xref: /openbmc/linux/drivers/md/bcache/super.c (revision 0a73d21e)
1 /*
2  * bcache setup/teardown code, and some metadata io - read a superblock and
3  * figure out what to do with it.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "extents.h"
13 #include "request.h"
14 #include "writeback.h"
15 
16 #include <linux/blkdev.h>
17 #include <linux/buffer_head.h>
18 #include <linux/debugfs.h>
19 #include <linux/genhd.h>
20 #include <linux/idr.h>
21 #include <linux/kthread.h>
22 #include <linux/module.h>
23 #include <linux/random.h>
24 #include <linux/reboot.h>
25 #include <linux/sysfs.h>
26 
27 MODULE_LICENSE("GPL");
28 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29 
30 static const char bcache_magic[] = {
31 	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32 	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33 };
34 
35 static const char invalid_uuid[] = {
36 	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37 	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38 };
39 
40 /* Default is -1; we skip past it for struct cached_dev's cache mode */
41 const char * const bch_cache_modes[] = {
42 	"default",
43 	"writethrough",
44 	"writeback",
45 	"writearound",
46 	"none",
47 	NULL
48 };
49 
50 static struct kobject *bcache_kobj;
51 struct mutex bch_register_lock;
52 LIST_HEAD(bch_cache_sets);
53 static LIST_HEAD(uncached_devices);
54 
55 static int bcache_major;
56 static DEFINE_IDA(bcache_device_idx);
57 static wait_queue_head_t unregister_wait;
58 struct workqueue_struct *bcache_wq;
59 
60 #define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
61 /* limitation of partitions number on single bcache device */
62 #define BCACHE_MINORS		128
63 /* limitation of bcache devices number on single system */
64 #define BCACHE_DEVICE_IDX_MAX	((1U << MINORBITS)/BCACHE_MINORS)
65 
66 /* Superblock */
67 
68 static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
69 			      struct page **res)
70 {
71 	const char *err;
72 	struct cache_sb *s;
73 	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
74 	unsigned i;
75 
76 	if (!bh)
77 		return "IO error";
78 
79 	s = (struct cache_sb *) bh->b_data;
80 
81 	sb->offset		= le64_to_cpu(s->offset);
82 	sb->version		= le64_to_cpu(s->version);
83 
84 	memcpy(sb->magic,	s->magic, 16);
85 	memcpy(sb->uuid,	s->uuid, 16);
86 	memcpy(sb->set_uuid,	s->set_uuid, 16);
87 	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
88 
89 	sb->flags		= le64_to_cpu(s->flags);
90 	sb->seq			= le64_to_cpu(s->seq);
91 	sb->last_mount		= le32_to_cpu(s->last_mount);
92 	sb->first_bucket	= le16_to_cpu(s->first_bucket);
93 	sb->keys		= le16_to_cpu(s->keys);
94 
95 	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
96 		sb->d[i] = le64_to_cpu(s->d[i]);
97 
98 	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
99 		 sb->version, sb->flags, sb->seq, sb->keys);
100 
101 	err = "Not a bcache superblock";
102 	if (sb->offset != SB_SECTOR)
103 		goto err;
104 
105 	if (memcmp(sb->magic, bcache_magic, 16))
106 		goto err;
107 
108 	err = "Too many journal buckets";
109 	if (sb->keys > SB_JOURNAL_BUCKETS)
110 		goto err;
111 
112 	err = "Bad checksum";
113 	if (s->csum != csum_set(s))
114 		goto err;
115 
116 	err = "Bad UUID";
117 	if (bch_is_zero(sb->uuid, 16))
118 		goto err;
119 
120 	sb->block_size	= le16_to_cpu(s->block_size);
121 
122 	err = "Superblock block size smaller than device block size";
123 	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
124 		goto err;
125 
126 	switch (sb->version) {
127 	case BCACHE_SB_VERSION_BDEV:
128 		sb->data_offset	= BDEV_DATA_START_DEFAULT;
129 		break;
130 	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
131 		sb->data_offset	= le64_to_cpu(s->data_offset);
132 
133 		err = "Bad data offset";
134 		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
135 			goto err;
136 
137 		break;
138 	case BCACHE_SB_VERSION_CDEV:
139 	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
140 		sb->nbuckets	= le64_to_cpu(s->nbuckets);
141 		sb->bucket_size	= le16_to_cpu(s->bucket_size);
142 
143 		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
144 		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
145 
146 		err = "Too many buckets";
147 		if (sb->nbuckets > LONG_MAX)
148 			goto err;
149 
150 		err = "Not enough buckets";
151 		if (sb->nbuckets < 1 << 7)
152 			goto err;
153 
154 		err = "Bad block/bucket size";
155 		if (!is_power_of_2(sb->block_size) ||
156 		    sb->block_size > PAGE_SECTORS ||
157 		    !is_power_of_2(sb->bucket_size) ||
158 		    sb->bucket_size < PAGE_SECTORS)
159 			goto err;
160 
161 		err = "Invalid superblock: device too small";
162 		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
163 			goto err;
164 
165 		err = "Bad UUID";
166 		if (bch_is_zero(sb->set_uuid, 16))
167 			goto err;
168 
169 		err = "Bad cache device number in set";
170 		if (!sb->nr_in_set ||
171 		    sb->nr_in_set <= sb->nr_this_dev ||
172 		    sb->nr_in_set > MAX_CACHES_PER_SET)
173 			goto err;
174 
175 		err = "Journal buckets not sequential";
176 		for (i = 0; i < sb->keys; i++)
177 			if (sb->d[i] != sb->first_bucket + i)
178 				goto err;
179 
180 		err = "Too many journal buckets";
181 		if (sb->first_bucket + sb->keys > sb->nbuckets)
182 			goto err;
183 
184 		err = "Invalid superblock: first bucket comes before end of super";
185 		if (sb->first_bucket * sb->bucket_size < 16)
186 			goto err;
187 
188 		break;
189 	default:
190 		err = "Unsupported superblock version";
191 		goto err;
192 	}
193 
194 	sb->last_mount = get_seconds();
195 	err = NULL;
196 
197 	get_page(bh->b_page);
198 	*res = bh->b_page;
199 err:
200 	put_bh(bh);
201 	return err;
202 }
203 
204 static void write_bdev_super_endio(struct bio *bio)
205 {
206 	struct cached_dev *dc = bio->bi_private;
207 	/* XXX: error checking */
208 
209 	closure_put(&dc->sb_write);
210 }
211 
212 static void __write_super(struct cache_sb *sb, struct bio *bio)
213 {
214 	struct cache_sb *out = page_address(bio_first_page_all(bio));
215 	unsigned i;
216 
217 	bio->bi_iter.bi_sector	= SB_SECTOR;
218 	bio->bi_iter.bi_size	= SB_SIZE;
219 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC|REQ_META);
220 	bch_bio_map(bio, NULL);
221 
222 	out->offset		= cpu_to_le64(sb->offset);
223 	out->version		= cpu_to_le64(sb->version);
224 
225 	memcpy(out->uuid,	sb->uuid, 16);
226 	memcpy(out->set_uuid,	sb->set_uuid, 16);
227 	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
228 
229 	out->flags		= cpu_to_le64(sb->flags);
230 	out->seq		= cpu_to_le64(sb->seq);
231 
232 	out->last_mount		= cpu_to_le32(sb->last_mount);
233 	out->first_bucket	= cpu_to_le16(sb->first_bucket);
234 	out->keys		= cpu_to_le16(sb->keys);
235 
236 	for (i = 0; i < sb->keys; i++)
237 		out->d[i] = cpu_to_le64(sb->d[i]);
238 
239 	out->csum = csum_set(out);
240 
241 	pr_debug("ver %llu, flags %llu, seq %llu",
242 		 sb->version, sb->flags, sb->seq);
243 
244 	submit_bio(bio);
245 }
246 
247 static void bch_write_bdev_super_unlock(struct closure *cl)
248 {
249 	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
250 
251 	up(&dc->sb_write_mutex);
252 }
253 
254 void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
255 {
256 	struct closure *cl = &dc->sb_write;
257 	struct bio *bio = &dc->sb_bio;
258 
259 	down(&dc->sb_write_mutex);
260 	closure_init(cl, parent);
261 
262 	bio_reset(bio);
263 	bio_set_dev(bio, dc->bdev);
264 	bio->bi_end_io	= write_bdev_super_endio;
265 	bio->bi_private = dc;
266 
267 	closure_get(cl);
268 	__write_super(&dc->sb, bio);
269 
270 	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
271 }
272 
273 static void write_super_endio(struct bio *bio)
274 {
275 	struct cache *ca = bio->bi_private;
276 
277 	/* is_read = 0 */
278 	bch_count_io_errors(ca, bio->bi_status, 0,
279 			    "writing superblock");
280 	closure_put(&ca->set->sb_write);
281 }
282 
283 static void bcache_write_super_unlock(struct closure *cl)
284 {
285 	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
286 
287 	up(&c->sb_write_mutex);
288 }
289 
290 void bcache_write_super(struct cache_set *c)
291 {
292 	struct closure *cl = &c->sb_write;
293 	struct cache *ca;
294 	unsigned i;
295 
296 	down(&c->sb_write_mutex);
297 	closure_init(cl, &c->cl);
298 
299 	c->sb.seq++;
300 
301 	for_each_cache(ca, c, i) {
302 		struct bio *bio = &ca->sb_bio;
303 
304 		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
305 		ca->sb.seq		= c->sb.seq;
306 		ca->sb.last_mount	= c->sb.last_mount;
307 
308 		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
309 
310 		bio_reset(bio);
311 		bio_set_dev(bio, ca->bdev);
312 		bio->bi_end_io	= write_super_endio;
313 		bio->bi_private = ca;
314 
315 		closure_get(cl);
316 		__write_super(&ca->sb, bio);
317 	}
318 
319 	closure_return_with_destructor(cl, bcache_write_super_unlock);
320 }
321 
322 /* UUID io */
323 
324 static void uuid_endio(struct bio *bio)
325 {
326 	struct closure *cl = bio->bi_private;
327 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
328 
329 	cache_set_err_on(bio->bi_status, c, "accessing uuids");
330 	bch_bbio_free(bio, c);
331 	closure_put(cl);
332 }
333 
334 static void uuid_io_unlock(struct closure *cl)
335 {
336 	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
337 
338 	up(&c->uuid_write_mutex);
339 }
340 
341 static void uuid_io(struct cache_set *c, int op, unsigned long op_flags,
342 		    struct bkey *k, struct closure *parent)
343 {
344 	struct closure *cl = &c->uuid_write;
345 	struct uuid_entry *u;
346 	unsigned i;
347 	char buf[80];
348 
349 	BUG_ON(!parent);
350 	down(&c->uuid_write_mutex);
351 	closure_init(cl, parent);
352 
353 	for (i = 0; i < KEY_PTRS(k); i++) {
354 		struct bio *bio = bch_bbio_alloc(c);
355 
356 		bio->bi_opf = REQ_SYNC | REQ_META | op_flags;
357 		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
358 
359 		bio->bi_end_io	= uuid_endio;
360 		bio->bi_private = cl;
361 		bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
362 		bch_bio_map(bio, c->uuids);
363 
364 		bch_submit_bbio(bio, c, k, i);
365 
366 		if (op != REQ_OP_WRITE)
367 			break;
368 	}
369 
370 	bch_extent_to_text(buf, sizeof(buf), k);
371 	pr_debug("%s UUIDs at %s", op == REQ_OP_WRITE ? "wrote" : "read", buf);
372 
373 	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
374 		if (!bch_is_zero(u->uuid, 16))
375 			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
376 				 u - c->uuids, u->uuid, u->label,
377 				 u->first_reg, u->last_reg, u->invalidated);
378 
379 	closure_return_with_destructor(cl, uuid_io_unlock);
380 }
381 
382 static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
383 {
384 	struct bkey *k = &j->uuid_bucket;
385 
386 	if (__bch_btree_ptr_invalid(c, k))
387 		return "bad uuid pointer";
388 
389 	bkey_copy(&c->uuid_bucket, k);
390 	uuid_io(c, REQ_OP_READ, 0, k, cl);
391 
392 	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
393 		struct uuid_entry_v0	*u0 = (void *) c->uuids;
394 		struct uuid_entry	*u1 = (void *) c->uuids;
395 		int i;
396 
397 		closure_sync(cl);
398 
399 		/*
400 		 * Since the new uuid entry is bigger than the old, we have to
401 		 * convert starting at the highest memory address and work down
402 		 * in order to do it in place
403 		 */
404 
405 		for (i = c->nr_uuids - 1;
406 		     i >= 0;
407 		     --i) {
408 			memcpy(u1[i].uuid,	u0[i].uuid, 16);
409 			memcpy(u1[i].label,	u0[i].label, 32);
410 
411 			u1[i].first_reg		= u0[i].first_reg;
412 			u1[i].last_reg		= u0[i].last_reg;
413 			u1[i].invalidated	= u0[i].invalidated;
414 
415 			u1[i].flags	= 0;
416 			u1[i].sectors	= 0;
417 		}
418 	}
419 
420 	return NULL;
421 }
422 
423 static int __uuid_write(struct cache_set *c)
424 {
425 	BKEY_PADDED(key) k;
426 	struct closure cl;
427 	closure_init_stack(&cl);
428 
429 	lockdep_assert_held(&bch_register_lock);
430 
431 	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
432 		return 1;
433 
434 	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
435 	uuid_io(c, REQ_OP_WRITE, 0, &k.key, &cl);
436 	closure_sync(&cl);
437 
438 	bkey_copy(&c->uuid_bucket, &k.key);
439 	bkey_put(c, &k.key);
440 	return 0;
441 }
442 
443 int bch_uuid_write(struct cache_set *c)
444 {
445 	int ret = __uuid_write(c);
446 
447 	if (!ret)
448 		bch_journal_meta(c, NULL);
449 
450 	return ret;
451 }
452 
453 static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
454 {
455 	struct uuid_entry *u;
456 
457 	for (u = c->uuids;
458 	     u < c->uuids + c->nr_uuids; u++)
459 		if (!memcmp(u->uuid, uuid, 16))
460 			return u;
461 
462 	return NULL;
463 }
464 
465 static struct uuid_entry *uuid_find_empty(struct cache_set *c)
466 {
467 	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
468 	return uuid_find(c, zero_uuid);
469 }
470 
471 /*
472  * Bucket priorities/gens:
473  *
474  * For each bucket, we store on disk its
475    * 8 bit gen
476    * 16 bit priority
477  *
478  * See alloc.c for an explanation of the gen. The priority is used to implement
479  * lru (and in the future other) cache replacement policies; for most purposes
480  * it's just an opaque integer.
481  *
482  * The gens and the priorities don't have a whole lot to do with each other, and
483  * it's actually the gens that must be written out at specific times - it's no
484  * big deal if the priorities don't get written, if we lose them we just reuse
485  * buckets in suboptimal order.
486  *
487  * On disk they're stored in a packed array, and in as many buckets are required
488  * to fit them all. The buckets we use to store them form a list; the journal
489  * header points to the first bucket, the first bucket points to the second
490  * bucket, et cetera.
491  *
492  * This code is used by the allocation code; periodically (whenever it runs out
493  * of buckets to allocate from) the allocation code will invalidate some
494  * buckets, but it can't use those buckets until their new gens are safely on
495  * disk.
496  */
497 
498 static void prio_endio(struct bio *bio)
499 {
500 	struct cache *ca = bio->bi_private;
501 
502 	cache_set_err_on(bio->bi_status, ca->set, "accessing priorities");
503 	bch_bbio_free(bio, ca->set);
504 	closure_put(&ca->prio);
505 }
506 
507 static void prio_io(struct cache *ca, uint64_t bucket, int op,
508 		    unsigned long op_flags)
509 {
510 	struct closure *cl = &ca->prio;
511 	struct bio *bio = bch_bbio_alloc(ca->set);
512 
513 	closure_init_stack(cl);
514 
515 	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
516 	bio_set_dev(bio, ca->bdev);
517 	bio->bi_iter.bi_size	= bucket_bytes(ca);
518 
519 	bio->bi_end_io	= prio_endio;
520 	bio->bi_private = ca;
521 	bio_set_op_attrs(bio, op, REQ_SYNC|REQ_META|op_flags);
522 	bch_bio_map(bio, ca->disk_buckets);
523 
524 	closure_bio_submit(bio, &ca->prio);
525 	closure_sync(cl);
526 }
527 
528 void bch_prio_write(struct cache *ca)
529 {
530 	int i;
531 	struct bucket *b;
532 	struct closure cl;
533 
534 	closure_init_stack(&cl);
535 
536 	lockdep_assert_held(&ca->set->bucket_lock);
537 
538 	ca->disk_buckets->seq++;
539 
540 	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
541 			&ca->meta_sectors_written);
542 
543 	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
544 	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
545 
546 	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
547 		long bucket;
548 		struct prio_set *p = ca->disk_buckets;
549 		struct bucket_disk *d = p->data;
550 		struct bucket_disk *end = d + prios_per_bucket(ca);
551 
552 		for (b = ca->buckets + i * prios_per_bucket(ca);
553 		     b < ca->buckets + ca->sb.nbuckets && d < end;
554 		     b++, d++) {
555 			d->prio = cpu_to_le16(b->prio);
556 			d->gen = b->gen;
557 		}
558 
559 		p->next_bucket	= ca->prio_buckets[i + 1];
560 		p->magic	= pset_magic(&ca->sb);
561 		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
562 
563 		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
564 		BUG_ON(bucket == -1);
565 
566 		mutex_unlock(&ca->set->bucket_lock);
567 		prio_io(ca, bucket, REQ_OP_WRITE, 0);
568 		mutex_lock(&ca->set->bucket_lock);
569 
570 		ca->prio_buckets[i] = bucket;
571 		atomic_dec_bug(&ca->buckets[bucket].pin);
572 	}
573 
574 	mutex_unlock(&ca->set->bucket_lock);
575 
576 	bch_journal_meta(ca->set, &cl);
577 	closure_sync(&cl);
578 
579 	mutex_lock(&ca->set->bucket_lock);
580 
581 	/*
582 	 * Don't want the old priorities to get garbage collected until after we
583 	 * finish writing the new ones, and they're journalled
584 	 */
585 	for (i = 0; i < prio_buckets(ca); i++) {
586 		if (ca->prio_last_buckets[i])
587 			__bch_bucket_free(ca,
588 				&ca->buckets[ca->prio_last_buckets[i]]);
589 
590 		ca->prio_last_buckets[i] = ca->prio_buckets[i];
591 	}
592 }
593 
594 static void prio_read(struct cache *ca, uint64_t bucket)
595 {
596 	struct prio_set *p = ca->disk_buckets;
597 	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
598 	struct bucket *b;
599 	unsigned bucket_nr = 0;
600 
601 	for (b = ca->buckets;
602 	     b < ca->buckets + ca->sb.nbuckets;
603 	     b++, d++) {
604 		if (d == end) {
605 			ca->prio_buckets[bucket_nr] = bucket;
606 			ca->prio_last_buckets[bucket_nr] = bucket;
607 			bucket_nr++;
608 
609 			prio_io(ca, bucket, REQ_OP_READ, 0);
610 
611 			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
612 				pr_warn("bad csum reading priorities");
613 
614 			if (p->magic != pset_magic(&ca->sb))
615 				pr_warn("bad magic reading priorities");
616 
617 			bucket = p->next_bucket;
618 			d = p->data;
619 		}
620 
621 		b->prio = le16_to_cpu(d->prio);
622 		b->gen = b->last_gc = d->gen;
623 	}
624 }
625 
626 /* Bcache device */
627 
628 static int open_dev(struct block_device *b, fmode_t mode)
629 {
630 	struct bcache_device *d = b->bd_disk->private_data;
631 	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
632 		return -ENXIO;
633 
634 	closure_get(&d->cl);
635 	return 0;
636 }
637 
638 static void release_dev(struct gendisk *b, fmode_t mode)
639 {
640 	struct bcache_device *d = b->private_data;
641 	closure_put(&d->cl);
642 }
643 
644 static int ioctl_dev(struct block_device *b, fmode_t mode,
645 		     unsigned int cmd, unsigned long arg)
646 {
647 	struct bcache_device *d = b->bd_disk->private_data;
648 	return d->ioctl(d, mode, cmd, arg);
649 }
650 
651 static const struct block_device_operations bcache_ops = {
652 	.open		= open_dev,
653 	.release	= release_dev,
654 	.ioctl		= ioctl_dev,
655 	.owner		= THIS_MODULE,
656 };
657 
658 void bcache_device_stop(struct bcache_device *d)
659 {
660 	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
661 		closure_queue(&d->cl);
662 }
663 
664 static void bcache_device_unlink(struct bcache_device *d)
665 {
666 	lockdep_assert_held(&bch_register_lock);
667 
668 	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
669 		unsigned i;
670 		struct cache *ca;
671 
672 		sysfs_remove_link(&d->c->kobj, d->name);
673 		sysfs_remove_link(&d->kobj, "cache");
674 
675 		for_each_cache(ca, d->c, i)
676 			bd_unlink_disk_holder(ca->bdev, d->disk);
677 	}
678 }
679 
680 static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
681 			       const char *name)
682 {
683 	unsigned i;
684 	struct cache *ca;
685 
686 	for_each_cache(ca, d->c, i)
687 		bd_link_disk_holder(ca->bdev, d->disk);
688 
689 	snprintf(d->name, BCACHEDEVNAME_SIZE,
690 		 "%s%u", name, d->id);
691 
692 	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
693 	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
694 	     "Couldn't create device <-> cache set symlinks");
695 
696 	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
697 }
698 
699 static void bcache_device_detach(struct bcache_device *d)
700 {
701 	lockdep_assert_held(&bch_register_lock);
702 
703 	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
704 		struct uuid_entry *u = d->c->uuids + d->id;
705 
706 		SET_UUID_FLASH_ONLY(u, 0);
707 		memcpy(u->uuid, invalid_uuid, 16);
708 		u->invalidated = cpu_to_le32(get_seconds());
709 		bch_uuid_write(d->c);
710 	}
711 
712 	bcache_device_unlink(d);
713 
714 	d->c->devices[d->id] = NULL;
715 	closure_put(&d->c->caching);
716 	d->c = NULL;
717 }
718 
719 static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
720 				 unsigned id)
721 {
722 	d->id = id;
723 	d->c = c;
724 	c->devices[id] = d;
725 
726 	if (id >= c->devices_max_used)
727 		c->devices_max_used = id + 1;
728 
729 	closure_get(&c->caching);
730 }
731 
732 static inline int first_minor_to_idx(int first_minor)
733 {
734 	return (first_minor/BCACHE_MINORS);
735 }
736 
737 static inline int idx_to_first_minor(int idx)
738 {
739 	return (idx * BCACHE_MINORS);
740 }
741 
742 static void bcache_device_free(struct bcache_device *d)
743 {
744 	lockdep_assert_held(&bch_register_lock);
745 
746 	pr_info("%s stopped", d->disk->disk_name);
747 
748 	if (d->c)
749 		bcache_device_detach(d);
750 	if (d->disk && d->disk->flags & GENHD_FL_UP)
751 		del_gendisk(d->disk);
752 	if (d->disk && d->disk->queue)
753 		blk_cleanup_queue(d->disk->queue);
754 	if (d->disk) {
755 		ida_simple_remove(&bcache_device_idx,
756 				  first_minor_to_idx(d->disk->first_minor));
757 		put_disk(d->disk);
758 	}
759 
760 	if (d->bio_split)
761 		bioset_free(d->bio_split);
762 	kvfree(d->full_dirty_stripes);
763 	kvfree(d->stripe_sectors_dirty);
764 
765 	closure_debug_destroy(&d->cl);
766 }
767 
768 static int bcache_device_init(struct bcache_device *d, unsigned block_size,
769 			      sector_t sectors)
770 {
771 	struct request_queue *q;
772 	size_t n;
773 	int idx;
774 
775 	if (!d->stripe_size)
776 		d->stripe_size = 1 << 31;
777 
778 	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
779 
780 	if (!d->nr_stripes ||
781 	    d->nr_stripes > INT_MAX ||
782 	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
783 		pr_err("nr_stripes too large or invalid: %u (start sector beyond end of disk?)",
784 			(unsigned)d->nr_stripes);
785 		return -ENOMEM;
786 	}
787 
788 	n = d->nr_stripes * sizeof(atomic_t);
789 	d->stripe_sectors_dirty = kvzalloc(n, GFP_KERNEL);
790 	if (!d->stripe_sectors_dirty)
791 		return -ENOMEM;
792 
793 	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
794 	d->full_dirty_stripes = kvzalloc(n, GFP_KERNEL);
795 	if (!d->full_dirty_stripes)
796 		return -ENOMEM;
797 
798 	idx = ida_simple_get(&bcache_device_idx, 0,
799 				BCACHE_DEVICE_IDX_MAX, GFP_KERNEL);
800 	if (idx < 0)
801 		return idx;
802 
803 	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio),
804 					   BIOSET_NEED_BVECS |
805 					   BIOSET_NEED_RESCUER)) ||
806 	    !(d->disk = alloc_disk(BCACHE_MINORS))) {
807 		ida_simple_remove(&bcache_device_idx, idx);
808 		return -ENOMEM;
809 	}
810 
811 	set_capacity(d->disk, sectors);
812 	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", idx);
813 
814 	d->disk->major		= bcache_major;
815 	d->disk->first_minor	= idx_to_first_minor(idx);
816 	d->disk->fops		= &bcache_ops;
817 	d->disk->private_data	= d;
818 
819 	q = blk_alloc_queue(GFP_KERNEL);
820 	if (!q)
821 		return -ENOMEM;
822 
823 	blk_queue_make_request(q, NULL);
824 	d->disk->queue			= q;
825 	q->queuedata			= d;
826 	q->backing_dev_info->congested_data = d;
827 	q->limits.max_hw_sectors	= UINT_MAX;
828 	q->limits.max_sectors		= UINT_MAX;
829 	q->limits.max_segment_size	= UINT_MAX;
830 	q->limits.max_segments		= BIO_MAX_PAGES;
831 	blk_queue_max_discard_sectors(q, UINT_MAX);
832 	q->limits.discard_granularity	= 512;
833 	q->limits.io_min		= block_size;
834 	q->limits.logical_block_size	= block_size;
835 	q->limits.physical_block_size	= block_size;
836 	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
837 	clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
838 	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
839 
840 	blk_queue_write_cache(q, true, true);
841 
842 	return 0;
843 }
844 
845 /* Cached device */
846 
847 static void calc_cached_dev_sectors(struct cache_set *c)
848 {
849 	uint64_t sectors = 0;
850 	struct cached_dev *dc;
851 
852 	list_for_each_entry(dc, &c->cached_devs, list)
853 		sectors += bdev_sectors(dc->bdev);
854 
855 	c->cached_dev_sectors = sectors;
856 }
857 
858 void bch_cached_dev_run(struct cached_dev *dc)
859 {
860 	struct bcache_device *d = &dc->disk;
861 	char buf[SB_LABEL_SIZE + 1];
862 	char *env[] = {
863 		"DRIVER=bcache",
864 		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
865 		NULL,
866 		NULL,
867 	};
868 
869 	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
870 	buf[SB_LABEL_SIZE] = '\0';
871 	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
872 
873 	if (atomic_xchg(&dc->running, 1)) {
874 		kfree(env[1]);
875 		kfree(env[2]);
876 		return;
877 	}
878 
879 	if (!d->c &&
880 	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
881 		struct closure cl;
882 		closure_init_stack(&cl);
883 
884 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
885 		bch_write_bdev_super(dc, &cl);
886 		closure_sync(&cl);
887 	}
888 
889 	add_disk(d->disk);
890 	bd_link_disk_holder(dc->bdev, dc->disk.disk);
891 	/* won't show up in the uevent file, use udevadm monitor -e instead
892 	 * only class / kset properties are persistent */
893 	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
894 	kfree(env[1]);
895 	kfree(env[2]);
896 
897 	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
898 	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
899 		pr_debug("error creating sysfs link");
900 }
901 
902 static void cached_dev_detach_finish(struct work_struct *w)
903 {
904 	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
905 	char buf[BDEVNAME_SIZE];
906 	struct closure cl;
907 	closure_init_stack(&cl);
908 
909 	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
910 	BUG_ON(refcount_read(&dc->count));
911 
912 	mutex_lock(&bch_register_lock);
913 
914 	cancel_delayed_work_sync(&dc->writeback_rate_update);
915 	if (!IS_ERR_OR_NULL(dc->writeback_thread)) {
916 		kthread_stop(dc->writeback_thread);
917 		dc->writeback_thread = NULL;
918 	}
919 
920 	memset(&dc->sb.set_uuid, 0, 16);
921 	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
922 
923 	bch_write_bdev_super(dc, &cl);
924 	closure_sync(&cl);
925 
926 	bcache_device_detach(&dc->disk);
927 	list_move(&dc->list, &uncached_devices);
928 
929 	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
930 	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
931 
932 	mutex_unlock(&bch_register_lock);
933 
934 	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
935 
936 	/* Drop ref we took in cached_dev_detach() */
937 	closure_put(&dc->disk.cl);
938 }
939 
940 void bch_cached_dev_detach(struct cached_dev *dc)
941 {
942 	lockdep_assert_held(&bch_register_lock);
943 
944 	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
945 		return;
946 
947 	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
948 		return;
949 
950 	/*
951 	 * Block the device from being closed and freed until we're finished
952 	 * detaching
953 	 */
954 	closure_get(&dc->disk.cl);
955 
956 	bch_writeback_queue(dc);
957 	cached_dev_put(dc);
958 }
959 
960 int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c,
961 			  uint8_t *set_uuid)
962 {
963 	uint32_t rtime = cpu_to_le32(get_seconds());
964 	struct uuid_entry *u;
965 	char buf[BDEVNAME_SIZE];
966 	struct cached_dev *exist_dc, *t;
967 
968 	bdevname(dc->bdev, buf);
969 
970 	if ((set_uuid && memcmp(set_uuid, c->sb.set_uuid, 16)) ||
971 	    (!set_uuid && memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16)))
972 		return -ENOENT;
973 
974 	if (dc->disk.c) {
975 		pr_err("Can't attach %s: already attached", buf);
976 		return -EINVAL;
977 	}
978 
979 	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
980 		pr_err("Can't attach %s: shutting down", buf);
981 		return -EINVAL;
982 	}
983 
984 	if (dc->sb.block_size < c->sb.block_size) {
985 		/* Will die */
986 		pr_err("Couldn't attach %s: block size less than set's block size",
987 		       buf);
988 		return -EINVAL;
989 	}
990 
991 	/* Check whether already attached */
992 	list_for_each_entry_safe(exist_dc, t, &c->cached_devs, list) {
993 		if (!memcmp(dc->sb.uuid, exist_dc->sb.uuid, 16)) {
994 			pr_err("Tried to attach %s but duplicate UUID already attached",
995 				buf);
996 
997 			return -EINVAL;
998 		}
999 	}
1000 
1001 	u = uuid_find(c, dc->sb.uuid);
1002 
1003 	if (u &&
1004 	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
1005 	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
1006 		memcpy(u->uuid, invalid_uuid, 16);
1007 		u->invalidated = cpu_to_le32(get_seconds());
1008 		u = NULL;
1009 	}
1010 
1011 	if (!u) {
1012 		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1013 			pr_err("Couldn't find uuid for %s in set", buf);
1014 			return -ENOENT;
1015 		}
1016 
1017 		u = uuid_find_empty(c);
1018 		if (!u) {
1019 			pr_err("Not caching %s, no room for UUID", buf);
1020 			return -EINVAL;
1021 		}
1022 	}
1023 
1024 	/* Deadlocks since we're called via sysfs...
1025 	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1026 	 */
1027 
1028 	if (bch_is_zero(u->uuid, 16)) {
1029 		struct closure cl;
1030 		closure_init_stack(&cl);
1031 
1032 		memcpy(u->uuid, dc->sb.uuid, 16);
1033 		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1034 		u->first_reg = u->last_reg = rtime;
1035 		bch_uuid_write(c);
1036 
1037 		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1038 		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1039 
1040 		bch_write_bdev_super(dc, &cl);
1041 		closure_sync(&cl);
1042 	} else {
1043 		u->last_reg = rtime;
1044 		bch_uuid_write(c);
1045 	}
1046 
1047 	bcache_device_attach(&dc->disk, c, u - c->uuids);
1048 	list_move(&dc->list, &c->cached_devs);
1049 	calc_cached_dev_sectors(c);
1050 
1051 	smp_wmb();
1052 	/*
1053 	 * dc->c must be set before dc->count != 0 - paired with the mb in
1054 	 * cached_dev_get()
1055 	 */
1056 	refcount_set(&dc->count, 1);
1057 
1058 	/* Block writeback thread, but spawn it */
1059 	down_write(&dc->writeback_lock);
1060 	if (bch_cached_dev_writeback_start(dc)) {
1061 		up_write(&dc->writeback_lock);
1062 		return -ENOMEM;
1063 	}
1064 
1065 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1066 		bch_sectors_dirty_init(&dc->disk);
1067 		atomic_set(&dc->has_dirty, 1);
1068 		refcount_inc(&dc->count);
1069 		bch_writeback_queue(dc);
1070 	}
1071 
1072 	bch_cached_dev_run(dc);
1073 	bcache_device_link(&dc->disk, c, "bdev");
1074 
1075 	/* Allow the writeback thread to proceed */
1076 	up_write(&dc->writeback_lock);
1077 
1078 	pr_info("Caching %s as %s on set %pU",
1079 		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1080 		dc->disk.c->sb.set_uuid);
1081 	return 0;
1082 }
1083 
1084 void bch_cached_dev_release(struct kobject *kobj)
1085 {
1086 	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1087 					     disk.kobj);
1088 	kfree(dc);
1089 	module_put(THIS_MODULE);
1090 }
1091 
1092 static void cached_dev_free(struct closure *cl)
1093 {
1094 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1095 
1096 	cancel_delayed_work_sync(&dc->writeback_rate_update);
1097 	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1098 		kthread_stop(dc->writeback_thread);
1099 	if (dc->writeback_write_wq)
1100 		destroy_workqueue(dc->writeback_write_wq);
1101 
1102 	mutex_lock(&bch_register_lock);
1103 
1104 	if (atomic_read(&dc->running))
1105 		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1106 	bcache_device_free(&dc->disk);
1107 	list_del(&dc->list);
1108 
1109 	mutex_unlock(&bch_register_lock);
1110 
1111 	if (!IS_ERR_OR_NULL(dc->bdev))
1112 		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1113 
1114 	wake_up(&unregister_wait);
1115 
1116 	kobject_put(&dc->disk.kobj);
1117 }
1118 
1119 static void cached_dev_flush(struct closure *cl)
1120 {
1121 	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1122 	struct bcache_device *d = &dc->disk;
1123 
1124 	mutex_lock(&bch_register_lock);
1125 	bcache_device_unlink(d);
1126 	mutex_unlock(&bch_register_lock);
1127 
1128 	bch_cache_accounting_destroy(&dc->accounting);
1129 	kobject_del(&d->kobj);
1130 
1131 	continue_at(cl, cached_dev_free, system_wq);
1132 }
1133 
1134 static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1135 {
1136 	int ret;
1137 	struct io *io;
1138 	struct request_queue *q = bdev_get_queue(dc->bdev);
1139 
1140 	__module_get(THIS_MODULE);
1141 	INIT_LIST_HEAD(&dc->list);
1142 	closure_init(&dc->disk.cl, NULL);
1143 	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1144 	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1145 	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1146 	sema_init(&dc->sb_write_mutex, 1);
1147 	INIT_LIST_HEAD(&dc->io_lru);
1148 	spin_lock_init(&dc->io_lock);
1149 	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1150 
1151 	dc->sequential_cutoff		= 4 << 20;
1152 
1153 	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1154 		list_add(&io->lru, &dc->io_lru);
1155 		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1156 	}
1157 
1158 	dc->disk.stripe_size = q->limits.io_opt >> 9;
1159 
1160 	if (dc->disk.stripe_size)
1161 		dc->partial_stripes_expensive =
1162 			q->limits.raid_partial_stripes_expensive;
1163 
1164 	ret = bcache_device_init(&dc->disk, block_size,
1165 			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1166 	if (ret)
1167 		return ret;
1168 
1169 	dc->disk.disk->queue->backing_dev_info->ra_pages =
1170 		max(dc->disk.disk->queue->backing_dev_info->ra_pages,
1171 		    q->backing_dev_info->ra_pages);
1172 
1173 	bch_cached_dev_request_init(dc);
1174 	bch_cached_dev_writeback_init(dc);
1175 	return 0;
1176 }
1177 
1178 /* Cached device - bcache superblock */
1179 
1180 static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1181 				 struct block_device *bdev,
1182 				 struct cached_dev *dc)
1183 {
1184 	char name[BDEVNAME_SIZE];
1185 	const char *err = "cannot allocate memory";
1186 	struct cache_set *c;
1187 
1188 	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1189 	dc->bdev = bdev;
1190 	dc->bdev->bd_holder = dc;
1191 
1192 	bio_init(&dc->sb_bio, dc->sb_bio.bi_inline_vecs, 1);
1193 	bio_first_bvec_all(&dc->sb_bio)->bv_page = sb_page;
1194 	get_page(sb_page);
1195 
1196 	if (cached_dev_init(dc, sb->block_size << 9))
1197 		goto err;
1198 
1199 	err = "error creating kobject";
1200 	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1201 			"bcache"))
1202 		goto err;
1203 	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1204 		goto err;
1205 
1206 	pr_info("registered backing device %s", bdevname(bdev, name));
1207 
1208 	list_add(&dc->list, &uncached_devices);
1209 	list_for_each_entry(c, &bch_cache_sets, list)
1210 		bch_cached_dev_attach(dc, c, NULL);
1211 
1212 	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1213 	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1214 		bch_cached_dev_run(dc);
1215 
1216 	return;
1217 err:
1218 	pr_notice("error %s: %s", bdevname(bdev, name), err);
1219 	bcache_device_stop(&dc->disk);
1220 }
1221 
1222 /* Flash only volumes */
1223 
1224 void bch_flash_dev_release(struct kobject *kobj)
1225 {
1226 	struct bcache_device *d = container_of(kobj, struct bcache_device,
1227 					       kobj);
1228 	kfree(d);
1229 }
1230 
1231 static void flash_dev_free(struct closure *cl)
1232 {
1233 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1234 	mutex_lock(&bch_register_lock);
1235 	bcache_device_free(d);
1236 	mutex_unlock(&bch_register_lock);
1237 	kobject_put(&d->kobj);
1238 }
1239 
1240 static void flash_dev_flush(struct closure *cl)
1241 {
1242 	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1243 
1244 	mutex_lock(&bch_register_lock);
1245 	bcache_device_unlink(d);
1246 	mutex_unlock(&bch_register_lock);
1247 	kobject_del(&d->kobj);
1248 	continue_at(cl, flash_dev_free, system_wq);
1249 }
1250 
1251 static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1252 {
1253 	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1254 					  GFP_KERNEL);
1255 	if (!d)
1256 		return -ENOMEM;
1257 
1258 	closure_init(&d->cl, NULL);
1259 	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1260 
1261 	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1262 
1263 	if (bcache_device_init(d, block_bytes(c), u->sectors))
1264 		goto err;
1265 
1266 	bcache_device_attach(d, c, u - c->uuids);
1267 	bch_sectors_dirty_init(d);
1268 	bch_flash_dev_request_init(d);
1269 	add_disk(d->disk);
1270 
1271 	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1272 		goto err;
1273 
1274 	bcache_device_link(d, c, "volume");
1275 
1276 	return 0;
1277 err:
1278 	kobject_put(&d->kobj);
1279 	return -ENOMEM;
1280 }
1281 
1282 static int flash_devs_run(struct cache_set *c)
1283 {
1284 	int ret = 0;
1285 	struct uuid_entry *u;
1286 
1287 	for (u = c->uuids;
1288 	     u < c->uuids + c->nr_uuids && !ret;
1289 	     u++)
1290 		if (UUID_FLASH_ONLY(u))
1291 			ret = flash_dev_run(c, u);
1292 
1293 	return ret;
1294 }
1295 
1296 int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1297 {
1298 	struct uuid_entry *u;
1299 
1300 	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1301 		return -EINTR;
1302 
1303 	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1304 		return -EPERM;
1305 
1306 	u = uuid_find_empty(c);
1307 	if (!u) {
1308 		pr_err("Can't create volume, no room for UUID");
1309 		return -EINVAL;
1310 	}
1311 
1312 	get_random_bytes(u->uuid, 16);
1313 	memset(u->label, 0, 32);
1314 	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1315 
1316 	SET_UUID_FLASH_ONLY(u, 1);
1317 	u->sectors = size >> 9;
1318 
1319 	bch_uuid_write(c);
1320 
1321 	return flash_dev_run(c, u);
1322 }
1323 
1324 /* Cache set */
1325 
1326 __printf(2, 3)
1327 bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1328 {
1329 	va_list args;
1330 
1331 	if (c->on_error != ON_ERROR_PANIC &&
1332 	    test_bit(CACHE_SET_STOPPING, &c->flags))
1333 		return false;
1334 
1335 	/* XXX: we can be called from atomic context
1336 	acquire_console_sem();
1337 	*/
1338 
1339 	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1340 
1341 	va_start(args, fmt);
1342 	vprintk(fmt, args);
1343 	va_end(args);
1344 
1345 	printk(", disabling caching\n");
1346 
1347 	if (c->on_error == ON_ERROR_PANIC)
1348 		panic("panic forced after error\n");
1349 
1350 	bch_cache_set_unregister(c);
1351 	return true;
1352 }
1353 
1354 void bch_cache_set_release(struct kobject *kobj)
1355 {
1356 	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1357 	kfree(c);
1358 	module_put(THIS_MODULE);
1359 }
1360 
1361 static void cache_set_free(struct closure *cl)
1362 {
1363 	struct cache_set *c = container_of(cl, struct cache_set, cl);
1364 	struct cache *ca;
1365 	unsigned i;
1366 
1367 	if (!IS_ERR_OR_NULL(c->debug))
1368 		debugfs_remove(c->debug);
1369 
1370 	bch_open_buckets_free(c);
1371 	bch_btree_cache_free(c);
1372 	bch_journal_free(c);
1373 
1374 	for_each_cache(ca, c, i)
1375 		if (ca) {
1376 			ca->set = NULL;
1377 			c->cache[ca->sb.nr_this_dev] = NULL;
1378 			kobject_put(&ca->kobj);
1379 		}
1380 
1381 	bch_bset_sort_state_free(&c->sort);
1382 	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1383 
1384 	if (c->moving_gc_wq)
1385 		destroy_workqueue(c->moving_gc_wq);
1386 	if (c->bio_split)
1387 		bioset_free(c->bio_split);
1388 	if (c->fill_iter)
1389 		mempool_destroy(c->fill_iter);
1390 	if (c->bio_meta)
1391 		mempool_destroy(c->bio_meta);
1392 	if (c->search)
1393 		mempool_destroy(c->search);
1394 	kfree(c->devices);
1395 
1396 	mutex_lock(&bch_register_lock);
1397 	list_del(&c->list);
1398 	mutex_unlock(&bch_register_lock);
1399 
1400 	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1401 	wake_up(&unregister_wait);
1402 
1403 	closure_debug_destroy(&c->cl);
1404 	kobject_put(&c->kobj);
1405 }
1406 
1407 static void cache_set_flush(struct closure *cl)
1408 {
1409 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1410 	struct cache *ca;
1411 	struct btree *b;
1412 	unsigned i;
1413 
1414 	bch_cache_accounting_destroy(&c->accounting);
1415 
1416 	kobject_put(&c->internal);
1417 	kobject_del(&c->kobj);
1418 
1419 	if (c->gc_thread)
1420 		kthread_stop(c->gc_thread);
1421 
1422 	if (!IS_ERR_OR_NULL(c->root))
1423 		list_add(&c->root->list, &c->btree_cache);
1424 
1425 	/* Should skip this if we're unregistering because of an error */
1426 	list_for_each_entry(b, &c->btree_cache, list) {
1427 		mutex_lock(&b->write_lock);
1428 		if (btree_node_dirty(b))
1429 			__bch_btree_node_write(b, NULL);
1430 		mutex_unlock(&b->write_lock);
1431 	}
1432 
1433 	for_each_cache(ca, c, i)
1434 		if (ca->alloc_thread)
1435 			kthread_stop(ca->alloc_thread);
1436 
1437 	if (c->journal.cur) {
1438 		cancel_delayed_work_sync(&c->journal.work);
1439 		/* flush last journal entry if needed */
1440 		c->journal.work.work.func(&c->journal.work.work);
1441 	}
1442 
1443 	closure_return(cl);
1444 }
1445 
1446 static void __cache_set_unregister(struct closure *cl)
1447 {
1448 	struct cache_set *c = container_of(cl, struct cache_set, caching);
1449 	struct cached_dev *dc;
1450 	size_t i;
1451 
1452 	mutex_lock(&bch_register_lock);
1453 
1454 	for (i = 0; i < c->devices_max_used; i++)
1455 		if (c->devices[i]) {
1456 			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1457 			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1458 				dc = container_of(c->devices[i],
1459 						  struct cached_dev, disk);
1460 				bch_cached_dev_detach(dc);
1461 			} else {
1462 				bcache_device_stop(c->devices[i]);
1463 			}
1464 		}
1465 
1466 	mutex_unlock(&bch_register_lock);
1467 
1468 	continue_at(cl, cache_set_flush, system_wq);
1469 }
1470 
1471 void bch_cache_set_stop(struct cache_set *c)
1472 {
1473 	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1474 		closure_queue(&c->caching);
1475 }
1476 
1477 void bch_cache_set_unregister(struct cache_set *c)
1478 {
1479 	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1480 	bch_cache_set_stop(c);
1481 }
1482 
1483 #define alloc_bucket_pages(gfp, c)			\
1484 	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1485 
1486 struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1487 {
1488 	int iter_size;
1489 	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1490 	if (!c)
1491 		return NULL;
1492 
1493 	__module_get(THIS_MODULE);
1494 	closure_init(&c->cl, NULL);
1495 	set_closure_fn(&c->cl, cache_set_free, system_wq);
1496 
1497 	closure_init(&c->caching, &c->cl);
1498 	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1499 
1500 	/* Maybe create continue_at_noreturn() and use it here? */
1501 	closure_set_stopped(&c->cl);
1502 	closure_put(&c->cl);
1503 
1504 	kobject_init(&c->kobj, &bch_cache_set_ktype);
1505 	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1506 
1507 	bch_cache_accounting_init(&c->accounting, &c->cl);
1508 
1509 	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1510 	c->sb.block_size	= sb->block_size;
1511 	c->sb.bucket_size	= sb->bucket_size;
1512 	c->sb.nr_in_set		= sb->nr_in_set;
1513 	c->sb.last_mount	= sb->last_mount;
1514 	c->bucket_bits		= ilog2(sb->bucket_size);
1515 	c->block_bits		= ilog2(sb->block_size);
1516 	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1517 	c->devices_max_used	= 0;
1518 	c->btree_pages		= bucket_pages(c);
1519 	if (c->btree_pages > BTREE_MAX_PAGES)
1520 		c->btree_pages = max_t(int, c->btree_pages / 4,
1521 				       BTREE_MAX_PAGES);
1522 
1523 	sema_init(&c->sb_write_mutex, 1);
1524 	mutex_init(&c->bucket_lock);
1525 	init_waitqueue_head(&c->btree_cache_wait);
1526 	init_waitqueue_head(&c->bucket_wait);
1527 	init_waitqueue_head(&c->gc_wait);
1528 	sema_init(&c->uuid_write_mutex, 1);
1529 
1530 	spin_lock_init(&c->btree_gc_time.lock);
1531 	spin_lock_init(&c->btree_split_time.lock);
1532 	spin_lock_init(&c->btree_read_time.lock);
1533 
1534 	bch_moving_init_cache_set(c);
1535 
1536 	INIT_LIST_HEAD(&c->list);
1537 	INIT_LIST_HEAD(&c->cached_devs);
1538 	INIT_LIST_HEAD(&c->btree_cache);
1539 	INIT_LIST_HEAD(&c->btree_cache_freeable);
1540 	INIT_LIST_HEAD(&c->btree_cache_freed);
1541 	INIT_LIST_HEAD(&c->data_buckets);
1542 
1543 	c->search = mempool_create_slab_pool(32, bch_search_cache);
1544 	if (!c->search)
1545 		goto err;
1546 
1547 	iter_size = (sb->bucket_size / sb->block_size + 1) *
1548 		sizeof(struct btree_iter_set);
1549 
1550 	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1551 	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1552 				sizeof(struct bbio) + sizeof(struct bio_vec) *
1553 				bucket_pages(c))) ||
1554 	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1555 	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio),
1556 					   BIOSET_NEED_BVECS |
1557 					   BIOSET_NEED_RESCUER)) ||
1558 	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1559 	    !(c->moving_gc_wq = alloc_workqueue("bcache_gc",
1560 						WQ_MEM_RECLAIM, 0)) ||
1561 	    bch_journal_alloc(c) ||
1562 	    bch_btree_cache_alloc(c) ||
1563 	    bch_open_buckets_alloc(c) ||
1564 	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1565 		goto err;
1566 
1567 	c->congested_read_threshold_us	= 2000;
1568 	c->congested_write_threshold_us	= 20000;
1569 	c->error_limit	= DEFAULT_IO_ERROR_LIMIT;
1570 
1571 	return c;
1572 err:
1573 	bch_cache_set_unregister(c);
1574 	return NULL;
1575 }
1576 
1577 static void run_cache_set(struct cache_set *c)
1578 {
1579 	const char *err = "cannot allocate memory";
1580 	struct cached_dev *dc, *t;
1581 	struct cache *ca;
1582 	struct closure cl;
1583 	unsigned i;
1584 
1585 	closure_init_stack(&cl);
1586 
1587 	for_each_cache(ca, c, i)
1588 		c->nbuckets += ca->sb.nbuckets;
1589 	set_gc_sectors(c);
1590 
1591 	if (CACHE_SYNC(&c->sb)) {
1592 		LIST_HEAD(journal);
1593 		struct bkey *k;
1594 		struct jset *j;
1595 
1596 		err = "cannot allocate memory for journal";
1597 		if (bch_journal_read(c, &journal))
1598 			goto err;
1599 
1600 		pr_debug("btree_journal_read() done");
1601 
1602 		err = "no journal entries found";
1603 		if (list_empty(&journal))
1604 			goto err;
1605 
1606 		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1607 
1608 		err = "IO error reading priorities";
1609 		for_each_cache(ca, c, i)
1610 			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1611 
1612 		/*
1613 		 * If prio_read() fails it'll call cache_set_error and we'll
1614 		 * tear everything down right away, but if we perhaps checked
1615 		 * sooner we could avoid journal replay.
1616 		 */
1617 
1618 		k = &j->btree_root;
1619 
1620 		err = "bad btree root";
1621 		if (__bch_btree_ptr_invalid(c, k))
1622 			goto err;
1623 
1624 		err = "error reading btree root";
1625 		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1626 		if (IS_ERR_OR_NULL(c->root))
1627 			goto err;
1628 
1629 		list_del_init(&c->root->list);
1630 		rw_unlock(true, c->root);
1631 
1632 		err = uuid_read(c, j, &cl);
1633 		if (err)
1634 			goto err;
1635 
1636 		err = "error in recovery";
1637 		if (bch_btree_check(c))
1638 			goto err;
1639 
1640 		bch_journal_mark(c, &journal);
1641 		bch_initial_gc_finish(c);
1642 		pr_debug("btree_check() done");
1643 
1644 		/*
1645 		 * bcache_journal_next() can't happen sooner, or
1646 		 * btree_gc_finish() will give spurious errors about last_gc >
1647 		 * gc_gen - this is a hack but oh well.
1648 		 */
1649 		bch_journal_next(&c->journal);
1650 
1651 		err = "error starting allocator thread";
1652 		for_each_cache(ca, c, i)
1653 			if (bch_cache_allocator_start(ca))
1654 				goto err;
1655 
1656 		/*
1657 		 * First place it's safe to allocate: btree_check() and
1658 		 * btree_gc_finish() have to run before we have buckets to
1659 		 * allocate, and bch_bucket_alloc_set() might cause a journal
1660 		 * entry to be written so bcache_journal_next() has to be called
1661 		 * first.
1662 		 *
1663 		 * If the uuids were in the old format we have to rewrite them
1664 		 * before the next journal entry is written:
1665 		 */
1666 		if (j->version < BCACHE_JSET_VERSION_UUID)
1667 			__uuid_write(c);
1668 
1669 		bch_journal_replay(c, &journal);
1670 	} else {
1671 		pr_notice("invalidating existing data");
1672 
1673 		for_each_cache(ca, c, i) {
1674 			unsigned j;
1675 
1676 			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1677 					      2, SB_JOURNAL_BUCKETS);
1678 
1679 			for (j = 0; j < ca->sb.keys; j++)
1680 				ca->sb.d[j] = ca->sb.first_bucket + j;
1681 		}
1682 
1683 		bch_initial_gc_finish(c);
1684 
1685 		err = "error starting allocator thread";
1686 		for_each_cache(ca, c, i)
1687 			if (bch_cache_allocator_start(ca))
1688 				goto err;
1689 
1690 		mutex_lock(&c->bucket_lock);
1691 		for_each_cache(ca, c, i)
1692 			bch_prio_write(ca);
1693 		mutex_unlock(&c->bucket_lock);
1694 
1695 		err = "cannot allocate new UUID bucket";
1696 		if (__uuid_write(c))
1697 			goto err;
1698 
1699 		err = "cannot allocate new btree root";
1700 		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1701 		if (IS_ERR_OR_NULL(c->root))
1702 			goto err;
1703 
1704 		mutex_lock(&c->root->write_lock);
1705 		bkey_copy_key(&c->root->key, &MAX_KEY);
1706 		bch_btree_node_write(c->root, &cl);
1707 		mutex_unlock(&c->root->write_lock);
1708 
1709 		bch_btree_set_root(c->root);
1710 		rw_unlock(true, c->root);
1711 
1712 		/*
1713 		 * We don't want to write the first journal entry until
1714 		 * everything is set up - fortunately journal entries won't be
1715 		 * written until the SET_CACHE_SYNC() here:
1716 		 */
1717 		SET_CACHE_SYNC(&c->sb, true);
1718 
1719 		bch_journal_next(&c->journal);
1720 		bch_journal_meta(c, &cl);
1721 	}
1722 
1723 	err = "error starting gc thread";
1724 	if (bch_gc_thread_start(c))
1725 		goto err;
1726 
1727 	closure_sync(&cl);
1728 	c->sb.last_mount = get_seconds();
1729 	bcache_write_super(c);
1730 
1731 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1732 		bch_cached_dev_attach(dc, c, NULL);
1733 
1734 	flash_devs_run(c);
1735 
1736 	set_bit(CACHE_SET_RUNNING, &c->flags);
1737 	return;
1738 err:
1739 	closure_sync(&cl);
1740 	/* XXX: test this, it's broken */
1741 	bch_cache_set_error(c, "%s", err);
1742 }
1743 
1744 static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1745 {
1746 	return ca->sb.block_size	== c->sb.block_size &&
1747 		ca->sb.bucket_size	== c->sb.bucket_size &&
1748 		ca->sb.nr_in_set	== c->sb.nr_in_set;
1749 }
1750 
1751 static const char *register_cache_set(struct cache *ca)
1752 {
1753 	char buf[12];
1754 	const char *err = "cannot allocate memory";
1755 	struct cache_set *c;
1756 
1757 	list_for_each_entry(c, &bch_cache_sets, list)
1758 		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1759 			if (c->cache[ca->sb.nr_this_dev])
1760 				return "duplicate cache set member";
1761 
1762 			if (!can_attach_cache(ca, c))
1763 				return "cache sb does not match set";
1764 
1765 			if (!CACHE_SYNC(&ca->sb))
1766 				SET_CACHE_SYNC(&c->sb, false);
1767 
1768 			goto found;
1769 		}
1770 
1771 	c = bch_cache_set_alloc(&ca->sb);
1772 	if (!c)
1773 		return err;
1774 
1775 	err = "error creating kobject";
1776 	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1777 	    kobject_add(&c->internal, &c->kobj, "internal"))
1778 		goto err;
1779 
1780 	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1781 		goto err;
1782 
1783 	bch_debug_init_cache_set(c);
1784 
1785 	list_add(&c->list, &bch_cache_sets);
1786 found:
1787 	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1788 	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1789 	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1790 		goto err;
1791 
1792 	if (ca->sb.seq > c->sb.seq) {
1793 		c->sb.version		= ca->sb.version;
1794 		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1795 		c->sb.flags             = ca->sb.flags;
1796 		c->sb.seq		= ca->sb.seq;
1797 		pr_debug("set version = %llu", c->sb.version);
1798 	}
1799 
1800 	kobject_get(&ca->kobj);
1801 	ca->set = c;
1802 	ca->set->cache[ca->sb.nr_this_dev] = ca;
1803 	c->cache_by_alloc[c->caches_loaded++] = ca;
1804 
1805 	if (c->caches_loaded == c->sb.nr_in_set)
1806 		run_cache_set(c);
1807 
1808 	return NULL;
1809 err:
1810 	bch_cache_set_unregister(c);
1811 	return err;
1812 }
1813 
1814 /* Cache device */
1815 
1816 void bch_cache_release(struct kobject *kobj)
1817 {
1818 	struct cache *ca = container_of(kobj, struct cache, kobj);
1819 	unsigned i;
1820 
1821 	if (ca->set) {
1822 		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1823 		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1824 	}
1825 
1826 	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1827 	kfree(ca->prio_buckets);
1828 	vfree(ca->buckets);
1829 
1830 	free_heap(&ca->heap);
1831 	free_fifo(&ca->free_inc);
1832 
1833 	for (i = 0; i < RESERVE_NR; i++)
1834 		free_fifo(&ca->free[i]);
1835 
1836 	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1837 		put_page(bio_first_page_all(&ca->sb_bio));
1838 
1839 	if (!IS_ERR_OR_NULL(ca->bdev))
1840 		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1841 
1842 	kfree(ca);
1843 	module_put(THIS_MODULE);
1844 }
1845 
1846 static int cache_alloc(struct cache *ca)
1847 {
1848 	size_t free;
1849 	size_t btree_buckets;
1850 	struct bucket *b;
1851 
1852 	__module_get(THIS_MODULE);
1853 	kobject_init(&ca->kobj, &bch_cache_ktype);
1854 
1855 	bio_init(&ca->journal.bio, ca->journal.bio.bi_inline_vecs, 8);
1856 
1857 	/*
1858 	 * when ca->sb.njournal_buckets is not zero, journal exists,
1859 	 * and in bch_journal_replay(), tree node may split,
1860 	 * so bucket of RESERVE_BTREE type is needed,
1861 	 * the worst situation is all journal buckets are valid journal,
1862 	 * and all the keys need to replay,
1863 	 * so the number of  RESERVE_BTREE type buckets should be as much
1864 	 * as journal buckets
1865 	 */
1866 	btree_buckets = ca->sb.njournal_buckets ?: 8;
1867 	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1868 
1869 	if (!init_fifo(&ca->free[RESERVE_BTREE], btree_buckets, GFP_KERNEL) ||
1870 	    !init_fifo_exact(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1871 	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1872 	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1873 	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1874 	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1875 	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1876 					  ca->sb.nbuckets)) ||
1877 	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1878 					  2, GFP_KERNEL)) ||
1879 	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)))
1880 		return -ENOMEM;
1881 
1882 	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1883 
1884 	for_each_bucket(b, ca)
1885 		atomic_set(&b->pin, 0);
1886 
1887 	return 0;
1888 }
1889 
1890 static int register_cache(struct cache_sb *sb, struct page *sb_page,
1891 				struct block_device *bdev, struct cache *ca)
1892 {
1893 	char name[BDEVNAME_SIZE];
1894 	const char *err = NULL; /* must be set for any error case */
1895 	int ret = 0;
1896 
1897 	bdevname(bdev, name);
1898 
1899 	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1900 	ca->bdev = bdev;
1901 	ca->bdev->bd_holder = ca;
1902 
1903 	bio_init(&ca->sb_bio, ca->sb_bio.bi_inline_vecs, 1);
1904 	bio_first_bvec_all(&ca->sb_bio)->bv_page = sb_page;
1905 	get_page(sb_page);
1906 
1907 	if (blk_queue_discard(bdev_get_queue(bdev)))
1908 		ca->discard = CACHE_DISCARD(&ca->sb);
1909 
1910 	ret = cache_alloc(ca);
1911 	if (ret != 0) {
1912 		blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1913 		if (ret == -ENOMEM)
1914 			err = "cache_alloc(): -ENOMEM";
1915 		else
1916 			err = "cache_alloc(): unknown error";
1917 		goto err;
1918 	}
1919 
1920 	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1921 		err = "error calling kobject_add";
1922 		ret = -ENOMEM;
1923 		goto out;
1924 	}
1925 
1926 	mutex_lock(&bch_register_lock);
1927 	err = register_cache_set(ca);
1928 	mutex_unlock(&bch_register_lock);
1929 
1930 	if (err) {
1931 		ret = -ENODEV;
1932 		goto out;
1933 	}
1934 
1935 	pr_info("registered cache device %s", name);
1936 
1937 out:
1938 	kobject_put(&ca->kobj);
1939 
1940 err:
1941 	if (err)
1942 		pr_notice("error %s: %s", name, err);
1943 
1944 	return ret;
1945 }
1946 
1947 /* Global interfaces/init */
1948 
1949 static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1950 			       const char *, size_t);
1951 
1952 kobj_attribute_write(register,		register_bcache);
1953 kobj_attribute_write(register_quiet,	register_bcache);
1954 
1955 static bool bch_is_open_backing(struct block_device *bdev) {
1956 	struct cache_set *c, *tc;
1957 	struct cached_dev *dc, *t;
1958 
1959 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1960 		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1961 			if (dc->bdev == bdev)
1962 				return true;
1963 	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1964 		if (dc->bdev == bdev)
1965 			return true;
1966 	return false;
1967 }
1968 
1969 static bool bch_is_open_cache(struct block_device *bdev) {
1970 	struct cache_set *c, *tc;
1971 	struct cache *ca;
1972 	unsigned i;
1973 
1974 	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1975 		for_each_cache(ca, c, i)
1976 			if (ca->bdev == bdev)
1977 				return true;
1978 	return false;
1979 }
1980 
1981 static bool bch_is_open(struct block_device *bdev) {
1982 	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1983 }
1984 
1985 static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1986 			       const char *buffer, size_t size)
1987 {
1988 	ssize_t ret = size;
1989 	const char *err = "cannot allocate memory";
1990 	char *path = NULL;
1991 	struct cache_sb *sb = NULL;
1992 	struct block_device *bdev = NULL;
1993 	struct page *sb_page = NULL;
1994 
1995 	if (!try_module_get(THIS_MODULE))
1996 		return -EBUSY;
1997 
1998 	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1999 	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
2000 		goto err;
2001 
2002 	err = "failed to open device";
2003 	bdev = blkdev_get_by_path(strim(path),
2004 				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2005 				  sb);
2006 	if (IS_ERR(bdev)) {
2007 		if (bdev == ERR_PTR(-EBUSY)) {
2008 			bdev = lookup_bdev(strim(path));
2009 			mutex_lock(&bch_register_lock);
2010 			if (!IS_ERR(bdev) && bch_is_open(bdev))
2011 				err = "device already registered";
2012 			else
2013 				err = "device busy";
2014 			mutex_unlock(&bch_register_lock);
2015 			if (!IS_ERR(bdev))
2016 				bdput(bdev);
2017 			if (attr == &ksysfs_register_quiet)
2018 				goto out;
2019 		}
2020 		goto err;
2021 	}
2022 
2023 	err = "failed to set blocksize";
2024 	if (set_blocksize(bdev, 4096))
2025 		goto err_close;
2026 
2027 	err = read_super(sb, bdev, &sb_page);
2028 	if (err)
2029 		goto err_close;
2030 
2031 	err = "failed to register device";
2032 	if (SB_IS_BDEV(sb)) {
2033 		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2034 		if (!dc)
2035 			goto err_close;
2036 
2037 		mutex_lock(&bch_register_lock);
2038 		register_bdev(sb, sb_page, bdev, dc);
2039 		mutex_unlock(&bch_register_lock);
2040 	} else {
2041 		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2042 		if (!ca)
2043 			goto err_close;
2044 
2045 		if (register_cache(sb, sb_page, bdev, ca) != 0)
2046 			goto err;
2047 	}
2048 out:
2049 	if (sb_page)
2050 		put_page(sb_page);
2051 	kfree(sb);
2052 	kfree(path);
2053 	module_put(THIS_MODULE);
2054 	return ret;
2055 
2056 err_close:
2057 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2058 err:
2059 	pr_info("error %s: %s", path, err);
2060 	ret = -EINVAL;
2061 	goto out;
2062 }
2063 
2064 static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2065 {
2066 	if (code == SYS_DOWN ||
2067 	    code == SYS_HALT ||
2068 	    code == SYS_POWER_OFF) {
2069 		DEFINE_WAIT(wait);
2070 		unsigned long start = jiffies;
2071 		bool stopped = false;
2072 
2073 		struct cache_set *c, *tc;
2074 		struct cached_dev *dc, *tdc;
2075 
2076 		mutex_lock(&bch_register_lock);
2077 
2078 		if (list_empty(&bch_cache_sets) &&
2079 		    list_empty(&uncached_devices))
2080 			goto out;
2081 
2082 		pr_info("Stopping all devices:");
2083 
2084 		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2085 			bch_cache_set_stop(c);
2086 
2087 		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2088 			bcache_device_stop(&dc->disk);
2089 
2090 		/* What's a condition variable? */
2091 		while (1) {
2092 			long timeout = start + 2 * HZ - jiffies;
2093 
2094 			stopped = list_empty(&bch_cache_sets) &&
2095 				list_empty(&uncached_devices);
2096 
2097 			if (timeout < 0 || stopped)
2098 				break;
2099 
2100 			prepare_to_wait(&unregister_wait, &wait,
2101 					TASK_UNINTERRUPTIBLE);
2102 
2103 			mutex_unlock(&bch_register_lock);
2104 			schedule_timeout(timeout);
2105 			mutex_lock(&bch_register_lock);
2106 		}
2107 
2108 		finish_wait(&unregister_wait, &wait);
2109 
2110 		if (stopped)
2111 			pr_info("All devices stopped");
2112 		else
2113 			pr_notice("Timeout waiting for devices to be closed");
2114 out:
2115 		mutex_unlock(&bch_register_lock);
2116 	}
2117 
2118 	return NOTIFY_DONE;
2119 }
2120 
2121 static struct notifier_block reboot = {
2122 	.notifier_call	= bcache_reboot,
2123 	.priority	= INT_MAX, /* before any real devices */
2124 };
2125 
2126 static void bcache_exit(void)
2127 {
2128 	bch_debug_exit();
2129 	bch_request_exit();
2130 	if (bcache_kobj)
2131 		kobject_put(bcache_kobj);
2132 	if (bcache_wq)
2133 		destroy_workqueue(bcache_wq);
2134 	if (bcache_major)
2135 		unregister_blkdev(bcache_major, "bcache");
2136 	unregister_reboot_notifier(&reboot);
2137 	mutex_destroy(&bch_register_lock);
2138 }
2139 
2140 static int __init bcache_init(void)
2141 {
2142 	static const struct attribute *files[] = {
2143 		&ksysfs_register.attr,
2144 		&ksysfs_register_quiet.attr,
2145 		NULL
2146 	};
2147 
2148 	mutex_init(&bch_register_lock);
2149 	init_waitqueue_head(&unregister_wait);
2150 	register_reboot_notifier(&reboot);
2151 	closure_debug_init();
2152 
2153 	bcache_major = register_blkdev(0, "bcache");
2154 	if (bcache_major < 0) {
2155 		unregister_reboot_notifier(&reboot);
2156 		mutex_destroy(&bch_register_lock);
2157 		return bcache_major;
2158 	}
2159 
2160 	if (!(bcache_wq = alloc_workqueue("bcache", WQ_MEM_RECLAIM, 0)) ||
2161 	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2162 	    bch_request_init() ||
2163 	    bch_debug_init(bcache_kobj) ||
2164 	    sysfs_create_files(bcache_kobj, files))
2165 		goto err;
2166 
2167 	return 0;
2168 err:
2169 	bcache_exit();
2170 	return -ENOMEM;
2171 }
2172 
2173 module_exit(bcache_exit);
2174 module_init(bcache_init);
2175