64(sb->version); 321 out->csum = csum_set(out); 322 323 pr_debug("ver %llu, flags %llu, seq %llu\n", 324 sb->version, sb->flags, sb->seq); 325 326 submit_bio(bio); 327 } 328 329 static void bch_write_bdev_super_unlock(struct closure *cl) 330 { 331 struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write); 332 333 up(&dc->sb_write_mutex); 334 } 335 336 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent) 337 { 338 struct closure *cl = &dc->sb_write; 339 struct bio *bio = &dc->sb_bio; 340 341 down(&dc->sb_write_mutex); 342 closure_init(cl, parent); 343 344 bio_init(bio, dc->sb_bv, 1); 345 bio_set_dev(bio, dc->bdev); 346 bio->bi_end_io = write_bdev_super_endio; 347 bio->bi_private = dc; 348 349 closure_get(cl); 350 /* I/O request sent to backing device */ 351 __write_super(&dc->sb, dc->sb_disk, bio); 352 353 closure_return_with_destructor(cl, bch_write_bdev_super_unlock); 354 } 355 356 static void write_super_endio(struct bio *bio) 357 { 358 struct cache *ca = bio->bi_private; 359 360 /* is_read = 0 */ 361 bch_count_io_errors(ca, bio->bi_status, 0, 362 "writing superblock"); 363 closure_put(&ca->set->sb_write); 364 } 365 366 static void bcache_write_super_unlock(struct closure *cl) 367 { 368 struct cache_set *c = container_of(cl, struct cache_set, sb_write); 369 370 up(&c->sb_write_mutex); 371 } 372 373 void bcache_write_super(struct cache_set *c) 374 { 375 struct closure *cl = &c->sb_write; 376 struct cache *ca = c->cache; 377 struct bio *bio = &ca->sb_bio; 378 unsigned int version = BCACHE_SB_VERSION_CDEV_WITH_UUID; 379 380 down(&c->sb_write_mutex); 381 closure_init(cl, &c->cl); 382 383 ca->sb.seq++; 384 385 if (ca->sb.version < version) 386 ca->sb.version = version; 387 388 bio_init(bio, ca->sb_bv, 1); 389 bio_set_dev(bio, ca->bdev); 390 bio->bi_end_io = write_super_endio; 391 bio->bi_private = ca; 392 393 closure_get(cl); 394 __write_super(&ca->sb, ca->sb_disk, bio); 395 396 closure_return_with_destructor(cl, bcache_write_super_unlock); 397 } 398 399 /* UUID io */ 400 401 static void uuid_endio(struct bio *bio) 402 { 403 struct closure *cl = bio->bi_private; 404 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 405 406 cache_set_err_on(bio->bi_status, c, "accessing uuids"); 407 bch_bbio_free(bio, c); 408 closure_put(cl); 409 } 410 411 static void uuid_io_unlock(struct closure *cl) 412 { 413 struct cache_set *c = container_of(cl, struct cache_set, uuid_write); 414 415 up(&c->uuid_write_mutex); 416 } 417 418 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags, 419 struct bkey *k, struct closure *parent) 420 { 421 struct closure *cl = &c->uuid_write; 422 struct uuid_entry *u; 423 unsigned int i; 424 char buf[80]; 425 426 BUG_ON(!parent); 427 down(&c->uuid_write_mutex); 428 closure_init(cl, parent); 429 430 for (i = 0; i < KEY_PTRS(k); i++) { 431 struct bio *bio = bch_bbio_alloc(c); 432 433 bio->bi_opf = REQ_SYNC | REQ_META | op_flags; 434 bio->bi_iter.bi_size = KEY_SIZE(k) << 9; 435 436 bio->bi_end_io = uuid_endio; 437 bio->bi_private = cl; 438 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 439 bch_bio_map(bio, c->uuids); 440 441 bch_submit_bbio(bio, c, k, i); 442 443 if (op != REQ_OP_WRITE) 444 break; 445 } 446 447 bch_extent_to_text(buf, sizeof(buf), k); 448 pr_debug("%s UUIDs at %s\n", op == REQ_OP_WRITE ? "wrote" : "read", buf); 449 450 for (u = c->uuids; u < c->uuids + c->nr_uuids; u++) 451 if (!bch_is_zero(u->uuid, 16)) 452 pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u\n", 453 u - c->uuids, u->uuid, u->label, 454 u->first_reg, u->last_reg, u->invalidated); 455 456 closure_return_with_destructor(cl, uuid_io_unlock); 457 } 458 459 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl) 460 { 461 struct bkey *k = &j->uuid_bucket; 462 463 if (__bch_btree_ptr_invalid(c, k)) 464 return "bad uuid pointer"; 465 466 bkey_copy(&c->uuid_bucket, k); 467 uuid_io(c, REQ_OP_READ, 0, k, cl); 468 469 if (j->version < BCACHE_JSET_VERSION_UUIDv1) { 470 struct uuid_entry_v0 *u0 = (void *) c->uuids; 471 struct uuid_entry *u1 = (void *) c->uuids; 472 int i; 473 474 closure_sync(cl); 475 476 /* 477 * Since the new uuid entry is bigger than the old, we have to 478 * convert starting at the highest memory address and work down 479 * in order to do it in place 480 */ 481 482 for (i = c->nr_uuids - 1; 483 i >= 0; 484 --i) { 485 memcpy(u1[i].uuid, u0[i].uuid, 16); 486 memcpy(u1[i].label, u0[i].label, 32); 487 488 u1[i].first_reg = u0[i].first_reg; 489 u1[i].last_reg = u0[i].last_reg; 490 u1[i].invalidated = u0[i].invalidated; 491 492 u1[i].flags = 0; 493 u1[i].sectors = 0; 494 } 495 } 496 497 return NULL; 498 } 499 500 static int __uuid_write(struct cache_set *c) 501 { 502 BKEY_PADDED(key) k; 503 struct closure cl; 504 struct cache *ca = c->cache; 505 unsigned int size; 506 507 closure_init_stack(&cl); 508 lockdep_assert_held(&bch_register_lock); 509 510 if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, true)) 511 return 1; 512 513 size = meta_bucket_pages(&ca->sb) * PAGE_SECTORS; 514 SET_KEY_SIZE(&k.key, size); 515 uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl); 516 closure_sync(&cl); 517 518 /* Only one bucket used for uuid write */ 519 atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written); 520 521 bkey_copy(&c->uuid_bucket, &k.key); 522 bkey_put(c, &k.key); 523 return 0; 524 } 525 526 int bch_uuid_write(struct cache_set *c) 527 { 528 int ret = __uuid_write(c); 529 530 if (!ret) 531 bch_journal_meta(c, NULL); 532 533 return ret; 534 } 535 536 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid) 537 { 538 struct uuid_entry *u; 539 540 for (u = c->uuids; 541 u < c->uuids + c->nr_uuids; u++) 542 if (!memcmp(u->uuid, uuid, 16)) 543 return u; 544 545 return NULL; 546 } 547 548 static struct uuid_entry *uuid_find_empty(struct cache_set *c) 549 { 550 static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"; 551 552 return uuid_find(c, zero_uuid); 553 } 554 555 /* 556 * Bucket priorities/gens: 557 * 558 * For each bucket, we store on disk its 559 * 8 bit gen 560 * 16 bit priority 561 * 562 * See alloc.c for an explanation of the gen. The priority is used to implement 563 * lru (and in the future other) cache replacement policies; for most purposes 564 * it's just an opaque integer. 565 * 566 * The gens and the priorities don't have a whole lot to do with each other, and 567 * it's actually the gens that must be written out at specific times - it's no 568 * big deal if the priorities don't get written, if we lose them we just reuse 569 * buckets in suboptimal order. 570 * 571 * On disk they're stored in a packed array, and in as many buckets are required 572 * to fit them all. The buckets we use to store them form a list; the journal 573 * header points to the first bucket, the first bucket points to the second 574 * bucket, et cetera. 575 * 576 * This code is used by the allocation code; periodically (whenever it runs out 577 * of buckets to allocate from) the allocation code will invalidate some 578 * buckets, but it can't use those buckets until their new gens are safely on 579 * disk. 580 */ 581 582 static void prio_endio(struct bio *bio) 583 { 584 struct cache *ca = bio->bi_private; 585 586 cache_set_err_on(bio->bi_status, ca->set, "accessing priorities"); 587 bch_bbio_free(bio, ca->set); 588 closure_put(&ca->prio); 589 } 590 591 static void prio_io(struct cache *ca, uint64_t bucket, int op, 592 unsigned long op_flags) 593 { 594 struct closure *cl = &ca->prio; 595 struct bio *bio = bch_bbio_alloc(ca->set); 596 597 closure_init_stack(cl); 598 599 bio->bi_iter.bi_sector = bucket * ca->sb.bucket_size; 600 bio_set_dev(bio, ca->bdev); 601 bio->bi_iter.bi_size = meta_bucket_bytes(&ca->sb); 602 603 bio->bi_end_io = prio_endio; 604 bio->bi_private = ca; 605 bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags); 606 bch_bio_map(bio, ca->disk_buckets); 607 608 closure_bio_submit(ca->set, bio, &ca->prio); 609 closure_sync(cl); 610 } 611 612 int bch_prio_write(struct cache *ca, bool wait) 613 { 614 int i; 615 struct bucket *b; 616 struct closure cl; 617 618 pr_debug("free_prio=%zu, free_none=%zu, free_inc=%zu\n", 619 fifo_used(&ca->free[RESERVE_PRIO]), 620 fifo_used(&ca->free[RESERVE_NONE]), 621 fifo_used(&ca->free_inc)); 622 623 /* 624 * Pre-check if there are enough free buckets. In the non-blocking 625 * scenario it's better to fail early rather than starting to allocate 626 * buckets and do a cleanup later in case of failure. 627 */ 628 if (!wait) { 629 size_t avail = fifo_used(&ca->free[RESERVE_PRIO]) + 630 fifo_used(&ca->free[RESERVE_NONE]); 631 if (prio_buckets(ca) > avail) 632 return -ENOMEM; 633 } 634 635 closure_init_stack(&cl); 636 637 lockdep_assert_held(&ca->set->bucket_lock); 638 639 ca->disk_buckets->seq++; 640 641 atomic_long_add(ca->sb.bucket_size * prio_buckets(ca), 642 &ca->meta_sectors_written); 643 644 for (i = prio_buckets(ca) - 1; i >= 0; --i) { 645 long bucket; 646 struct prio_set *p = ca->disk_buckets; 647 struct bucket_disk *d = p->data; 648 struct bucket_disk *end = d + prios_per_bucket(ca); 649 650 for (b = ca->buckets + i * prios_per_bucket(ca); 651 b < ca->buckets + ca->sb.nbuckets && d < end; 652 b++, d++) { 653 d->prio = cpu_to_le16(b->prio); 654 d->gen = b->gen; 655 } 656 657 p->next_bucket = ca->prio_buckets[i + 1]; 658 p->magic = pset_magic(&ca->sb); 659 p->csum = bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8); 660 661 bucket = bch_bucket_alloc(ca, RESERVE_PRIO, wait); 662 BUG_ON(bucket == -1); 663 664 mutex_unlock(&ca->set->bucket_lock); 665 prio_io(ca, bucket, REQ_OP_WRITE, 0); 666 mutex_lock(&ca->set->bucket_lock); 667 668 ca->prio_buckets[i] = bucket; 669 atomic_dec_bug(&ca->buckets[bucket].pin); 670 } 671 672 mutex_unlock(&ca->set->bucket_lock); 673 674 bch_journal_meta(ca->set, &cl); 675 closure_sync(&cl); 676 677 mutex_lock(&ca->set->bucket_lock); 678 679 /* 680 * Don't want the old priorities to get garbage collected until after we 681 * finish writing the new ones, and they're journalled 682 */ 683 for (i = 0; i < prio_buckets(ca); i++) { 684 if (ca->prio_last_buckets[i]) 685 __bch_bucket_free(ca, 686 &ca->buckets[ca->prio_last_buckets[i]]); 687 688 ca->prio_last_buckets[i] = ca->prio_buckets[i]; 689 } 690 return 0; 691 } 692 693 static int prio_read(struct cache *ca, uint64_t bucket) 694 { 695 struct prio_set *p = ca->disk_buckets; 696 struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d; 697 struct bucket *b; 698 unsigned int bucket_nr = 0; 699 int ret = -EIO; 700 701 for (b = ca->buckets; 702 b < ca->buckets + ca->sb.nbuckets; 703 b++, d++) { 704 if (d == end) { 705 ca->prio_buckets[bucket_nr] = bucket; 706 ca->prio_last_buckets[bucket_nr] = bucket; 707 bucket_nr++; 708 709 prio_io(ca, bucket, REQ_OP_READ, 0); 710 711 if (p->csum != 712 bch_crc64(&p->magic, meta_bucket_bytes(&ca->sb) - 8)) { 713 pr_warn("bad csum reading priorities\n"); 714 goto out; 715 } 716 717 if (p->magic != pset_magic(&ca->sb)) { 718 pr_warn("bad magic reading priorities\n"); 719 goto out; 720 } 721 722 bucket = p->next_bucket; 723 d = p->data; 724 } 725 726 b->prio = le16_to_cpu(d->prio); 727 b->gen = b->last_gc = d->gen; 728 } 729 730 ret = 0; 731 out: 732 return ret; 733 } 734 735 /* Bcache device */ 736 737 static int open_dev(struct block_device *b, fmode_t mode) 738 { 739 struct bcache_device *d = b->bd_disk->private_data; 740 741 if (test_bit(BCACHE_DEV_CLOSING, &d->flags)) 742 return -ENXIO; 743 744 closure_get(&d->cl); 745 return 0; 746 } 747 748 static void release_dev(struct gendisk *b, fmode_t mode) 749 { 750 struct bcache_device *d = b->private_data; 751 752 closure_put(&d->cl); 753 } 754 755 static int ioctl_dev(struct block_device *b, fmode_t mode, 756 unsigned int cmd, unsigned long arg) 757 { 758 struct bcache_device *d = b->bd_disk->private_data; 759 760 return d->ioctl(d, mode, cmd, arg); 761 } 762 763 static const struct block_device_operations bcache_cached_ops = { 764 .submit_bio = cached_dev_submit_bio, 765 .open = open_dev, 766 .release = release_dev, 767 .ioctl = ioctl_dev, 768 .owner = THIS_MODULE, 769 }; 770 771 static const struct block_device_operations bcache_flash_ops = { 772 .submit_bio = flash_dev_submit_bio, 773 .open = open_dev, 774 .release = release_dev, 775 .ioctl = ioctl_dev, 776 .owner = THIS_MODULE, 777 }; 778 779 void bcache_device_stop(struct bcache_device *d) 780 { 781 if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags)) 782 /* 783 * closure_fn set to 784 * - cached device: cached_dev_flush() 785 * - flash dev: flash_dev_flush() 786 */ 787 closure_queue(&d->cl); 788 } 789 790 static void bcache_device_unlink(struct bcache_device *d) 791 { 792 lockdep_assert_held(&bch_register_lock); 793 794 if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) { 795 struct cache *ca = d->c->cache; 796 797 sysfs_remove_link(&d->c->kobj, d->name); 798 sysfs_remove_link(&d->kobj, "cache"); 799 800 bd_unlink_disk_holder(ca->bdev, d->disk); 801 } 802 } 803 804 static void bcache_device_link(struct bcache_device *d, struct cache_set *c, 805 const char *name) 806 { 807 struct cache *ca = c->cache; 808 int ret; 809 810 bd_link_disk_holder(ca->bdev, d->disk); 811 812 snprintf(d->name, BCACHEDEVNAME_SIZE, 813 "%s%u", name, d->id); 814 815 ret = sysfs_create_link(&d->kobj, &c->kobj, "cache"); 816 if (ret < 0) 817 pr_err("Couldn't create device -> cache set symlink\n"); 818 819 ret = sysfs_create_link(&c->kobj, &d->kobj, d->name); 820 if (ret < 0) 821 pr_err("Couldn't create cache set -> device symlink\n"); 822 823 clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags); 824 } 825 826 static void bcache_device_detach(struct bcache_device *d) 827 { 828 lockdep_assert_held(&bch_register_lock); 829 830 atomic_dec(&d->c->attached_dev_nr); 831 832 if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) { 833 struct uuid_entry *u = d->c->uuids + d->id; 834 835 SET_UUID_FLASH_ONLY(u, 0); 836 memcpy(u->uuid, invalid_uuid, 16); 837 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 838 bch_uuid_write(d->c); 839 } 840 841 bcache_device_unlink(d); 842 843 d->c->devices[d->id] = NULL; 844 closure_put(&d->c->caching); 845 d->c = NULL; 846 } 847 848 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c, 849 unsigned int id) 850 { 851 d->id = id; 852 d->c = c; 853 c->devices[id] = d; 854 855 if (id >= c->devices_max_used) 856 c->devices_max_used = id + 1; 857 858 closure_get(&c->caching); 859 } 860 861 static inline int first_minor_to_idx(int first_minor) 862 { 863 return (first_minor/BCACHE_MINORS); 864 } 865 866 static inline int idx_to_first_minor(int idx) 867 { 868 return (idx * BCACHE_MINORS); 869 } 870 871 static void bcache_device_free(struct bcache_device *d) 872 { 873 struct gendisk *disk = d->disk; 874 875 lockdep_assert_held(&bch_register_lock); 876 877 if (disk) 878 pr_info("%s stopped\n", disk->disk_name); 879 else 880 pr_err("bcache device (NULL gendisk) stopped\n"); 881 882 if (d->c) 883 bcache_device_detach(d); 884 885 if (disk) { 886 bool disk_added = (disk->flags & GENHD_FL_UP) != 0; 887 888 if (disk_added) 889 del_gendisk(disk); 890 891 if (disk->queue) 892 blk_cleanup_queue(disk->queue); 893 894 ida_simple_remove(&bcache_device_idx, 895 first_minor_to_idx(disk->first_minor)); 896 if (disk_added) 897 put_disk(disk); 898 } 899 900 bioset_exit(&d->bio_split); 901 kvfree(d->full_dirty_stripes); 902 kvfree(d->stripe_sectors_dirty); 903 904 closure_debug_destroy(&d->cl); 905 } 906 907 static int bcache_device_init(struct bcache_device *d, unsigned int block_size, 908 sector_t sectors, struct block_device *cached_bdev, 909 const struct block_device_operations *ops) 910 { 911 struct request_queue *q; 912 const size_t max_stripes = min_t(size_t, INT_MAX, 913 SIZE_MAX / sizeof(atomic_t)); 914 uint64_t n; 915 int idx; 916 917 if (!d->stripe_size) 918 d->stripe_size = 1 << 31; 919 920 n = DIV_ROUND_UP_ULL(sectors, d->stripe_size); 921 if (!n || n > max_stripes) { 922 pr_err("nr_stripes too large or invalid: %llu (start sector beyond end of disk?)\n", 923 n); 924 return -ENOMEM; 925 } 926 d->nr_stripes = n; 927 928 n = d->nr_stripes * sizeof(atomic_t); 929 d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL); 930 if (!d->stripe_sectors_dirty) 931 return -ENOMEM; 932 933 n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long); 934 d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL); 935 if (!d->full_dirty_stripes) 936 return -ENOMEM; 937 938 idx = ida_simple_get(&bcache_device_idx, 0, 939 BCACHE_DEVICE_IDX_MAX, GFP_KERNEL); 940 if (idx < 0) 941 return idx; 942 943 if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio), 944 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 945 goto err; 946 947 d->disk = alloc_disk(BCACHE_MINORS); 948 if (!d->disk) 949 goto err; 950 951 set_capacity(d->disk, sectors); 952 snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx); 953 954 d->disk->major = bcache_major; 955 d->disk->first_minor = idx_to_first_minor(idx); 956 d->disk->fops = ops; 957 d->disk->private_data = d; 958 959 q = blk_alloc_queue(NUMA_NO_NODE); 960 if (!q) 961 return -ENOMEM; 962 963 d->disk->queue = q; 964 q->limits.max_hw_sectors = UINT_MAX; 965 q->limits.max_sectors = UINT_MAX; 966 q->limits.max_segment_size = UINT_MAX; 967 q->limits.max_segments = BIO_MAX_PAGES; 968 blk_queue_max_discard_sectors(q, UINT_MAX); 969 q->limits.discard_granularity = 512; 970 q->limits.io_min = block_size; 971 q->limits.logical_block_size = block_size; 972 q->limits.physical_block_size = block_size; 973 974 if (q->limits.logical_block_size > PAGE_SIZE && cached_bdev) { 975 /* 976 * This should only happen with BCACHE_SB_VERSION_BDEV. 977 * Block/page size is checked for BCACHE_SB_VERSION_CDEV. 978 */ 979 pr_info("%s: sb/logical block size (%u) greater than page size (%lu) falling back to device logical block size (%u)\n", 980 d->disk->disk_name, q->limits.logical_block_size, 981 PAGE_SIZE, bdev_logical_block_size(cached_bdev)); 982 983 /* This also adjusts physical block size/min io size if needed */ 984 blk_queue_logical_block_size(q, bdev_logical_block_size(cached_bdev)); 985 } 986 987 blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue); 988 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue); 989 blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue); 990 991 blk_queue_write_cache(q, true, true); 992 993 return 0; 994 995 err: 996 ida_simple_remove(&bcache_device_idx, idx); 997 return -ENOMEM; 998 999 } 1000 1001 /* Cached device */ 1002 1003 static void calc_cached_dev_sectors(struct cache_set *c) 1004 { 1005 uint64_t sectors = 0; 1006 struct cached_dev *dc; 1007 1008 list_for_each_entry(dc, &c->cached_devs, list) 1009 sectors += bdev_sectors(dc->bdev); 1010 1011 c->cached_dev_sectors = sectors; 1012 } 1013 1014 #define BACKING_DEV_OFFLINE_TIMEOUT 5 1015 static int cached_dev_status_update(void *arg) 1016 { 1017 struct cached_dev *dc = arg; 1018 struct request_queue *q; 1019 1020 /* 1021 * If this delayed worker is stopping outside, directly quit here. 1022 * dc->io_disable might be set via sysfs interface, so check it 1023 * here too. 1024 */ 1025 while (!kthread_should_stop() && !dc->io_disable) { 1026 q = bdev_get_queue(dc->bdev); 1027 if (blk_queue_dying(q)) 1028 dc->offline_seconds++; 1029 else 1030 dc->offline_seconds = 0; 1031 1032 if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) { 1033 pr_err("%s: device offline for %d seconds\n", 1034 dc->backing_dev_name, 1035 BACKING_DEV_OFFLINE_TIMEOUT); 1036 pr_err("%s: disable I/O request due to backing device offline\n", 1037 dc->disk.name); 1038 dc->io_disable = true; 1039 /* let others know earlier that io_disable is true */ 1040 smp_mb(); 1041 bcache_device_stop(&dc->disk); 1042 break; 1043 } 1044 schedule_timeout_interruptible(HZ); 1045 } 1046 1047 wait_for_kthread_stop(); 1048 return 0; 1049 } 1050 1051 1052 int bch_cached_dev_run(struct cached_dev *dc) 1053 { 1054 struct bcache_device *d = &dc->disk; 1055 char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL); 1056 char *env[] = { 1057 "DRIVER=bcache", 1058 kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid), 1059 kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""), 1060 NULL, 1061 }; 1062 1063 if (dc->io_disable) { 1064 pr_err("I/O disabled on cached dev %s\n", 1065 dc->backing_dev_name); 1066 kfree(env[1]); 1067 kfree(env[2]); 1068 kfree(buf); 1069 return -EIO; 1070 } 1071 1072 if (atomic_xchg(&dc->running, 1)) { 1073 kfree(env[1]); 1074 kfree(env[2]); 1075 kfree(buf); 1076 pr_info("cached dev %s is running already\n", 1077 dc->backing_dev_name); 1078 return -EBUSY; 1079 } 1080 1081 if (!d->c && 1082 BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) { 1083 struct closure cl; 1084 1085 closure_init_stack(&cl); 1086 1087 SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE); 1088 bch_write_bdev_super(dc, &cl); 1089 closure_sync(&cl); 1090 } 1091 1092 add_disk(d->disk); 1093 bd_link_disk_holder(dc->bdev, dc->disk.disk); 1094 /* 1095 * won't show up in the uevent file, use udevadm monitor -e instead 1096 * only class / kset properties are persistent 1097 */ 1098 kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env); 1099 kfree(env[1]); 1100 kfree(env[2]); 1101 kfree(buf); 1102 1103 if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") || 1104 sysfs_create_link(&disk_to_dev(d->disk)->kobj, 1105 &d->kobj, "bcache")) { 1106 pr_err("Couldn't create bcache dev <-> disk sysfs symlinks\n"); 1107 return -ENOMEM; 1108 } 1109 1110 dc->status_update_thread = kthread_run(cached_dev_status_update, 1111 dc, "bcache_status_update"); 1112 if (IS_ERR(dc->status_update_thread)) { 1113 pr_warn("failed to create bcache_status_update kthread, continue to run without monitoring backing device status\n"); 1114 } 1115 1116 return 0; 1117 } 1118 1119 /* 1120 * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed 1121 * work dc->writeback_rate_update is running. Wait until the routine 1122 * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to 1123 * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out 1124 * seconds, give up waiting here and continue to cancel it too. 1125 */ 1126 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc) 1127 { 1128 int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ; 1129 1130 do { 1131 if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING, 1132 &dc->disk.flags)) 1133 break; 1134 time_out--; 1135 schedule_timeout_interruptible(1); 1136 } while (time_out > 0); 1137 1138 if (time_out == 0) 1139 pr_warn("give up waiting for dc->writeback_write_update to quit\n"); 1140 1141 cancel_delayed_work_sync(&dc->writeback_rate_update); 1142 } 1143 1144 static void cached_dev_detach_finish(struct work_struct *w) 1145 { 1146 struct cached_dev *dc = container_of(w, struct cached_dev, detach); 1147 1148 BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)); 1149 BUG_ON(refcount_read(&dc->count)); 1150 1151 1152 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1153 cancel_writeback_rate_update_dwork(dc); 1154 1155 if (!IS_ERR_OR_NULL(dc->writeback_thread)) { 1156 kthread_stop(dc->writeback_thread); 1157 dc->writeback_thread = NULL; 1158 } 1159 1160 mutex_lock(&bch_register_lock); 1161 1162 calc_cached_dev_sectors(dc->disk.c); 1163 bcache_device_detach(&dc->disk); 1164 list_move(&dc->list, &uncached_devices); 1165 1166 clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags); 1167 clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags); 1168 1169 mutex_unlock(&bch_register_lock); 1170 1171 pr_info("Caching disabled for %s\n", dc->backing_dev_name); 1172 1173 /* Drop ref we took in cached_dev_detach() */ 1174 closure_put(&dc->disk.cl); 1175 } 1176 1177 void bch_cached_dev_detach(struct cached_dev *dc) 1178 { 1179 lockdep_assert_held(&bch_register_lock); 1180 1181 if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1182 return; 1183 1184 if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) 1185 return; 1186 1187 /* 1188 * Block the device from being closed and freed until we're finished 1189 * detaching 1190 */ 1191 closure_get(&dc->disk.cl); 1192 1193 bch_writeback_queue(dc); 1194 1195 cached_dev_put(dc); 1196 } 1197 1198 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c, 1199 uint8_t *set_uuid) 1200 { 1201 uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds()); 1202 struct uuid_entry *u; 1203 struct cached_dev *exist_dc, *t; 1204 int ret = 0; 1205 1206 if ((set_uuid && memcmp(set_uuid, c->set_uuid, 16)) || 1207 (!set_uuid && memcmp(dc->sb.set_uuid, c->set_uuid, 16))) 1208 return -ENOENT; 1209 1210 if (dc->disk.c) { 1211 pr_err("Can't attach %s: already attached\n", 1212 dc->backing_dev_name); 1213 return -EINVAL; 1214 } 1215 1216 if (test_bit(CACHE_SET_STOPPING, &c->flags)) { 1217 pr_err("Can't attach %s: shutting down\n", 1218 dc->backing_dev_name); 1219 return -EINVAL; 1220 } 1221 1222 if (dc->sb.block_size < c->cache->sb.block_size) { 1223 /* Will die */ 1224 pr_err("Couldn't attach %s: block size less than set's block size\n", 1225 dc->backing_dev_name); 1226 return -EINVAL; 1227 } 1228 1229 /* Check whether already attached */ 1230 list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) { 1231 if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) { 1232 pr_err("Tried to attach %s but duplicate UUID already attached\n", 1233 dc->backing_dev_name); 1234 1235 return -EINVAL; 1236 } 1237 } 1238 1239 u = uuid_find(c, dc->sb.uuid); 1240 1241 if (u && 1242 (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE || 1243 BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) { 1244 memcpy(u->uuid, invalid_uuid, 16); 1245 u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds()); 1246 u = NULL; 1247 } 1248 1249 if (!u) { 1250 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1251 pr_err("Couldn't find uuid for %s in set\n", 1252 dc->backing_dev_name); 1253 return -ENOENT; 1254 } 1255 1256 u = uuid_find_empty(c); 1257 if (!u) { 1258 pr_err("Not caching %s, no room for UUID\n", 1259 dc->backing_dev_name); 1260 return -EINVAL; 1261 } 1262 } 1263 1264 /* 1265 * Deadlocks since we're called via sysfs... 1266 * sysfs_remove_file(&dc->kobj, &sysfs_attach); 1267 */ 1268 1269 if (bch_is_zero(u->uuid, 16)) { 1270 struct closure cl; 1271 1272 closure_init_stack(&cl); 1273 1274 memcpy(u->uuid, dc->sb.uuid, 16); 1275 memcpy(u->label, dc->sb.label, SB_LABEL_SIZE); 1276 u->first_reg = u->last_reg = rtime; 1277 bch_uuid_write(c); 1278 1279 memcpy(dc->sb.set_uuid, c->set_uuid, 16); 1280 SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); 1281 1282 bch_write_bdev_super(dc, &cl); 1283 closure_sync(&cl); 1284 } else { 1285 u->last_reg = rtime; 1286 bch_uuid_write(c); 1287 } 1288 1289 bcache_device_attach(&dc->disk, c, u - c->uuids); 1290 list_move(&dc->list, &c->cached_devs); 1291 calc_cached_dev_sectors(c); 1292 1293 /* 1294 * dc->c must be set before dc->count != 0 - paired with the mb in 1295 * cached_dev_get() 1296 */ 1297 smp_wmb(); 1298 refcount_set(&dc->count, 1); 1299 1300 /* Block writeback thread, but spawn it */ 1301 down_write(&dc->writeback_lock); 1302 if (bch_cached_dev_writeback_start(dc)) { 1303 up_write(&dc->writeback_lock); 1304 pr_err("Couldn't start writeback facilities for %s\n", 1305 dc->disk.disk->disk_name); 1306 return -ENOMEM; 1307 } 1308 1309 if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) { 1310 atomic_set(&dc->has_dirty, 1); 1311 bch_writeback_queue(dc); 1312 } 1313 1314 bch_sectors_dirty_init(&dc->disk); 1315 1316 ret = bch_cached_dev_run(dc); 1317 if (ret && (ret != -EBUSY)) { 1318 up_write(&dc->writeback_lock); 1319 /* 1320 * bch_register_lock is held, bcache_device_stop() is not 1321 * able to be directly called. The kthread and kworker 1322 * created previously in bch_cached_dev_writeback_start() 1323 * have to be stopped manually here. 1324 */ 1325 kthread_stop(dc->writeback_thread); 1326 cancel_writeback_rate_update_dwork(dc); 1327 pr_err("Couldn't run cached device %s\n", 1328 dc->backing_dev_name); 1329 return ret; 1330 } 1331 1332 bcache_device_link(&dc->disk, c, "bdev"); 1333 atomic_inc(&c->attached_dev_nr); 1334 1335 if (bch_has_feature_obso_large_bucket(&(c->cache->sb))) { 1336 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1337 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1338 set_disk_ro(dc->disk.disk, 1); 1339 } 1340 1341 /* Allow the writeback thread to proceed */ 1342 up_write(&dc->writeback_lock); 1343 1344 pr_info("Caching %s as %s on set %pU\n", 1345 dc->backing_dev_name, 1346 dc->disk.disk->disk_name, 1347 dc->disk.c->set_uuid); 1348 return 0; 1349 } 1350 1351 /* when dc->disk.kobj released */ 1352 void bch_cached_dev_release(struct kobject *kobj) 1353 { 1354 struct cached_dev *dc = container_of(kobj, struct cached_dev, 1355 disk.kobj); 1356 kfree(dc); 1357 module_put(THIS_MODULE); 1358 } 1359 1360 static void cached_dev_free(struct closure *cl) 1361 { 1362 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1363 1364 if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)) 1365 cancel_writeback_rate_update_dwork(dc); 1366 1367 if (!IS_ERR_OR_NULL(dc->writeback_thread)) 1368 kthread_stop(dc->writeback_thread); 1369 if (!IS_ERR_OR_NULL(dc->status_update_thread)) 1370 kthread_stop(dc->status_update_thread); 1371 1372 mutex_lock(&bch_register_lock); 1373 1374 if (atomic_read(&dc->running)) 1375 bd_unlink_disk_holder(dc->bdev, dc->disk.disk); 1376 bcache_device_free(&dc->disk); 1377 list_del(&dc->list); 1378 1379 mutex_unlock(&bch_register_lock); 1380 1381 if (dc->sb_disk) 1382 put_page(virt_to_page(dc->sb_disk)); 1383 1384 if (!IS_ERR_OR_NULL(dc->bdev)) 1385 blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1386 1387 wake_up(&unregister_wait); 1388 1389 kobject_put(&dc->disk.kobj); 1390 } 1391 1392 static void cached_dev_flush(struct closure *cl) 1393 { 1394 struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl); 1395 struct bcache_device *d = &dc->disk; 1396 1397 mutex_lock(&bch_register_lock); 1398 bcache_device_unlink(d); 1399 mutex_unlock(&bch_register_lock); 1400 1401 bch_cache_accounting_destroy(&dc->accounting); 1402 kobject_del(&d->kobj); 1403 1404 continue_at(cl, cached_dev_free, system_wq); 1405 } 1406 1407 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size) 1408 { 1409 int ret; 1410 struct io *io; 1411 struct request_queue *q = bdev_get_queue(dc->bdev); 1412 1413 __module_get(THIS_MODULE); 1414 INIT_LIST_HEAD(&dc->list); 1415 closure_init(&dc->disk.cl, NULL); 1416 set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq); 1417 kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype); 1418 INIT_WORK(&dc->detach, cached_dev_detach_finish); 1419 sema_init(&dc->sb_write_mutex, 1); 1420 INIT_LIST_HEAD(&dc->io_lru); 1421 spin_lock_init(&dc->io_lock); 1422 bch_cache_accounting_init(&dc->accounting, &dc->disk.cl); 1423 1424 dc->sequential_cutoff = 4 << 20; 1425 1426 for (io = dc->io; io < dc->io + RECENT_IO; io++) { 1427 list_add(&io->lru, &dc->io_lru); 1428 hlist_add_head(&io->hash, dc->io_hash + RECENT_IO); 1429 } 1430 1431 dc->disk.stripe_size = q->limits.io_opt >> 9; 1432 1433 if (dc->disk.stripe_size) 1434 dc->partial_stripes_expensive = 1435 q->limits.raid_partial_stripes_expensive; 1436 1437 ret = bcache_device_init(&dc->disk, block_size, 1438 bdev_nr_sectors(dc->bdev) - dc->sb.data_offset, 1439 dc->bdev, &bcache_cached_ops); 1440 if (ret) 1441 return ret; 1442 1443 blk_queue_io_opt(dc->disk.disk->queue, 1444 max(queue_io_opt(dc->disk.disk->queue), queue_io_opt(q))); 1445 1446 atomic_set(&dc->io_errors, 0); 1447 dc->io_disable = false; 1448 dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT; 1449 /* default to auto */ 1450 dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO; 1451 1452 bch_cached_dev_request_init(dc); 1453 bch_cached_dev_writeback_init(dc); 1454 return 0; 1455 } 1456 1457 /* Cached device - bcache superblock */ 1458 1459 static int register_bdev(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 1460 struct block_device *bdev, 1461 struct cached_dev *dc) 1462 { 1463 const char *err = "cannot allocate memory"; 1464 struct cache_set *c; 1465 int ret = -ENOMEM; 1466 1467 bdevname(bdev, dc->backing_dev_name); 1468 memcpy(&dc->sb, sb, sizeof(struct cache_sb)); 1469 dc->bdev = bdev; 1470 dc->bdev->bd_holder = dc; 1471 dc->sb_disk = sb_disk; 1472 1473 if (cached_dev_init(dc, sb->block_size << 9)) 1474 goto err; 1475 1476 err = "error creating kobject"; 1477 if (kobject_add(&dc->disk.kobj, bdev_kobj(bdev), "bcache")) 1478 goto err; 1479 if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj)) 1480 goto err; 1481 1482 pr_info("registered backing device %s\n", dc->backing_dev_name); 1483 1484 list_add(&dc->list, &uncached_devices); 1485 /* attach to a matched cache set if it exists */ 1486 list_for_each_entry(c, &bch_cache_sets, list) 1487 bch_cached_dev_attach(dc, c, NULL); 1488 1489 if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE || 1490 BDEV_STATE(&dc->sb) == BDEV_STATE_STALE) { 1491 err = "failed to run cached device"; 1492 ret = bch_cached_dev_run(dc); 1493 if (ret) 1494 goto err; 1495 } 1496 1497 return 0; 1498 err: 1499 pr_notice("error %s: %s\n", dc->backing_dev_name, err); 1500 bcache_device_stop(&dc->disk); 1501 return ret; 1502 } 1503 1504 /* Flash only volumes */ 1505 1506 /* When d->kobj released */ 1507 void bch_flash_dev_release(struct kobject *kobj) 1508 { 1509 struct bcache_device *d = container_of(kobj, struct bcache_device, 1510 kobj); 1511 kfree(d); 1512 } 1513 1514 static void flash_dev_free(struct closure *cl) 1515 { 1516 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1517 1518 mutex_lock(&bch_register_lock); 1519 atomic_long_sub(bcache_dev_sectors_dirty(d), 1520 &d->c->flash_dev_dirty_sectors); 1521 bcache_device_free(d); 1522 mutex_unlock(&bch_register_lock); 1523 kobject_put(&d->kobj); 1524 } 1525 1526 static void flash_dev_flush(struct closure *cl) 1527 { 1528 struct bcache_device *d = container_of(cl, struct bcache_device, cl); 1529 1530 mutex_lock(&bch_register_lock); 1531 bcache_device_unlink(d); 1532 mutex_unlock(&bch_register_lock); 1533 kobject_del(&d->kobj); 1534 continue_at(cl, flash_dev_free, system_wq); 1535 } 1536 1537 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u) 1538 { 1539 struct bcache_device *d = kzalloc(sizeof(struct bcache_device), 1540 GFP_KERNEL); 1541 if (!d) 1542 return -ENOMEM; 1543 1544 closure_init(&d->cl, NULL); 1545 set_closure_fn(&d->cl, flash_dev_flush, system_wq); 1546 1547 kobject_init(&d->kobj, &bch_flash_dev_ktype); 1548 1549 if (bcache_device_init(d, block_bytes(c->cache), u->sectors, 1550 NULL, &bcache_flash_ops)) 1551 goto err; 1552 1553 bcache_device_attach(d, c, u - c->uuids); 1554 bch_sectors_dirty_init(d); 1555 bch_flash_dev_request_init(d); 1556 add_disk(d->disk); 1557 1558 if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache")) 1559 goto err; 1560 1561 bcache_device_link(d, c, "volume"); 1562 1563 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) { 1564 pr_err("The obsoleted large bucket layout is unsupported, set the bcache device into read-only\n"); 1565 pr_err("Please update to the latest bcache-tools to create the cache device\n"); 1566 set_disk_ro(d->disk, 1); 1567 } 1568 1569 return 0; 1570 err: 1571 kobject_put(&d->kobj); 1572 return -ENOMEM; 1573 } 1574 1575 static int flash_devs_run(struct cache_set *c) 1576 { 1577 int ret = 0; 1578 struct uuid_entry *u; 1579 1580 for (u = c->uuids; 1581 u < c->uuids + c->nr_uuids && !ret; 1582 u++) 1583 if (UUID_FLASH_ONLY(u)) 1584 ret = flash_dev_run(c, u); 1585 1586 return ret; 1587 } 1588 1589 int bch_flash_dev_create(struct cache_set *c, uint64_t size) 1590 { 1591 struct uuid_entry *u; 1592 1593 if (test_bit(CACHE_SET_STOPPING, &c->flags)) 1594 return -EINTR; 1595 1596 if (!test_bit(CACHE_SET_RUNNING, &c->flags)) 1597 return -EPERM; 1598 1599 u = uuid_find_empty(c); 1600 if (!u) { 1601 pr_err("Can't create volume, no room for UUID\n"); 1602 return -EINVAL; 1603 } 1604 1605 get_random_bytes(u->uuid, 16); 1606 memset(u->label, 0, 32); 1607 u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds()); 1608 1609 SET_UUID_FLASH_ONLY(u, 1); 1610 u->sectors = size >> 9; 1611 1612 bch_uuid_write(c); 1613 1614 return flash_dev_run(c, u); 1615 } 1616 1617 bool bch_cached_dev_error(struct cached_dev *dc) 1618 { 1619 if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags)) 1620 return false; 1621 1622 dc->io_disable = true; 1623 /* make others know io_disable is true earlier */ 1624 smp_mb(); 1625 1626 pr_err("stop %s: too many IO errors on backing device %s\n", 1627 dc->disk.disk->disk_name, dc->backing_dev_name); 1628 1629 bcache_device_stop(&dc->disk); 1630 return true; 1631 } 1632 1633 /* Cache set */ 1634 1635 __printf(2, 3) 1636 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...) 1637 { 1638 struct va_format vaf; 1639 va_list args; 1640 1641 if (c->on_error != ON_ERROR_PANIC && 1642 test_bit(CACHE_SET_STOPPING, &c->flags)) 1643 return false; 1644 1645 if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1646 pr_info("CACHE_SET_IO_DISABLE already set\n"); 1647 1648 /* 1649 * XXX: we can be called from atomic context 1650 * acquire_console_sem(); 1651 */ 1652 1653 va_start(args, fmt); 1654 1655 vaf.fmt = fmt; 1656 vaf.va = &args; 1657 1658 pr_err("error on %pU: %pV, disabling caching\n", 1659 c->set_uuid, &vaf); 1660 1661 va_end(args); 1662 1663 if (c->on_error == ON_ERROR_PANIC) 1664 panic("panic forced after error\n"); 1665 1666 bch_cache_set_unregister(c); 1667 return true; 1668 } 1669 1670 /* When c->kobj released */ 1671 void bch_cache_set_release(struct kobject *kobj) 1672 { 1673 struct cache_set *c = container_of(kobj, struct cache_set, kobj); 1674 1675 kfree(c); 1676 module_put(THIS_MODULE); 1677 } 1678 1679 static void cache_set_free(struct closure *cl) 1680 { 1681 struct cache_set *c = container_of(cl, struct cache_set, cl); 1682 struct cache *ca; 1683 1684 debugfs_remove(c->debug); 1685 1686 bch_open_buckets_free(c); 1687 bch_btree_cache_free(c); 1688 bch_journal_free(c); 1689 1690 mutex_lock(&bch_register_lock); 1691 bch_bset_sort_state_free(&c->sort); 1692 free_pages((unsigned long) c->uuids, ilog2(meta_bucket_pages(&c->cache->sb))); 1693 1694 ca = c->cache; 1695 if (ca) { 1696 ca->set = NULL; 1697 c->cache = NULL; 1698 kobject_put(&ca->kobj); 1699 } 1700 1701 1702 if (c->moving_gc_wq) 1703 destroy_workqueue(c->moving_gc_wq); 1704 bioset_exit(&c->bio_split); 1705 mempool_exit(&c->fill_iter); 1706 mempool_exit(&c->bio_meta); 1707 mempool_exit(&c->search); 1708 kfree(c->devices); 1709 1710 list_del(&c->list); 1711 mutex_unlock(&bch_register_lock); 1712 1713 pr_info("Cache set %pU unregistered\n", c->set_uuid); 1714 wake_up(&unregister_wait); 1715 1716 closure_debug_destroy(&c->cl); 1717 kobject_put(&c->kobj); 1718 } 1719 1720 static void cache_set_flush(struct closure *cl) 1721 { 1722 struct cache_set *c = container_of(cl, struct cache_set, caching); 1723 struct cache *ca = c->cache; 1724 struct btree *b; 1725 1726 bch_cache_accounting_destroy(&c->accounting); 1727 1728 kobject_put(&c->internal); 1729 kobject_del(&c->kobj); 1730 1731 if (!IS_ERR_OR_NULL(c->gc_thread)) 1732 kthread_stop(c->gc_thread); 1733 1734 if (!IS_ERR_OR_NULL(c->root)) 1735 list_add(&c->root->list, &c->btree_cache); 1736 1737 /* 1738 * Avoid flushing cached nodes if cache set is retiring 1739 * due to too many I/O errors detected. 1740 */ 1741 if (!test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1742 list_for_each_entry(b, &c->btree_cache, list) { 1743 mutex_lock(&b->write_lock); 1744 if (btree_node_dirty(b)) 1745 __bch_btree_node_write(b, NULL); 1746 mutex_unlock(&b->write_lock); 1747 } 1748 1749 if (ca->alloc_thread) 1750 kthread_stop(ca->alloc_thread); 1751 1752 if (c->journal.cur) { 1753 cancel_delayed_work_sync(&c->journal.work); 1754 /* flush last journal entry if needed */ 1755 c->journal.work.work.func(&c->journal.work.work); 1756 } 1757 1758 closure_return(cl); 1759 } 1760 1761 /* 1762 * This function is only called when CACHE_SET_IO_DISABLE is set, which means 1763 * cache set is unregistering due to too many I/O errors. In this condition, 1764 * the bcache device might be stopped, it depends on stop_when_cache_set_failed 1765 * value and whether the broken cache has dirty data: 1766 * 1767 * dc->stop_when_cache_set_failed dc->has_dirty stop bcache device 1768 * BCH_CACHED_STOP_AUTO 0 NO 1769 * BCH_CACHED_STOP_AUTO 1 YES 1770 * BCH_CACHED_DEV_STOP_ALWAYS 0 YES 1771 * BCH_CACHED_DEV_STOP_ALWAYS 1 YES 1772 * 1773 * The expected behavior is, if stop_when_cache_set_failed is configured to 1774 * "auto" via sysfs interface, the bcache device will not be stopped if the 1775 * backing device is clean on the broken cache device. 1776 */ 1777 static void conditional_stop_bcache_device(struct cache_set *c, 1778 struct bcache_device *d, 1779 struct cached_dev *dc) 1780 { 1781 if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) { 1782 pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.\n", 1783 d->disk->disk_name, c->set_uuid); 1784 bcache_device_stop(d); 1785 } else if (atomic_read(&dc->has_dirty)) { 1786 /* 1787 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1788 * and dc->has_dirty == 1 1789 */ 1790 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.\n", 1791 d->disk->disk_name); 1792 /* 1793 * There might be a small time gap that cache set is 1794 * released but bcache device is not. Inside this time 1795 * gap, regular I/O requests will directly go into 1796 * backing device as no cache set attached to. This 1797 * behavior may also introduce potential inconsistence 1798 * data in writeback mode while cache is dirty. 1799 * Therefore before calling bcache_device_stop() due 1800 * to a broken cache device, dc->io_disable should be 1801 * explicitly set to true. 1802 */ 1803 dc->io_disable = true; 1804 /* make others know io_disable is true earlier */ 1805 smp_mb(); 1806 bcache_device_stop(d); 1807 } else { 1808 /* 1809 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO 1810 * and dc->has_dirty == 0 1811 */ 1812 pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.\n", 1813 d->disk->disk_name); 1814 } 1815 } 1816 1817 static void __cache_set_unregister(struct closure *cl) 1818 { 1819 struct cache_set *c = container_of(cl, struct cache_set, caching); 1820 struct cached_dev *dc; 1821 struct bcache_device *d; 1822 size_t i; 1823 1824 mutex_lock(&bch_register_lock); 1825 1826 for (i = 0; i < c->devices_max_used; i++) { 1827 d = c->devices[i]; 1828 if (!d) 1829 continue; 1830 1831 if (!UUID_FLASH_ONLY(&c->uuids[i]) && 1832 test_bit(CACHE_SET_UNREGISTERING, &c->flags)) { 1833 dc = container_of(d, struct cached_dev, disk); 1834 bch_cached_dev_detach(dc); 1835 if (test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1836 conditional_stop_bcache_device(c, d, dc); 1837 } else { 1838 bcache_device_stop(d); 1839 } 1840 } 1841 1842 mutex_unlock(&bch_register_lock); 1843 1844 continue_at(cl, cache_set_flush, system_wq); 1845 } 1846 1847 void bch_cache_set_stop(struct cache_set *c) 1848 { 1849 if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags)) 1850 /* closure_fn set to __cache_set_unregister() */ 1851 closure_queue(&c->caching); 1852 } 1853 1854 void bch_cache_set_unregister(struct cache_set *c) 1855 { 1856 set_bit(CACHE_SET_UNREGISTERING, &c->flags); 1857 bch_cache_set_stop(c); 1858 } 1859 1860 #define alloc_meta_bucket_pages(gfp, sb) \ 1861 ((void *) __get_free_pages(__GFP_ZERO|__GFP_COMP|gfp, ilog2(meta_bucket_pages(sb)))) 1862 1863 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb) 1864 { 1865 int iter_size; 1866 struct cache *ca = container_of(sb, struct cache, sb); 1867 struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL); 1868 1869 if (!c) 1870 return NULL; 1871 1872 __module_get(THIS_MODULE); 1873 closure_init(&c->cl, NULL); 1874 set_closure_fn(&c->cl, cache_set_free, system_wq); 1875 1876 closure_init(&c->caching, &c->cl); 1877 set_closure_fn(&c->caching, __cache_set_unregister, system_wq); 1878 1879 /* Maybe create continue_at_noreturn() and use it here? */ 1880 closure_set_stopped(&c->cl); 1881 closure_put(&c->cl); 1882 1883 kobject_init(&c->kobj, &bch_cache_set_ktype); 1884 kobject_init(&c->internal, &bch_cache_set_internal_ktype); 1885 1886 bch_cache_accounting_init(&c->accounting, &c->cl); 1887 1888 memcpy(c->set_uuid, sb->set_uuid, 16); 1889 1890 c->cache = ca; 1891 c->cache->set = c; 1892 c->bucket_bits = ilog2(sb->bucket_size); 1893 c->block_bits = ilog2(sb->block_size); 1894 c->nr_uuids = meta_bucket_bytes(sb) / sizeof(struct uuid_entry); 1895 c->devices_max_used = 0; 1896 atomic_set(&c->attached_dev_nr, 0); 1897 c->btree_pages = meta_bucket_pages(sb); 1898 if (c->btree_pages > BTREE_MAX_PAGES) 1899 c->btree_pages = max_t(int, c->btree_pages / 4, 1900 BTREE_MAX_PAGES); 1901 1902 sema_init(&c->sb_write_mutex, 1); 1903 mutex_init(&c->bucket_lock); 1904 init_waitqueue_head(&c->btree_cache_wait); 1905 spin_lock_init(&c->btree_cannibalize_lock); 1906 init_waitqueue_head(&c->bucket_wait); 1907 init_waitqueue_head(&c->gc_wait); 1908 sema_init(&c->uuid_write_mutex, 1); 1909 1910 spin_lock_init(&c->btree_gc_time.lock); 1911 spin_lock_init(&c->btree_split_time.lock); 1912 spin_lock_init(&c->btree_read_time.lock); 1913 1914 bch_moving_init_cache_set(c); 1915 1916 INIT_LIST_HEAD(&c->list); 1917 INIT_LIST_HEAD(&c->cached_devs); 1918 INIT_LIST_HEAD(&c->btree_cache); 1919 INIT_LIST_HEAD(&c->btree_cache_freeable); 1920 INIT_LIST_HEAD(&c->btree_cache_freed); 1921 INIT_LIST_HEAD(&c->data_buckets); 1922 1923 iter_size = ((meta_bucket_pages(sb) * PAGE_SECTORS) / sb->block_size + 1) * 1924 sizeof(struct btree_iter_set); 1925 1926 c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL); 1927 if (!c->devices) 1928 goto err; 1929 1930 if (mempool_init_slab_pool(&c->search, 32, bch_search_cache)) 1931 goto err; 1932 1933 if (mempool_init_kmalloc_pool(&c->bio_meta, 2, 1934 sizeof(struct bbio) + 1935 sizeof(struct bio_vec) * meta_bucket_pages(sb))) 1936 goto err; 1937 1938 if (mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size)) 1939 goto err; 1940 1941 if (bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio), 1942 BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER)) 1943 goto err; 1944 1945 c->uuids = alloc_meta_bucket_pages(GFP_KERNEL, sb); 1946 if (!c->uuids) 1947 goto err; 1948 1949 c->moving_gc_wq = alloc_workqueue("bcache_gc", WQ_MEM_RECLAIM, 0); 1950 if (!c->moving_gc_wq) 1951 goto err; 1952 1953 if (bch_journal_alloc(c)) 1954 goto err; 1955 1956 if (bch_btree_cache_alloc(c)) 1957 goto err; 1958 1959 if (bch_open_buckets_alloc(c)) 1960 goto err; 1961 1962 if (bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages))) 1963 goto err; 1964 1965 c->congested_read_threshold_us = 2000; 1966 c->congested_write_threshold_us = 20000; 1967 c->error_limit = DEFAULT_IO_ERROR_LIMIT; 1968 c->idle_max_writeback_rate_enabled = 1; 1969 WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1970 1971 return c; 1972 err: 1973 bch_cache_set_unregister(c); 1974 return NULL; 1975 } 1976 1977 static int run_cache_set(struct cache_set *c) 1978 { 1979 const char *err = "cannot allocate memory"; 1980 struct cached_dev *dc, *t; 1981 struct cache *ca = c->cache; 1982 struct closure cl; 1983 LIST_HEAD(journal); 1984 struct journal_replay *l; 1985 1986 closure_init_stack(&cl); 1987 1988 c->nbuckets = ca->sb.nbuckets; 1989 set_gc_sectors(c); 1990 1991 if (CACHE_SYNC(&c->cache->sb)) { 1992 struct bkey *k; 1993 struct jset *j; 1994 1995 err = "cannot allocate memory for journal"; 1996 if (bch_journal_read(c, &journal)) 1997 goto err; 1998 1999 pr_debug("btree_journal_read() done\n"); 2000 2001 err = "no journal entries found"; 2002 if (list_empty(&journal)) 2003 goto err; 2004 2005 j = &list_entry(journal.prev, struct journal_replay, list)->j; 2006 2007 err = "IO error reading priorities"; 2008 if (prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev])) 2009 goto err; 2010 2011 /* 2012 * If prio_read() fails it'll call cache_set_error and we'll 2013 * tear everything down right away, but if we perhaps checked 2014 * sooner we could avoid journal replay. 2015 */ 2016 2017 k = &j->btree_root; 2018 2019 err = "bad btree root"; 2020 if (__bch_btree_ptr_invalid(c, k)) 2021 goto err; 2022 2023 err = "error reading btree root"; 2024 c->root = bch_btree_node_get(c, NULL, k, 2025 j->btree_level, 2026 true, NULL); 2027 if (IS_ERR_OR_NULL(c->root)) 2028 goto err; 2029 2030 list_del_init(&c->root->list); 2031 rw_unlock(true, c->root); 2032 2033 err = uuid_read(c, j, &cl); 2034 if (err) 2035 goto err; 2036 2037 err = "error in recovery"; 2038 if (bch_btree_check(c)) 2039 goto err; 2040 2041 bch_journal_mark(c, &journal); 2042 bch_initial_gc_finish(c); 2043 pr_debug("btree_check() done\n"); 2044 2045 /* 2046 * bcache_journal_next() can't happen sooner, or 2047 * btree_gc_finish() will give spurious errors about last_gc > 2048 * gc_gen - this is a hack but oh well. 2049 */ 2050 bch_journal_next(&c->journal); 2051 2052 err = "error starting allocator thread"; 2053 if (bch_cache_allocator_start(ca)) 2054 goto err; 2055 2056 /* 2057 * First place it's safe to allocate: btree_check() and 2058 * btree_gc_finish() have to run before we have buckets to 2059 * allocate, and bch_bucket_alloc_set() might cause a journal 2060 * entry to be written so bcache_journal_next() has to be called 2061 * first. 2062 * 2063 * If the uuids were in the old format we have to rewrite them 2064 * before the next journal entry is written: 2065 */ 2066 if (j->version < BCACHE_JSET_VERSION_UUID) 2067 __uuid_write(c); 2068 2069 err = "bcache: replay journal failed"; 2070 if (bch_journal_replay(c, &journal)) 2071 goto err; 2072 } else { 2073 unsigned int j; 2074 2075 pr_notice("invalidating existing data\n"); 2076 ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7, 2077 2, SB_JOURNAL_BUCKETS); 2078 2079 for (j = 0; j < ca->sb.keys; j++) 2080 ca->sb.d[j] = ca->sb.first_bucket + j; 2081 2082 bch_initial_gc_finish(c); 2083 2084 err = "error starting allocator thread"; 2085 if (bch_cache_allocator_start(ca)) 2086 goto err; 2087 2088 mutex_lock(&c->bucket_lock); 2089 bch_prio_write(ca, true); 2090 mutex_unlock(&c->bucket_lock); 2091 2092 err = "cannot allocate new UUID bucket"; 2093 if (__uuid_write(c)) 2094 goto err; 2095 2096 err = "cannot allocate new btree root"; 2097 c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL); 2098 if (IS_ERR_OR_NULL(c->root)) 2099 goto err; 2100 2101 mutex_lock(&c->root->write_lock); 2102 bkey_copy_key(&c->root->key, &MAX_KEY); 2103 bch_btree_node_write(c->root, &cl); 2104 mutex_unlock(&c->root->write_lock); 2105 2106 bch_btree_set_root(c->root); 2107 rw_unlock(true, c->root); 2108 2109 /* 2110 * We don't want to write the first journal entry until 2111 * everything is set up - fortunately journal entries won't be 2112 * written until the SET_CACHE_SYNC() here: 2113 */ 2114 SET_CACHE_SYNC(&c->cache->sb, true); 2115 2116 bch_journal_next(&c->journal); 2117 bch_journal_meta(c, &cl); 2118 } 2119 2120 err = "error starting gc thread"; 2121 if (bch_gc_thread_start(c)) 2122 goto err; 2123 2124 closure_sync(&cl); 2125 c->cache->sb.last_mount = (u32)ktime_get_real_seconds(); 2126 bcache_write_super(c); 2127 2128 if (bch_has_feature_obso_large_bucket(&c->cache->sb)) 2129 pr_err("Detect obsoleted large bucket layout, all attached bcache device will be read-only\n"); 2130 2131 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2132 bch_cached_dev_attach(dc, c, NULL); 2133 2134 flash_devs_run(c); 2135 2136 set_bit(CACHE_SET_RUNNING, &c->flags); 2137 return 0; 2138 err: 2139 while (!list_empty(&journal)) { 2140 l = list_first_entry(&journal, struct journal_replay, list); 2141 list_del(&l->list); 2142 kfree(l); 2143 } 2144 2145 closure_sync(&cl); 2146 2147 bch_cache_set_error(c, "%s", err); 2148 2149 return -EIO; 2150 } 2151 2152 static const char *register_cache_set(struct cache *ca) 2153 { 2154 char buf[12]; 2155 const char *err = "cannot allocate memory"; 2156 struct cache_set *c; 2157 2158 list_for_each_entry(c, &bch_cache_sets, list) 2159 if (!memcmp(c->set_uuid, ca->sb.set_uuid, 16)) { 2160 if (c->cache) 2161 return "duplicate cache set member"; 2162 2163 goto found; 2164 } 2165 2166 c = bch_cache_set_alloc(&ca->sb); 2167 if (!c) 2168 return err; 2169 2170 err = "error creating kobject"; 2171 if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->set_uuid) || 2172 kobject_add(&c->internal, &c->kobj, "internal")) 2173 goto err; 2174 2175 if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj)) 2176 goto err; 2177 2178 bch_debug_init_cache_set(c); 2179 2180 list_add(&c->list, &bch_cache_sets); 2181 found: 2182 sprintf(buf, "cache%i", ca->sb.nr_this_dev); 2183 if (sysfs_create_link(&ca->kobj, &c->kobj, "set") || 2184 sysfs_create_link(&c->kobj, &ca->kobj, buf)) 2185 goto err; 2186 2187 kobject_get(&ca->kobj); 2188 ca->set = c; 2189 ca->set->cache = ca; 2190 2191 err = "failed to run cache set"; 2192 if (run_cache_set(c) < 0) 2193 goto err; 2194 2195 return NULL; 2196 err: 2197 bch_cache_set_unregister(c); 2198 return err; 2199 } 2200 2201 /* Cache device */ 2202 2203 /* When ca->kobj released */ 2204 void bch_cache_release(struct kobject *kobj) 2205 { 2206 struct cache *ca = container_of(kobj, struct cache, kobj); 2207 unsigned int i; 2208 2209 if (ca->set) { 2210 BUG_ON(ca->set->cache != ca); 2211 ca->set->cache = NULL; 2212 } 2213 2214 free_pages((unsigned long) ca->disk_buckets, ilog2(meta_bucket_pages(&ca->sb))); 2215 kfree(ca->prio_buckets); 2216 vfree(ca->buckets); 2217 2218 free_heap(&ca->heap); 2219 free_fifo(&ca->free_inc); 2220 2221 for (i = 0; i < RESERVE_NR; i++) 2222 free_fifo(&ca->free[i]); 2223 2224 if (ca->sb_disk) 2225 put_page(virt_to_page(ca->sb_disk)); 2226 2227 if (!IS_ERR_OR_NULL(ca->bdev)) 2228 blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2229 2230 kfree(ca); 2231 module_put(THIS_MODULE); 2232 } 2233 2234 static int cache_alloc(struct cache *ca) 2235 { 2236 size_t free; 2237 size_t btree_buckets; 2238 struct bucket *b; 2239 int ret = -ENOMEM; 2240 const char *err = NULL; 2241 2242 __module_get(THIS_MODULE); 2243 kobject_init(&ca->kobj, &bch_cache_ktype); 2244 2245 bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8); 2246 2247 /* 2248 * when ca->sb.njournal_buckets is not zero, journal exists, 2249 * and in bch_journal_replay(), tree node may split, 2250 * so bucket of RESERVE_BTREE type is needed, 2251 * the worst situation is all journal buckets are valid journal, 2252 * and all the keys need to replay, 2253 * so the number of RESERVE_BTREE type buckets should be as much 2254 * as journal buckets 2255 */ 2256 btree_buckets = ca->sb.njournal_buckets ?: 8; 2257 free = roundup_pow_of_two(ca->sb.nbuckets) >> 10; 2258 if (!free) { 2259 ret = -EPERM; 2260 err = "ca->sb.nbuckets is too small"; 2261 goto err_free; 2262 } 2263 2264 if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, 2265 GFP_KERNEL)) { 2266 err = "ca->free[RESERVE_BTREE] alloc failed"; 2267 goto err_btree_alloc; 2268 } 2269 2270 if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), 2271 GFP_KERNEL)) { 2272 err = "ca->free[RESERVE_PRIO] alloc failed"; 2273 goto err_prio_alloc; 2274 } 2275 2276 if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) { 2277 err = "ca->free[RESERVE_MOVINGGC] alloc failed"; 2278 goto err_movinggc_alloc; 2279 } 2280 2281 if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) { 2282 err = "ca->free[RESERVE_NONE] alloc failed"; 2283 goto err_none_alloc; 2284 } 2285 2286 if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) { 2287 err = "ca->free_inc alloc failed"; 2288 goto err_free_inc_alloc; 2289 } 2290 2291 if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) { 2292 err = "ca->heap alloc failed"; 2293 goto err_heap_alloc; 2294 } 2295 2296 ca->buckets = vzalloc(array_size(sizeof(struct bucket), 2297 ca->sb.nbuckets)); 2298 if (!ca->buckets) { 2299 err = "ca->buckets alloc failed"; 2300 goto err_buckets_alloc; 2301 } 2302 2303 ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t), 2304 prio_buckets(ca), 2), 2305 GFP_KERNEL); 2306 if (!ca->prio_buckets) { 2307 err = "ca->prio_buckets alloc failed"; 2308 goto err_prio_buckets_alloc; 2309 } 2310 2311 ca->disk_buckets = alloc_meta_bucket_pages(GFP_KERNEL, &ca->sb); 2312 if (!ca->disk_buckets) { 2313 err = "ca->disk_buckets alloc failed"; 2314 goto err_disk_buckets_alloc; 2315 } 2316 2317 ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca); 2318 2319 for_each_bucket(b, ca) 2320 atomic_set(&b->pin, 0); 2321 return 0; 2322 2323 err_disk_buckets_alloc: 2324 kfree(ca->prio_buckets); 2325 err_prio_buckets_alloc: 2326 vfree(ca->buckets); 2327 err_buckets_alloc: 2328 free_heap(&ca->heap); 2329 err_heap_alloc: 2330 free_fifo(&ca->free_inc); 2331 err_free_inc_alloc: 2332 free_fifo(&ca->free[RESERVE_NONE]); 2333 err_none_alloc: 2334 free_fifo(&ca->free[RESERVE_MOVINGGC]); 2335 err_movinggc_alloc: 2336 free_fifo(&ca->free[RESERVE_PRIO]); 2337 err_prio_alloc: 2338 free_fifo(&ca->free[RESERVE_BTREE]); 2339 err_btree_alloc: 2340 err_free: 2341 module_put(THIS_MODULE); 2342 if (err) 2343 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2344 return ret; 2345 } 2346 2347 static int register_cache(struct cache_sb *sb, struct cache_sb_disk *sb_disk, 2348 struct block_device *bdev, struct cache *ca) 2349 { 2350 const char *err = NULL; /* must be set for any error case */ 2351 int ret = 0; 2352 2353 bdevname(bdev, ca->cache_dev_name); 2354 memcpy(&ca->sb, sb, sizeof(struct cache_sb)); 2355 ca->bdev = bdev; 2356 ca->bdev->bd_holder = ca; 2357 ca->sb_disk = sb_disk; 2358 2359 if (blk_queue_discard(bdev_get_queue(bdev))) 2360 ca->discard = CACHE_DISCARD(&ca->sb); 2361 2362 ret = cache_alloc(ca); 2363 if (ret != 0) { 2364 /* 2365 * If we failed here, it means ca->kobj is not initialized yet, 2366 * kobject_put() won't be called and there is no chance to 2367 * call blkdev_put() to bdev in bch_cache_release(). So we 2368 * explicitly call blkdev_put() here. 2369 */ 2370 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 2371 if (ret == -ENOMEM) 2372 err = "cache_alloc(): -ENOMEM"; 2373 else if (ret == -EPERM) 2374 err = "cache_alloc(): cache device is too small"; 2375 else 2376 err = "cache_alloc(): unknown error"; 2377 goto err; 2378 } 2379 2380 if (kobject_add(&ca->kobj, bdev_kobj(bdev), "bcache")) { 2381 err = "error calling kobject_add"; 2382 ret = -ENOMEM; 2383 goto out; 2384 } 2385 2386 mutex_lock(&bch_register_lock); 2387 err = register_cache_set(ca); 2388 mutex_unlock(&bch_register_lock); 2389 2390 if (err) { 2391 ret = -ENODEV; 2392 goto out; 2393 } 2394 2395 pr_info("registered cache device %s\n", ca->cache_dev_name); 2396 2397 out: 2398 kobject_put(&ca->kobj); 2399 2400 err: 2401 if (err) 2402 pr_notice("error %s: %s\n", ca->cache_dev_name, err); 2403 2404 return ret; 2405 } 2406 2407 /* Global interfaces/init */ 2408 2409 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2410 const char *buffer, size_t size); 2411 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2412 struct kobj_attribute *attr, 2413 const char *buffer, size_t size); 2414 2415 kobj_attribute_write(register, register_bcache); 2416 kobj_attribute_write(register_quiet, register_bcache); 2417 kobj_attribute_write(pendings_cleanup, bch_pending_bdevs_cleanup); 2418 2419 static bool bch_is_open_backing(dev_t dev) 2420 { 2421 struct cache_set *c, *tc; 2422 struct cached_dev *dc, *t; 2423 2424 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2425 list_for_each_entry_safe(dc, t, &c->cached_devs, list) 2426 if (dc->bdev->bd_dev == dev) 2427 return true; 2428 list_for_each_entry_safe(dc, t, &uncached_devices, list) 2429 if (dc->bdev->bd_dev == dev) 2430 return true; 2431 return false; 2432 } 2433 2434 static bool bch_is_open_cache(dev_t dev) 2435 { 2436 struct cache_set *c, *tc; 2437 2438 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2439 struct cache *ca = c->cache; 2440 2441 if (ca->bdev->bd_dev == dev) 2442 return true; 2443 } 2444 2445 return false; 2446 } 2447 2448 static bool bch_is_open(dev_t dev) 2449 { 2450 return bch_is_open_cache(dev) || bch_is_open_backing(dev); 2451 } 2452 2453 struct async_reg_args { 2454 struct delayed_work reg_work; 2455 char *path; 2456 struct cache_sb *sb; 2457 struct cache_sb_disk *sb_disk; 2458 struct block_device *bdev; 2459 }; 2460 2461 static void register_bdev_worker(struct work_struct *work) 2462 { 2463 int fail = false; 2464 struct async_reg_args *args = 2465 container_of(work, struct async_reg_args, reg_work.work); 2466 struct cached_dev *dc; 2467 2468 dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2469 if (!dc) { 2470 fail = true; 2471 put_page(virt_to_page(args->sb_disk)); 2472 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2473 goto out; 2474 } 2475 2476 mutex_lock(&bch_register_lock); 2477 if (register_bdev(args->sb, args->sb_disk, args->bdev, dc) < 0) 2478 fail = true; 2479 mutex_unlock(&bch_register_lock); 2480 2481 out: 2482 if (fail) 2483 pr_info("error %s: fail to register backing device\n", 2484 args->path); 2485 kfree(args->sb); 2486 kfree(args->path); 2487 kfree(args); 2488 module_put(THIS_MODULE); 2489 } 2490 2491 static void register_cache_worker(struct work_struct *work) 2492 { 2493 int fail = false; 2494 struct async_reg_args *args = 2495 container_of(work, struct async_reg_args, reg_work.work); 2496 struct cache *ca; 2497 2498 ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2499 if (!ca) { 2500 fail = true; 2501 put_page(virt_to_page(args->sb_disk)); 2502 blkdev_put(args->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2503 goto out; 2504 } 2505 2506 /* blkdev_put() will be called in bch_cache_release() */ 2507 if (register_cache(args->sb, args->sb_disk, args->bdev, ca) != 0) 2508 fail = true; 2509 2510 out: 2511 if (fail) 2512 pr_info("error %s: fail to register cache device\n", 2513 args->path); 2514 kfree(args->sb); 2515 kfree(args->path); 2516 kfree(args); 2517 module_put(THIS_MODULE); 2518 } 2519 2520 static void register_device_aync(struct async_reg_args *args) 2521 { 2522 if (SB_IS_BDEV(args->sb)) 2523 INIT_DELAYED_WORK(&args->reg_work, register_bdev_worker); 2524 else 2525 INIT_DELAYED_WORK(&args->reg_work, register_cache_worker); 2526 2527 /* 10 jiffies is enough for a delay */ 2528 queue_delayed_work(system_wq, &args->reg_work, 10); 2529 } 2530 2531 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr, 2532 const char *buffer, size_t size) 2533 { 2534 const char *err; 2535 char *path = NULL; 2536 struct cache_sb *sb; 2537 struct cache_sb_disk *sb_disk; 2538 struct block_device *bdev; 2539 ssize_t ret; 2540 bool async_registration = false; 2541 2542 #ifdef CONFIG_BCACHE_ASYNC_REGISTRATION 2543 async_registration = true; 2544 #endif 2545 2546 ret = -EBUSY; 2547 err = "failed to reference bcache module"; 2548 if (!try_module_get(THIS_MODULE)) 2549 goto out; 2550 2551 /* For latest state of bcache_is_reboot */ 2552 smp_mb(); 2553 err = "bcache is in reboot"; 2554 if (bcache_is_reboot) 2555 goto out_module_put; 2556 2557 ret = -ENOMEM; 2558 err = "cannot allocate memory"; 2559 path = kstrndup(buffer, size, GFP_KERNEL); 2560 if (!path) 2561 goto out_module_put; 2562 2563 sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL); 2564 if (!sb) 2565 goto out_free_path; 2566 2567 ret = -EINVAL; 2568 err = "failed to open device"; 2569 bdev = blkdev_get_by_path(strim(path), 2570 FMODE_READ|FMODE_WRITE|FMODE_EXCL, 2571 sb); 2572 if (IS_ERR(bdev)) { 2573 if (bdev == ERR_PTR(-EBUSY)) { 2574 dev_t dev; 2575 2576 mutex_lock(&bch_register_lock); 2577 if (lookup_bdev(strim(path), &dev) == 0 && 2578 bch_is_open(dev)) 2579 err = "device already registered"; 2580 else 2581 err = "device busy"; 2582 mutex_unlock(&bch_register_lock); 2583 if (attr == &ksysfs_register_quiet) 2584 goto done; 2585 } 2586 goto out_free_sb; 2587 } 2588 2589 err = "failed to set blocksize"; 2590 if (set_blocksize(bdev, 4096)) 2591 goto out_blkdev_put; 2592 2593 err = read_super(sb, bdev, &sb_disk); 2594 if (err) 2595 goto out_blkdev_put; 2596 2597 err = "failed to register device"; 2598 2599 if (async_registration) { 2600 /* register in asynchronous way */ 2601 struct async_reg_args *args = 2602 kzalloc(sizeof(struct async_reg_args), GFP_KERNEL); 2603 2604 if (!args) { 2605 ret = -ENOMEM; 2606 err = "cannot allocate memory"; 2607 goto out_put_sb_page; 2608 } 2609 2610 args->path = path; 2611 args->sb = sb; 2612 args->sb_disk = sb_disk; 2613 args->bdev = bdev; 2614 register_device_aync(args); 2615 /* No wait and returns to user space */ 2616 goto async_done; 2617 } 2618 2619 if (SB_IS_BDEV(sb)) { 2620 struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL); 2621 2622 if (!dc) 2623 goto out_put_sb_page; 2624 2625 mutex_lock(&bch_register_lock); 2626 ret = register_bdev(sb, sb_disk, bdev, dc); 2627 mutex_unlock(&bch_register_lock); 2628 /* blkdev_put() will be called in cached_dev_free() */ 2629 if (ret < 0) 2630 goto out_free_sb; 2631 } else { 2632 struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL); 2633 2634 if (!ca) 2635 goto out_put_sb_page; 2636 2637 /* blkdev_put() will be called in bch_cache_release() */ 2638 if (register_cache(sb, sb_disk, bdev, ca) != 0) 2639 goto out_free_sb; 2640 } 2641 2642 done: 2643 kfree(sb); 2644 kfree(path); 2645 module_put(THIS_MODULE); 2646 async_done: 2647 return size; 2648 2649 out_put_sb_page: 2650 put_page(virt_to_page(sb_disk)); 2651 out_blkdev_put: 2652 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2653 out_free_sb: 2654 kfree(sb); 2655 out_free_path: 2656 kfree(path); 2657 path = NULL; 2658 out_module_put: 2659 module_put(THIS_MODULE); 2660 out: 2661 pr_info("error %s: %s\n", path?path:"", err); 2662 return ret; 2663 } 2664 2665 2666 struct pdev { 2667 struct list_head list; 2668 struct cached_dev *dc; 2669 }; 2670 2671 static ssize_t bch_pending_bdevs_cleanup(struct kobject *k, 2672 struct kobj_attribute *attr, 2673 const char *buffer, 2674 size_t size) 2675 { 2676 LIST_HEAD(pending_devs); 2677 ssize_t ret = size; 2678 struct cached_dev *dc, *tdc; 2679 struct pdev *pdev, *tpdev; 2680 struct cache_set *c, *tc; 2681 2682 mutex_lock(&bch_register_lock); 2683 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) { 2684 pdev = kmalloc(sizeof(struct pdev), GFP_KERNEL); 2685 if (!pdev) 2686 break; 2687 pdev->dc = dc; 2688 list_add(&pdev->list, &pending_devs); 2689 } 2690 2691 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2692 char *pdev_set_uuid = pdev->dc->sb.set_uuid; 2693 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) { 2694 char *set_uuid = c->set_uuid; 2695 2696 if (!memcmp(pdev_set_uuid, set_uuid, 16)) { 2697 list_del(&pdev->list); 2698 kfree(pdev); 2699 break; 2700 } 2701 } 2702 } 2703 mutex_unlock(&bch_register_lock); 2704 2705 list_for_each_entry_safe(pdev, tpdev, &pending_devs, list) { 2706 pr_info("delete pdev %p\n", pdev); 2707 list_del(&pdev->list); 2708 bcache_device_stop(&pdev->dc->disk); 2709 kfree(pdev); 2710 } 2711 2712 return ret; 2713 } 2714 2715 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x) 2716 { 2717 if (bcache_is_reboot) 2718 return NOTIFY_DONE; 2719 2720 if (code == SYS_DOWN || 2721 code == SYS_HALT || 2722 code == SYS_POWER_OFF) { 2723 DEFINE_WAIT(wait); 2724 unsigned long start = jiffies; 2725 bool stopped = false; 2726 2727 struct cache_set *c, *tc; 2728 struct cached_dev *dc, *tdc; 2729 2730 mutex_lock(&bch_register_lock); 2731 2732 if (bcache_is_reboot) 2733 goto out; 2734 2735 /* New registration is rejected since now */ 2736 bcache_is_reboot = true; 2737 /* 2738 * Make registering caller (if there is) on other CPU 2739 * core know bcache_is_reboot set to true earlier 2740 */ 2741 smp_mb(); 2742 2743 if (list_empty(&bch_cache_sets) && 2744 list_empty(&uncached_devices)) 2745 goto out; 2746 2747 mutex_unlock(&bch_register_lock); 2748 2749 pr_info("Stopping all devices:\n"); 2750 2751 /* 2752 * The reason bch_register_lock is not held to call 2753 * bch_cache_set_stop() and bcache_device_stop() is to 2754 * avoid potential deadlock during reboot, because cache 2755 * set or bcache device stopping process will acqurie 2756 * bch_register_lock too. 2757 * 2758 * We are safe here because bcache_is_reboot sets to 2759 * true already, register_bcache() will reject new 2760 * registration now. bcache_is_reboot also makes sure 2761 * bcache_reboot() won't be re-entered on by other thread, 2762 * so there is no race in following list iteration by 2763 * list_for_each_entry_safe(). 2764 */ 2765 list_for_each_entry_safe(c, tc, &bch_cache_sets, list) 2766 bch_cache_set_stop(c); 2767 2768 list_for_each_entry_safe(dc, tdc, &uncached_devices, list) 2769 bcache_device_stop(&dc->disk); 2770 2771 2772 /* 2773 * Give an early chance for other kthreads and 2774 * kworkers to stop themselves 2775 */ 2776 schedule(); 2777 2778 /* What's a condition variable? */ 2779 while (1) { 2780 long timeout = start + 10 * HZ - jiffies; 2781 2782 mutex_lock(&bch_register_lock); 2783 stopped = list_empty(&bch_cache_sets) && 2784 list_empty(&uncached_devices); 2785 2786 if (timeout < 0 || stopped) 2787 break; 2788 2789 prepare_to_wait(&unregister_wait, &wait, 2790 TASK_UNINTERRUPTIBLE); 2791 2792 mutex_unlock(&bch_register_lock); 2793 schedule_timeout(timeout); 2794 } 2795 2796 finish_wait(&unregister_wait, &wait); 2797 2798 if (stopped) 2799 pr_info("All devices stopped\n"); 2800 else 2801 pr_notice("Timeout waiting for devices to be closed\n"); 2802 out: 2803 mutex_unlock(&bch_register_lock); 2804 } 2805 2806 return NOTIFY_DONE; 2807 } 2808 2809 static struct notifier_block reboot = { 2810 .notifier_call = bcache_reboot, 2811 .priority = INT_MAX, /* before any real devices */ 2812 }; 2813 2814 static void bcache_exit(void) 2815 { 2816 bch_debug_exit(); 2817 bch_request_exit(); 2818 if (bcache_kobj) 2819 kobject_put(bcache_kobj); 2820 if (bcache_wq) 2821 destroy_workqueue(bcache_wq); 2822 if (bch_journal_wq) 2823 destroy_workqueue(bch_journal_wq); 2824 2825 if (bcache_major) 2826 unregister_blkdev(bcache_major, "bcache"); 2827 unregister_reboot_notifier(&reboot); 2828 mutex_destroy(&bch_register_lock); 2829 } 2830 2831 /* Check and fixup module parameters */ 2832 static void check_module_parameters(void) 2833 { 2834 if (bch_cutoff_writeback_sync == 0) 2835 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC; 2836 else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) { 2837 pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u\n", 2838 bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX); 2839 bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX; 2840 } 2841 2842 if (bch_cutoff_writeback == 0) 2843 bch_cutoff_writeback = CUTOFF_WRITEBACK; 2844 else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) { 2845 pr_warn("set bch_cutoff_writeback (%u) to max value %u\n", 2846 bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX); 2847 bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX; 2848 } 2849 2850 if (bch_cutoff_writeback > bch_cutoff_writeback_sync) { 2851 pr_warn("set bch_cutoff_writeback (%u) to %u\n", 2852 bch_cutoff_writeback, bch_cutoff_writeback_sync); 2853 bch_cutoff_writeback = bch_cutoff_writeback_sync; 2854 } 2855 } 2856 2857 static int __init bcache_init(void) 2858 { 2859 static const struct attribute *files[] = { 2860 &ksysfs_register.attr, 2861 &ksysfs_register_quiet.attr, 2862 &ksysfs_pendings_cleanup.attr, 2863 NULL 2864 }; 2865 2866 check_module_parameters(); 2867 2868 mutex_init(&bch_register_lock); 2869 init_waitqueue_head(&unregister_wait); 2870 register_reboot_notifier(&reboot); 2871 2872 bcache_major = register_blkdev(0, "bcache"); 2873 if (bcache_major < 0) { 2874 unregister_reboot_notifier(&reboot); 2875 mutex_destroy(&bch_register_lock); 2876 return bcache_major; 2877 } 2878 2879 bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0); 2880 if (!bcache_wq) 2881 goto err; 2882 2883 bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0); 2884 if (!bch_journal_wq) 2885 goto err; 2886 2887 bcache_kobj = kobject_create_and_add("bcache", fs_kobj); 2888 if (!bcache_kobj) 2889 goto err; 2890 2891 if (bch_request_init() || 2892 sysfs_create_files(bcache_kobj, files)) 2893 goto err; 2894 2895 bch_debug_init(); 2896 closure_debug_init(); 2897 2898 bcache_is_reboot = false; 2899 2900 return 0; 2901 err: 2902 bcache_exit(); 2903 return -ENOMEM; 2904 } 2905 2906 /* 2907 * Module hooks 2908 */ 2909 module_exit(bcache_exit); 2910 module_init(bcache_init); 2911 2912 module_param(bch_cutoff_writeback, uint, 0); 2913 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback"); 2914 2915 module_param(bch_cutoff_writeback_sync, uint, 0); 2916 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback"); 2917 2918 MODULE_DESCRIPTION("Bcache: a Linux block layer cache"); 2919 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>"); 2920 MODULE_LICENSE("GPL"); 2921