xref: /openbmc/linux/drivers/md/bcache/super.c (revision 22d55f02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * bcache setup/teardown code, and some metadata io - read a superblock and
4  * figure out what to do with it.
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "extents.h"
14 #include "request.h"
15 #include "writeback.h"
16 
17 #include <linux/blkdev.h>
18 #include <linux/buffer_head.h>
19 #include <linux/debugfs.h>
20 #include <linux/genhd.h>
21 #include <linux/idr.h>
22 #include <linux/kthread.h>
23 #include <linux/module.h>
24 #include <linux/random.h>
25 #include <linux/reboot.h>
26 #include <linux/sysfs.h>
27 
28 unsigned int bch_cutoff_writeback;
29 unsigned int bch_cutoff_writeback_sync;
30 
31 static const char bcache_magic[] = {
32 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
33 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
34 };
35 
36 static const char invalid_uuid[] = {
37 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
38 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
39 };
40 
41 static struct kobject *bcache_kobj;
42 struct mutex bch_register_lock;
43 LIST_HEAD(bch_cache_sets);
44 static LIST_HEAD(uncached_devices);
45 
46 static int bcache_major;
47 static DEFINE_IDA(bcache_device_idx);
48 static wait_queue_head_t unregister_wait;
49 struct workqueue_struct *bcache_wq;
50 struct workqueue_struct *bch_journal_wq;
51 
52 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
53 /* limitation of partitions number on single bcache device */
54 #define BCACHE_MINORS		128
55 /* limitation of bcache devices number on single system */
56 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
57 
58 /* Superblock */
59 
60 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
61 			      struct page **res)
62 {
63 	const char *err;
64 	struct cache_sb *s;
65 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
66 	unsigned int i;
67 
68 	if (!bh)
69 		return "IO error";
70 
71 	s = (struct cache_sb *) bh->b_data;
72 
73 	sb->offset		= le64_to_cpu(s->offset);
74 	sb->version		= le64_to_cpu(s->version);
75 
76 	memcpy(sb->magic,	s->magic, 16);
77 	memcpy(sb->uuid,	s->uuid, 16);
78 	memcpy(sb->set_uuid,	s->set_uuid, 16);
79 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
80 
81 	sb->flags		= le64_to_cpu(s->flags);
82 	sb->seq			= le64_to_cpu(s->seq);
83 	sb->last_mount		= le32_to_cpu(s->last_mount);
84 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
85 	sb->keys		= le16_to_cpu(s->keys);
86 
87 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
88 		sb->d[i] = le64_to_cpu(s->d[i]);
89 
90 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
91 		 sb->version, sb->flags, sb->seq, sb->keys);
92 
93 	err = "Not a bcache superblock";
94 	if (sb->offset != SB_SECTOR)
95 		goto err;
96 
97 	if (memcmp(sb->magic, bcache_magic, 16))
98 		goto err;
99 
100 	err = "Too many journal buckets";
101 	if (sb->keys > SB_JOURNAL_BUCKETS)
102 		goto err;
103 
104 	err = "Bad checksum";
105 	if (s->csum != csum_set(s))
106 		goto err;
107 
108 	err = "Bad UUID";
109 	if (bch_is_zero(sb->uuid, 16))
110 		goto err;
111 
112 	sb->block_size	= le16_to_cpu(s->block_size);
113 
114 	err = "Superblock block size smaller than device block size";
115 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
116 		goto err;
117 
118 	switch (sb->version) {
119 	case BCACHE_SB_VERSION_BDEV:
120 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
121 		break;
122 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
123 		sb->data_offset	= le64_to_cpu(s->data_offset);
124 
125 		err = "Bad data offset";
126 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
127 			goto err;
128 
129 		break;
130 	case BCACHE_SB_VERSION_CDEV:
131 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
132 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
133 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
134 
135 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
136 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
137 
138 		err = "Too many buckets";
139 		if (sb->nbuckets > LONG_MAX)
140 			goto err;
141 
142 		err = "Not enough buckets";
143 		if (sb->nbuckets < 1 << 7)
144 			goto err;
145 
146 		err = "Bad block/bucket size";
147 		if (!is_power_of_2(sb->block_size) ||
148 		    sb->block_size > PAGE_SECTORS ||
149 		    !is_power_of_2(sb->bucket_size) ||
150 		    sb->bucket_size < PAGE_SECTORS)
151 			goto err;
152 
153 		err = "Invalid superblock: device too small";
154 		if (get_capacity(bdev->bd_disk) <
155 		    sb->bucket_size * sb->nbuckets)
156 			goto err;
157 
158 		err = "Bad UUID";
159 		if (bch_is_zero(sb->set_uuid, 16))
160 			goto err;
161 
162 		err = "Bad cache device number in set";
163 		if (!sb->nr_in_set ||
164 		    sb->nr_in_set <= sb->nr_this_dev ||
165 		    sb->nr_in_set > MAX_CACHES_PER_SET)
166 			goto err;
167 
168 		err = "Journal buckets not sequential";
169 		for (i = 0; i < sb->keys; i++)
170 			if (sb->d[i] != sb->first_bucket + i)
171 				goto err;
172 
173 		err = "Too many journal buckets";
174 		if (sb->first_bucket + sb->keys > sb->nbuckets)
175 			goto err;
176 
177 		err = "Invalid superblock: first bucket comes before end of super";
178 		if (sb->first_bucket * sb->bucket_size < 16)
179 			goto err;
180 
181 		break;
182 	default:
183 		err = "Unsupported superblock version";
184 		goto err;
185 	}
186 
187 	sb->last_mount = (u32)ktime_get_real_seconds();
188 	err = NULL;
189 
190 	get_page(bh->b_page);
191 	*res = bh->b_page;
192 err:
193 	put_bh(bh);
194 	return err;
195 }
196 
197 static void write_bdev_super_endio(struct bio *bio)
198 {
199 	struct cached_dev *dc = bio->bi_private;
200 	/* XXX: error checking */
201 
202 	closure_put(&dc->sb_write);
203 }
204 
205 static void __write_super(struct cache_sb *sb, struct bio *bio)
206 {
207 	struct cache_sb *out = page_address(bio_first_page_all(bio));
208 	unsigned int i;
209 
210 	bio->bi_iter.bi_sector	= SB_SECTOR;
211 	bio->bi_iter.bi_size	= SB_SIZE;
212 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
213 	bch_bio_map(bio, NULL);
214 
215 	out->offset		= cpu_to_le64(sb->offset);
216 	out->version		= cpu_to_le64(sb->version);
217 
218 	memcpy(out->uuid,	sb->uuid, 16);
219 	memcpy(out->set_uuid,	sb->set_uuid, 16);
220 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
221 
222 	out->flags		= cpu_to_le64(sb->flags);
223 	out->seq		= cpu_to_le64(sb->seq);
224 
225 	out->last_mount		= cpu_to_le32(sb->last_mount);
226 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
227 	out->keys		= cpu_to_le16(sb->keys);
228 
229 	for (i = 0; i < sb->keys; i++)
230 		out->d[i] = cpu_to_le64(sb->d[i]);
231 
232 	out->csum = csum_set(out);
233 
234 	pr_debug("ver %llu, flags %llu, seq %llu",
235 		 sb->version, sb->flags, sb->seq);
236 
237 	submit_bio(bio);
238 }
239 
240 static void bch_write_bdev_super_unlock(struct closure *cl)
241 {
242 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
243 
244 	up(&dc->sb_write_mutex);
245 }
246 
247 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
248 {
249 	struct closure *cl = &dc->sb_write;
250 	struct bio *bio = &dc->sb_bio;
251 
252 	down(&dc->sb_write_mutex);
253 	closure_init(cl, parent);
254 
255 	bio_reset(bio);
256 	bio_set_dev(bio, dc->bdev);
257 	bio->bi_end_io	= write_bdev_super_endio;
258 	bio->bi_private = dc;
259 
260 	closure_get(cl);
261 	/* I/O request sent to backing device */
262 	__write_super(&dc->sb, bio);
263 
264 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
265 }
266 
267 static void write_super_endio(struct bio *bio)
268 {
269 	struct cache *ca = bio->bi_private;
270 
271 	/* is_read = 0 */
272 	bch_count_io_errors(ca, bio->bi_status, 0,
273 			    "writing superblock");
274 	closure_put(&ca->set->sb_write);
275 }
276 
277 static void bcache_write_super_unlock(struct closure *cl)
278 {
279 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
280 
281 	up(&c->sb_write_mutex);
282 }
283 
284 void bcache_write_super(struct cache_set *c)
285 {
286 	struct closure *cl = &c->sb_write;
287 	struct cache *ca;
288 	unsigned int i;
289 
290 	down(&c->sb_write_mutex);
291 	closure_init(cl, &c->cl);
292 
293 	c->sb.seq++;
294 
295 	for_each_cache(ca, c, i) {
296 		struct bio *bio = &ca->sb_bio;
297 
298 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
299 		ca->sb.seq		= c->sb.seq;
300 		ca->sb.last_mount	= c->sb.last_mount;
301 
302 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
303 
304 		bio_reset(bio);
305 		bio_set_dev(bio, ca->bdev);
306 		bio->bi_end_io	= write_super_endio;
307 		bio->bi_private = ca;
308 
309 		closure_get(cl);
310 		__write_super(&ca->sb, bio);
311 	}
312 
313 	closure_return_with_destructor(cl, bcache_write_super_unlock);
314 }
315 
316 /* UUID io */
317 
318 static void uuid_endio(struct bio *bio)
319 {
320 	struct closure *cl = bio->bi_private;
321 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
322 
323 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
324 	bch_bbio_free(bio, c);
325 	closure_put(cl);
326 }
327 
328 static void uuid_io_unlock(struct closure *cl)
329 {
330 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
331 
332 	up(&c->uuid_write_mutex);
333 }
334 
335 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
336 		    struct bkey *k, struct closure *parent)
337 {
338 	struct closure *cl = &c->uuid_write;
339 	struct uuid_entry *u;
340 	unsigned int i;
341 	char buf[80];
342 
343 	BUG_ON(!parent);
344 	down(&c->uuid_write_mutex);
345 	closure_init(cl, parent);
346 
347 	for (i = 0; i < KEY_PTRS(k); i++) {
348 		struct bio *bio = bch_bbio_alloc(c);
349 
350 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
351 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
352 
353 		bio->bi_end_io	= uuid_endio;
354 		bio->bi_private = cl;
355 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
356 		bch_bio_map(bio, c->uuids);
357 
358 		bch_submit_bbio(bio, c, k, i);
359 
360 		if (op != REQ_OP_WRITE)
361 			break;
362 	}
363 
364 	bch_extent_to_text(buf, sizeof(buf), k);
365 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
366 
367 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
368 		if (!bch_is_zero(u->uuid, 16))
369 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
370 				 u - c->uuids, u->uuid, u->label,
371 				 u->first_reg, u->last_reg, u->invalidated);
372 
373 	closure_return_with_destructor(cl, uuid_io_unlock);
374 }
375 
376 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
377 {
378 	struct bkey *k = &j->uuid_bucket;
379 
380 	if (__bch_btree_ptr_invalid(c, k))
381 		return "bad uuid pointer";
382 
383 	bkey_copy(&c->uuid_bucket, k);
384 	uuid_io(c, REQ_OP_READ, 0, k, cl);
385 
386 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
387 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
388 		struct uuid_entry	*u1 = (void *) c->uuids;
389 		int i;
390 
391 		closure_sync(cl);
392 
393 		/*
394 		 * Since the new uuid entry is bigger than the old, we have to
395 		 * convert starting at the highest memory address and work down
396 		 * in order to do it in place
397 		 */
398 
399 		for (i = c->nr_uuids - 1;
400 		     i >= 0;
401 		     --i) {
402 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
403 			memcpy(u1[i].label,	u0[i].label, 32);
404 
405 			u1[i].first_reg		= u0[i].first_reg;
406 			u1[i].last_reg		= u0[i].last_reg;
407 			u1[i].invalidated	= u0[i].invalidated;
408 
409 			u1[i].flags	= 0;
410 			u1[i].sectors	= 0;
411 		}
412 	}
413 
414 	return NULL;
415 }
416 
417 static int __uuid_write(struct cache_set *c)
418 {
419 	BKEY_PADDED(key) k;
420 	struct closure cl;
421 	struct cache *ca;
422 
423 	closure_init_stack(&cl);
424 	lockdep_assert_held(&bch_register_lock);
425 
426 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
427 		return 1;
428 
429 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
430 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
431 	closure_sync(&cl);
432 
433 	/* Only one bucket used for uuid write */
434 	ca = PTR_CACHE(c, &k.key, 0);
435 	atomic_long_add(ca->sb.bucket_size, &ca->meta_sectors_written);
436 
437 	bkey_copy(&c->uuid_bucket, &k.key);
438 	bkey_put(c, &k.key);
439 	return 0;
440 }
441 
442 int bch_uuid_write(struct cache_set *c)
443 {
444 	int ret = __uuid_write(c);
445 
446 	if (!ret)
447 		bch_journal_meta(c, NULL);
448 
449 	return ret;
450 }
451 
452 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
453 {
454 	struct uuid_entry *u;
455 
456 	for (u = c->uuids;
457 	     u < c->uuids + c->nr_uuids; u++)
458 		if (!memcmp(u->uuid, uuid, 16))
459 			return u;
460 
461 	return NULL;
462 }
463 
464 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
465 {
466 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
467 
468 	return uuid_find(c, zero_uuid);
469 }
470 
471 /*
472  * Bucket priorities/gens:
473  *
474  * For each bucket, we store on disk its
475  *   8 bit gen
476  *  16 bit priority
477  *
478  * See alloc.c for an explanation of the gen. The priority is used to implement
479  * lru (and in the future other) cache replacement policies; for most purposes
480  * it's just an opaque integer.
481  *
482  * The gens and the priorities don't have a whole lot to do with each other, and
483  * it's actually the gens that must be written out at specific times - it's no
484  * big deal if the priorities don't get written, if we lose them we just reuse
485  * buckets in suboptimal order.
486  *
487  * On disk they're stored in a packed array, and in as many buckets are required
488  * to fit them all. The buckets we use to store them form a list; the journal
489  * header points to the first bucket, the first bucket points to the second
490  * bucket, et cetera.
491  *
492  * This code is used by the allocation code; periodically (whenever it runs out
493  * of buckets to allocate from) the allocation code will invalidate some
494  * buckets, but it can't use those buckets until their new gens are safely on
495  * disk.
496  */
497 
498 static void prio_endio(struct bio *bio)
499 {
500 	struct cache *ca = bio->bi_private;
501 
502 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
503 	bch_bbio_free(bio, ca->set);
504 	closure_put(&ca->prio);
505 }
506 
507 static void prio_io(struct cache *ca, uint64_t bucket, int op,
508 		    unsigned long op_flags)
509 {
510 	struct closure *cl = &ca->prio;
511 	struct bio *bio = bch_bbio_alloc(ca->set);
512 
513 	closure_init_stack(cl);
514 
515 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
516 	bio_set_dev(bio, ca->bdev);
517 	bio->bi_iter.bi_size	= bucket_bytes(ca);
518 
519 	bio->bi_end_io	= prio_endio;
520 	bio->bi_private = ca;
521 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
522 	bch_bio_map(bio, ca->disk_buckets);
523 
524 	closure_bio_submit(ca->set, bio, &ca->prio);
525 	closure_sync(cl);
526 }
527 
528 void bch_prio_write(struct cache *ca)
529 {
530 	int i;
531 	struct bucket *b;
532 	struct closure cl;
533 
534 	closure_init_stack(&cl);
535 
536 	lockdep_assert_held(&ca->set->bucket_lock);
537 
538 	ca->disk_buckets->seq++;
539 
540 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
541 			&ca->meta_sectors_written);
542 
543 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
544 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
545 
546 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
547 		long bucket;
548 		struct prio_set *p = ca->disk_buckets;
549 		struct bucket_disk *d = p->data;
550 		struct bucket_disk *end = d + prios_per_bucket(ca);
551 
552 		for (b = ca->buckets + i * prios_per_bucket(ca);
553 		     b < ca->buckets + ca->sb.nbuckets && d < end;
554 		     b++, d++) {
555 			d->prio = cpu_to_le16(b->prio);
556 			d->gen = b->gen;
557 		}
558 
559 		p->next_bucket	= ca->prio_buckets[i + 1];
560 		p->magic	= pset_magic(&ca->sb);
561 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
562 
563 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
564 		BUG_ON(bucket == -1);
565 
566 		mutex_unlock(&ca->set->bucket_lock);
567 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
568 		mutex_lock(&ca->set->bucket_lock);
569 
570 		ca->prio_buckets[i] = bucket;
571 		atomic_dec_bug(&ca->buckets[bucket].pin);
572 	}
573 
574 	mutex_unlock(&ca->set->bucket_lock);
575 
576 	bch_journal_meta(ca->set, &cl);
577 	closure_sync(&cl);
578 
579 	mutex_lock(&ca->set->bucket_lock);
580 
581 	/*
582 	 * Don't want the old priorities to get garbage collected until after we
583 	 * finish writing the new ones, and they're journalled
584 	 */
585 	for (i = 0; i < prio_buckets(ca); i++) {
586 		if (ca->prio_last_buckets[i])
587 			__bch_bucket_free(ca,
588 				&ca->buckets[ca->prio_last_buckets[i]]);
589 
590 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 	}
592 }
593 
594 static void prio_read(struct cache *ca, uint64_t bucket)
595 {
596 	struct prio_set *p = ca->disk_buckets;
597 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
598 	struct bucket *b;
599 	unsigned int bucket_nr = 0;
600 
601 	for (b = ca->buckets;
602 	     b < ca->buckets + ca->sb.nbuckets;
603 	     b++, d++) {
604 		if (d == end) {
605 			ca->prio_buckets[bucket_nr] = bucket;
606 			ca->prio_last_buckets[bucket_nr] = bucket;
607 			bucket_nr++;
608 
609 			prio_io(ca, bucket, REQ_OP_READ, 0);
610 
611 			if (p->csum !=
612 			    bch_crc64(&p->magic, bucket_bytes(ca) - 8))
613 				pr_warn("bad csum reading priorities");
614 
615 			if (p->magic != pset_magic(&ca->sb))
616 				pr_warn("bad magic reading priorities");
617 
618 			bucket = p->next_bucket;
619 			d = p->data;
620 		}
621 
622 		b->prio = le16_to_cpu(d->prio);
623 		b->gen = b->last_gc = d->gen;
624 	}
625 }
626 
627 /* Bcache device */
628 
629 static int open_dev(struct block_device *b, fmode_t mode)
630 {
631 	struct bcache_device *d = b->bd_disk->private_data;
632 
633 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
634 		return -ENXIO;
635 
636 	closure_get(&d->cl);
637 	return 0;
638 }
639 
640 static void release_dev(struct gendisk *b, fmode_t mode)
641 {
642 	struct bcache_device *d = b->private_data;
643 
644 	closure_put(&d->cl);
645 }
646 
647 static int ioctl_dev(struct block_device *b, fmode_t mode,
648 		     unsigned int cmd, unsigned long arg)
649 {
650 	struct bcache_device *d = b->bd_disk->private_data;
651 
652 	return d->ioctl(d, mode, cmd, arg);
653 }
654 
655 static const struct block_device_operations bcache_ops = {
656 	.open		= open_dev,
657 	.release	= release_dev,
658 	.ioctl		= ioctl_dev,
659 	.owner		= THIS_MODULE,
660 };
661 
662 void bcache_device_stop(struct bcache_device *d)
663 {
664 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
665 		/*
666 		 * closure_fn set to
667 		 * - cached device: cached_dev_flush()
668 		 * - flash dev: flash_dev_flush()
669 		 */
670 		closure_queue(&d->cl);
671 }
672 
673 static void bcache_device_unlink(struct bcache_device *d)
674 {
675 	lockdep_assert_held(&bch_register_lock);
676 
677 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
678 		unsigned int i;
679 		struct cache *ca;
680 
681 		sysfs_remove_link(&d->c->kobj, d->name);
682 		sysfs_remove_link(&d->kobj, "cache");
683 
684 		for_each_cache(ca, d->c, i)
685 			bd_unlink_disk_holder(ca->bdev, d->disk);
686 	}
687 }
688 
689 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
690 			       const char *name)
691 {
692 	unsigned int i;
693 	struct cache *ca;
694 
695 	for_each_cache(ca, d->c, i)
696 		bd_link_disk_holder(ca->bdev, d->disk);
697 
698 	snprintf(d->name, BCACHEDEVNAME_SIZE,
699 		 "%s%u", name, d->id);
700 
701 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
702 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
703 	     "Couldn't create device <-> cache set symlinks");
704 
705 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
706 }
707 
708 static void bcache_device_detach(struct bcache_device *d)
709 {
710 	lockdep_assert_held(&bch_register_lock);
711 
712 	atomic_dec(&d->c->attached_dev_nr);
713 
714 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
715 		struct uuid_entry *u = d->c->uuids + d->id;
716 
717 		SET_UUID_FLASH_ONLY(u, 0);
718 		memcpy(u->uuid, invalid_uuid, 16);
719 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
720 		bch_uuid_write(d->c);
721 	}
722 
723 	bcache_device_unlink(d);
724 
725 	d->c->devices[d->id] = NULL;
726 	closure_put(&d->c->caching);
727 	d->c = NULL;
728 }
729 
730 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
731 				 unsigned int id)
732 {
733 	d->id = id;
734 	d->c = c;
735 	c->devices[id] = d;
736 
737 	if (id >= c->devices_max_used)
738 		c->devices_max_used = id + 1;
739 
740 	closure_get(&c->caching);
741 }
742 
743 static inline int first_minor_to_idx(int first_minor)
744 {
745 	return (first_minor/BCACHE_MINORS);
746 }
747 
748 static inline int idx_to_first_minor(int idx)
749 {
750 	return (idx * BCACHE_MINORS);
751 }
752 
753 static void bcache_device_free(struct bcache_device *d)
754 {
755 	lockdep_assert_held(&bch_register_lock);
756 
757 	pr_info("%s stopped", d->disk->disk_name);
758 
759 	if (d->c)
760 		bcache_device_detach(d);
761 	if (d->disk && d->disk->flags & GENHD_FL_UP)
762 		del_gendisk(d->disk);
763 	if (d->disk && d->disk->queue)
764 		blk_cleanup_queue(d->disk->queue);
765 	if (d->disk) {
766 		ida_simple_remove(&bcache_device_idx,
767 				  first_minor_to_idx(d->disk->first_minor));
768 		put_disk(d->disk);
769 	}
770 
771 	bioset_exit(&d->bio_split);
772 	kvfree(d->full_dirty_stripes);
773 	kvfree(d->stripe_sectors_dirty);
774 
775 	closure_debug_destroy(&d->cl);
776 }
777 
778 static int bcache_device_init(struct bcache_device *d, unsigned int block_size,
779 			      sector_t sectors)
780 {
781 	struct request_queue *q;
782 	const size_t max_stripes = min_t(size_t, INT_MAX,
783 					 SIZE_MAX / sizeof(atomic_t));
784 	size_t n;
785 	int idx;
786 
787 	if (!d->stripe_size)
788 		d->stripe_size = 1 << 31;
789 
790 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
791 
792 	if (!d->nr_stripes || d->nr_stripes > max_stripes) {
793 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
794 			(unsigned int)d->nr_stripes);
795 		return -ENOMEM;
796 	}
797 
798 	n = d->nr_stripes * sizeof(atomic_t);
799 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
800 	if (!d->stripe_sectors_dirty)
801 		return -ENOMEM;
802 
803 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
804 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
805 	if (!d->full_dirty_stripes)
806 		return -ENOMEM;
807 
808 	idx = ida_simple_get(&bcache_device_idx, 0,
809 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
810 	if (idx < 0)
811 		return idx;
812 
813 	if (bioset_init(&d->bio_split, 4, offsetof(struct bbio, bio),
814 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER))
815 		goto err;
816 
817 	d->disk = alloc_disk(BCACHE_MINORS);
818 	if (!d->disk)
819 		goto err;
820 
821 	set_capacity(d->disk, sectors);
822 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
823 
824 	d->disk->major		= bcache_major;
825 	d->disk->first_minor	= idx_to_first_minor(idx);
826 	d->disk->fops		= &bcache_ops;
827 	d->disk->private_data	= d;
828 
829 	q = blk_alloc_queue(GFP_KERNEL);
830 	if (!q)
831 		return -ENOMEM;
832 
833 	blk_queue_make_request(q, NULL);
834 	d->disk->queue			= q;
835 	q->queuedata			= d;
836 	q->backing_dev_info->congested_data = d;
837 	q->limits.max_hw_sectors	= UINT_MAX;
838 	q->limits.max_sectors		= UINT_MAX;
839 	q->limits.max_segment_size	= UINT_MAX;
840 	q->limits.max_segments		= BIO_MAX_PAGES;
841 	blk_queue_max_discard_sectors(q, UINT_MAX);
842 	q->limits.discard_granularity	= 512;
843 	q->limits.io_min		= block_size;
844 	q->limits.logical_block_size	= block_size;
845 	q->limits.physical_block_size	= block_size;
846 	blk_queue_flag_set(QUEUE_FLAG_NONROT, d->disk->queue);
847 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, d->disk->queue);
848 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, d->disk->queue);
849 
850 	blk_queue_write_cache(q, true, true);
851 
852 	return 0;
853 
854 err:
855 	ida_simple_remove(&bcache_device_idx, idx);
856 	return -ENOMEM;
857 
858 }
859 
860 /* Cached device */
861 
862 static void calc_cached_dev_sectors(struct cache_set *c)
863 {
864 	uint64_t sectors = 0;
865 	struct cached_dev *dc;
866 
867 	list_for_each_entry(dc, &c->cached_devs, list)
868 		sectors += bdev_sectors(dc->bdev);
869 
870 	c->cached_dev_sectors = sectors;
871 }
872 
873 #define BACKING_DEV_OFFLINE_TIMEOUT 5
874 static int cached_dev_status_update(void *arg)
875 {
876 	struct cached_dev *dc = arg;
877 	struct request_queue *q;
878 
879 	/*
880 	 * If this delayed worker is stopping outside, directly quit here.
881 	 * dc->io_disable might be set via sysfs interface, so check it
882 	 * here too.
883 	 */
884 	while (!kthread_should_stop() && !dc->io_disable) {
885 		q = bdev_get_queue(dc->bdev);
886 		if (blk_queue_dying(q))
887 			dc->offline_seconds++;
888 		else
889 			dc->offline_seconds = 0;
890 
891 		if (dc->offline_seconds >= BACKING_DEV_OFFLINE_TIMEOUT) {
892 			pr_err("%s: device offline for %d seconds",
893 			       dc->backing_dev_name,
894 			       BACKING_DEV_OFFLINE_TIMEOUT);
895 			pr_err("%s: disable I/O request due to backing "
896 			       "device offline", dc->disk.name);
897 			dc->io_disable = true;
898 			/* let others know earlier that io_disable is true */
899 			smp_mb();
900 			bcache_device_stop(&dc->disk);
901 			break;
902 		}
903 		schedule_timeout_interruptible(HZ);
904 	}
905 
906 	wait_for_kthread_stop();
907 	return 0;
908 }
909 
910 
911 void bch_cached_dev_run(struct cached_dev *dc)
912 {
913 	struct bcache_device *d = &dc->disk;
914 	char *buf = kmemdup_nul(dc->sb.label, SB_LABEL_SIZE, GFP_KERNEL);
915 	char *env[] = {
916 		"DRIVER=bcache",
917 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
918 		kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf ? : ""),
919 		NULL,
920 	};
921 
922 	if (atomic_xchg(&dc->running, 1)) {
923 		kfree(env[1]);
924 		kfree(env[2]);
925 		kfree(buf);
926 		return;
927 	}
928 
929 	if (!d->c &&
930 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
931 		struct closure cl;
932 
933 		closure_init_stack(&cl);
934 
935 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
936 		bch_write_bdev_super(dc, &cl);
937 		closure_sync(&cl);
938 	}
939 
940 	add_disk(d->disk);
941 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
942 	/*
943 	 * won't show up in the uevent file, use udevadm monitor -e instead
944 	 * only class / kset properties are persistent
945 	 */
946 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
947 	kfree(env[1]);
948 	kfree(env[2]);
949 	kfree(buf);
950 
951 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
952 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
953 		pr_debug("error creating sysfs link");
954 
955 	dc->status_update_thread = kthread_run(cached_dev_status_update,
956 					       dc, "bcache_status_update");
957 	if (IS_ERR(dc->status_update_thread)) {
958 		pr_warn("failed to create bcache_status_update kthread, "
959 			"continue to run without monitoring backing "
960 			"device status");
961 	}
962 }
963 
964 /*
965  * If BCACHE_DEV_RATE_DW_RUNNING is set, it means routine of the delayed
966  * work dc->writeback_rate_update is running. Wait until the routine
967  * quits (BCACHE_DEV_RATE_DW_RUNNING is clear), then continue to
968  * cancel it. If BCACHE_DEV_RATE_DW_RUNNING is not clear after time_out
969  * seconds, give up waiting here and continue to cancel it too.
970  */
971 static void cancel_writeback_rate_update_dwork(struct cached_dev *dc)
972 {
973 	int time_out = WRITEBACK_RATE_UPDATE_SECS_MAX * HZ;
974 
975 	do {
976 		if (!test_bit(BCACHE_DEV_RATE_DW_RUNNING,
977 			      &dc->disk.flags))
978 			break;
979 		time_out--;
980 		schedule_timeout_interruptible(1);
981 	} while (time_out > 0);
982 
983 	if (time_out == 0)
984 		pr_warn("give up waiting for dc->writeback_write_update to quit");
985 
986 	cancel_delayed_work_sync(&dc->writeback_rate_update);
987 }
988 
989 static void cached_dev_detach_finish(struct work_struct *w)
990 {
991 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
992 	struct closure cl;
993 
994 	closure_init_stack(&cl);
995 
996 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
997 	BUG_ON(refcount_read(&dc->count));
998 
999 	mutex_lock(&bch_register_lock);
1000 
1001 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1002 		cancel_writeback_rate_update_dwork(dc);
1003 
1004 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
1005 		kthread_stop(dc->writeback_thread);
1006 		dc->writeback_thread = NULL;
1007 	}
1008 
1009 	memset(&dc->sb.set_uuid, 0, 16);
1010 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
1011 
1012 	bch_write_bdev_super(dc, &cl);
1013 	closure_sync(&cl);
1014 
1015 	calc_cached_dev_sectors(dc->disk.c);
1016 	bcache_device_detach(&dc->disk);
1017 	list_move(&dc->list, &uncached_devices);
1018 
1019 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
1020 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
1021 
1022 	mutex_unlock(&bch_register_lock);
1023 
1024 	pr_info("Caching disabled for %s", dc->backing_dev_name);
1025 
1026 	/* Drop ref we took in cached_dev_detach() */
1027 	closure_put(&dc->disk.cl);
1028 }
1029 
1030 void bch_cached_dev_detach(struct cached_dev *dc)
1031 {
1032 	lockdep_assert_held(&bch_register_lock);
1033 
1034 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1035 		return;
1036 
1037 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
1038 		return;
1039 
1040 	/*
1041 	 * Block the device from being closed and freed until we're finished
1042 	 * detaching
1043 	 */
1044 	closure_get(&dc->disk.cl);
1045 
1046 	bch_writeback_queue(dc);
1047 
1048 	cached_dev_put(dc);
1049 }
1050 
1051 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
1052 			  uint8_t *set_uuid)
1053 {
1054 	uint32_t rtime = cpu_to_le32((u32)ktime_get_real_seconds());
1055 	struct uuid_entry *u;
1056 	struct cached_dev *exist_dc, *t;
1057 
1058 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
1059 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
1060 		return -ENOENT;
1061 
1062 	if (dc->disk.c) {
1063 		pr_err("Can't attach %s: already attached",
1064 		       dc->backing_dev_name);
1065 		return -EINVAL;
1066 	}
1067 
1068 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
1069 		pr_err("Can't attach %s: shutting down",
1070 		       dc->backing_dev_name);
1071 		return -EINVAL;
1072 	}
1073 
1074 	if (dc->sb.block_size < c->sb.block_size) {
1075 		/* Will die */
1076 		pr_err("Couldn't attach %s: block size less than set's block size",
1077 		       dc->backing_dev_name);
1078 		return -EINVAL;
1079 	}
1080 
1081 	/* Check whether already attached */
1082 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
1083 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
1084 			pr_err("Tried to attach %s but duplicate UUID already attached",
1085 				dc->backing_dev_name);
1086 
1087 			return -EINVAL;
1088 		}
1089 	}
1090 
1091 	u = uuid_find(c, dc->sb.uuid);
1092 
1093 	if (u &&
1094 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1095 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1096 		memcpy(u->uuid, invalid_uuid, 16);
1097 		u->invalidated = cpu_to_le32((u32)ktime_get_real_seconds());
1098 		u = NULL;
1099 	}
1100 
1101 	if (!u) {
1102 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1103 			pr_err("Couldn't find uuid for %s in set",
1104 			       dc->backing_dev_name);
1105 			return -ENOENT;
1106 		}
1107 
1108 		u = uuid_find_empty(c);
1109 		if (!u) {
1110 			pr_err("Not caching %s, no room for UUID",
1111 			       dc->backing_dev_name);
1112 			return -EINVAL;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * Deadlocks since we're called via sysfs...
1118 	 * sysfs_remove_file(&dc->kobj, &sysfs_attach);
1119 	 */
1120 
1121 	if (bch_is_zero(u->uuid, 16)) {
1122 		struct closure cl;
1123 
1124 		closure_init_stack(&cl);
1125 
1126 		memcpy(u->uuid, dc->sb.uuid, 16);
1127 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1128 		u->first_reg = u->last_reg = rtime;
1129 		bch_uuid_write(c);
1130 
1131 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1132 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1133 
1134 		bch_write_bdev_super(dc, &cl);
1135 		closure_sync(&cl);
1136 	} else {
1137 		u->last_reg = rtime;
1138 		bch_uuid_write(c);
1139 	}
1140 
1141 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1142 	list_move(&dc->list, &c->cached_devs);
1143 	calc_cached_dev_sectors(c);
1144 
1145 	/*
1146 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1147 	 * cached_dev_get()
1148 	 */
1149 	smp_wmb();
1150 	refcount_set(&dc->count, 1);
1151 
1152 	/* Block writeback thread, but spawn it */
1153 	down_write(&dc->writeback_lock);
1154 	if (bch_cached_dev_writeback_start(dc)) {
1155 		up_write(&dc->writeback_lock);
1156 		return -ENOMEM;
1157 	}
1158 
1159 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1160 		atomic_set(&dc->has_dirty, 1);
1161 		bch_writeback_queue(dc);
1162 	}
1163 
1164 	bch_sectors_dirty_init(&dc->disk);
1165 
1166 	bch_cached_dev_run(dc);
1167 	bcache_device_link(&dc->disk, c, "bdev");
1168 	atomic_inc(&c->attached_dev_nr);
1169 
1170 	/* Allow the writeback thread to proceed */
1171 	up_write(&dc->writeback_lock);
1172 
1173 	pr_info("Caching %s as %s on set %pU",
1174 		dc->backing_dev_name,
1175 		dc->disk.disk->disk_name,
1176 		dc->disk.c->sb.set_uuid);
1177 	return 0;
1178 }
1179 
1180 /* when dc->disk.kobj released */
1181 void bch_cached_dev_release(struct kobject *kobj)
1182 {
1183 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1184 					     disk.kobj);
1185 	kfree(dc);
1186 	module_put(THIS_MODULE);
1187 }
1188 
1189 static void cached_dev_free(struct closure *cl)
1190 {
1191 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1192 
1193 	mutex_lock(&bch_register_lock);
1194 
1195 	if (test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags))
1196 		cancel_writeback_rate_update_dwork(dc);
1197 
1198 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1199 		kthread_stop(dc->writeback_thread);
1200 	if (dc->writeback_write_wq)
1201 		destroy_workqueue(dc->writeback_write_wq);
1202 	if (!IS_ERR_OR_NULL(dc->status_update_thread))
1203 		kthread_stop(dc->status_update_thread);
1204 
1205 	if (atomic_read(&dc->running))
1206 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1207 	bcache_device_free(&dc->disk);
1208 	list_del(&dc->list);
1209 
1210 	mutex_unlock(&bch_register_lock);
1211 
1212 	if (!IS_ERR_OR_NULL(dc->bdev))
1213 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1214 
1215 	wake_up(&unregister_wait);
1216 
1217 	kobject_put(&dc->disk.kobj);
1218 }
1219 
1220 static void cached_dev_flush(struct closure *cl)
1221 {
1222 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1223 	struct bcache_device *d = &dc->disk;
1224 
1225 	mutex_lock(&bch_register_lock);
1226 	bcache_device_unlink(d);
1227 	mutex_unlock(&bch_register_lock);
1228 
1229 	bch_cache_accounting_destroy(&dc->accounting);
1230 	kobject_del(&d->kobj);
1231 
1232 	continue_at(cl, cached_dev_free, system_wq);
1233 }
1234 
1235 static int cached_dev_init(struct cached_dev *dc, unsigned int block_size)
1236 {
1237 	int ret;
1238 	struct io *io;
1239 	struct request_queue *q = bdev_get_queue(dc->bdev);
1240 
1241 	__module_get(THIS_MODULE);
1242 	INIT_LIST_HEAD(&dc->list);
1243 	closure_init(&dc->disk.cl, NULL);
1244 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1245 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1246 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1247 	sema_init(&dc->sb_write_mutex, 1);
1248 	INIT_LIST_HEAD(&dc->io_lru);
1249 	spin_lock_init(&dc->io_lock);
1250 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1251 
1252 	dc->sequential_cutoff		= 4 << 20;
1253 
1254 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1255 		list_add(&io->lru, &dc->io_lru);
1256 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1257 	}
1258 
1259 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1260 
1261 	if (dc->disk.stripe_size)
1262 		dc->partial_stripes_expensive =
1263 			q->limits.raid_partial_stripes_expensive;
1264 
1265 	ret = bcache_device_init(&dc->disk, block_size,
1266 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1267 	if (ret)
1268 		return ret;
1269 
1270 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1271 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1272 		    q->backing_dev_info->ra_pages);
1273 
1274 	atomic_set(&dc->io_errors, 0);
1275 	dc->io_disable = false;
1276 	dc->error_limit = DEFAULT_CACHED_DEV_ERROR_LIMIT;
1277 	/* default to auto */
1278 	dc->stop_when_cache_set_failed = BCH_CACHED_DEV_STOP_AUTO;
1279 
1280 	bch_cached_dev_request_init(dc);
1281 	bch_cached_dev_writeback_init(dc);
1282 	return 0;
1283 }
1284 
1285 /* Cached device - bcache superblock */
1286 
1287 static int register_bdev(struct cache_sb *sb, struct page *sb_page,
1288 				 struct block_device *bdev,
1289 				 struct cached_dev *dc)
1290 {
1291 	const char *err = "cannot allocate memory";
1292 	struct cache_set *c;
1293 
1294 	bdevname(bdev, dc->backing_dev_name);
1295 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1296 	dc->bdev = bdev;
1297 	dc->bdev->bd_holder = dc;
1298 
1299 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1300 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1301 	get_page(sb_page);
1302 
1303 
1304 	if (cached_dev_init(dc, sb->block_size << 9))
1305 		goto err;
1306 
1307 	err = "error creating kobject";
1308 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1309 			"bcache"))
1310 		goto err;
1311 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1312 		goto err;
1313 
1314 	pr_info("registered backing device %s", dc->backing_dev_name);
1315 
1316 	list_add(&dc->list, &uncached_devices);
1317 	/* attach to a matched cache set if it exists */
1318 	list_for_each_entry(c, &bch_cache_sets, list)
1319 		bch_cached_dev_attach(dc, c, NULL);
1320 
1321 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1322 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1323 		bch_cached_dev_run(dc);
1324 
1325 	return 0;
1326 err:
1327 	pr_notice("error %s: %s", dc->backing_dev_name, err);
1328 	bcache_device_stop(&dc->disk);
1329 	return -EIO;
1330 }
1331 
1332 /* Flash only volumes */
1333 
1334 /* When d->kobj released */
1335 void bch_flash_dev_release(struct kobject *kobj)
1336 {
1337 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1338 					       kobj);
1339 	kfree(d);
1340 }
1341 
1342 static void flash_dev_free(struct closure *cl)
1343 {
1344 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1345 
1346 	mutex_lock(&bch_register_lock);
1347 	atomic_long_sub(bcache_dev_sectors_dirty(d),
1348 			&d->c->flash_dev_dirty_sectors);
1349 	bcache_device_free(d);
1350 	mutex_unlock(&bch_register_lock);
1351 	kobject_put(&d->kobj);
1352 }
1353 
1354 static void flash_dev_flush(struct closure *cl)
1355 {
1356 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1357 
1358 	mutex_lock(&bch_register_lock);
1359 	bcache_device_unlink(d);
1360 	mutex_unlock(&bch_register_lock);
1361 	kobject_del(&d->kobj);
1362 	continue_at(cl, flash_dev_free, system_wq);
1363 }
1364 
1365 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1366 {
1367 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1368 					  GFP_KERNEL);
1369 	if (!d)
1370 		return -ENOMEM;
1371 
1372 	closure_init(&d->cl, NULL);
1373 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1374 
1375 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1376 
1377 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1378 		goto err;
1379 
1380 	bcache_device_attach(d, c, u - c->uuids);
1381 	bch_sectors_dirty_init(d);
1382 	bch_flash_dev_request_init(d);
1383 	add_disk(d->disk);
1384 
1385 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1386 		goto err;
1387 
1388 	bcache_device_link(d, c, "volume");
1389 
1390 	return 0;
1391 err:
1392 	kobject_put(&d->kobj);
1393 	return -ENOMEM;
1394 }
1395 
1396 static int flash_devs_run(struct cache_set *c)
1397 {
1398 	int ret = 0;
1399 	struct uuid_entry *u;
1400 
1401 	for (u = c->uuids;
1402 	     u < c->uuids + c->nr_uuids && !ret;
1403 	     u++)
1404 		if (UUID_FLASH_ONLY(u))
1405 			ret = flash_dev_run(c, u);
1406 
1407 	return ret;
1408 }
1409 
1410 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1411 {
1412 	struct uuid_entry *u;
1413 
1414 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1415 		return -EINTR;
1416 
1417 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1418 		return -EPERM;
1419 
1420 	u = uuid_find_empty(c);
1421 	if (!u) {
1422 		pr_err("Can't create volume, no room for UUID");
1423 		return -EINVAL;
1424 	}
1425 
1426 	get_random_bytes(u->uuid, 16);
1427 	memset(u->label, 0, 32);
1428 	u->first_reg = u->last_reg = cpu_to_le32((u32)ktime_get_real_seconds());
1429 
1430 	SET_UUID_FLASH_ONLY(u, 1);
1431 	u->sectors = size >> 9;
1432 
1433 	bch_uuid_write(c);
1434 
1435 	return flash_dev_run(c, u);
1436 }
1437 
1438 bool bch_cached_dev_error(struct cached_dev *dc)
1439 {
1440 	struct cache_set *c;
1441 
1442 	if (!dc || test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
1443 		return false;
1444 
1445 	dc->io_disable = true;
1446 	/* make others know io_disable is true earlier */
1447 	smp_mb();
1448 
1449 	pr_err("stop %s: too many IO errors on backing device %s\n",
1450 		dc->disk.disk->disk_name, dc->backing_dev_name);
1451 
1452 	/*
1453 	 * If the cached device is still attached to a cache set,
1454 	 * even dc->io_disable is true and no more I/O requests
1455 	 * accepted, cache device internal I/O (writeback scan or
1456 	 * garbage collection) may still prevent bcache device from
1457 	 * being stopped. So here CACHE_SET_IO_DISABLE should be
1458 	 * set to c->flags too, to make the internal I/O to cache
1459 	 * device rejected and stopped immediately.
1460 	 * If c is NULL, that means the bcache device is not attached
1461 	 * to any cache set, then no CACHE_SET_IO_DISABLE bit to set.
1462 	 */
1463 	c = dc->disk.c;
1464 	if (c && test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1465 		pr_info("CACHE_SET_IO_DISABLE already set");
1466 
1467 	bcache_device_stop(&dc->disk);
1468 	return true;
1469 }
1470 
1471 /* Cache set */
1472 
1473 __printf(2, 3)
1474 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1475 {
1476 	va_list args;
1477 
1478 	if (c->on_error != ON_ERROR_PANIC &&
1479 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1480 		return false;
1481 
1482 	if (test_and_set_bit(CACHE_SET_IO_DISABLE, &c->flags))
1483 		pr_info("CACHE_SET_IO_DISABLE already set");
1484 
1485 	/*
1486 	 * XXX: we can be called from atomic context
1487 	 * acquire_console_sem();
1488 	 */
1489 
1490 	pr_err("bcache: error on %pU: ", c->sb.set_uuid);
1491 
1492 	va_start(args, fmt);
1493 	vprintk(fmt, args);
1494 	va_end(args);
1495 
1496 	pr_err(", disabling caching\n");
1497 
1498 	if (c->on_error == ON_ERROR_PANIC)
1499 		panic("panic forced after error\n");
1500 
1501 	bch_cache_set_unregister(c);
1502 	return true;
1503 }
1504 
1505 /* When c->kobj released */
1506 void bch_cache_set_release(struct kobject *kobj)
1507 {
1508 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1509 
1510 	kfree(c);
1511 	module_put(THIS_MODULE);
1512 }
1513 
1514 static void cache_set_free(struct closure *cl)
1515 {
1516 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1517 	struct cache *ca;
1518 	unsigned int i;
1519 
1520 	debugfs_remove(c->debug);
1521 
1522 	bch_open_buckets_free(c);
1523 	bch_btree_cache_free(c);
1524 	bch_journal_free(c);
1525 
1526 	mutex_lock(&bch_register_lock);
1527 	for_each_cache(ca, c, i)
1528 		if (ca) {
1529 			ca->set = NULL;
1530 			c->cache[ca->sb.nr_this_dev] = NULL;
1531 			kobject_put(&ca->kobj);
1532 		}
1533 
1534 	bch_bset_sort_state_free(&c->sort);
1535 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1536 
1537 	if (c->moving_gc_wq)
1538 		destroy_workqueue(c->moving_gc_wq);
1539 	bioset_exit(&c->bio_split);
1540 	mempool_exit(&c->fill_iter);
1541 	mempool_exit(&c->bio_meta);
1542 	mempool_exit(&c->search);
1543 	kfree(c->devices);
1544 
1545 	list_del(&c->list);
1546 	mutex_unlock(&bch_register_lock);
1547 
1548 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1549 	wake_up(&unregister_wait);
1550 
1551 	closure_debug_destroy(&c->cl);
1552 	kobject_put(&c->kobj);
1553 }
1554 
1555 static void cache_set_flush(struct closure *cl)
1556 {
1557 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1558 	struct cache *ca;
1559 	struct btree *b;
1560 	unsigned int i;
1561 
1562 	bch_cache_accounting_destroy(&c->accounting);
1563 
1564 	kobject_put(&c->internal);
1565 	kobject_del(&c->kobj);
1566 
1567 	if (c->gc_thread)
1568 		kthread_stop(c->gc_thread);
1569 
1570 	if (!IS_ERR_OR_NULL(c->root))
1571 		list_add(&c->root->list, &c->btree_cache);
1572 
1573 	/* Should skip this if we're unregistering because of an error */
1574 	list_for_each_entry(b, &c->btree_cache, list) {
1575 		mutex_lock(&b->write_lock);
1576 		if (btree_node_dirty(b))
1577 			__bch_btree_node_write(b, NULL);
1578 		mutex_unlock(&b->write_lock);
1579 	}
1580 
1581 	for_each_cache(ca, c, i)
1582 		if (ca->alloc_thread)
1583 			kthread_stop(ca->alloc_thread);
1584 
1585 	if (c->journal.cur) {
1586 		cancel_delayed_work_sync(&c->journal.work);
1587 		/* flush last journal entry if needed */
1588 		c->journal.work.work.func(&c->journal.work.work);
1589 	}
1590 
1591 	closure_return(cl);
1592 }
1593 
1594 /*
1595  * This function is only called when CACHE_SET_IO_DISABLE is set, which means
1596  * cache set is unregistering due to too many I/O errors. In this condition,
1597  * the bcache device might be stopped, it depends on stop_when_cache_set_failed
1598  * value and whether the broken cache has dirty data:
1599  *
1600  * dc->stop_when_cache_set_failed    dc->has_dirty   stop bcache device
1601  *  BCH_CACHED_STOP_AUTO               0               NO
1602  *  BCH_CACHED_STOP_AUTO               1               YES
1603  *  BCH_CACHED_DEV_STOP_ALWAYS         0               YES
1604  *  BCH_CACHED_DEV_STOP_ALWAYS         1               YES
1605  *
1606  * The expected behavior is, if stop_when_cache_set_failed is configured to
1607  * "auto" via sysfs interface, the bcache device will not be stopped if the
1608  * backing device is clean on the broken cache device.
1609  */
1610 static void conditional_stop_bcache_device(struct cache_set *c,
1611 					   struct bcache_device *d,
1612 					   struct cached_dev *dc)
1613 {
1614 	if (dc->stop_when_cache_set_failed == BCH_CACHED_DEV_STOP_ALWAYS) {
1615 		pr_warn("stop_when_cache_set_failed of %s is \"always\", stop it for failed cache set %pU.",
1616 			d->disk->disk_name, c->sb.set_uuid);
1617 		bcache_device_stop(d);
1618 	} else if (atomic_read(&dc->has_dirty)) {
1619 		/*
1620 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1621 		 * and dc->has_dirty == 1
1622 		 */
1623 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is dirty, stop it to avoid potential data corruption.",
1624 			d->disk->disk_name);
1625 		/*
1626 		 * There might be a small time gap that cache set is
1627 		 * released but bcache device is not. Inside this time
1628 		 * gap, regular I/O requests will directly go into
1629 		 * backing device as no cache set attached to. This
1630 		 * behavior may also introduce potential inconsistence
1631 		 * data in writeback mode while cache is dirty.
1632 		 * Therefore before calling bcache_device_stop() due
1633 		 * to a broken cache device, dc->io_disable should be
1634 		 * explicitly set to true.
1635 		 */
1636 		dc->io_disable = true;
1637 		/* make others know io_disable is true earlier */
1638 		smp_mb();
1639 		bcache_device_stop(d);
1640 	} else {
1641 		/*
1642 		 * dc->stop_when_cache_set_failed == BCH_CACHED_STOP_AUTO
1643 		 * and dc->has_dirty == 0
1644 		 */
1645 		pr_warn("stop_when_cache_set_failed of %s is \"auto\" and cache is clean, keep it alive.",
1646 			d->disk->disk_name);
1647 	}
1648 }
1649 
1650 static void __cache_set_unregister(struct closure *cl)
1651 {
1652 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1653 	struct cached_dev *dc;
1654 	struct bcache_device *d;
1655 	size_t i;
1656 
1657 	mutex_lock(&bch_register_lock);
1658 
1659 	for (i = 0; i < c->devices_max_used; i++) {
1660 		d = c->devices[i];
1661 		if (!d)
1662 			continue;
1663 
1664 		if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1665 		    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1666 			dc = container_of(d, struct cached_dev, disk);
1667 			bch_cached_dev_detach(dc);
1668 			if (test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1669 				conditional_stop_bcache_device(c, d, dc);
1670 		} else {
1671 			bcache_device_stop(d);
1672 		}
1673 	}
1674 
1675 	mutex_unlock(&bch_register_lock);
1676 
1677 	continue_at(cl, cache_set_flush, system_wq);
1678 }
1679 
1680 void bch_cache_set_stop(struct cache_set *c)
1681 {
1682 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1683 		/* closure_fn set to __cache_set_unregister() */
1684 		closure_queue(&c->caching);
1685 }
1686 
1687 void bch_cache_set_unregister(struct cache_set *c)
1688 {
1689 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1690 	bch_cache_set_stop(c);
1691 }
1692 
1693 #define alloc_bucket_pages(gfp, c)			\
1694 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1695 
1696 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1697 {
1698 	int iter_size;
1699 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1700 
1701 	if (!c)
1702 		return NULL;
1703 
1704 	__module_get(THIS_MODULE);
1705 	closure_init(&c->cl, NULL);
1706 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1707 
1708 	closure_init(&c->caching, &c->cl);
1709 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1710 
1711 	/* Maybe create continue_at_noreturn() and use it here? */
1712 	closure_set_stopped(&c->cl);
1713 	closure_put(&c->cl);
1714 
1715 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1716 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1717 
1718 	bch_cache_accounting_init(&c->accounting, &c->cl);
1719 
1720 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1721 	c->sb.block_size	= sb->block_size;
1722 	c->sb.bucket_size	= sb->bucket_size;
1723 	c->sb.nr_in_set		= sb->nr_in_set;
1724 	c->sb.last_mount	= sb->last_mount;
1725 	c->bucket_bits		= ilog2(sb->bucket_size);
1726 	c->block_bits		= ilog2(sb->block_size);
1727 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1728 	c->devices_max_used	= 0;
1729 	atomic_set(&c->attached_dev_nr, 0);
1730 	c->btree_pages		= bucket_pages(c);
1731 	if (c->btree_pages > BTREE_MAX_PAGES)
1732 		c->btree_pages = max_t(int, c->btree_pages / 4,
1733 				       BTREE_MAX_PAGES);
1734 
1735 	sema_init(&c->sb_write_mutex, 1);
1736 	mutex_init(&c->bucket_lock);
1737 	init_waitqueue_head(&c->btree_cache_wait);
1738 	init_waitqueue_head(&c->bucket_wait);
1739 	init_waitqueue_head(&c->gc_wait);
1740 	sema_init(&c->uuid_write_mutex, 1);
1741 
1742 	spin_lock_init(&c->btree_gc_time.lock);
1743 	spin_lock_init(&c->btree_split_time.lock);
1744 	spin_lock_init(&c->btree_read_time.lock);
1745 
1746 	bch_moving_init_cache_set(c);
1747 
1748 	INIT_LIST_HEAD(&c->list);
1749 	INIT_LIST_HEAD(&c->cached_devs);
1750 	INIT_LIST_HEAD(&c->btree_cache);
1751 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1752 	INIT_LIST_HEAD(&c->btree_cache_freed);
1753 	INIT_LIST_HEAD(&c->data_buckets);
1754 
1755 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1756 		sizeof(struct btree_iter_set);
1757 
1758 	if (!(c->devices = kcalloc(c->nr_uuids, sizeof(void *), GFP_KERNEL)) ||
1759 	    mempool_init_slab_pool(&c->search, 32, bch_search_cache) ||
1760 	    mempool_init_kmalloc_pool(&c->bio_meta, 2,
1761 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1762 				bucket_pages(c)) ||
1763 	    mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
1764 	    bioset_init(&c->bio_split, 4, offsetof(struct bbio, bio),
1765 			BIOSET_NEED_BVECS|BIOSET_NEED_RESCUER) ||
1766 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1767 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1768 						WQ_MEM_RECLAIM, 0)) ||
1769 	    bch_journal_alloc(c) ||
1770 	    bch_btree_cache_alloc(c) ||
1771 	    bch_open_buckets_alloc(c) ||
1772 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1773 		goto err;
1774 
1775 	c->congested_read_threshold_us	= 2000;
1776 	c->congested_write_threshold_us	= 20000;
1777 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1778 	WARN_ON(test_and_clear_bit(CACHE_SET_IO_DISABLE, &c->flags));
1779 
1780 	return c;
1781 err:
1782 	bch_cache_set_unregister(c);
1783 	return NULL;
1784 }
1785 
1786 static int run_cache_set(struct cache_set *c)
1787 {
1788 	const char *err = "cannot allocate memory";
1789 	struct cached_dev *dc, *t;
1790 	struct cache *ca;
1791 	struct closure cl;
1792 	unsigned int i;
1793 	LIST_HEAD(journal);
1794 	struct journal_replay *l;
1795 
1796 	closure_init_stack(&cl);
1797 
1798 	for_each_cache(ca, c, i)
1799 		c->nbuckets += ca->sb.nbuckets;
1800 	set_gc_sectors(c);
1801 
1802 	if (CACHE_SYNC(&c->sb)) {
1803 		struct bkey *k;
1804 		struct jset *j;
1805 
1806 		err = "cannot allocate memory for journal";
1807 		if (bch_journal_read(c, &journal))
1808 			goto err;
1809 
1810 		pr_debug("btree_journal_read() done");
1811 
1812 		err = "no journal entries found";
1813 		if (list_empty(&journal))
1814 			goto err;
1815 
1816 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1817 
1818 		err = "IO error reading priorities";
1819 		for_each_cache(ca, c, i)
1820 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1821 
1822 		/*
1823 		 * If prio_read() fails it'll call cache_set_error and we'll
1824 		 * tear everything down right away, but if we perhaps checked
1825 		 * sooner we could avoid journal replay.
1826 		 */
1827 
1828 		k = &j->btree_root;
1829 
1830 		err = "bad btree root";
1831 		if (__bch_btree_ptr_invalid(c, k))
1832 			goto err;
1833 
1834 		err = "error reading btree root";
1835 		c->root = bch_btree_node_get(c, NULL, k,
1836 					     j->btree_level,
1837 					     true, NULL);
1838 		if (IS_ERR_OR_NULL(c->root))
1839 			goto err;
1840 
1841 		list_del_init(&c->root->list);
1842 		rw_unlock(true, c->root);
1843 
1844 		err = uuid_read(c, j, &cl);
1845 		if (err)
1846 			goto err;
1847 
1848 		err = "error in recovery";
1849 		if (bch_btree_check(c))
1850 			goto err;
1851 
1852 		bch_journal_mark(c, &journal);
1853 		bch_initial_gc_finish(c);
1854 		pr_debug("btree_check() done");
1855 
1856 		/*
1857 		 * bcache_journal_next() can't happen sooner, or
1858 		 * btree_gc_finish() will give spurious errors about last_gc >
1859 		 * gc_gen - this is a hack but oh well.
1860 		 */
1861 		bch_journal_next(&c->journal);
1862 
1863 		err = "error starting allocator thread";
1864 		for_each_cache(ca, c, i)
1865 			if (bch_cache_allocator_start(ca))
1866 				goto err;
1867 
1868 		/*
1869 		 * First place it's safe to allocate: btree_check() and
1870 		 * btree_gc_finish() have to run before we have buckets to
1871 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1872 		 * entry to be written so bcache_journal_next() has to be called
1873 		 * first.
1874 		 *
1875 		 * If the uuids were in the old format we have to rewrite them
1876 		 * before the next journal entry is written:
1877 		 */
1878 		if (j->version < BCACHE_JSET_VERSION_UUID)
1879 			__uuid_write(c);
1880 
1881 		err = "bcache: replay journal failed";
1882 		if (bch_journal_replay(c, &journal))
1883 			goto err;
1884 	} else {
1885 		pr_notice("invalidating existing data");
1886 
1887 		for_each_cache(ca, c, i) {
1888 			unsigned int j;
1889 
1890 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1891 					      2, SB_JOURNAL_BUCKETS);
1892 
1893 			for (j = 0; j < ca->sb.keys; j++)
1894 				ca->sb.d[j] = ca->sb.first_bucket + j;
1895 		}
1896 
1897 		bch_initial_gc_finish(c);
1898 
1899 		err = "error starting allocator thread";
1900 		for_each_cache(ca, c, i)
1901 			if (bch_cache_allocator_start(ca))
1902 				goto err;
1903 
1904 		mutex_lock(&c->bucket_lock);
1905 		for_each_cache(ca, c, i)
1906 			bch_prio_write(ca);
1907 		mutex_unlock(&c->bucket_lock);
1908 
1909 		err = "cannot allocate new UUID bucket";
1910 		if (__uuid_write(c))
1911 			goto err;
1912 
1913 		err = "cannot allocate new btree root";
1914 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1915 		if (IS_ERR_OR_NULL(c->root))
1916 			goto err;
1917 
1918 		mutex_lock(&c->root->write_lock);
1919 		bkey_copy_key(&c->root->key, &MAX_KEY);
1920 		bch_btree_node_write(c->root, &cl);
1921 		mutex_unlock(&c->root->write_lock);
1922 
1923 		bch_btree_set_root(c->root);
1924 		rw_unlock(true, c->root);
1925 
1926 		/*
1927 		 * We don't want to write the first journal entry until
1928 		 * everything is set up - fortunately journal entries won't be
1929 		 * written until the SET_CACHE_SYNC() here:
1930 		 */
1931 		SET_CACHE_SYNC(&c->sb, true);
1932 
1933 		bch_journal_next(&c->journal);
1934 		bch_journal_meta(c, &cl);
1935 	}
1936 
1937 	err = "error starting gc thread";
1938 	if (bch_gc_thread_start(c))
1939 		goto err;
1940 
1941 	closure_sync(&cl);
1942 	c->sb.last_mount = (u32)ktime_get_real_seconds();
1943 	bcache_write_super(c);
1944 
1945 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1946 		bch_cached_dev_attach(dc, c, NULL);
1947 
1948 	flash_devs_run(c);
1949 
1950 	set_bit(CACHE_SET_RUNNING, &c->flags);
1951 	return 0;
1952 err:
1953 	while (!list_empty(&journal)) {
1954 		l = list_first_entry(&journal, struct journal_replay, list);
1955 		list_del(&l->list);
1956 		kfree(l);
1957 	}
1958 
1959 	closure_sync(&cl);
1960 	/* XXX: test this, it's broken */
1961 	bch_cache_set_error(c, "%s", err);
1962 
1963 	return -EIO;
1964 }
1965 
1966 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1967 {
1968 	return ca->sb.block_size	== c->sb.block_size &&
1969 		ca->sb.bucket_size	== c->sb.bucket_size &&
1970 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1971 }
1972 
1973 static const char *register_cache_set(struct cache *ca)
1974 {
1975 	char buf[12];
1976 	const char *err = "cannot allocate memory";
1977 	struct cache_set *c;
1978 
1979 	list_for_each_entry(c, &bch_cache_sets, list)
1980 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1981 			if (c->cache[ca->sb.nr_this_dev])
1982 				return "duplicate cache set member";
1983 
1984 			if (!can_attach_cache(ca, c))
1985 				return "cache sb does not match set";
1986 
1987 			if (!CACHE_SYNC(&ca->sb))
1988 				SET_CACHE_SYNC(&c->sb, false);
1989 
1990 			goto found;
1991 		}
1992 
1993 	c = bch_cache_set_alloc(&ca->sb);
1994 	if (!c)
1995 		return err;
1996 
1997 	err = "error creating kobject";
1998 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1999 	    kobject_add(&c->internal, &c->kobj, "internal"))
2000 		goto err;
2001 
2002 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
2003 		goto err;
2004 
2005 	bch_debug_init_cache_set(c);
2006 
2007 	list_add(&c->list, &bch_cache_sets);
2008 found:
2009 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
2010 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
2011 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
2012 		goto err;
2013 
2014 	if (ca->sb.seq > c->sb.seq) {
2015 		c->sb.version		= ca->sb.version;
2016 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
2017 		c->sb.flags             = ca->sb.flags;
2018 		c->sb.seq		= ca->sb.seq;
2019 		pr_debug("set version = %llu", c->sb.version);
2020 	}
2021 
2022 	kobject_get(&ca->kobj);
2023 	ca->set = c;
2024 	ca->set->cache[ca->sb.nr_this_dev] = ca;
2025 	c->cache_by_alloc[c->caches_loaded++] = ca;
2026 
2027 	if (c->caches_loaded == c->sb.nr_in_set) {
2028 		err = "failed to run cache set";
2029 		if (run_cache_set(c) < 0)
2030 			goto err;
2031 	}
2032 
2033 	return NULL;
2034 err:
2035 	bch_cache_set_unregister(c);
2036 	return err;
2037 }
2038 
2039 /* Cache device */
2040 
2041 /* When ca->kobj released */
2042 void bch_cache_release(struct kobject *kobj)
2043 {
2044 	struct cache *ca = container_of(kobj, struct cache, kobj);
2045 	unsigned int i;
2046 
2047 	if (ca->set) {
2048 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
2049 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
2050 	}
2051 
2052 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
2053 	kfree(ca->prio_buckets);
2054 	vfree(ca->buckets);
2055 
2056 	free_heap(&ca->heap);
2057 	free_fifo(&ca->free_inc);
2058 
2059 	for (i = 0; i < RESERVE_NR; i++)
2060 		free_fifo(&ca->free[i]);
2061 
2062 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
2063 		put_page(bio_first_page_all(&ca->sb_bio));
2064 
2065 	if (!IS_ERR_OR_NULL(ca->bdev))
2066 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2067 
2068 	kfree(ca);
2069 	module_put(THIS_MODULE);
2070 }
2071 
2072 static int cache_alloc(struct cache *ca)
2073 {
2074 	size_t free;
2075 	size_t btree_buckets;
2076 	struct bucket *b;
2077 	int ret = -ENOMEM;
2078 	const char *err = NULL;
2079 
2080 	__module_get(THIS_MODULE);
2081 	kobject_init(&ca->kobj, &bch_cache_ktype);
2082 
2083 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
2084 
2085 	/*
2086 	 * when ca->sb.njournal_buckets is not zero, journal exists,
2087 	 * and in bch_journal_replay(), tree node may split,
2088 	 * so bucket of RESERVE_BTREE type is needed,
2089 	 * the worst situation is all journal buckets are valid journal,
2090 	 * and all the keys need to replay,
2091 	 * so the number of  RESERVE_BTREE type buckets should be as much
2092 	 * as journal buckets
2093 	 */
2094 	btree_buckets = ca->sb.njournal_buckets ?: 8;
2095 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
2096 	if (!free) {
2097 		ret = -EPERM;
2098 		err = "ca->sb.nbuckets is too small";
2099 		goto err_free;
2100 	}
2101 
2102 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets,
2103 						GFP_KERNEL)) {
2104 		err = "ca->free[RESERVE_BTREE] alloc failed";
2105 		goto err_btree_alloc;
2106 	}
2107 
2108 	if (!init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca),
2109 							GFP_KERNEL)) {
2110 		err = "ca->free[RESERVE_PRIO] alloc failed";
2111 		goto err_prio_alloc;
2112 	}
2113 
2114 	if (!init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL)) {
2115 		err = "ca->free[RESERVE_MOVINGGC] alloc failed";
2116 		goto err_movinggc_alloc;
2117 	}
2118 
2119 	if (!init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL)) {
2120 		err = "ca->free[RESERVE_NONE] alloc failed";
2121 		goto err_none_alloc;
2122 	}
2123 
2124 	if (!init_fifo(&ca->free_inc, free << 2, GFP_KERNEL)) {
2125 		err = "ca->free_inc alloc failed";
2126 		goto err_free_inc_alloc;
2127 	}
2128 
2129 	if (!init_heap(&ca->heap, free << 3, GFP_KERNEL)) {
2130 		err = "ca->heap alloc failed";
2131 		goto err_heap_alloc;
2132 	}
2133 
2134 	ca->buckets = vzalloc(array_size(sizeof(struct bucket),
2135 			      ca->sb.nbuckets));
2136 	if (!ca->buckets) {
2137 		err = "ca->buckets alloc failed";
2138 		goto err_buckets_alloc;
2139 	}
2140 
2141 	ca->prio_buckets = kzalloc(array3_size(sizeof(uint64_t),
2142 				   prio_buckets(ca), 2),
2143 				   GFP_KERNEL);
2144 	if (!ca->prio_buckets) {
2145 		err = "ca->prio_buckets alloc failed";
2146 		goto err_prio_buckets_alloc;
2147 	}
2148 
2149 	ca->disk_buckets = alloc_bucket_pages(GFP_KERNEL, ca);
2150 	if (!ca->disk_buckets) {
2151 		err = "ca->disk_buckets alloc failed";
2152 		goto err_disk_buckets_alloc;
2153 	}
2154 
2155 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
2156 
2157 	for_each_bucket(b, ca)
2158 		atomic_set(&b->pin, 0);
2159 	return 0;
2160 
2161 err_disk_buckets_alloc:
2162 	kfree(ca->prio_buckets);
2163 err_prio_buckets_alloc:
2164 	vfree(ca->buckets);
2165 err_buckets_alloc:
2166 	free_heap(&ca->heap);
2167 err_heap_alloc:
2168 	free_fifo(&ca->free_inc);
2169 err_free_inc_alloc:
2170 	free_fifo(&ca->free[RESERVE_NONE]);
2171 err_none_alloc:
2172 	free_fifo(&ca->free[RESERVE_MOVINGGC]);
2173 err_movinggc_alloc:
2174 	free_fifo(&ca->free[RESERVE_PRIO]);
2175 err_prio_alloc:
2176 	free_fifo(&ca->free[RESERVE_BTREE]);
2177 err_btree_alloc:
2178 err_free:
2179 	module_put(THIS_MODULE);
2180 	if (err)
2181 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2182 	return ret;
2183 }
2184 
2185 static int register_cache(struct cache_sb *sb, struct page *sb_page,
2186 				struct block_device *bdev, struct cache *ca)
2187 {
2188 	const char *err = NULL; /* must be set for any error case */
2189 	int ret = 0;
2190 
2191 	bdevname(bdev, ca->cache_dev_name);
2192 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
2193 	ca->bdev = bdev;
2194 	ca->bdev->bd_holder = ca;
2195 
2196 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
2197 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
2198 	get_page(sb_page);
2199 
2200 	if (blk_queue_discard(bdev_get_queue(bdev)))
2201 		ca->discard = CACHE_DISCARD(&ca->sb);
2202 
2203 	ret = cache_alloc(ca);
2204 	if (ret != 0) {
2205 		/*
2206 		 * If we failed here, it means ca->kobj is not initialized yet,
2207 		 * kobject_put() won't be called and there is no chance to
2208 		 * call blkdev_put() to bdev in bch_cache_release(). So we
2209 		 * explicitly call blkdev_put() here.
2210 		 */
2211 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2212 		if (ret == -ENOMEM)
2213 			err = "cache_alloc(): -ENOMEM";
2214 		else if (ret == -EPERM)
2215 			err = "cache_alloc(): cache device is too small";
2216 		else
2217 			err = "cache_alloc(): unknown error";
2218 		goto err;
2219 	}
2220 
2221 	if (kobject_add(&ca->kobj,
2222 			&part_to_dev(bdev->bd_part)->kobj,
2223 			"bcache")) {
2224 		err = "error calling kobject_add";
2225 		ret = -ENOMEM;
2226 		goto out;
2227 	}
2228 
2229 	mutex_lock(&bch_register_lock);
2230 	err = register_cache_set(ca);
2231 	mutex_unlock(&bch_register_lock);
2232 
2233 	if (err) {
2234 		ret = -ENODEV;
2235 		goto out;
2236 	}
2237 
2238 	pr_info("registered cache device %s", ca->cache_dev_name);
2239 
2240 out:
2241 	kobject_put(&ca->kobj);
2242 
2243 err:
2244 	if (err)
2245 		pr_notice("error %s: %s", ca->cache_dev_name, err);
2246 
2247 	return ret;
2248 }
2249 
2250 /* Global interfaces/init */
2251 
2252 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2253 			       const char *buffer, size_t size);
2254 
2255 kobj_attribute_write(register,		register_bcache);
2256 kobj_attribute_write(register_quiet,	register_bcache);
2257 
2258 static bool bch_is_open_backing(struct block_device *bdev)
2259 {
2260 	struct cache_set *c, *tc;
2261 	struct cached_dev *dc, *t;
2262 
2263 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2264 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
2265 			if (dc->bdev == bdev)
2266 				return true;
2267 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
2268 		if (dc->bdev == bdev)
2269 			return true;
2270 	return false;
2271 }
2272 
2273 static bool bch_is_open_cache(struct block_device *bdev)
2274 {
2275 	struct cache_set *c, *tc;
2276 	struct cache *ca;
2277 	unsigned int i;
2278 
2279 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2280 		for_each_cache(ca, c, i)
2281 			if (ca->bdev == bdev)
2282 				return true;
2283 	return false;
2284 }
2285 
2286 static bool bch_is_open(struct block_device *bdev)
2287 {
2288 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
2289 }
2290 
2291 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
2292 			       const char *buffer, size_t size)
2293 {
2294 	ssize_t ret = -EINVAL;
2295 	const char *err = "cannot allocate memory";
2296 	char *path = NULL;
2297 	struct cache_sb *sb = NULL;
2298 	struct block_device *bdev = NULL;
2299 	struct page *sb_page = NULL;
2300 
2301 	if (!try_module_get(THIS_MODULE))
2302 		return -EBUSY;
2303 
2304 	path = kstrndup(buffer, size, GFP_KERNEL);
2305 	if (!path)
2306 		goto err;
2307 
2308 	sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL);
2309 	if (!sb)
2310 		goto err;
2311 
2312 	err = "failed to open device";
2313 	bdev = blkdev_get_by_path(strim(path),
2314 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2315 				  sb);
2316 	if (IS_ERR(bdev)) {
2317 		if (bdev == ERR_PTR(-EBUSY)) {
2318 			bdev = lookup_bdev(strim(path));
2319 			mutex_lock(&bch_register_lock);
2320 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2321 				err = "device already registered";
2322 			else
2323 				err = "device busy";
2324 			mutex_unlock(&bch_register_lock);
2325 			if (!IS_ERR(bdev))
2326 				bdput(bdev);
2327 			if (attr == &ksysfs_register_quiet)
2328 				goto quiet_out;
2329 		}
2330 		goto err;
2331 	}
2332 
2333 	err = "failed to set blocksize";
2334 	if (set_blocksize(bdev, 4096))
2335 		goto err_close;
2336 
2337 	err = read_super(sb, bdev, &sb_page);
2338 	if (err)
2339 		goto err_close;
2340 
2341 	err = "failed to register device";
2342 	if (SB_IS_BDEV(sb)) {
2343 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2344 
2345 		if (!dc)
2346 			goto err_close;
2347 
2348 		mutex_lock(&bch_register_lock);
2349 		ret = register_bdev(sb, sb_page, bdev, dc);
2350 		mutex_unlock(&bch_register_lock);
2351 		/* blkdev_put() will be called in cached_dev_free() */
2352 		if (ret < 0)
2353 			goto err;
2354 	} else {
2355 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2356 
2357 		if (!ca)
2358 			goto err_close;
2359 
2360 		/* blkdev_put() will be called in bch_cache_release() */
2361 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2362 			goto err;
2363 	}
2364 quiet_out:
2365 	ret = size;
2366 out:
2367 	if (sb_page)
2368 		put_page(sb_page);
2369 	kfree(sb);
2370 	kfree(path);
2371 	module_put(THIS_MODULE);
2372 	return ret;
2373 
2374 err_close:
2375 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2376 err:
2377 	pr_info("error %s: %s", path, err);
2378 	goto out;
2379 }
2380 
2381 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2382 {
2383 	if (code == SYS_DOWN ||
2384 	    code == SYS_HALT ||
2385 	    code == SYS_POWER_OFF) {
2386 		DEFINE_WAIT(wait);
2387 		unsigned long start = jiffies;
2388 		bool stopped = false;
2389 
2390 		struct cache_set *c, *tc;
2391 		struct cached_dev *dc, *tdc;
2392 
2393 		mutex_lock(&bch_register_lock);
2394 
2395 		if (list_empty(&bch_cache_sets) &&
2396 		    list_empty(&uncached_devices))
2397 			goto out;
2398 
2399 		pr_info("Stopping all devices:");
2400 
2401 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2402 			bch_cache_set_stop(c);
2403 
2404 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2405 			bcache_device_stop(&dc->disk);
2406 
2407 		mutex_unlock(&bch_register_lock);
2408 
2409 		/*
2410 		 * Give an early chance for other kthreads and
2411 		 * kworkers to stop themselves
2412 		 */
2413 		schedule();
2414 
2415 		/* What's a condition variable? */
2416 		while (1) {
2417 			long timeout = start + 10 * HZ - jiffies;
2418 
2419 			mutex_lock(&bch_register_lock);
2420 			stopped = list_empty(&bch_cache_sets) &&
2421 				list_empty(&uncached_devices);
2422 
2423 			if (timeout < 0 || stopped)
2424 				break;
2425 
2426 			prepare_to_wait(&unregister_wait, &wait,
2427 					TASK_UNINTERRUPTIBLE);
2428 
2429 			mutex_unlock(&bch_register_lock);
2430 			schedule_timeout(timeout);
2431 		}
2432 
2433 		finish_wait(&unregister_wait, &wait);
2434 
2435 		if (stopped)
2436 			pr_info("All devices stopped");
2437 		else
2438 			pr_notice("Timeout waiting for devices to be closed");
2439 out:
2440 		mutex_unlock(&bch_register_lock);
2441 	}
2442 
2443 	return NOTIFY_DONE;
2444 }
2445 
2446 static struct notifier_block reboot = {
2447 	.notifier_call	= bcache_reboot,
2448 	.priority	= INT_MAX, /* before any real devices */
2449 };
2450 
2451 static void bcache_exit(void)
2452 {
2453 	bch_debug_exit();
2454 	bch_request_exit();
2455 	if (bcache_kobj)
2456 		kobject_put(bcache_kobj);
2457 	if (bcache_wq)
2458 		destroy_workqueue(bcache_wq);
2459 	if (bch_journal_wq)
2460 		destroy_workqueue(bch_journal_wq);
2461 
2462 	if (bcache_major)
2463 		unregister_blkdev(bcache_major, "bcache");
2464 	unregister_reboot_notifier(&reboot);
2465 	mutex_destroy(&bch_register_lock);
2466 }
2467 
2468 /* Check and fixup module parameters */
2469 static void check_module_parameters(void)
2470 {
2471 	if (bch_cutoff_writeback_sync == 0)
2472 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC;
2473 	else if (bch_cutoff_writeback_sync > CUTOFF_WRITEBACK_SYNC_MAX) {
2474 		pr_warn("set bch_cutoff_writeback_sync (%u) to max value %u",
2475 			bch_cutoff_writeback_sync, CUTOFF_WRITEBACK_SYNC_MAX);
2476 		bch_cutoff_writeback_sync = CUTOFF_WRITEBACK_SYNC_MAX;
2477 	}
2478 
2479 	if (bch_cutoff_writeback == 0)
2480 		bch_cutoff_writeback = CUTOFF_WRITEBACK;
2481 	else if (bch_cutoff_writeback > CUTOFF_WRITEBACK_MAX) {
2482 		pr_warn("set bch_cutoff_writeback (%u) to max value %u",
2483 			bch_cutoff_writeback, CUTOFF_WRITEBACK_MAX);
2484 		bch_cutoff_writeback = CUTOFF_WRITEBACK_MAX;
2485 	}
2486 
2487 	if (bch_cutoff_writeback > bch_cutoff_writeback_sync) {
2488 		pr_warn("set bch_cutoff_writeback (%u) to %u",
2489 			bch_cutoff_writeback, bch_cutoff_writeback_sync);
2490 		bch_cutoff_writeback = bch_cutoff_writeback_sync;
2491 	}
2492 }
2493 
2494 static int __init bcache_init(void)
2495 {
2496 	static const struct attribute *files[] = {
2497 		&ksysfs_register.attr,
2498 		&ksysfs_register_quiet.attr,
2499 		NULL
2500 	};
2501 
2502 	check_module_parameters();
2503 
2504 	mutex_init(&bch_register_lock);
2505 	init_waitqueue_head(&unregister_wait);
2506 	register_reboot_notifier(&reboot);
2507 
2508 	bcache_major = register_blkdev(0, "bcache");
2509 	if (bcache_major < 0) {
2510 		unregister_reboot_notifier(&reboot);
2511 		mutex_destroy(&bch_register_lock);
2512 		return bcache_major;
2513 	}
2514 
2515 	bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0);
2516 	if (!bcache_wq)
2517 		goto err;
2518 
2519 	bch_journal_wq = alloc_workqueue("bch_journal", WQ_MEM_RECLAIM, 0);
2520 	if (!bch_journal_wq)
2521 		goto err;
2522 
2523 	bcache_kobj = kobject_create_and_add("bcache", fs_kobj);
2524 	if (!bcache_kobj)
2525 		goto err;
2526 
2527 	if (bch_request_init() ||
2528 	    sysfs_create_files(bcache_kobj, files))
2529 		goto err;
2530 
2531 	bch_debug_init();
2532 	closure_debug_init();
2533 
2534 	return 0;
2535 err:
2536 	bcache_exit();
2537 	return -ENOMEM;
2538 }
2539 
2540 /*
2541  * Module hooks
2542  */
2543 module_exit(bcache_exit);
2544 module_init(bcache_init);
2545 
2546 module_param(bch_cutoff_writeback, uint, 0);
2547 MODULE_PARM_DESC(bch_cutoff_writeback, "threshold to cutoff writeback");
2548 
2549 module_param(bch_cutoff_writeback_sync, uint, 0);
2550 MODULE_PARM_DESC(bch_cutoff_writeback_sync, "hard threshold to cutoff writeback");
2551 
2552 MODULE_DESCRIPTION("Bcache: a Linux block layer cache");
2553 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
2554 MODULE_LICENSE("GPL");
2555