xref: /openbmc/linux/drivers/md/bcache/request.c (revision db181ce0)
1 /*
2  * Main bcache entry point - handle a read or a write request and decide what to
3  * do with it; the make_request functions are called by the block layer.
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8 
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14 
15 #include <linux/module.h>
16 #include <linux/hash.h>
17 #include <linux/random.h>
18 
19 #include <trace/events/bcache.h>
20 
21 #define CUTOFF_CACHE_ADD	95
22 #define CUTOFF_CACHE_READA	90
23 
24 struct kmem_cache *bch_search_cache;
25 
26 static void bch_data_insert_start(struct closure *);
27 
28 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
29 {
30 	return BDEV_CACHE_MODE(&dc->sb);
31 }
32 
33 static bool verify(struct cached_dev *dc, struct bio *bio)
34 {
35 	return dc->verify;
36 }
37 
38 static void bio_csum(struct bio *bio, struct bkey *k)
39 {
40 	struct bio_vec bv;
41 	struct bvec_iter iter;
42 	uint64_t csum = 0;
43 
44 	bio_for_each_segment(bv, bio, iter) {
45 		void *d = kmap(bv.bv_page) + bv.bv_offset;
46 		csum = bch_crc64_update(csum, d, bv.bv_len);
47 		kunmap(bv.bv_page);
48 	}
49 
50 	k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
51 }
52 
53 /* Insert data into cache */
54 
55 static void bch_data_insert_keys(struct closure *cl)
56 {
57 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
58 	atomic_t *journal_ref = NULL;
59 	struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
60 	int ret;
61 
62 	/*
63 	 * If we're looping, might already be waiting on
64 	 * another journal write - can't wait on more than one journal write at
65 	 * a time
66 	 *
67 	 * XXX: this looks wrong
68 	 */
69 #if 0
70 	while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
71 		closure_sync(&s->cl);
72 #endif
73 
74 	if (!op->replace)
75 		journal_ref = bch_journal(op->c, &op->insert_keys,
76 					  op->flush_journal ? cl : NULL);
77 
78 	ret = bch_btree_insert(op->c, &op->insert_keys,
79 			       journal_ref, replace_key);
80 	if (ret == -ESRCH) {
81 		op->replace_collision = true;
82 	} else if (ret) {
83 		op->error		= -ENOMEM;
84 		op->insert_data_done	= true;
85 	}
86 
87 	if (journal_ref)
88 		atomic_dec_bug(journal_ref);
89 
90 	if (!op->insert_data_done)
91 		continue_at(cl, bch_data_insert_start, op->wq);
92 
93 	bch_keylist_free(&op->insert_keys);
94 	closure_return(cl);
95 }
96 
97 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
98 			       struct cache_set *c)
99 {
100 	size_t oldsize = bch_keylist_nkeys(l);
101 	size_t newsize = oldsize + u64s;
102 
103 	/*
104 	 * The journalling code doesn't handle the case where the keys to insert
105 	 * is bigger than an empty write: If we just return -ENOMEM here,
106 	 * bio_insert() and bio_invalidate() will insert the keys created so far
107 	 * and finish the rest when the keylist is empty.
108 	 */
109 	if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
110 		return -ENOMEM;
111 
112 	return __bch_keylist_realloc(l, u64s);
113 }
114 
115 static void bch_data_invalidate(struct closure *cl)
116 {
117 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
118 	struct bio *bio = op->bio;
119 
120 	pr_debug("invalidating %i sectors from %llu",
121 		 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
122 
123 	while (bio_sectors(bio)) {
124 		unsigned sectors = min(bio_sectors(bio),
125 				       1U << (KEY_SIZE_BITS - 1));
126 
127 		if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
128 			goto out;
129 
130 		bio->bi_iter.bi_sector	+= sectors;
131 		bio->bi_iter.bi_size	-= sectors << 9;
132 
133 		bch_keylist_add(&op->insert_keys,
134 				&KEY(op->inode, bio->bi_iter.bi_sector, sectors));
135 	}
136 
137 	op->insert_data_done = true;
138 	bio_put(bio);
139 out:
140 	continue_at(cl, bch_data_insert_keys, op->wq);
141 }
142 
143 static void bch_data_insert_error(struct closure *cl)
144 {
145 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
146 
147 	/*
148 	 * Our data write just errored, which means we've got a bunch of keys to
149 	 * insert that point to data that wasn't succesfully written.
150 	 *
151 	 * We don't have to insert those keys but we still have to invalidate
152 	 * that region of the cache - so, if we just strip off all the pointers
153 	 * from the keys we'll accomplish just that.
154 	 */
155 
156 	struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
157 
158 	while (src != op->insert_keys.top) {
159 		struct bkey *n = bkey_next(src);
160 
161 		SET_KEY_PTRS(src, 0);
162 		memmove(dst, src, bkey_bytes(src));
163 
164 		dst = bkey_next(dst);
165 		src = n;
166 	}
167 
168 	op->insert_keys.top = dst;
169 
170 	bch_data_insert_keys(cl);
171 }
172 
173 static void bch_data_insert_endio(struct bio *bio, int error)
174 {
175 	struct closure *cl = bio->bi_private;
176 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
177 
178 	if (error) {
179 		/* TODO: We could try to recover from this. */
180 		if (op->writeback)
181 			op->error = error;
182 		else if (!op->replace)
183 			set_closure_fn(cl, bch_data_insert_error, op->wq);
184 		else
185 			set_closure_fn(cl, NULL, NULL);
186 	}
187 
188 	bch_bbio_endio(op->c, bio, error, "writing data to cache");
189 }
190 
191 static void bch_data_insert_start(struct closure *cl)
192 {
193 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
194 	struct bio *bio = op->bio, *n;
195 
196 	if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
197 		set_gc_sectors(op->c);
198 		wake_up_gc(op->c);
199 	}
200 
201 	if (op->bypass)
202 		return bch_data_invalidate(cl);
203 
204 	/*
205 	 * Journal writes are marked REQ_FLUSH; if the original write was a
206 	 * flush, it'll wait on the journal write.
207 	 */
208 	bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
209 
210 	do {
211 		unsigned i;
212 		struct bkey *k;
213 		struct bio_set *split = op->c->bio_split;
214 
215 		/* 1 for the device pointer and 1 for the chksum */
216 		if (bch_keylist_realloc(&op->insert_keys,
217 					3 + (op->csum ? 1 : 0),
218 					op->c))
219 			continue_at(cl, bch_data_insert_keys, op->wq);
220 
221 		k = op->insert_keys.top;
222 		bkey_init(k);
223 		SET_KEY_INODE(k, op->inode);
224 		SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
225 
226 		if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
227 				       op->write_point, op->write_prio,
228 				       op->writeback))
229 			goto err;
230 
231 		n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
232 
233 		n->bi_end_io	= bch_data_insert_endio;
234 		n->bi_private	= cl;
235 
236 		if (op->writeback) {
237 			SET_KEY_DIRTY(k, true);
238 
239 			for (i = 0; i < KEY_PTRS(k); i++)
240 				SET_GC_MARK(PTR_BUCKET(op->c, k, i),
241 					    GC_MARK_DIRTY);
242 		}
243 
244 		SET_KEY_CSUM(k, op->csum);
245 		if (KEY_CSUM(k))
246 			bio_csum(n, k);
247 
248 		trace_bcache_cache_insert(k);
249 		bch_keylist_push(&op->insert_keys);
250 
251 		n->bi_rw |= REQ_WRITE;
252 		bch_submit_bbio(n, op->c, k, 0);
253 	} while (n != bio);
254 
255 	op->insert_data_done = true;
256 	continue_at(cl, bch_data_insert_keys, op->wq);
257 err:
258 	/* bch_alloc_sectors() blocks if s->writeback = true */
259 	BUG_ON(op->writeback);
260 
261 	/*
262 	 * But if it's not a writeback write we'd rather just bail out if
263 	 * there aren't any buckets ready to write to - it might take awhile and
264 	 * we might be starving btree writes for gc or something.
265 	 */
266 
267 	if (!op->replace) {
268 		/*
269 		 * Writethrough write: We can't complete the write until we've
270 		 * updated the index. But we don't want to delay the write while
271 		 * we wait for buckets to be freed up, so just invalidate the
272 		 * rest of the write.
273 		 */
274 		op->bypass = true;
275 		return bch_data_invalidate(cl);
276 	} else {
277 		/*
278 		 * From a cache miss, we can just insert the keys for the data
279 		 * we have written or bail out if we didn't do anything.
280 		 */
281 		op->insert_data_done = true;
282 		bio_put(bio);
283 
284 		if (!bch_keylist_empty(&op->insert_keys))
285 			continue_at(cl, bch_data_insert_keys, op->wq);
286 		else
287 			closure_return(cl);
288 	}
289 }
290 
291 /**
292  * bch_data_insert - stick some data in the cache
293  *
294  * This is the starting point for any data to end up in a cache device; it could
295  * be from a normal write, or a writeback write, or a write to a flash only
296  * volume - it's also used by the moving garbage collector to compact data in
297  * mostly empty buckets.
298  *
299  * It first writes the data to the cache, creating a list of keys to be inserted
300  * (if the data had to be fragmented there will be multiple keys); after the
301  * data is written it calls bch_journal, and after the keys have been added to
302  * the next journal write they're inserted into the btree.
303  *
304  * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
305  * and op->inode is used for the key inode.
306  *
307  * If s->bypass is true, instead of inserting the data it invalidates the
308  * region of the cache represented by s->cache_bio and op->inode.
309  */
310 void bch_data_insert(struct closure *cl)
311 {
312 	struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
313 
314 	trace_bcache_write(op->bio, op->writeback, op->bypass);
315 
316 	bch_keylist_init(&op->insert_keys);
317 	bio_get(op->bio);
318 	bch_data_insert_start(cl);
319 }
320 
321 /* Congested? */
322 
323 unsigned bch_get_congested(struct cache_set *c)
324 {
325 	int i;
326 	long rand;
327 
328 	if (!c->congested_read_threshold_us &&
329 	    !c->congested_write_threshold_us)
330 		return 0;
331 
332 	i = (local_clock_us() - c->congested_last_us) / 1024;
333 	if (i < 0)
334 		return 0;
335 
336 	i += atomic_read(&c->congested);
337 	if (i >= 0)
338 		return 0;
339 
340 	i += CONGESTED_MAX;
341 
342 	if (i > 0)
343 		i = fract_exp_two(i, 6);
344 
345 	rand = get_random_int();
346 	i -= bitmap_weight(&rand, BITS_PER_LONG);
347 
348 	return i > 0 ? i : 1;
349 }
350 
351 static void add_sequential(struct task_struct *t)
352 {
353 	ewma_add(t->sequential_io_avg,
354 		 t->sequential_io, 8, 0);
355 
356 	t->sequential_io = 0;
357 }
358 
359 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
360 {
361 	return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
362 }
363 
364 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
365 {
366 	struct cache_set *c = dc->disk.c;
367 	unsigned mode = cache_mode(dc, bio);
368 	unsigned sectors, congested = bch_get_congested(c);
369 	struct task_struct *task = current;
370 	struct io *i;
371 
372 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
373 	    c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
374 	    (bio->bi_rw & REQ_DISCARD))
375 		goto skip;
376 
377 	if (mode == CACHE_MODE_NONE ||
378 	    (mode == CACHE_MODE_WRITEAROUND &&
379 	     (bio->bi_rw & REQ_WRITE)))
380 		goto skip;
381 
382 	if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
383 	    bio_sectors(bio) & (c->sb.block_size - 1)) {
384 		pr_debug("skipping unaligned io");
385 		goto skip;
386 	}
387 
388 	if (bypass_torture_test(dc)) {
389 		if ((get_random_int() & 3) == 3)
390 			goto skip;
391 		else
392 			goto rescale;
393 	}
394 
395 	if (!congested && !dc->sequential_cutoff)
396 		goto rescale;
397 
398 	if (!congested &&
399 	    mode == CACHE_MODE_WRITEBACK &&
400 	    (bio->bi_rw & REQ_WRITE) &&
401 	    (bio->bi_rw & REQ_SYNC))
402 		goto rescale;
403 
404 	spin_lock(&dc->io_lock);
405 
406 	hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
407 		if (i->last == bio->bi_iter.bi_sector &&
408 		    time_before(jiffies, i->jiffies))
409 			goto found;
410 
411 	i = list_first_entry(&dc->io_lru, struct io, lru);
412 
413 	add_sequential(task);
414 	i->sequential = 0;
415 found:
416 	if (i->sequential + bio->bi_iter.bi_size > i->sequential)
417 		i->sequential	+= bio->bi_iter.bi_size;
418 
419 	i->last			 = bio_end_sector(bio);
420 	i->jiffies		 = jiffies + msecs_to_jiffies(5000);
421 	task->sequential_io	 = i->sequential;
422 
423 	hlist_del(&i->hash);
424 	hlist_add_head(&i->hash, iohash(dc, i->last));
425 	list_move_tail(&i->lru, &dc->io_lru);
426 
427 	spin_unlock(&dc->io_lock);
428 
429 	sectors = max(task->sequential_io,
430 		      task->sequential_io_avg) >> 9;
431 
432 	if (dc->sequential_cutoff &&
433 	    sectors >= dc->sequential_cutoff >> 9) {
434 		trace_bcache_bypass_sequential(bio);
435 		goto skip;
436 	}
437 
438 	if (congested && sectors >= congested) {
439 		trace_bcache_bypass_congested(bio);
440 		goto skip;
441 	}
442 
443 rescale:
444 	bch_rescale_priorities(c, bio_sectors(bio));
445 	return false;
446 skip:
447 	bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
448 	return true;
449 }
450 
451 /* Cache lookup */
452 
453 struct search {
454 	/* Stack frame for bio_complete */
455 	struct closure		cl;
456 
457 	struct bbio		bio;
458 	struct bio		*orig_bio;
459 	struct bio		*cache_miss;
460 	struct bcache_device	*d;
461 
462 	unsigned		insert_bio_sectors;
463 	unsigned		recoverable:1;
464 	unsigned		write:1;
465 	unsigned		read_dirty_data:1;
466 
467 	unsigned long		start_time;
468 
469 	struct btree_op		op;
470 	struct data_insert_op	iop;
471 };
472 
473 static void bch_cache_read_endio(struct bio *bio, int error)
474 {
475 	struct bbio *b = container_of(bio, struct bbio, bio);
476 	struct closure *cl = bio->bi_private;
477 	struct search *s = container_of(cl, struct search, cl);
478 
479 	/*
480 	 * If the bucket was reused while our bio was in flight, we might have
481 	 * read the wrong data. Set s->error but not error so it doesn't get
482 	 * counted against the cache device, but we'll still reread the data
483 	 * from the backing device.
484 	 */
485 
486 	if (error)
487 		s->iop.error = error;
488 	else if (!KEY_DIRTY(&b->key) &&
489 		 ptr_stale(s->iop.c, &b->key, 0)) {
490 		atomic_long_inc(&s->iop.c->cache_read_races);
491 		s->iop.error = -EINTR;
492 	}
493 
494 	bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
495 }
496 
497 /*
498  * Read from a single key, handling the initial cache miss if the key starts in
499  * the middle of the bio
500  */
501 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
502 {
503 	struct search *s = container_of(op, struct search, op);
504 	struct bio *n, *bio = &s->bio.bio;
505 	struct bkey *bio_key;
506 	unsigned ptr;
507 
508 	if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
509 		return MAP_CONTINUE;
510 
511 	if (KEY_INODE(k) != s->iop.inode ||
512 	    KEY_START(k) > bio->bi_iter.bi_sector) {
513 		unsigned bio_sectors = bio_sectors(bio);
514 		unsigned sectors = KEY_INODE(k) == s->iop.inode
515 			? min_t(uint64_t, INT_MAX,
516 				KEY_START(k) - bio->bi_iter.bi_sector)
517 			: INT_MAX;
518 
519 		int ret = s->d->cache_miss(b, s, bio, sectors);
520 		if (ret != MAP_CONTINUE)
521 			return ret;
522 
523 		/* if this was a complete miss we shouldn't get here */
524 		BUG_ON(bio_sectors <= sectors);
525 	}
526 
527 	if (!KEY_SIZE(k))
528 		return MAP_CONTINUE;
529 
530 	/* XXX: figure out best pointer - for multiple cache devices */
531 	ptr = 0;
532 
533 	PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
534 
535 	if (KEY_DIRTY(k))
536 		s->read_dirty_data = true;
537 
538 	n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
539 				      KEY_OFFSET(k) - bio->bi_iter.bi_sector),
540 			   GFP_NOIO, s->d->bio_split);
541 
542 	bio_key = &container_of(n, struct bbio, bio)->key;
543 	bch_bkey_copy_single_ptr(bio_key, k, ptr);
544 
545 	bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
546 	bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
547 
548 	n->bi_end_io	= bch_cache_read_endio;
549 	n->bi_private	= &s->cl;
550 
551 	/*
552 	 * The bucket we're reading from might be reused while our bio
553 	 * is in flight, and we could then end up reading the wrong
554 	 * data.
555 	 *
556 	 * We guard against this by checking (in cache_read_endio()) if
557 	 * the pointer is stale again; if so, we treat it as an error
558 	 * and reread from the backing device (but we don't pass that
559 	 * error up anywhere).
560 	 */
561 
562 	__bch_submit_bbio(n, b->c);
563 	return n == bio ? MAP_DONE : MAP_CONTINUE;
564 }
565 
566 static void cache_lookup(struct closure *cl)
567 {
568 	struct search *s = container_of(cl, struct search, iop.cl);
569 	struct bio *bio = &s->bio.bio;
570 	int ret;
571 
572 	bch_btree_op_init(&s->op, -1);
573 
574 	ret = bch_btree_map_keys(&s->op, s->iop.c,
575 				 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
576 				 cache_lookup_fn, MAP_END_KEY);
577 	if (ret == -EAGAIN)
578 		continue_at(cl, cache_lookup, bcache_wq);
579 
580 	closure_return(cl);
581 }
582 
583 /* Common code for the make_request functions */
584 
585 static void request_endio(struct bio *bio, int error)
586 {
587 	struct closure *cl = bio->bi_private;
588 
589 	if (error) {
590 		struct search *s = container_of(cl, struct search, cl);
591 		s->iop.error = error;
592 		/* Only cache read errors are recoverable */
593 		s->recoverable = false;
594 	}
595 
596 	bio_put(bio);
597 	closure_put(cl);
598 }
599 
600 static void bio_complete(struct search *s)
601 {
602 	if (s->orig_bio) {
603 		int cpu, rw = bio_data_dir(s->orig_bio);
604 		unsigned long duration = jiffies - s->start_time;
605 
606 		cpu = part_stat_lock();
607 		part_round_stats(cpu, &s->d->disk->part0);
608 		part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
609 		part_stat_unlock();
610 
611 		trace_bcache_request_end(s->d, s->orig_bio);
612 		bio_endio(s->orig_bio, s->iop.error);
613 		s->orig_bio = NULL;
614 	}
615 }
616 
617 static void do_bio_hook(struct search *s, struct bio *orig_bio)
618 {
619 	struct bio *bio = &s->bio.bio;
620 
621 	bio_init(bio);
622 	__bio_clone_fast(bio, orig_bio);
623 	bio->bi_end_io		= request_endio;
624 	bio->bi_private		= &s->cl;
625 
626 	atomic_set(&bio->bi_cnt, 3);
627 }
628 
629 static void search_free(struct closure *cl)
630 {
631 	struct search *s = container_of(cl, struct search, cl);
632 	bio_complete(s);
633 
634 	if (s->iop.bio)
635 		bio_put(s->iop.bio);
636 
637 	closure_debug_destroy(cl);
638 	mempool_free(s, s->d->c->search);
639 }
640 
641 static inline struct search *search_alloc(struct bio *bio,
642 					  struct bcache_device *d)
643 {
644 	struct search *s;
645 
646 	s = mempool_alloc(d->c->search, GFP_NOIO);
647 
648 	closure_init(&s->cl, NULL);
649 	do_bio_hook(s, bio);
650 
651 	s->orig_bio		= bio;
652 	s->cache_miss		= NULL;
653 	s->d			= d;
654 	s->recoverable		= 1;
655 	s->write		= (bio->bi_rw & REQ_WRITE) != 0;
656 	s->read_dirty_data	= 0;
657 	s->start_time		= jiffies;
658 
659 	s->iop.c		= d->c;
660 	s->iop.bio		= NULL;
661 	s->iop.inode		= d->id;
662 	s->iop.write_point	= hash_long((unsigned long) current, 16);
663 	s->iop.write_prio	= 0;
664 	s->iop.error		= 0;
665 	s->iop.flags		= 0;
666 	s->iop.flush_journal	= (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
667 	s->iop.wq		= bcache_wq;
668 
669 	return s;
670 }
671 
672 /* Cached devices */
673 
674 static void cached_dev_bio_complete(struct closure *cl)
675 {
676 	struct search *s = container_of(cl, struct search, cl);
677 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
678 
679 	search_free(cl);
680 	cached_dev_put(dc);
681 }
682 
683 /* Process reads */
684 
685 static void cached_dev_cache_miss_done(struct closure *cl)
686 {
687 	struct search *s = container_of(cl, struct search, cl);
688 
689 	if (s->iop.replace_collision)
690 		bch_mark_cache_miss_collision(s->iop.c, s->d);
691 
692 	if (s->iop.bio) {
693 		int i;
694 		struct bio_vec *bv;
695 
696 		bio_for_each_segment_all(bv, s->iop.bio, i)
697 			__free_page(bv->bv_page);
698 	}
699 
700 	cached_dev_bio_complete(cl);
701 }
702 
703 static void cached_dev_read_error(struct closure *cl)
704 {
705 	struct search *s = container_of(cl, struct search, cl);
706 	struct bio *bio = &s->bio.bio;
707 
708 	if (s->recoverable) {
709 		/* Retry from the backing device: */
710 		trace_bcache_read_retry(s->orig_bio);
711 
712 		s->iop.error = 0;
713 		do_bio_hook(s, s->orig_bio);
714 
715 		/* XXX: invalidate cache */
716 
717 		closure_bio_submit(bio, cl, s->d);
718 	}
719 
720 	continue_at(cl, cached_dev_cache_miss_done, NULL);
721 }
722 
723 static void cached_dev_read_done(struct closure *cl)
724 {
725 	struct search *s = container_of(cl, struct search, cl);
726 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
727 
728 	/*
729 	 * We had a cache miss; cache_bio now contains data ready to be inserted
730 	 * into the cache.
731 	 *
732 	 * First, we copy the data we just read from cache_bio's bounce buffers
733 	 * to the buffers the original bio pointed to:
734 	 */
735 
736 	if (s->iop.bio) {
737 		bio_reset(s->iop.bio);
738 		s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
739 		s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
740 		s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
741 		bch_bio_map(s->iop.bio, NULL);
742 
743 		bio_copy_data(s->cache_miss, s->iop.bio);
744 
745 		bio_put(s->cache_miss);
746 		s->cache_miss = NULL;
747 	}
748 
749 	if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
750 		bch_data_verify(dc, s->orig_bio);
751 
752 	bio_complete(s);
753 
754 	if (s->iop.bio &&
755 	    !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
756 		BUG_ON(!s->iop.replace);
757 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
758 	}
759 
760 	continue_at(cl, cached_dev_cache_miss_done, NULL);
761 }
762 
763 static void cached_dev_read_done_bh(struct closure *cl)
764 {
765 	struct search *s = container_of(cl, struct search, cl);
766 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
767 
768 	bch_mark_cache_accounting(s->iop.c, s->d,
769 				  !s->cache_miss, s->iop.bypass);
770 	trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
771 
772 	if (s->iop.error)
773 		continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
774 	else if (s->iop.bio || verify(dc, &s->bio.bio))
775 		continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
776 	else
777 		continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
778 }
779 
780 static int cached_dev_cache_miss(struct btree *b, struct search *s,
781 				 struct bio *bio, unsigned sectors)
782 {
783 	int ret = MAP_CONTINUE;
784 	unsigned reada = 0;
785 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
786 	struct bio *miss, *cache_bio;
787 
788 	if (s->cache_miss || s->iop.bypass) {
789 		miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
790 		ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
791 		goto out_submit;
792 	}
793 
794 	if (!(bio->bi_rw & REQ_RAHEAD) &&
795 	    !(bio->bi_rw & REQ_META) &&
796 	    s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
797 		reada = min_t(sector_t, dc->readahead >> 9,
798 			      bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
799 
800 	s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
801 
802 	s->iop.replace_key = KEY(s->iop.inode,
803 				 bio->bi_iter.bi_sector + s->insert_bio_sectors,
804 				 s->insert_bio_sectors);
805 
806 	ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
807 	if (ret)
808 		return ret;
809 
810 	s->iop.replace = true;
811 
812 	miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
813 
814 	/* btree_search_recurse()'s btree iterator is no good anymore */
815 	ret = miss == bio ? MAP_DONE : -EINTR;
816 
817 	cache_bio = bio_alloc_bioset(GFP_NOWAIT,
818 			DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
819 			dc->disk.bio_split);
820 	if (!cache_bio)
821 		goto out_submit;
822 
823 	cache_bio->bi_iter.bi_sector	= miss->bi_iter.bi_sector;
824 	cache_bio->bi_bdev		= miss->bi_bdev;
825 	cache_bio->bi_iter.bi_size	= s->insert_bio_sectors << 9;
826 
827 	cache_bio->bi_end_io	= request_endio;
828 	cache_bio->bi_private	= &s->cl;
829 
830 	bch_bio_map(cache_bio, NULL);
831 	if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
832 		goto out_put;
833 
834 	if (reada)
835 		bch_mark_cache_readahead(s->iop.c, s->d);
836 
837 	s->cache_miss	= miss;
838 	s->iop.bio	= cache_bio;
839 	bio_get(cache_bio);
840 	closure_bio_submit(cache_bio, &s->cl, s->d);
841 
842 	return ret;
843 out_put:
844 	bio_put(cache_bio);
845 out_submit:
846 	miss->bi_end_io		= request_endio;
847 	miss->bi_private	= &s->cl;
848 	closure_bio_submit(miss, &s->cl, s->d);
849 	return ret;
850 }
851 
852 static void cached_dev_read(struct cached_dev *dc, struct search *s)
853 {
854 	struct closure *cl = &s->cl;
855 
856 	closure_call(&s->iop.cl, cache_lookup, NULL, cl);
857 	continue_at(cl, cached_dev_read_done_bh, NULL);
858 }
859 
860 /* Process writes */
861 
862 static void cached_dev_write_complete(struct closure *cl)
863 {
864 	struct search *s = container_of(cl, struct search, cl);
865 	struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
866 
867 	up_read_non_owner(&dc->writeback_lock);
868 	cached_dev_bio_complete(cl);
869 }
870 
871 static void cached_dev_write(struct cached_dev *dc, struct search *s)
872 {
873 	struct closure *cl = &s->cl;
874 	struct bio *bio = &s->bio.bio;
875 	struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
876 	struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
877 
878 	bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
879 
880 	down_read_non_owner(&dc->writeback_lock);
881 	if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
882 		/*
883 		 * We overlap with some dirty data undergoing background
884 		 * writeback, force this write to writeback
885 		 */
886 		s->iop.bypass = false;
887 		s->iop.writeback = true;
888 	}
889 
890 	/*
891 	 * Discards aren't _required_ to do anything, so skipping if
892 	 * check_overlapping returned true is ok
893 	 *
894 	 * But check_overlapping drops dirty keys for which io hasn't started,
895 	 * so we still want to call it.
896 	 */
897 	if (bio->bi_rw & REQ_DISCARD)
898 		s->iop.bypass = true;
899 
900 	if (should_writeback(dc, s->orig_bio,
901 			     cache_mode(dc, bio),
902 			     s->iop.bypass)) {
903 		s->iop.bypass = false;
904 		s->iop.writeback = true;
905 	}
906 
907 	if (s->iop.bypass) {
908 		s->iop.bio = s->orig_bio;
909 		bio_get(s->iop.bio);
910 
911 		if (!(bio->bi_rw & REQ_DISCARD) ||
912 		    blk_queue_discard(bdev_get_queue(dc->bdev)))
913 			closure_bio_submit(bio, cl, s->d);
914 	} else if (s->iop.writeback) {
915 		bch_writeback_add(dc);
916 		s->iop.bio = bio;
917 
918 		if (bio->bi_rw & REQ_FLUSH) {
919 			/* Also need to send a flush to the backing device */
920 			struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
921 							     dc->disk.bio_split);
922 
923 			flush->bi_rw	= WRITE_FLUSH;
924 			flush->bi_bdev	= bio->bi_bdev;
925 			flush->bi_end_io = request_endio;
926 			flush->bi_private = cl;
927 
928 			closure_bio_submit(flush, cl, s->d);
929 		}
930 	} else {
931 		s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
932 
933 		closure_bio_submit(bio, cl, s->d);
934 	}
935 
936 	closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
937 	continue_at(cl, cached_dev_write_complete, NULL);
938 }
939 
940 static void cached_dev_nodata(struct closure *cl)
941 {
942 	struct search *s = container_of(cl, struct search, cl);
943 	struct bio *bio = &s->bio.bio;
944 
945 	if (s->iop.flush_journal)
946 		bch_journal_meta(s->iop.c, cl);
947 
948 	/* If it's a flush, we send the flush to the backing device too */
949 	closure_bio_submit(bio, cl, s->d);
950 
951 	continue_at(cl, cached_dev_bio_complete, NULL);
952 }
953 
954 /* Cached devices - read & write stuff */
955 
956 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
957 {
958 	struct search *s;
959 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
960 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
961 	int cpu, rw = bio_data_dir(bio);
962 
963 	cpu = part_stat_lock();
964 	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
965 	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
966 	part_stat_unlock();
967 
968 	bio->bi_bdev = dc->bdev;
969 	bio->bi_iter.bi_sector += dc->sb.data_offset;
970 
971 	if (cached_dev_get(dc)) {
972 		s = search_alloc(bio, d);
973 		trace_bcache_request_start(s->d, bio);
974 
975 		if (!bio->bi_iter.bi_size) {
976 			/*
977 			 * can't call bch_journal_meta from under
978 			 * generic_make_request
979 			 */
980 			continue_at_nobarrier(&s->cl,
981 					      cached_dev_nodata,
982 					      bcache_wq);
983 		} else {
984 			s->iop.bypass = check_should_bypass(dc, bio);
985 
986 			if (rw)
987 				cached_dev_write(dc, s);
988 			else
989 				cached_dev_read(dc, s);
990 		}
991 	} else {
992 		if ((bio->bi_rw & REQ_DISCARD) &&
993 		    !blk_queue_discard(bdev_get_queue(dc->bdev)))
994 			bio_endio(bio, 0);
995 		else
996 			bch_generic_make_request(bio, &d->bio_split_hook);
997 	}
998 }
999 
1000 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1001 			    unsigned int cmd, unsigned long arg)
1002 {
1003 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1004 	return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1005 }
1006 
1007 static int cached_dev_congested(void *data, int bits)
1008 {
1009 	struct bcache_device *d = data;
1010 	struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1011 	struct request_queue *q = bdev_get_queue(dc->bdev);
1012 	int ret = 0;
1013 
1014 	if (bdi_congested(&q->backing_dev_info, bits))
1015 		return 1;
1016 
1017 	if (cached_dev_get(dc)) {
1018 		unsigned i;
1019 		struct cache *ca;
1020 
1021 		for_each_cache(ca, d->c, i) {
1022 			q = bdev_get_queue(ca->bdev);
1023 			ret |= bdi_congested(&q->backing_dev_info, bits);
1024 		}
1025 
1026 		cached_dev_put(dc);
1027 	}
1028 
1029 	return ret;
1030 }
1031 
1032 void bch_cached_dev_request_init(struct cached_dev *dc)
1033 {
1034 	struct gendisk *g = dc->disk.disk;
1035 
1036 	g->queue->make_request_fn		= cached_dev_make_request;
1037 	g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1038 	dc->disk.cache_miss			= cached_dev_cache_miss;
1039 	dc->disk.ioctl				= cached_dev_ioctl;
1040 }
1041 
1042 /* Flash backed devices */
1043 
1044 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1045 				struct bio *bio, unsigned sectors)
1046 {
1047 	unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1048 
1049 	swap(bio->bi_iter.bi_size, bytes);
1050 	zero_fill_bio(bio);
1051 	swap(bio->bi_iter.bi_size, bytes);
1052 
1053 	bio_advance(bio, bytes);
1054 
1055 	if (!bio->bi_iter.bi_size)
1056 		return MAP_DONE;
1057 
1058 	return MAP_CONTINUE;
1059 }
1060 
1061 static void flash_dev_nodata(struct closure *cl)
1062 {
1063 	struct search *s = container_of(cl, struct search, cl);
1064 
1065 	if (s->iop.flush_journal)
1066 		bch_journal_meta(s->iop.c, cl);
1067 
1068 	continue_at(cl, search_free, NULL);
1069 }
1070 
1071 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1072 {
1073 	struct search *s;
1074 	struct closure *cl;
1075 	struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1076 	int cpu, rw = bio_data_dir(bio);
1077 
1078 	cpu = part_stat_lock();
1079 	part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1080 	part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1081 	part_stat_unlock();
1082 
1083 	s = search_alloc(bio, d);
1084 	cl = &s->cl;
1085 	bio = &s->bio.bio;
1086 
1087 	trace_bcache_request_start(s->d, bio);
1088 
1089 	if (!bio->bi_iter.bi_size) {
1090 		/*
1091 		 * can't call bch_journal_meta from under
1092 		 * generic_make_request
1093 		 */
1094 		continue_at_nobarrier(&s->cl,
1095 				      flash_dev_nodata,
1096 				      bcache_wq);
1097 	} else if (rw) {
1098 		bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1099 					&KEY(d->id, bio->bi_iter.bi_sector, 0),
1100 					&KEY(d->id, bio_end_sector(bio), 0));
1101 
1102 		s->iop.bypass		= (bio->bi_rw & REQ_DISCARD) != 0;
1103 		s->iop.writeback	= true;
1104 		s->iop.bio		= bio;
1105 
1106 		closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1107 	} else {
1108 		closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1109 	}
1110 
1111 	continue_at(cl, search_free, NULL);
1112 }
1113 
1114 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1115 			   unsigned int cmd, unsigned long arg)
1116 {
1117 	return -ENOTTY;
1118 }
1119 
1120 static int flash_dev_congested(void *data, int bits)
1121 {
1122 	struct bcache_device *d = data;
1123 	struct request_queue *q;
1124 	struct cache *ca;
1125 	unsigned i;
1126 	int ret = 0;
1127 
1128 	for_each_cache(ca, d->c, i) {
1129 		q = bdev_get_queue(ca->bdev);
1130 		ret |= bdi_congested(&q->backing_dev_info, bits);
1131 	}
1132 
1133 	return ret;
1134 }
1135 
1136 void bch_flash_dev_request_init(struct bcache_device *d)
1137 {
1138 	struct gendisk *g = d->disk;
1139 
1140 	g->queue->make_request_fn		= flash_dev_make_request;
1141 	g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1142 	d->cache_miss				= flash_dev_cache_miss;
1143 	d->ioctl				= flash_dev_ioctl;
1144 }
1145 
1146 void bch_request_exit(void)
1147 {
1148 	if (bch_search_cache)
1149 		kmem_cache_destroy(bch_search_cache);
1150 }
1151 
1152 int __init bch_request_init(void)
1153 {
1154 	bch_search_cache = KMEM_CACHE(search, 0);
1155 	if (!bch_search_cache)
1156 		return -ENOMEM;
1157 
1158 	return 0;
1159 }
1160