1 /* 2 * Main bcache entry point - handle a read or a write request and decide what to 3 * do with it; the make_request functions are called by the block layer. 4 * 5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> 6 * Copyright 2012 Google, Inc. 7 */ 8 9 #include "bcache.h" 10 #include "btree.h" 11 #include "debug.h" 12 #include "request.h" 13 #include "writeback.h" 14 15 #include <linux/module.h> 16 #include <linux/hash.h> 17 #include <linux/random.h> 18 19 #include <trace/events/bcache.h> 20 21 #define CUTOFF_CACHE_ADD 95 22 #define CUTOFF_CACHE_READA 90 23 24 struct kmem_cache *bch_search_cache; 25 26 static void bch_data_insert_start(struct closure *); 27 28 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio) 29 { 30 return BDEV_CACHE_MODE(&dc->sb); 31 } 32 33 static bool verify(struct cached_dev *dc, struct bio *bio) 34 { 35 return dc->verify; 36 } 37 38 static void bio_csum(struct bio *bio, struct bkey *k) 39 { 40 struct bio_vec bv; 41 struct bvec_iter iter; 42 uint64_t csum = 0; 43 44 bio_for_each_segment(bv, bio, iter) { 45 void *d = kmap(bv.bv_page) + bv.bv_offset; 46 csum = bch_crc64_update(csum, d, bv.bv_len); 47 kunmap(bv.bv_page); 48 } 49 50 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1); 51 } 52 53 /* Insert data into cache */ 54 55 static void bch_data_insert_keys(struct closure *cl) 56 { 57 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 58 atomic_t *journal_ref = NULL; 59 struct bkey *replace_key = op->replace ? &op->replace_key : NULL; 60 int ret; 61 62 /* 63 * If we're looping, might already be waiting on 64 * another journal write - can't wait on more than one journal write at 65 * a time 66 * 67 * XXX: this looks wrong 68 */ 69 #if 0 70 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING) 71 closure_sync(&s->cl); 72 #endif 73 74 if (!op->replace) 75 journal_ref = bch_journal(op->c, &op->insert_keys, 76 op->flush_journal ? cl : NULL); 77 78 ret = bch_btree_insert(op->c, &op->insert_keys, 79 journal_ref, replace_key); 80 if (ret == -ESRCH) { 81 op->replace_collision = true; 82 } else if (ret) { 83 op->error = -ENOMEM; 84 op->insert_data_done = true; 85 } 86 87 if (journal_ref) 88 atomic_dec_bug(journal_ref); 89 90 if (!op->insert_data_done) 91 continue_at(cl, bch_data_insert_start, op->wq); 92 93 bch_keylist_free(&op->insert_keys); 94 closure_return(cl); 95 } 96 97 static int bch_keylist_realloc(struct keylist *l, unsigned u64s, 98 struct cache_set *c) 99 { 100 size_t oldsize = bch_keylist_nkeys(l); 101 size_t newsize = oldsize + u64s; 102 103 /* 104 * The journalling code doesn't handle the case where the keys to insert 105 * is bigger than an empty write: If we just return -ENOMEM here, 106 * bio_insert() and bio_invalidate() will insert the keys created so far 107 * and finish the rest when the keylist is empty. 108 */ 109 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset)) 110 return -ENOMEM; 111 112 return __bch_keylist_realloc(l, u64s); 113 } 114 115 static void bch_data_invalidate(struct closure *cl) 116 { 117 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 118 struct bio *bio = op->bio; 119 120 pr_debug("invalidating %i sectors from %llu", 121 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector); 122 123 while (bio_sectors(bio)) { 124 unsigned sectors = min(bio_sectors(bio), 125 1U << (KEY_SIZE_BITS - 1)); 126 127 if (bch_keylist_realloc(&op->insert_keys, 2, op->c)) 128 goto out; 129 130 bio->bi_iter.bi_sector += sectors; 131 bio->bi_iter.bi_size -= sectors << 9; 132 133 bch_keylist_add(&op->insert_keys, 134 &KEY(op->inode, bio->bi_iter.bi_sector, sectors)); 135 } 136 137 op->insert_data_done = true; 138 bio_put(bio); 139 out: 140 continue_at(cl, bch_data_insert_keys, op->wq); 141 } 142 143 static void bch_data_insert_error(struct closure *cl) 144 { 145 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 146 147 /* 148 * Our data write just errored, which means we've got a bunch of keys to 149 * insert that point to data that wasn't succesfully written. 150 * 151 * We don't have to insert those keys but we still have to invalidate 152 * that region of the cache - so, if we just strip off all the pointers 153 * from the keys we'll accomplish just that. 154 */ 155 156 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys; 157 158 while (src != op->insert_keys.top) { 159 struct bkey *n = bkey_next(src); 160 161 SET_KEY_PTRS(src, 0); 162 memmove(dst, src, bkey_bytes(src)); 163 164 dst = bkey_next(dst); 165 src = n; 166 } 167 168 op->insert_keys.top = dst; 169 170 bch_data_insert_keys(cl); 171 } 172 173 static void bch_data_insert_endio(struct bio *bio, int error) 174 { 175 struct closure *cl = bio->bi_private; 176 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 177 178 if (error) { 179 /* TODO: We could try to recover from this. */ 180 if (op->writeback) 181 op->error = error; 182 else if (!op->replace) 183 set_closure_fn(cl, bch_data_insert_error, op->wq); 184 else 185 set_closure_fn(cl, NULL, NULL); 186 } 187 188 bch_bbio_endio(op->c, bio, error, "writing data to cache"); 189 } 190 191 static void bch_data_insert_start(struct closure *cl) 192 { 193 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 194 struct bio *bio = op->bio, *n; 195 196 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) { 197 set_gc_sectors(op->c); 198 wake_up_gc(op->c); 199 } 200 201 if (op->bypass) 202 return bch_data_invalidate(cl); 203 204 /* 205 * Journal writes are marked REQ_FLUSH; if the original write was a 206 * flush, it'll wait on the journal write. 207 */ 208 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA); 209 210 do { 211 unsigned i; 212 struct bkey *k; 213 struct bio_set *split = op->c->bio_split; 214 215 /* 1 for the device pointer and 1 for the chksum */ 216 if (bch_keylist_realloc(&op->insert_keys, 217 3 + (op->csum ? 1 : 0), 218 op->c)) 219 continue_at(cl, bch_data_insert_keys, op->wq); 220 221 k = op->insert_keys.top; 222 bkey_init(k); 223 SET_KEY_INODE(k, op->inode); 224 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector); 225 226 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio), 227 op->write_point, op->write_prio, 228 op->writeback)) 229 goto err; 230 231 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split); 232 233 n->bi_end_io = bch_data_insert_endio; 234 n->bi_private = cl; 235 236 if (op->writeback) { 237 SET_KEY_DIRTY(k, true); 238 239 for (i = 0; i < KEY_PTRS(k); i++) 240 SET_GC_MARK(PTR_BUCKET(op->c, k, i), 241 GC_MARK_DIRTY); 242 } 243 244 SET_KEY_CSUM(k, op->csum); 245 if (KEY_CSUM(k)) 246 bio_csum(n, k); 247 248 trace_bcache_cache_insert(k); 249 bch_keylist_push(&op->insert_keys); 250 251 n->bi_rw |= REQ_WRITE; 252 bch_submit_bbio(n, op->c, k, 0); 253 } while (n != bio); 254 255 op->insert_data_done = true; 256 continue_at(cl, bch_data_insert_keys, op->wq); 257 err: 258 /* bch_alloc_sectors() blocks if s->writeback = true */ 259 BUG_ON(op->writeback); 260 261 /* 262 * But if it's not a writeback write we'd rather just bail out if 263 * there aren't any buckets ready to write to - it might take awhile and 264 * we might be starving btree writes for gc or something. 265 */ 266 267 if (!op->replace) { 268 /* 269 * Writethrough write: We can't complete the write until we've 270 * updated the index. But we don't want to delay the write while 271 * we wait for buckets to be freed up, so just invalidate the 272 * rest of the write. 273 */ 274 op->bypass = true; 275 return bch_data_invalidate(cl); 276 } else { 277 /* 278 * From a cache miss, we can just insert the keys for the data 279 * we have written or bail out if we didn't do anything. 280 */ 281 op->insert_data_done = true; 282 bio_put(bio); 283 284 if (!bch_keylist_empty(&op->insert_keys)) 285 continue_at(cl, bch_data_insert_keys, op->wq); 286 else 287 closure_return(cl); 288 } 289 } 290 291 /** 292 * bch_data_insert - stick some data in the cache 293 * 294 * This is the starting point for any data to end up in a cache device; it could 295 * be from a normal write, or a writeback write, or a write to a flash only 296 * volume - it's also used by the moving garbage collector to compact data in 297 * mostly empty buckets. 298 * 299 * It first writes the data to the cache, creating a list of keys to be inserted 300 * (if the data had to be fragmented there will be multiple keys); after the 301 * data is written it calls bch_journal, and after the keys have been added to 302 * the next journal write they're inserted into the btree. 303 * 304 * It inserts the data in s->cache_bio; bi_sector is used for the key offset, 305 * and op->inode is used for the key inode. 306 * 307 * If s->bypass is true, instead of inserting the data it invalidates the 308 * region of the cache represented by s->cache_bio and op->inode. 309 */ 310 void bch_data_insert(struct closure *cl) 311 { 312 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl); 313 314 trace_bcache_write(op->bio, op->writeback, op->bypass); 315 316 bch_keylist_init(&op->insert_keys); 317 bio_get(op->bio); 318 bch_data_insert_start(cl); 319 } 320 321 /* Congested? */ 322 323 unsigned bch_get_congested(struct cache_set *c) 324 { 325 int i; 326 long rand; 327 328 if (!c->congested_read_threshold_us && 329 !c->congested_write_threshold_us) 330 return 0; 331 332 i = (local_clock_us() - c->congested_last_us) / 1024; 333 if (i < 0) 334 return 0; 335 336 i += atomic_read(&c->congested); 337 if (i >= 0) 338 return 0; 339 340 i += CONGESTED_MAX; 341 342 if (i > 0) 343 i = fract_exp_two(i, 6); 344 345 rand = get_random_int(); 346 i -= bitmap_weight(&rand, BITS_PER_LONG); 347 348 return i > 0 ? i : 1; 349 } 350 351 static void add_sequential(struct task_struct *t) 352 { 353 ewma_add(t->sequential_io_avg, 354 t->sequential_io, 8, 0); 355 356 t->sequential_io = 0; 357 } 358 359 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k) 360 { 361 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)]; 362 } 363 364 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio) 365 { 366 struct cache_set *c = dc->disk.c; 367 unsigned mode = cache_mode(dc, bio); 368 unsigned sectors, congested = bch_get_congested(c); 369 struct task_struct *task = current; 370 struct io *i; 371 372 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || 373 c->gc_stats.in_use > CUTOFF_CACHE_ADD || 374 (bio->bi_rw & REQ_DISCARD)) 375 goto skip; 376 377 if (mode == CACHE_MODE_NONE || 378 (mode == CACHE_MODE_WRITEAROUND && 379 (bio->bi_rw & REQ_WRITE))) 380 goto skip; 381 382 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) || 383 bio_sectors(bio) & (c->sb.block_size - 1)) { 384 pr_debug("skipping unaligned io"); 385 goto skip; 386 } 387 388 if (bypass_torture_test(dc)) { 389 if ((get_random_int() & 3) == 3) 390 goto skip; 391 else 392 goto rescale; 393 } 394 395 if (!congested && !dc->sequential_cutoff) 396 goto rescale; 397 398 if (!congested && 399 mode == CACHE_MODE_WRITEBACK && 400 (bio->bi_rw & REQ_WRITE) && 401 (bio->bi_rw & REQ_SYNC)) 402 goto rescale; 403 404 spin_lock(&dc->io_lock); 405 406 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash) 407 if (i->last == bio->bi_iter.bi_sector && 408 time_before(jiffies, i->jiffies)) 409 goto found; 410 411 i = list_first_entry(&dc->io_lru, struct io, lru); 412 413 add_sequential(task); 414 i->sequential = 0; 415 found: 416 if (i->sequential + bio->bi_iter.bi_size > i->sequential) 417 i->sequential += bio->bi_iter.bi_size; 418 419 i->last = bio_end_sector(bio); 420 i->jiffies = jiffies + msecs_to_jiffies(5000); 421 task->sequential_io = i->sequential; 422 423 hlist_del(&i->hash); 424 hlist_add_head(&i->hash, iohash(dc, i->last)); 425 list_move_tail(&i->lru, &dc->io_lru); 426 427 spin_unlock(&dc->io_lock); 428 429 sectors = max(task->sequential_io, 430 task->sequential_io_avg) >> 9; 431 432 if (dc->sequential_cutoff && 433 sectors >= dc->sequential_cutoff >> 9) { 434 trace_bcache_bypass_sequential(bio); 435 goto skip; 436 } 437 438 if (congested && sectors >= congested) { 439 trace_bcache_bypass_congested(bio); 440 goto skip; 441 } 442 443 rescale: 444 bch_rescale_priorities(c, bio_sectors(bio)); 445 return false; 446 skip: 447 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio)); 448 return true; 449 } 450 451 /* Cache lookup */ 452 453 struct search { 454 /* Stack frame for bio_complete */ 455 struct closure cl; 456 457 struct bbio bio; 458 struct bio *orig_bio; 459 struct bio *cache_miss; 460 struct bcache_device *d; 461 462 unsigned insert_bio_sectors; 463 unsigned recoverable:1; 464 unsigned write:1; 465 unsigned read_dirty_data:1; 466 467 unsigned long start_time; 468 469 struct btree_op op; 470 struct data_insert_op iop; 471 }; 472 473 static void bch_cache_read_endio(struct bio *bio, int error) 474 { 475 struct bbio *b = container_of(bio, struct bbio, bio); 476 struct closure *cl = bio->bi_private; 477 struct search *s = container_of(cl, struct search, cl); 478 479 /* 480 * If the bucket was reused while our bio was in flight, we might have 481 * read the wrong data. Set s->error but not error so it doesn't get 482 * counted against the cache device, but we'll still reread the data 483 * from the backing device. 484 */ 485 486 if (error) 487 s->iop.error = error; 488 else if (!KEY_DIRTY(&b->key) && 489 ptr_stale(s->iop.c, &b->key, 0)) { 490 atomic_long_inc(&s->iop.c->cache_read_races); 491 s->iop.error = -EINTR; 492 } 493 494 bch_bbio_endio(s->iop.c, bio, error, "reading from cache"); 495 } 496 497 /* 498 * Read from a single key, handling the initial cache miss if the key starts in 499 * the middle of the bio 500 */ 501 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k) 502 { 503 struct search *s = container_of(op, struct search, op); 504 struct bio *n, *bio = &s->bio.bio; 505 struct bkey *bio_key; 506 unsigned ptr; 507 508 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0) 509 return MAP_CONTINUE; 510 511 if (KEY_INODE(k) != s->iop.inode || 512 KEY_START(k) > bio->bi_iter.bi_sector) { 513 unsigned bio_sectors = bio_sectors(bio); 514 unsigned sectors = KEY_INODE(k) == s->iop.inode 515 ? min_t(uint64_t, INT_MAX, 516 KEY_START(k) - bio->bi_iter.bi_sector) 517 : INT_MAX; 518 519 int ret = s->d->cache_miss(b, s, bio, sectors); 520 if (ret != MAP_CONTINUE) 521 return ret; 522 523 /* if this was a complete miss we shouldn't get here */ 524 BUG_ON(bio_sectors <= sectors); 525 } 526 527 if (!KEY_SIZE(k)) 528 return MAP_CONTINUE; 529 530 /* XXX: figure out best pointer - for multiple cache devices */ 531 ptr = 0; 532 533 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO; 534 535 if (KEY_DIRTY(k)) 536 s->read_dirty_data = true; 537 538 n = bio_next_split(bio, min_t(uint64_t, INT_MAX, 539 KEY_OFFSET(k) - bio->bi_iter.bi_sector), 540 GFP_NOIO, s->d->bio_split); 541 542 bio_key = &container_of(n, struct bbio, bio)->key; 543 bch_bkey_copy_single_ptr(bio_key, k, ptr); 544 545 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key); 546 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key); 547 548 n->bi_end_io = bch_cache_read_endio; 549 n->bi_private = &s->cl; 550 551 /* 552 * The bucket we're reading from might be reused while our bio 553 * is in flight, and we could then end up reading the wrong 554 * data. 555 * 556 * We guard against this by checking (in cache_read_endio()) if 557 * the pointer is stale again; if so, we treat it as an error 558 * and reread from the backing device (but we don't pass that 559 * error up anywhere). 560 */ 561 562 __bch_submit_bbio(n, b->c); 563 return n == bio ? MAP_DONE : MAP_CONTINUE; 564 } 565 566 static void cache_lookup(struct closure *cl) 567 { 568 struct search *s = container_of(cl, struct search, iop.cl); 569 struct bio *bio = &s->bio.bio; 570 int ret; 571 572 bch_btree_op_init(&s->op, -1); 573 574 ret = bch_btree_map_keys(&s->op, s->iop.c, 575 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0), 576 cache_lookup_fn, MAP_END_KEY); 577 if (ret == -EAGAIN) 578 continue_at(cl, cache_lookup, bcache_wq); 579 580 closure_return(cl); 581 } 582 583 /* Common code for the make_request functions */ 584 585 static void request_endio(struct bio *bio, int error) 586 { 587 struct closure *cl = bio->bi_private; 588 589 if (error) { 590 struct search *s = container_of(cl, struct search, cl); 591 s->iop.error = error; 592 /* Only cache read errors are recoverable */ 593 s->recoverable = false; 594 } 595 596 bio_put(bio); 597 closure_put(cl); 598 } 599 600 static void bio_complete(struct search *s) 601 { 602 if (s->orig_bio) { 603 int cpu, rw = bio_data_dir(s->orig_bio); 604 unsigned long duration = jiffies - s->start_time; 605 606 cpu = part_stat_lock(); 607 part_round_stats(cpu, &s->d->disk->part0); 608 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration); 609 part_stat_unlock(); 610 611 trace_bcache_request_end(s->d, s->orig_bio); 612 bio_endio(s->orig_bio, s->iop.error); 613 s->orig_bio = NULL; 614 } 615 } 616 617 static void do_bio_hook(struct search *s, struct bio *orig_bio) 618 { 619 struct bio *bio = &s->bio.bio; 620 621 bio_init(bio); 622 __bio_clone_fast(bio, orig_bio); 623 bio->bi_end_io = request_endio; 624 bio->bi_private = &s->cl; 625 626 atomic_set(&bio->bi_cnt, 3); 627 } 628 629 static void search_free(struct closure *cl) 630 { 631 struct search *s = container_of(cl, struct search, cl); 632 bio_complete(s); 633 634 if (s->iop.bio) 635 bio_put(s->iop.bio); 636 637 closure_debug_destroy(cl); 638 mempool_free(s, s->d->c->search); 639 } 640 641 static inline struct search *search_alloc(struct bio *bio, 642 struct bcache_device *d) 643 { 644 struct search *s; 645 646 s = mempool_alloc(d->c->search, GFP_NOIO); 647 648 closure_init(&s->cl, NULL); 649 do_bio_hook(s, bio); 650 651 s->orig_bio = bio; 652 s->cache_miss = NULL; 653 s->d = d; 654 s->recoverable = 1; 655 s->write = (bio->bi_rw & REQ_WRITE) != 0; 656 s->read_dirty_data = 0; 657 s->start_time = jiffies; 658 659 s->iop.c = d->c; 660 s->iop.bio = NULL; 661 s->iop.inode = d->id; 662 s->iop.write_point = hash_long((unsigned long) current, 16); 663 s->iop.write_prio = 0; 664 s->iop.error = 0; 665 s->iop.flags = 0; 666 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0; 667 s->iop.wq = bcache_wq; 668 669 return s; 670 } 671 672 /* Cached devices */ 673 674 static void cached_dev_bio_complete(struct closure *cl) 675 { 676 struct search *s = container_of(cl, struct search, cl); 677 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 678 679 search_free(cl); 680 cached_dev_put(dc); 681 } 682 683 /* Process reads */ 684 685 static void cached_dev_cache_miss_done(struct closure *cl) 686 { 687 struct search *s = container_of(cl, struct search, cl); 688 689 if (s->iop.replace_collision) 690 bch_mark_cache_miss_collision(s->iop.c, s->d); 691 692 if (s->iop.bio) { 693 int i; 694 struct bio_vec *bv; 695 696 bio_for_each_segment_all(bv, s->iop.bio, i) 697 __free_page(bv->bv_page); 698 } 699 700 cached_dev_bio_complete(cl); 701 } 702 703 static void cached_dev_read_error(struct closure *cl) 704 { 705 struct search *s = container_of(cl, struct search, cl); 706 struct bio *bio = &s->bio.bio; 707 708 if (s->recoverable) { 709 /* Retry from the backing device: */ 710 trace_bcache_read_retry(s->orig_bio); 711 712 s->iop.error = 0; 713 do_bio_hook(s, s->orig_bio); 714 715 /* XXX: invalidate cache */ 716 717 closure_bio_submit(bio, cl, s->d); 718 } 719 720 continue_at(cl, cached_dev_cache_miss_done, NULL); 721 } 722 723 static void cached_dev_read_done(struct closure *cl) 724 { 725 struct search *s = container_of(cl, struct search, cl); 726 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 727 728 /* 729 * We had a cache miss; cache_bio now contains data ready to be inserted 730 * into the cache. 731 * 732 * First, we copy the data we just read from cache_bio's bounce buffers 733 * to the buffers the original bio pointed to: 734 */ 735 736 if (s->iop.bio) { 737 bio_reset(s->iop.bio); 738 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector; 739 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev; 740 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 741 bch_bio_map(s->iop.bio, NULL); 742 743 bio_copy_data(s->cache_miss, s->iop.bio); 744 745 bio_put(s->cache_miss); 746 s->cache_miss = NULL; 747 } 748 749 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data) 750 bch_data_verify(dc, s->orig_bio); 751 752 bio_complete(s); 753 754 if (s->iop.bio && 755 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) { 756 BUG_ON(!s->iop.replace); 757 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 758 } 759 760 continue_at(cl, cached_dev_cache_miss_done, NULL); 761 } 762 763 static void cached_dev_read_done_bh(struct closure *cl) 764 { 765 struct search *s = container_of(cl, struct search, cl); 766 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 767 768 bch_mark_cache_accounting(s->iop.c, s->d, 769 !s->cache_miss, s->iop.bypass); 770 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass); 771 772 if (s->iop.error) 773 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq); 774 else if (s->iop.bio || verify(dc, &s->bio.bio)) 775 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq); 776 else 777 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL); 778 } 779 780 static int cached_dev_cache_miss(struct btree *b, struct search *s, 781 struct bio *bio, unsigned sectors) 782 { 783 int ret = MAP_CONTINUE; 784 unsigned reada = 0; 785 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 786 struct bio *miss, *cache_bio; 787 788 if (s->cache_miss || s->iop.bypass) { 789 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 790 ret = miss == bio ? MAP_DONE : MAP_CONTINUE; 791 goto out_submit; 792 } 793 794 if (!(bio->bi_rw & REQ_RAHEAD) && 795 !(bio->bi_rw & REQ_META) && 796 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA) 797 reada = min_t(sector_t, dc->readahead >> 9, 798 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio)); 799 800 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada); 801 802 s->iop.replace_key = KEY(s->iop.inode, 803 bio->bi_iter.bi_sector + s->insert_bio_sectors, 804 s->insert_bio_sectors); 805 806 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key); 807 if (ret) 808 return ret; 809 810 s->iop.replace = true; 811 812 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split); 813 814 /* btree_search_recurse()'s btree iterator is no good anymore */ 815 ret = miss == bio ? MAP_DONE : -EINTR; 816 817 cache_bio = bio_alloc_bioset(GFP_NOWAIT, 818 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS), 819 dc->disk.bio_split); 820 if (!cache_bio) 821 goto out_submit; 822 823 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector; 824 cache_bio->bi_bdev = miss->bi_bdev; 825 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9; 826 827 cache_bio->bi_end_io = request_endio; 828 cache_bio->bi_private = &s->cl; 829 830 bch_bio_map(cache_bio, NULL); 831 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO)) 832 goto out_put; 833 834 if (reada) 835 bch_mark_cache_readahead(s->iop.c, s->d); 836 837 s->cache_miss = miss; 838 s->iop.bio = cache_bio; 839 bio_get(cache_bio); 840 closure_bio_submit(cache_bio, &s->cl, s->d); 841 842 return ret; 843 out_put: 844 bio_put(cache_bio); 845 out_submit: 846 miss->bi_end_io = request_endio; 847 miss->bi_private = &s->cl; 848 closure_bio_submit(miss, &s->cl, s->d); 849 return ret; 850 } 851 852 static void cached_dev_read(struct cached_dev *dc, struct search *s) 853 { 854 struct closure *cl = &s->cl; 855 856 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 857 continue_at(cl, cached_dev_read_done_bh, NULL); 858 } 859 860 /* Process writes */ 861 862 static void cached_dev_write_complete(struct closure *cl) 863 { 864 struct search *s = container_of(cl, struct search, cl); 865 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk); 866 867 up_read_non_owner(&dc->writeback_lock); 868 cached_dev_bio_complete(cl); 869 } 870 871 static void cached_dev_write(struct cached_dev *dc, struct search *s) 872 { 873 struct closure *cl = &s->cl; 874 struct bio *bio = &s->bio.bio; 875 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0); 876 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0); 877 878 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end); 879 880 down_read_non_owner(&dc->writeback_lock); 881 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) { 882 /* 883 * We overlap with some dirty data undergoing background 884 * writeback, force this write to writeback 885 */ 886 s->iop.bypass = false; 887 s->iop.writeback = true; 888 } 889 890 /* 891 * Discards aren't _required_ to do anything, so skipping if 892 * check_overlapping returned true is ok 893 * 894 * But check_overlapping drops dirty keys for which io hasn't started, 895 * so we still want to call it. 896 */ 897 if (bio->bi_rw & REQ_DISCARD) 898 s->iop.bypass = true; 899 900 if (should_writeback(dc, s->orig_bio, 901 cache_mode(dc, bio), 902 s->iop.bypass)) { 903 s->iop.bypass = false; 904 s->iop.writeback = true; 905 } 906 907 if (s->iop.bypass) { 908 s->iop.bio = s->orig_bio; 909 bio_get(s->iop.bio); 910 911 if (!(bio->bi_rw & REQ_DISCARD) || 912 blk_queue_discard(bdev_get_queue(dc->bdev))) 913 closure_bio_submit(bio, cl, s->d); 914 } else if (s->iop.writeback) { 915 bch_writeback_add(dc); 916 s->iop.bio = bio; 917 918 if (bio->bi_rw & REQ_FLUSH) { 919 /* Also need to send a flush to the backing device */ 920 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0, 921 dc->disk.bio_split); 922 923 flush->bi_rw = WRITE_FLUSH; 924 flush->bi_bdev = bio->bi_bdev; 925 flush->bi_end_io = request_endio; 926 flush->bi_private = cl; 927 928 closure_bio_submit(flush, cl, s->d); 929 } 930 } else { 931 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split); 932 933 closure_bio_submit(bio, cl, s->d); 934 } 935 936 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 937 continue_at(cl, cached_dev_write_complete, NULL); 938 } 939 940 static void cached_dev_nodata(struct closure *cl) 941 { 942 struct search *s = container_of(cl, struct search, cl); 943 struct bio *bio = &s->bio.bio; 944 945 if (s->iop.flush_journal) 946 bch_journal_meta(s->iop.c, cl); 947 948 /* If it's a flush, we send the flush to the backing device too */ 949 closure_bio_submit(bio, cl, s->d); 950 951 continue_at(cl, cached_dev_bio_complete, NULL); 952 } 953 954 /* Cached devices - read & write stuff */ 955 956 static void cached_dev_make_request(struct request_queue *q, struct bio *bio) 957 { 958 struct search *s; 959 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 960 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 961 int cpu, rw = bio_data_dir(bio); 962 963 cpu = part_stat_lock(); 964 part_stat_inc(cpu, &d->disk->part0, ios[rw]); 965 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); 966 part_stat_unlock(); 967 968 bio->bi_bdev = dc->bdev; 969 bio->bi_iter.bi_sector += dc->sb.data_offset; 970 971 if (cached_dev_get(dc)) { 972 s = search_alloc(bio, d); 973 trace_bcache_request_start(s->d, bio); 974 975 if (!bio->bi_iter.bi_size) { 976 /* 977 * can't call bch_journal_meta from under 978 * generic_make_request 979 */ 980 continue_at_nobarrier(&s->cl, 981 cached_dev_nodata, 982 bcache_wq); 983 } else { 984 s->iop.bypass = check_should_bypass(dc, bio); 985 986 if (rw) 987 cached_dev_write(dc, s); 988 else 989 cached_dev_read(dc, s); 990 } 991 } else { 992 if ((bio->bi_rw & REQ_DISCARD) && 993 !blk_queue_discard(bdev_get_queue(dc->bdev))) 994 bio_endio(bio, 0); 995 else 996 bch_generic_make_request(bio, &d->bio_split_hook); 997 } 998 } 999 1000 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode, 1001 unsigned int cmd, unsigned long arg) 1002 { 1003 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1004 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg); 1005 } 1006 1007 static int cached_dev_congested(void *data, int bits) 1008 { 1009 struct bcache_device *d = data; 1010 struct cached_dev *dc = container_of(d, struct cached_dev, disk); 1011 struct request_queue *q = bdev_get_queue(dc->bdev); 1012 int ret = 0; 1013 1014 if (bdi_congested(&q->backing_dev_info, bits)) 1015 return 1; 1016 1017 if (cached_dev_get(dc)) { 1018 unsigned i; 1019 struct cache *ca; 1020 1021 for_each_cache(ca, d->c, i) { 1022 q = bdev_get_queue(ca->bdev); 1023 ret |= bdi_congested(&q->backing_dev_info, bits); 1024 } 1025 1026 cached_dev_put(dc); 1027 } 1028 1029 return ret; 1030 } 1031 1032 void bch_cached_dev_request_init(struct cached_dev *dc) 1033 { 1034 struct gendisk *g = dc->disk.disk; 1035 1036 g->queue->make_request_fn = cached_dev_make_request; 1037 g->queue->backing_dev_info.congested_fn = cached_dev_congested; 1038 dc->disk.cache_miss = cached_dev_cache_miss; 1039 dc->disk.ioctl = cached_dev_ioctl; 1040 } 1041 1042 /* Flash backed devices */ 1043 1044 static int flash_dev_cache_miss(struct btree *b, struct search *s, 1045 struct bio *bio, unsigned sectors) 1046 { 1047 unsigned bytes = min(sectors, bio_sectors(bio)) << 9; 1048 1049 swap(bio->bi_iter.bi_size, bytes); 1050 zero_fill_bio(bio); 1051 swap(bio->bi_iter.bi_size, bytes); 1052 1053 bio_advance(bio, bytes); 1054 1055 if (!bio->bi_iter.bi_size) 1056 return MAP_DONE; 1057 1058 return MAP_CONTINUE; 1059 } 1060 1061 static void flash_dev_nodata(struct closure *cl) 1062 { 1063 struct search *s = container_of(cl, struct search, cl); 1064 1065 if (s->iop.flush_journal) 1066 bch_journal_meta(s->iop.c, cl); 1067 1068 continue_at(cl, search_free, NULL); 1069 } 1070 1071 static void flash_dev_make_request(struct request_queue *q, struct bio *bio) 1072 { 1073 struct search *s; 1074 struct closure *cl; 1075 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data; 1076 int cpu, rw = bio_data_dir(bio); 1077 1078 cpu = part_stat_lock(); 1079 part_stat_inc(cpu, &d->disk->part0, ios[rw]); 1080 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio)); 1081 part_stat_unlock(); 1082 1083 s = search_alloc(bio, d); 1084 cl = &s->cl; 1085 bio = &s->bio.bio; 1086 1087 trace_bcache_request_start(s->d, bio); 1088 1089 if (!bio->bi_iter.bi_size) { 1090 /* 1091 * can't call bch_journal_meta from under 1092 * generic_make_request 1093 */ 1094 continue_at_nobarrier(&s->cl, 1095 flash_dev_nodata, 1096 bcache_wq); 1097 } else if (rw) { 1098 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, 1099 &KEY(d->id, bio->bi_iter.bi_sector, 0), 1100 &KEY(d->id, bio_end_sector(bio), 0)); 1101 1102 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0; 1103 s->iop.writeback = true; 1104 s->iop.bio = bio; 1105 1106 closure_call(&s->iop.cl, bch_data_insert, NULL, cl); 1107 } else { 1108 closure_call(&s->iop.cl, cache_lookup, NULL, cl); 1109 } 1110 1111 continue_at(cl, search_free, NULL); 1112 } 1113 1114 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode, 1115 unsigned int cmd, unsigned long arg) 1116 { 1117 return -ENOTTY; 1118 } 1119 1120 static int flash_dev_congested(void *data, int bits) 1121 { 1122 struct bcache_device *d = data; 1123 struct request_queue *q; 1124 struct cache *ca; 1125 unsigned i; 1126 int ret = 0; 1127 1128 for_each_cache(ca, d->c, i) { 1129 q = bdev_get_queue(ca->bdev); 1130 ret |= bdi_congested(&q->backing_dev_info, bits); 1131 } 1132 1133 return ret; 1134 } 1135 1136 void bch_flash_dev_request_init(struct bcache_device *d) 1137 { 1138 struct gendisk *g = d->disk; 1139 1140 g->queue->make_request_fn = flash_dev_make_request; 1141 g->queue->backing_dev_info.congested_fn = flash_dev_congested; 1142 d->cache_miss = flash_dev_cache_miss; 1143 d->ioctl = flash_dev_ioctl; 1144 } 1145 1146 void bch_request_exit(void) 1147 { 1148 if (bch_search_cache) 1149 kmem_cache_destroy(bch_search_cache); 1150 } 1151 1152 int __init bch_request_init(void) 1153 { 1154 bch_search_cache = KMEM_CACHE(search, 0); 1155 if (!bch_search_cache) 1156 return -ENOMEM; 1157 1158 return 0; 1159 } 1160