1 /* 2 * Main bcache entry point - handle a read or a write request and decide what to 3 * do with it; the make_request functions are called by the block layer. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 14 #include <linux/cgroup.h> 15 #include <linux/module.h> 16 #include <linux/hash.h> 17 #include <linux/random.h> 18 #include "blk-cgroup.h" 19 20 #include <trace/events/bcache.h> 21 22 #define CUTOFF_CACHE_ADD 95 23 #define CUTOFF_CACHE_READA 90 24 #define CUTOFF_WRITEBACK 50 25 #define CUTOFF_WRITEBACK_SYNC 75 26 27 struct kmem_cache *bch_search_cache; 28 29 static void check_should_skip(struct cached_dev *, struct search *); 30 31 /* Cgroup interface */ 32 33 #ifdef CONFIG_CGROUP_BCACHE 34 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 }; 35 36 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup) 37 { 38 struct cgroup_subsys_state *css; 39 return cgroup && 40 (css = cgroup_subsys_state(cgroup, bcache_subsys_id)) 41 ? container_of(css, struct bch_cgroup, css) 42 : &bcache_default_cgroup; 43 } 44 45 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio) 46 { 47 struct cgroup_subsys_state *css = bio->bi_css 48 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id) 49 : task_subsys_state(current, bcache_subsys_id); 50 51 return css 52 ? container_of(css, struct bch_cgroup, css) 53 : &bcache_default_cgroup; 54 } 55 56 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft, 57 struct file *file, 58 char __user *buf, size_t nbytes, loff_t *ppos) 59 { 60 char tmp[1024]; 61 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes, 62 cgroup_to_bcache(cgrp)->cache_mode + 1); 63 64 if (len < 0) 65 return len; 66 67 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); 68 } 69 70 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft, 71 const char *buf) 72 { 73 int v = bch_read_string_list(buf, bch_cache_modes); 74 if (v < 0) 75 return v; 76 77 cgroup_to_bcache(cgrp)->cache_mode = v - 1; 78 return 0; 79 } 80 81 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft) 82 { 83 return cgroup_to_bcache(cgrp)->verify; 84 } 85 86 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val) 87 { 88 cgroup_to_bcache(cgrp)->verify = val; 89 return 0; 90 } 91 92 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft) 93 { 94 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 95 return atomic_read(&bcachecg->stats.cache_hits); 96 } 97 98 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft) 99 { 100 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 101 return atomic_read(&bcachecg->stats.cache_misses); 102 } 103 104 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp, 105 struct cftype *cft) 106 { 107 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 108 return atomic_read(&bcachecg->stats.cache_bypass_hits); 109 } 110 111 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp, 112 struct cftype *cft) 113 { 114 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp); 115 return atomic_read(&bcachecg->stats.cache_bypass_misses); 116 } 117 118 static struct cftype bch_files[] = { 119 { 120 .name = "cache_mode", 121 .read = cache_mode_read, 122 .write_string = cache_mode_write, 123 }, 124 { 125 .name = "verify", 126 .read_u64 = bch_verify_read, 127 .write_u64 = bch_verify_write, 128 }, 129 { 130 .name = "cache_hits", 131 .read_u64 = bch_cache_hits_read, 132 }, 133 { 134 .name = "cache_misses", 135 .read_u64 = bch_cache_misses_read, 136 }, 137 { 138 .name = "cache_bypass_hits", 139 .read_u64 = bch_cache_bypass_hits_read, 140 }, 141 { 142 .name = "cache_bypass_misses", 143 .read_u64 = bch_cache_bypass_misses_read, 144 }, 145 { } /* terminate */ 146 }; 147 148 static void init_bch_cgroup(struct bch_cgroup *cg) 149 { 150 cg->cache_mode = -1; 151 } 152 153 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup) 154 { 155 struct bch_cgroup *cg; 156 157 cg = kzalloc(sizeof(*cg), GFP_KERNEL); 158 if (!cg) 159 return ERR_PTR(-ENOMEM); 160 init_bch_cgroup(cg); 161 return &cg->css; 162 } 163 164 static void bcachecg_destroy(struct cgroup *cgroup) 165 { 166 struct bch_cgroup *cg = cgroup_to_bcache(cgroup); 167 free_css_id(&bcache_subsys, &cg->css); 168 kfree(cg); 169 } 170 171 struct cgroup_subsys bcache_subsys = { 172 .create = bcachecg_create, 173 .destroy = bcachecg_destroy, 174 .subsys_id = bcache_subsys_id, 175 .name = "bcache", 176 .module = THIS_MODULE, 177 }; 178 EXPORT_SYMBOL_GPL(bcache_subsys); 179 #endif 180 181 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 182 { 183 #ifdef CONFIG_CGROUP_BCACHE 184 int r = bch_bio_to_cgroup(bio)->cache_mode; 185 if (r >= 0) 186 return r; 187 #endif 188 return BDEV_CACHE_MODE(&dc->sb); 189 } 190 191 static bool verify(struct cached_dev *dc, struct bio *bio) 192 { 193 #ifdef CONFIG_CGROUP_BCACHE 194 if (bch_bio_to_cgroup(bio)->verify) 195 return true; 196 #endif 197 return dc->verify; 198 } 199 200 static void bio_csum(struct bio *bio, struct bkey *k) 201 { 202 struct bio_vec *bv; 203 uint64_t csum = 0; 204 int i; 205 206 bio_for_each_segment(bv, bio, i) { 207 void *d = kmap(bv->bv_page) + bv->bv_offset; 208 csum = bch_crc64_update(csum, d, bv->bv_len); 209 kunmap(bv->bv_page); 210 } 211 212 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 213 } 214 215 /* Insert data into cache */ 216 217 static void bio_invalidate(struct closure *cl) 218 { 219 struct btree_op *op = container_of(cl, struct btree_op, cl); 220 struct bio *bio = op->cache_bio; 221 222 pr_debug("invalidating %i sectors from %llu", 223 bio_sectors(bio), (uint64_t) bio->bi_sector); 224 225 while (bio_sectors(bio)) { 226 unsigned len = min(bio_sectors(bio), 1U << 14); 227 228 if (bch_keylist_realloc(&op->keys, 0, op->c)) 229 goto out; 230 231 bio->bi_sector += len; 232 bio->bi_size -= len << 9; 233 234 bch_keylist_add(&op->keys, 235 &KEY(op->inode, bio->bi_sector, len)); 236 } 237 238 op->insert_data_done = true; 239 bio_put(bio); 240 out: 241 continue_at(cl, bch_journal, bcache_wq); 242 } 243 244 struct open_bucket { 245 struct list_head list; 246 struct task_struct *last; 247 unsigned sectors_free; 248 BKEY_PADDED(key); 249 }; 250 251 void bch_open_buckets_free(struct cache_set *c) 252 { 253 struct open_bucket *b; 254 255 while (!list_empty(&c->data_buckets)) { 256 b = list_first_entry(&c->data_buckets, 257 struct open_bucket, list); 258 list_del(&b->list); 259 kfree(b); 260 } 261 } 262 263 int bch_open_buckets_alloc(struct cache_set *c) 264 { 265 int i; 266 267 spin_lock_init(&c->data_bucket_lock); 268 269 for (i = 0; i < 6; i++) { 270 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL); 271 if (!b) 272 return -ENOMEM; 273 274 list_add(&b->list, &c->data_buckets); 275 } 276 277 return 0; 278 } 279 280 /* 281 * We keep multiple buckets open for writes, and try to segregate different 282 * write streams for better cache utilization: first we look for a bucket where 283 * the last write to it was sequential with the current write, and failing that 284 * we look for a bucket that was last used by the same task. 285 * 286 * The ideas is if you've got multiple tasks pulling data into the cache at the 287 * same time, you'll get better cache utilization if you try to segregate their 288 * data and preserve locality. 289 * 290 * For example, say you've starting Firefox at the same time you're copying a 291 * bunch of files. Firefox will likely end up being fairly hot and stay in the 292 * cache awhile, but the data you copied might not be; if you wrote all that 293 * data to the same buckets it'd get invalidated at the same time. 294 * 295 * Both of those tasks will be doing fairly random IO so we can't rely on 296 * detecting sequential IO to segregate their data, but going off of the task 297 * should be a sane heuristic. 298 */ 299 static struct open_bucket *pick_data_bucket(struct cache_set *c, 300 const struct bkey *search, 301 struct task_struct *task, 302 struct bkey *alloc) 303 { 304 struct open_bucket *ret, *ret_task = NULL; 305 306 list_for_each_entry_reverse(ret, &c->data_buckets, list) 307 if (!bkey_cmp(&ret->key, search)) 308 goto found; 309 else if (ret->last == task) 310 ret_task = ret; 311 312 ret = ret_task ?: list_first_entry(&c->data_buckets, 313 struct open_bucket, list); 314 found: 315 if (!ret->sectors_free && KEY_PTRS(alloc)) { 316 ret->sectors_free = c->sb.bucket_size; 317 bkey_copy(&ret->key, alloc); 318 bkey_init(alloc); 319 } 320 321 if (!ret->sectors_free) 322 ret = NULL; 323 324 return ret; 325 } 326 327 /* 328 * Allocates some space in the cache to write to, and k to point to the newly 329 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the 330 * end of the newly allocated space). 331 * 332 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many 333 * sectors were actually allocated. 334 * 335 * If s->writeback is true, will not fail. 336 */ 337 static bool bch_alloc_sectors(struct bkey *k, unsigned sectors, 338 struct search *s) 339 { 340 struct cache_set *c = s->op.c; 341 struct open_bucket *b; 342 BKEY_PADDED(key) alloc; 343 struct closure cl, *w = NULL; 344 unsigned i; 345 346 if (s->writeback) { 347 closure_init_stack(&cl); 348 w = &cl; 349 } 350 351 /* 352 * We might have to allocate a new bucket, which we can't do with a 353 * spinlock held. So if we have to allocate, we drop the lock, allocate 354 * and then retry. KEY_PTRS() indicates whether alloc points to 355 * allocated bucket(s). 356 */ 357 358 bkey_init(&alloc.key); 359 spin_lock(&c->data_bucket_lock); 360 361 while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) { 362 unsigned watermark = s->op.write_prio 363 ? WATERMARK_MOVINGGC 364 : WATERMARK_NONE; 365 366 spin_unlock(&c->data_bucket_lock); 367 368 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w)) 369 return false; 370 371 spin_lock(&c->data_bucket_lock); 372 } 373 374 /* 375 * If we had to allocate, we might race and not need to allocate the 376 * second time we call find_data_bucket(). If we allocated a bucket but 377 * didn't use it, drop the refcount bch_bucket_alloc_set() took: 378 */ 379 if (KEY_PTRS(&alloc.key)) 380 __bkey_put(c, &alloc.key); 381 382 for (i = 0; i < KEY_PTRS(&b->key); i++) 383 EBUG_ON(ptr_stale(c, &b->key, i)); 384 385 /* Set up the pointer to the space we're allocating: */ 386 387 for (i = 0; i < KEY_PTRS(&b->key); i++) 388 k->ptr[i] = b->key.ptr[i]; 389 390 sectors = min(sectors, b->sectors_free); 391 392 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors); 393 SET_KEY_SIZE(k, sectors); 394 SET_KEY_PTRS(k, KEY_PTRS(&b->key)); 395 396 /* 397 * Move b to the end of the lru, and keep track of what this bucket was 398 * last used for: 399 */ 400 list_move_tail(&b->list, &c->data_buckets); 401 bkey_copy_key(&b->key, k); 402 b->last = s->task; 403 404 b->sectors_free -= sectors; 405 406 for (i = 0; i < KEY_PTRS(&b->key); i++) { 407 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors); 408 409 atomic_long_add(sectors, 410 &PTR_CACHE(c, &b->key, i)->sectors_written); 411 } 412 413 if (b->sectors_free < c->sb.block_size) 414 b->sectors_free = 0; 415 416 /* 417 * k takes refcounts on the buckets it points to until it's inserted 418 * into the btree, but if we're done with this bucket we just transfer 419 * get_data_bucket()'s refcount. 420 */ 421 if (b->sectors_free) 422 for (i = 0; i < KEY_PTRS(&b->key); i++) 423 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin); 424 425 spin_unlock(&c->data_bucket_lock); 426 return true; 427 } 428 429 static void bch_insert_data_error(struct closure *cl) 430 { 431 struct btree_op *op = container_of(cl, struct btree_op, cl); 432 433 /* 434 * Our data write just errored, which means we've got a bunch of keys to 435 * insert that point to data that wasn't succesfully written. 436 * 437 * We don't have to insert those keys but we still have to invalidate 438 * that region of the cache - so, if we just strip off all the pointers 439 * from the keys we'll accomplish just that. 440 */ 441 442 struct bkey *src = op->keys.bottom, *dst = op->keys.bottom; 443 444 while (src != op->keys.top) { 445 struct bkey *n = bkey_next(src); 446 447 SET_KEY_PTRS(src, 0); 448 bkey_copy(dst, src); 449 450 dst = bkey_next(dst); 451 src = n; 452 } 453 454 op->keys.top = dst; 455 456 bch_journal(cl); 457 } 458 459 static void bch_insert_data_endio(struct bio *bio, int error) 460 { 461 struct closure *cl = bio->bi_private; 462 struct btree_op *op = container_of(cl, struct btree_op, cl); 463 struct search *s = container_of(op, struct search, op); 464 465 if (error) { 466 /* TODO: We could try to recover from this. */ 467 if (s->writeback) 468 s->error = error; 469 else if (s->write) 470 set_closure_fn(cl, bch_insert_data_error, bcache_wq); 471 else 472 set_closure_fn(cl, NULL, NULL); 473 } 474 475 bch_bbio_endio(op->c, bio, error, "writing data to cache"); 476 } 477 478 static void bch_insert_data_loop(struct closure *cl) 479 { 480 struct btree_op *op = container_of(cl, struct btree_op, cl); 481 struct search *s = container_of(op, struct search, op); 482 struct bio *bio = op->cache_bio, *n; 483 484 if (op->skip) 485 return bio_invalidate(cl); 486 487 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { 488 set_gc_sectors(op->c); 489 bch_queue_gc(op->c); 490 } 491 492 do { 493 unsigned i; 494 struct bkey *k; 495 struct bio_set *split = s->d 496 ? s->d->bio_split : op->c->bio_split; 497 498 /* 1 for the device pointer and 1 for the chksum */ 499 if (bch_keylist_realloc(&op->keys, 500 1 + (op->csum ? 1 : 0), 501 op->c)) 502 continue_at(cl, bch_journal, bcache_wq); 503 504 k = op->keys.top; 505 bkey_init(k); 506 SET_KEY_INODE(k, op->inode); 507 SET_KEY_OFFSET(k, bio->bi_sector); 508 509 if (!bch_alloc_sectors(k, bio_sectors(bio), s)) 510 goto err; 511 512 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split); 513 if (!n) { 514 __bkey_put(op->c, k); 515 continue_at(cl, bch_insert_data_loop, bcache_wq); 516 } 517 518 n->bi_end_io = bch_insert_data_endio; 519 n->bi_private = cl; 520 521 if (s->writeback) { 522 SET_KEY_DIRTY(k, true); 523 524 for (i = 0; i < KEY_PTRS(k); i++) 525 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 526 GC_MARK_DIRTY); 527 } 528 529 SET_KEY_CSUM(k, op->csum); 530 if (KEY_CSUM(k)) 531 bio_csum(n, k); 532 533 pr_debug("%s", pkey(k)); 534 bch_keylist_push(&op->keys); 535 536 trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev); 537 n->bi_rw |= REQ_WRITE; 538 bch_submit_bbio(n, op->c, k, 0); 539 } while (n != bio); 540 541 op->insert_data_done = true; 542 continue_at(cl, bch_journal, bcache_wq); 543 err: 544 /* bch_alloc_sectors() blocks if s->writeback = true */ 545 BUG_ON(s->writeback); 546 547 /* 548 * But if it's not a writeback write we'd rather just bail out if 549 * there aren't any buckets ready to write to - it might take awhile and 550 * we might be starving btree writes for gc or something. 551 */ 552 553 if (s->write) { 554 /* 555 * Writethrough write: We can't complete the write until we've 556 * updated the index. But we don't want to delay the write while 557 * we wait for buckets to be freed up, so just invalidate the 558 * rest of the write. 559 */ 560 op->skip = true; 561 return bio_invalidate(cl); 562 } else { 563 /* 564 * From a cache miss, we can just insert the keys for the data 565 * we have written or bail out if we didn't do anything. 566 */ 567 op->insert_data_done = true; 568 bio_put(bio); 569 570 if (!bch_keylist_empty(&op->keys)) 571 continue_at(cl, bch_journal, bcache_wq); 572 else 573 closure_return(cl); 574 } 575 } 576 577 /** 578 * bch_insert_data - stick some data in the cache 579 * 580 * This is the starting point for any data to end up in a cache device; it could 581 * be from a normal write, or a writeback write, or a write to a flash only 582 * volume - it's also used by the moving garbage collector to compact data in 583 * mostly empty buckets. 584 * 585 * It first writes the data to the cache, creating a list of keys to be inserted 586 * (if the data had to be fragmented there will be multiple keys); after the 587 * data is written it calls bch_journal, and after the keys have been added to 588 * the next journal write they're inserted into the btree. 589 * 590 * It inserts the data in op->cache_bio; bi_sector is used for the key offset, 591 * and op->inode is used for the key inode. 592 * 593 * If op->skip is true, instead of inserting the data it invalidates the region 594 * of the cache represented by op->cache_bio and op->inode. 595 */ 596 void bch_insert_data(struct closure *cl) 597 { 598 struct btree_op *op = container_of(cl, struct btree_op, cl); 599 600 bch_keylist_init(&op->keys); 601 bio_get(op->cache_bio); 602 bch_insert_data_loop(cl); 603 } 604 605 void bch_btree_insert_async(struct closure *cl) 606 { 607 struct btree_op *op = container_of(cl, struct btree_op, cl); 608 struct search *s = container_of(op, struct search, op); 609 610 if (bch_btree_insert(op, op->c)) { 611 s->error = -ENOMEM; 612 op->insert_data_done = true; 613 } 614 615 if (op->insert_data_done) { 616 bch_keylist_free(&op->keys); 617 closure_return(cl); 618 } else 619 continue_at(cl, bch_insert_data_loop, bcache_wq); 620 } 621 622 /* Common code for the make_request functions */ 623 624 static void request_endio(struct bio *bio, int error) 625 { 626 struct closure *cl = bio->bi_private; 627 628 if (error) { 629 struct search *s = container_of(cl, struct search, cl); 630 s->error = error; 631 /* Only cache read errors are recoverable */ 632 s->recoverable = false; 633 } 634 635 bio_put(bio); 636 closure_put(cl); 637 } 638 639 void bch_cache_read_endio(struct bio *bio, int error) 640 { 641 struct bbio *b = container_of(bio, struct bbio, bio); 642 struct closure *cl = bio->bi_private; 643 struct search *s = container_of(cl, struct search, cl); 644 645 /* 646 * If the bucket was reused while our bio was in flight, we might have 647 * read the wrong data. Set s->error but not error so it doesn't get 648 * counted against the cache device, but we'll still reread the data 649 * from the backing device. 650 */ 651 652 if (error) 653 s->error = error; 654 else if (ptr_stale(s->op.c, &b->key, 0)) { 655 atomic_long_inc(&s->op.c->cache_read_races); 656 s->error = -EINTR; 657 } 658 659 bch_bbio_endio(s->op.c, bio, error, "reading from cache"); 660 } 661 662 static void bio_complete(struct search *s) 663 { 664 if (s->orig_bio) { 665 int cpu, rw = bio_data_dir(s->orig_bio); 666 unsigned long duration = jiffies - s->start_time; 667 668 cpu = part_stat_lock(); 669 part_round_stats(cpu, &s->d->disk->part0); 670 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration); 671 part_stat_unlock(); 672 673 trace_bcache_request_end(s, s->orig_bio); 674 bio_endio(s->orig_bio, s->error); 675 s->orig_bio = NULL; 676 } 677 } 678 679 static void do_bio_hook(struct search *s) 680 { 681 struct bio *bio = &s->bio.bio; 682 memcpy(bio, s->orig_bio, sizeof(struct bio)); 683 684 bio->bi_end_io = request_endio; 685 bio->bi_private = &s->cl; 686 atomic_set(&bio->bi_cnt, 3); 687 } 688 689 static void search_free(struct closure *cl) 690 { 691 struct search *s = container_of(cl, struct search, cl); 692 bio_complete(s); 693 694 if (s->op.cache_bio) 695 bio_put(s->op.cache_bio); 696 697 if (s->unaligned_bvec) 698 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec); 699 700 closure_debug_destroy(cl); 701 mempool_free(s, s->d->c->search); 702 } 703 704 static struct search *search_alloc(struct bio *bio, struct bcache_device *d) 705 { 706 struct bio_vec *bv; 707 struct search *s = mempool_alloc(d->c->search, GFP_NOIO); 708 memset(s, 0, offsetof(struct search, op.keys)); 709 710 __closure_init(&s->cl, NULL); 711 712 s->op.inode = d->id; 713 s->op.c = d->c; 714 s->d = d; 715 s->op.lock = -1; 716 s->task = current; 717 s->orig_bio = bio; 718 s->write = (bio->bi_rw & REQ_WRITE) != 0; 719 s->op.flush_journal = (bio->bi_rw & REQ_FLUSH) != 0; 720 s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0; 721 s->recoverable = 1; 722 s->start_time = jiffies; 723 do_bio_hook(s); 724 725 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) { 726 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO); 727 memcpy(bv, bio_iovec(bio), 728 sizeof(struct bio_vec) * bio_segments(bio)); 729 730 s->bio.bio.bi_io_vec = bv; 731 s->unaligned_bvec = 1; 732 } 733 734 return s; 735 } 736 737 static void btree_read_async(struct closure *cl) 738 { 739 struct btree_op *op = container_of(cl, struct btree_op, cl); 740 741 int ret = btree_root(search_recurse, op->c, op); 742 743 if (ret == -EAGAIN) 744 continue_at(cl, btree_read_async, bcache_wq); 745 746 closure_return(cl); 747 } 748 749 /* Cached devices */ 750 751 static void cached_dev_bio_complete(struct closure *cl) 752 { 753 struct search *s = container_of(cl, struct search, cl); 754 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 755 756 search_free(cl); 757 cached_dev_put(dc); 758 } 759 760 /* Process reads */ 761 762 static void cached_dev_read_complete(struct closure *cl) 763 { 764 struct search *s = container_of(cl, struct search, cl); 765 766 if (s->op.insert_collision) 767 bch_mark_cache_miss_collision(s); 768 769 if (s->op.cache_bio) { 770 int i; 771 struct bio_vec *bv; 772 773 __bio_for_each_segment(bv, s->op.cache_bio, i, 0) 774 __free_page(bv->bv_page); 775 } 776 777 cached_dev_bio_complete(cl); 778 } 779 780 static void request_read_error(struct closure *cl) 781 { 782 struct search *s = container_of(cl, struct search, cl); 783 struct bio_vec *bv; 784 int i; 785 786 if (s->recoverable) { 787 /* The cache read failed, but we can retry from the backing 788 * device. 789 */ 790 pr_debug("recovering at sector %llu", 791 (uint64_t) s->orig_bio->bi_sector); 792 793 s->error = 0; 794 bv = s->bio.bio.bi_io_vec; 795 do_bio_hook(s); 796 s->bio.bio.bi_io_vec = bv; 797 798 if (!s->unaligned_bvec) 799 bio_for_each_segment(bv, s->orig_bio, i) 800 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE; 801 else 802 memcpy(s->bio.bio.bi_io_vec, 803 bio_iovec(s->orig_bio), 804 sizeof(struct bio_vec) * 805 bio_segments(s->orig_bio)); 806 807 /* XXX: invalidate cache */ 808 809 trace_bcache_read_retry(&s->bio.bio); 810 closure_bio_submit(&s->bio.bio, &s->cl, s->d); 811 } 812 813 continue_at(cl, cached_dev_read_complete, NULL); 814 } 815 816 static void request_read_done(struct closure *cl) 817 { 818 struct search *s = container_of(cl, struct search, cl); 819 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 820 821 /* 822 * s->cache_bio != NULL implies that we had a cache miss; cache_bio now 823 * contains data ready to be inserted into the cache. 824 * 825 * First, we copy the data we just read from cache_bio's bounce buffers 826 * to the buffers the original bio pointed to: 827 */ 828 829 if (s->op.cache_bio) { 830 struct bio_vec *src, *dst; 831 unsigned src_offset, dst_offset, bytes; 832 void *dst_ptr; 833 834 bio_reset(s->op.cache_bio); 835 s->op.cache_bio->bi_sector = s->cache_miss->bi_sector; 836 s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev; 837 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; 838 bch_bio_map(s->op.cache_bio, NULL); 839 840 src = bio_iovec(s->op.cache_bio); 841 dst = bio_iovec(s->cache_miss); 842 src_offset = src->bv_offset; 843 dst_offset = dst->bv_offset; 844 dst_ptr = kmap(dst->bv_page); 845 846 while (1) { 847 if (dst_offset == dst->bv_offset + dst->bv_len) { 848 kunmap(dst->bv_page); 849 dst++; 850 if (dst == bio_iovec_idx(s->cache_miss, 851 s->cache_miss->bi_vcnt)) 852 break; 853 854 dst_offset = dst->bv_offset; 855 dst_ptr = kmap(dst->bv_page); 856 } 857 858 if (src_offset == src->bv_offset + src->bv_len) { 859 src++; 860 if (src == bio_iovec_idx(s->op.cache_bio, 861 s->op.cache_bio->bi_vcnt)) 862 BUG(); 863 864 src_offset = src->bv_offset; 865 } 866 867 bytes = min(dst->bv_offset + dst->bv_len - dst_offset, 868 src->bv_offset + src->bv_len - src_offset); 869 870 memcpy(dst_ptr + dst_offset, 871 page_address(src->bv_page) + src_offset, 872 bytes); 873 874 src_offset += bytes; 875 dst_offset += bytes; 876 } 877 878 bio_put(s->cache_miss); 879 s->cache_miss = NULL; 880 } 881 882 if (verify(dc, &s->bio.bio) && s->recoverable) 883 bch_data_verify(s); 884 885 bio_complete(s); 886 887 if (s->op.cache_bio && 888 !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) { 889 s->op.type = BTREE_REPLACE; 890 closure_call(&s->op.cl, bch_insert_data, NULL, cl); 891 } 892 893 continue_at(cl, cached_dev_read_complete, NULL); 894 } 895 896 static void request_read_done_bh(struct closure *cl) 897 { 898 struct search *s = container_of(cl, struct search, cl); 899 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 900 901 bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip); 902 903 if (s->error) 904 continue_at_nobarrier(cl, request_read_error, bcache_wq); 905 else if (s->op.cache_bio || verify(dc, &s->bio.bio)) 906 continue_at_nobarrier(cl, request_read_done, bcache_wq); 907 else 908 continue_at_nobarrier(cl, cached_dev_read_complete, NULL); 909 } 910 911 static int cached_dev_cache_miss(struct btree *b, struct search *s, 912 struct bio *bio, unsigned sectors) 913 { 914 int ret = 0; 915 unsigned reada; 916 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 917 struct bio *miss; 918 919 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split); 920 if (!miss) 921 return -EAGAIN; 922 923 if (miss == bio) 924 s->op.lookup_done = true; 925 926 miss->bi_end_io = request_endio; 927 miss->bi_private = &s->cl; 928 929 if (s->cache_miss || s->op.skip) 930 goto out_submit; 931 932 if (miss != bio || 933 (bio->bi_rw & REQ_RAHEAD) || 934 (bio->bi_rw & REQ_META) || 935 s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA) 936 reada = 0; 937 else { 938 reada = min(dc->readahead >> 9, 939 sectors - bio_sectors(miss)); 940 941 if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev)) 942 reada = bdev_sectors(miss->bi_bdev) - bio_end(miss); 943 } 944 945 s->cache_bio_sectors = bio_sectors(miss) + reada; 946 s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT, 947 DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS), 948 dc->disk.bio_split); 949 950 if (!s->op.cache_bio) 951 goto out_submit; 952 953 s->op.cache_bio->bi_sector = miss->bi_sector; 954 s->op.cache_bio->bi_bdev = miss->bi_bdev; 955 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9; 956 957 s->op.cache_bio->bi_end_io = request_endio; 958 s->op.cache_bio->bi_private = &s->cl; 959 960 /* btree_search_recurse()'s btree iterator is no good anymore */ 961 ret = -EINTR; 962 if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio)) 963 goto out_put; 964 965 bch_bio_map(s->op.cache_bio, NULL); 966 if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO)) 967 goto out_put; 968 969 s->cache_miss = miss; 970 bio_get(s->op.cache_bio); 971 972 trace_bcache_cache_miss(s->orig_bio); 973 closure_bio_submit(s->op.cache_bio, &s->cl, s->d); 974 975 return ret; 976 out_put: 977 bio_put(s->op.cache_bio); 978 s->op.cache_bio = NULL; 979 out_submit: 980 closure_bio_submit(miss, &s->cl, s->d); 981 return ret; 982 } 983 984 static void request_read(struct cached_dev *dc, struct search *s) 985 { 986 struct closure *cl = &s->cl; 987 988 check_should_skip(dc, s); 989 closure_call(&s->op.cl, btree_read_async, NULL, cl); 990 991 continue_at(cl, request_read_done_bh, NULL); 992 } 993 994 /* Process writes */ 995 996 static void cached_dev_write_complete(struct closure *cl) 997 { 998 struct search *s = container_of(cl, struct search, cl); 999 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 1000 1001 up_read_non_owner(&dc->writeback_lock); 1002 cached_dev_bio_complete(cl); 1003 } 1004 1005 static bool should_writeback(struct cached_dev *dc, struct bio *bio) 1006 { 1007 unsigned threshold = (bio->bi_rw & REQ_SYNC) 1008 ? CUTOFF_WRITEBACK_SYNC 1009 : CUTOFF_WRITEBACK; 1010 1011 return !atomic_read(&dc->disk.detaching) && 1012 cache_mode(dc, bio) == CACHE_MODE_WRITEBACK && 1013 dc->disk.c->gc_stats.in_use < threshold; 1014 } 1015 1016 static void request_write(struct cached_dev *dc, struct search *s) 1017 { 1018 struct closure *cl = &s->cl; 1019 struct bio *bio = &s->bio.bio; 1020 struct bkey start, end; 1021 start = KEY(dc->disk.id, bio->bi_sector, 0); 1022 end = KEY(dc->disk.id, bio_end(bio), 0); 1023 1024 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end); 1025 1026 check_should_skip(dc, s); 1027 down_read_non_owner(&dc->writeback_lock); 1028 1029 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 1030 s->op.skip = false; 1031 s->writeback = true; 1032 } 1033 1034 if (bio->bi_rw & REQ_DISCARD) 1035 goto skip; 1036 1037 if (s->op.skip) 1038 goto skip; 1039 1040 if (should_writeback(dc, s->orig_bio)) 1041 s->writeback = true; 1042 1043 if (!s->writeback) { 1044 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO, 1045 dc->disk.bio_split); 1046 1047 trace_bcache_writethrough(s->orig_bio); 1048 closure_bio_submit(bio, cl, s->d); 1049 } else { 1050 s->op.cache_bio = bio; 1051 trace_bcache_writeback(s->orig_bio); 1052 bch_writeback_add(dc, bio_sectors(bio)); 1053 } 1054 out: 1055 closure_call(&s->op.cl, bch_insert_data, NULL, cl); 1056 continue_at(cl, cached_dev_write_complete, NULL); 1057 skip: 1058 s->op.skip = true; 1059 s->op.cache_bio = s->orig_bio; 1060 bio_get(s->op.cache_bio); 1061 trace_bcache_write_skip(s->orig_bio); 1062 1063 if ((bio->bi_rw & REQ_DISCARD) && 1064 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1065 goto out; 1066 1067 closure_bio_submit(bio, cl, s->d); 1068 goto out; 1069 } 1070 1071 static void request_nodata(struct cached_dev *dc, struct search *s) 1072 { 1073 struct closure *cl = &s->cl; 1074 struct bio *bio = &s->bio.bio; 1075 1076 if (bio->bi_rw & REQ_DISCARD) { 1077 request_write(dc, s); 1078 return; 1079 } 1080 1081 if (s->op.flush_journal) 1082 bch_journal_meta(s->op.c, cl); 1083 1084 closure_bio_submit(bio, cl, s->d); 1085 1086 continue_at(cl, cached_dev_bio_complete, NULL); 1087 } 1088 1089 /* Cached devices - read & write stuff */ 1090 1091 int bch_get_congested(struct cache_set *c) 1092 { 1093 int i; 1094 1095 if (!c->congested_read_threshold_us && 1096 !c->congested_write_threshold_us) 1097 return 0; 1098 1099 i = (local_clock_us() - c->congested_last_us) / 1024; 1100 if (i < 0) 1101 return 0; 1102 1103 i += atomic_read(&c->congested); 1104 if (i >= 0) 1105 return 0; 1106 1107 i += CONGESTED_MAX; 1108 1109 return i <= 0 ? 1 : fract_exp_two(i, 6); 1110 } 1111 1112 static void add_sequential(struct task_struct *t) 1113 { 1114 ewma_add(t->sequential_io_avg, 1115 t->sequential_io, 8, 0); 1116 1117 t->sequential_io = 0; 1118 } 1119 1120 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 1121 { 1122 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 1123 } 1124 1125 static void check_should_skip(struct cached_dev *dc, struct search *s) 1126 { 1127 struct cache_set *c = s->op.c; 1128 struct bio *bio = &s->bio.bio; 1129 1130 long rand; 1131 int cutoff = bch_get_congested(c); 1132 unsigned mode = cache_mode(dc, bio); 1133 1134 if (atomic_read(&dc->disk.detaching) || 1135 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 1136 (bio->bi_rw & REQ_DISCARD)) 1137 goto skip; 1138 1139 if (mode == CACHE_MODE_NONE || 1140 (mode == CACHE_MODE_WRITEAROUND && 1141 (bio->bi_rw & REQ_WRITE))) 1142 goto skip; 1143 1144 if (bio->bi_sector & (c->sb.block_size - 1) || 1145 bio_sectors(bio) & (c->sb.block_size - 1)) { 1146 pr_debug("skipping unaligned io"); 1147 goto skip; 1148 } 1149 1150 if (!cutoff) { 1151 cutoff = dc->sequential_cutoff >> 9; 1152 1153 if (!cutoff) 1154 goto rescale; 1155 1156 if (mode == CACHE_MODE_WRITEBACK && 1157 (bio->bi_rw & REQ_WRITE) && 1158 (bio->bi_rw & REQ_SYNC)) 1159 goto rescale; 1160 } 1161 1162 if (dc->sequential_merge) { 1163 struct io *i; 1164 1165 spin_lock(&dc->io_lock); 1166 1167 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash) 1168 if (i->last == bio->bi_sector && 1169 time_before(jiffies, i->jiffies)) 1170 goto found; 1171 1172 i = list_first_entry(&dc->io_lru, struct io, lru); 1173 1174 add_sequential(s->task); 1175 i->sequential = 0; 1176 found: 1177 if (i->sequential + bio->bi_size > i->sequential) 1178 i->sequential += bio->bi_size; 1179 1180 i->last = bio_end(bio); 1181 i->jiffies = jiffies + msecs_to_jiffies(5000); 1182 s->task->sequential_io = i->sequential; 1183 1184 hlist_del(&i->hash); 1185 hlist_add_head(&i->hash, iohash(dc, i->last)); 1186 list_move_tail(&i->lru, &dc->io_lru); 1187 1188 spin_unlock(&dc->io_lock); 1189 } else { 1190 s->task->sequential_io = bio->bi_size; 1191 1192 add_sequential(s->task); 1193 } 1194 1195 rand = get_random_int(); 1196 cutoff -= bitmap_weight(&rand, BITS_PER_LONG); 1197 1198 if (cutoff <= (int) (max(s->task->sequential_io, 1199 s->task->sequential_io_avg) >> 9)) 1200 goto skip; 1201 1202 rescale: 1203 bch_rescale_priorities(c, bio_sectors(bio)); 1204 return; 1205 skip: 1206 bch_mark_sectors_bypassed(s, bio_sectors(bio)); 1207 s->op.skip = true; 1208 } 1209 1210 static void cached_dev_make_request(struct request_queue *q, struct bio *bio) 1211 { 1212 struct search *s; 1213 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1214 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1215 int cpu, rw = bio_data_dir(bio); 1216 1217 cpu = part_stat_lock(); 1218 part_stat_inc(cpu, &d->disk->part0, ios[rw]); 1219 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); 1220 part_stat_unlock(); 1221 1222 bio->bi_bdev = dc->bdev; 1223 bio->bi_sector += dc->sb.data_offset; 1224 1225 if (cached_dev_get(dc)) { 1226 s = search_alloc(bio, d); 1227 trace_bcache_request_start(s, bio); 1228 1229 if (!bio_has_data(bio)) 1230 request_nodata(dc, s); 1231 else if (rw) 1232 request_write(dc, s); 1233 else 1234 request_read(dc, s); 1235 } else { 1236 if ((bio->bi_rw & REQ_DISCARD) && 1237 !blk_queue_discard(bdev_get_queue(dc->bdev))) 1238 bio_endio(bio, 0); 1239 else 1240 bch_generic_make_request(bio, &d->bio_split_hook); 1241 } 1242 } 1243 1244 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1245 unsigned int cmd, unsigned long arg) 1246 { 1247 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1248 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1249 } 1250 1251 static int cached_dev_congested(void *data, int bits) 1252 { 1253 struct bcache_device *d = data; 1254 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1255 struct request_queue *q = bdev_get_queue(dc->bdev); 1256 int ret = 0; 1257 1258 if (bdi_congested(&q->backing_dev_info, bits)) 1259 return 1; 1260 1261 if (cached_dev_get(dc)) { 1262 unsigned i; 1263 struct cache *ca; 1264 1265 for_each_cache(ca, d->c, i) { 1266 q = bdev_get_queue(ca->bdev); 1267 ret |= bdi_congested(&q->backing_dev_info, bits); 1268 } 1269 1270 cached_dev_put(dc); 1271 } 1272 1273 return ret; 1274 } 1275 1276 void bch_cached_dev_request_init(struct cached_dev *dc) 1277 { 1278 struct gendisk *g = dc->disk.disk; 1279 1280 g->queue->make_request_fn = cached_dev_make_request; 1281 g->queue->backing_dev_info.congested_fn = cached_dev_congested; 1282 dc->disk.cache_miss = cached_dev_cache_miss; 1283 dc->disk.ioctl = cached_dev_ioctl; 1284 } 1285 1286 /* Flash backed devices */ 1287 1288 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1289 struct bio *bio, unsigned sectors) 1290 { 1291 /* Zero fill bio */ 1292 1293 while (bio->bi_idx != bio->bi_vcnt) { 1294 struct bio_vec *bv = bio_iovec(bio); 1295 unsigned j = min(bv->bv_len >> 9, sectors); 1296 1297 void *p = kmap(bv->bv_page); 1298 memset(p + bv->bv_offset, 0, j << 9); 1299 kunmap(bv->bv_page); 1300 1301 bv->bv_len -= j << 9; 1302 bv->bv_offset += j << 9; 1303 1304 if (bv->bv_len) 1305 return 0; 1306 1307 bio->bi_sector += j; 1308 bio->bi_size -= j << 9; 1309 1310 bio->bi_idx++; 1311 sectors -= j; 1312 } 1313 1314 s->op.lookup_done = true; 1315 1316 return 0; 1317 } 1318 1319 static void flash_dev_make_request(struct request_queue *q, struct bio *bio) 1320 { 1321 struct search *s; 1322 struct closure *cl; 1323 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1324 int cpu, rw = bio_data_dir(bio); 1325 1326 cpu = part_stat_lock(); 1327 part_stat_inc(cpu, &d->disk->part0, ios[rw]); 1328 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); 1329 part_stat_unlock(); 1330 1331 s = search_alloc(bio, d); 1332 cl = &s->cl; 1333 bio = &s->bio.bio; 1334 1335 trace_bcache_request_start(s, bio); 1336 1337 if (bio_has_data(bio) && !rw) { 1338 closure_call(&s->op.cl, btree_read_async, NULL, cl); 1339 } else if (bio_has_data(bio) || s->op.skip) { 1340 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, 1341 &KEY(d->id, bio->bi_sector, 0), 1342 &KEY(d->id, bio_end(bio), 0)); 1343 1344 s->writeback = true; 1345 s->op.cache_bio = bio; 1346 1347 closure_call(&s->op.cl, bch_insert_data, NULL, cl); 1348 } else { 1349 /* No data - probably a cache flush */ 1350 if (s->op.flush_journal) 1351 bch_journal_meta(s->op.c, cl); 1352 } 1353 1354 continue_at(cl, search_free, NULL); 1355 } 1356 1357 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1358 unsigned int cmd, unsigned long arg) 1359 { 1360 return -ENOTTY; 1361 } 1362 1363 static int flash_dev_congested(void *data, int bits) 1364 { 1365 struct bcache_device *d = data; 1366 struct request_queue *q; 1367 struct cache *ca; 1368 unsigned i; 1369 int ret = 0; 1370 1371 for_each_cache(ca, d->c, i) { 1372 q = bdev_get_queue(ca->bdev); 1373 ret |= bdi_congested(&q->backing_dev_info, bits); 1374 } 1375 1376 return ret; 1377 } 1378 1379 void bch_flash_dev_request_init(struct bcache_device *d) 1380 { 1381 struct gendisk *g = d->disk; 1382 1383 g->queue->make_request_fn = flash_dev_make_request; 1384 g->queue->backing_dev_info.congested_fn = flash_dev_congested; 1385 d->cache_miss = flash_dev_cache_miss; 1386 d->ioctl = flash_dev_ioctl; 1387 } 1388 1389 void bch_request_exit(void) 1390 { 1391 #ifdef CONFIG_CGROUP_BCACHE 1392 cgroup_unload_subsys(&bcache_subsys); 1393 #endif 1394 if (bch_search_cache) 1395 kmem_cache_destroy(bch_search_cache); 1396 } 1397 1398 int __init bch_request_init(void) 1399 { 1400 bch_search_cache = KMEM_CACHE(search, 0); 1401 if (!bch_search_cache) 1402 return -ENOMEM; 1403 1404 #ifdef CONFIG_CGROUP_BCACHE 1405 cgroup_load_subsys(&bcache_subsys); 1406 init_bch_cgroup(&bcache_default_cgroup); 1407 1408 cgroup_add_cftypes(&bcache_subsys, bch_files); 1409 #endif 1410 return 0; 1411 } 1412